101
|
Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 2012; 80:1948-57. [PMID: 22409932 PMCID: PMC3370574 DOI: 10.1128/iai.06014-11] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interaction of microbes with their environment depends on features of the dynamic microbial surface throughout cell growth and division. Surface modifications, whether used to acquire nutrients, defend against other microbes, or resist the pressures of a host immune system, facilitate adaptation to unique surroundings. The release of bioactive membrane vesicles (MVs) from the cell surface is conserved across microbial life, in bacteria, archaea, fungi, and parasites. MV production occurs not only in vitro but also in vivo during infection, underscoring the influence of these surface organelles in microbial physiology and pathogenesis through delivery of enzymes, toxins, communication signals, and antigens recognized by the innate and adaptive immune systems. Derived from a variety of organisms that span kingdoms of life and called by several names (membrane vesicles, outer membrane vesicles [OMVs], exosomes, shedding microvesicles, etc.), the conserved functions and mechanistic strategies of MV release are similar, including the use of ESCRT proteins and ESCRT protein homologues to facilitate these processes in archaea and eukaryotic microbes. Although forms of MV release by different organisms share similar visual, mechanistic, and functional features, there has been little comparison across microbial life. This underappreciated conservation of vesicle release, and the resulting functional impact throughout the tree of life, explored in this review, stresses the importance of vesicle-mediated processes throughout biology.
Collapse
Affiliation(s)
| | - Brad T. Cookson
- Department of Microbiology
- Laboratory Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
102
|
Muhammed M, Feldmesser M, Shubitz LF, Lionakis MS, Sil A, Wang Y, Glavis-Bloom J, Lewis RE, Galgiani JN, Casadevall A, Kontoyiannis DP, Mylonakis E. Mouse models for the study of fungal pneumonia: a collection of detailed experimental protocols for the study of Coccidioides, Cryptococcus, Fusarium, Histoplasma and combined infection due to Aspergillus-Rhizopus. Virulence 2012; 3:329-38. [PMID: 22546902 DOI: 10.4161/viru.20142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mouse models have facilitated the study of fungal pneumonia. In this report, we present the working protocols of groups that are working on the following pathogens: Aspergillus, Coccidioides, Cryptococcus, Fusarium, Histoplasma and Rhizopus. We describe the experimental procedures and the detailed methods that have been followed in the experienced laboratories to study pulmonary fungal infection; we also discuss the anticipated results and technical notes, and provide the practical advices that will help the users of these models.
Collapse
Affiliation(s)
- Maged Muhammed
- Division of Infectious Diseases, Harvard Medical School and Massachusetts General Hospital Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Xie S, Sao R, Braun A, Bottone EJ. Difference in Cryptococcus neoformans cellular and capsule size in sequential pulmonary and meningeal infection: a postmortem study. Diagn Microbiol Infect Dis 2012; 73:49-52. [PMID: 22424901 DOI: 10.1016/j.diagmicrobio.2012.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/08/2012] [Accepted: 01/14/2012] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans is an encapsulated yeast that primarily causes a life-threatening meningoencephalitis in immunosuppressed individuals especially those with HIV/AIDS. Its main virulence factor is its polysaccharide capsule which interferes with complement-mediated phagocytosis. C. neoformans infections ensue following inhalation of small desiccated less encapsulated propagules leading to pulmonary pneumonia or colonization of the host's respiratory tract. Numerous murine experimental studies have shown major discrepancies in cryptococcal cell and capsule enlargement between the lung and brain. In this report, we describe a nonmurine experimental model of the striking variability between cryptococcal cell and capsule size diameters in histology sections of postmortem lung and brain in a fatal cryptococcal infection in a heart transplant recipient.
Collapse
Affiliation(s)
- Steve Xie
- Department of Pathology, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | |
Collapse
|
104
|
Rodrigues ML, Nosanchuk JD, Schrank A, Vainstein MH, Casadevall A, Nimrichter L. Vesicular transport systems in fungi. Future Microbiol 2012; 6:1371-81. [PMID: 22082294 DOI: 10.2217/fmb.11.112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Canonical and unconventional mechanisms of secretion in many eukaryotic cells are relatively well known. In contrast to the situation in animal cells, mechanisms of secretion in fungi must include the capacity for trans-cell wall passage of macromolecules to the extracellular space. Although these mechanisms remain somewhat elusive, several studies in recent years have suggested that vesicular transport is required for trans-cell wall secretion of large molecules. Several fungal molecules, including proteins, lipids, polysaccharides and pigments, are released to the extracellular space in vesicles. In pathogenic fungi, a number of these vesicular components are associated with fungal virulence. Indeed, extracellular vesicles produced by fungi can interfere with the immunomodulatory activity of host cells. Fungal vesicles share many functional aspects with mammalian exosomes and extracellular vesicles produced by bacteria, plants and protozoa, but their cellular origin remains unknown. Here, we discuss the involvement of vesicular transport systems in fungal physiology and pathogenesis, making parallels with the mammalian, bacterial, protozoan and plant cell literature.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
105
|
Chronological aging is associated with biophysical and chemical changes in the capsule of Cryptococcus neoformans. Infect Immun 2011; 79:4990-5000. [PMID: 21968999 DOI: 10.1128/iai.05789-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Does the age of a microbial cell affect its virulence factors? To our knowledge, this question has not been addressed previously, but the answer is of great relevance for chronic infections where microbial cells persist and age in hosts. Cryptococcus neoformans is an encapsulated human-pathogenic fungus notorious for causing chronic infections where cells of variable age persist in tissue. The major virulence factor for C. neoformans is a polysaccharide (PS) capsule. To understand how chronological age could impact the cryptococcal capsule properties, we compared the elastic properties, permeabilities, zeta potentials, and glycosidic compositions of capsules from young and old cells and found significant differences in all parameters measured. Changes in capsular properties were paralleled by changes in PS molecular mass and density, as well as modified antigenic density and antiphagocytic properties. Remarkably, chronological aging under stationary-phase growth conditions was associated with the expression of α-1,3-glucans in the capsule, indicating a new structural capsular component. Our results establish that cryptococcal capsules are highly dynamic structures that change dramatically with chronological aging under prolonged stationary-phase growth conditions. Changes associated with cellular aging in chronic infections could contribute to the remarkable capacity of this fungus to persist in tissues by generating phenotypically and antigenically different capsules.
Collapse
|
106
|
García-Rodas R, Casadevall A, Rodríguez-Tudela JL, Cuenca-Estrella M, Zaragoza O. Cryptococcus neoformans capsular enlargement and cellular gigantism during Galleria mellonella infection. PLoS One 2011; 6:e24485. [PMID: 21915338 PMCID: PMC3168503 DOI: 10.1371/journal.pone.0024485] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/11/2011] [Indexed: 12/03/2022] Open
Abstract
We have studied infection of Cryptococcus neoformans in the non-vertebrate host Galleria mellonella with particular interest in the morphological response of the yeast. Inoculation of C. neoformans in caterpillars induced a capsule-independent increase in haemocyte density 2 h after infection. C. neoformans manifested a significant increase in capsule size after inoculation into the caterpillar. The magnitude of capsule increase depended on the temperature, being more pronounced at 37°C than at 30°C, which correlated with an increased virulence of the fungus and reduced phagocytosis at 37°C. Capsule enlargement impaired phagocytosis by haemocytes. Incubation of the yeast in G. mellonella extracts also resulted in capsule enlargement, with the polar lipidic fraction having a prominent role in this effect. During infection, the capsule decreased in permeability. A low proportion of the cells (<5%) recovered from caterpillars measured more than 30 µm and were considered giant cells. Giant cells recovered from mice were able to kill the caterpillars in a manner similar to regular cells obtained from in vivo or grown in vitro, establishing their capacity to cause disease. Our results indicate that the morphological transitions exhibited by C. neoformans in mammals also occur in a non-vertebrate host system. The similarities in morphological transitions observed in different animal hosts and in their triggers are consistent with the hypothesis that the cell body and capsular responses represent an adaptation of environmental survival strategies to pathogenesis.
Collapse
Affiliation(s)
- Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Arturo Casadevall
- Department of Microbiology and Immunology and Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan Luís Rodríguez-Tudela
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail:
| |
Collapse
|
107
|
Zaragoza O. Multiple Disguises for the Same Party: The Concepts of Morphogenesis and Phenotypic Variations in Cryptococcus neoformans. Front Microbiol 2011; 2:181. [PMID: 21922016 PMCID: PMC3167222 DOI: 10.3389/fmicb.2011.00181] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/17/2011] [Indexed: 01/10/2023] Open
Abstract
Although morphological transitions (such as hyphae and pseudohyphae formation) are a common feature among fungi, the encapsulated pathogenic yeast Cryptococcus neoformans is found during infection as blastoconidia. However, this fungus exhibits striking variations in cellular structure and size, which have important consequences during infection. This review will summarize the main aspects related with phenotypic and morphological variations in C. neoformans, which can be divided in three classes. Two of them are related to changes in the capsule, while the third one involves changes in the whole cell. The three morphological and phenotypic variations in C. neoformans can be classified as: (1) changes in capsule structure, (2) changes in capsule size, and (3) changes in the total size of the cell, which can be achieved by the formation of cryptococcal giant/titan cells or microforms. These changes have profound consequences on the interaction with the host, involving survival, phagocytosis escape and immune evasion and dissemination. This article will summarize the main features of these changes, and highlight their importance during the interaction with the host and how they contribute to the development of the disease.
Collapse
Affiliation(s)
- Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
108
|
Unravelling secretion in Cryptococcus neoformans: more than one way to skin a cat. Mycopathologia 2011; 173:407-18. [PMID: 21898146 DOI: 10.1007/s11046-011-9468-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/22/2011] [Indexed: 01/10/2023]
Abstract
Secretion pathways in fungi are essential for the maintenance of cell wall architecture and for the export of a number of virulence factors. In the fungal pathogen, Cryptococcus neoformans, much evidence supports the existence of more than one route taken by secreted molecules to reach the cell periphery and extracellular space, and a significant degree of crosstalk between conventional and non-conventional secretion routes. The need for such complexity may be due to differences in the nature of the exported cargo, the spatial and temporal requirements for constitutive and non-constitutive protein secretion, and/or as a means of compensating for the extra burden on the secretion machinery imposed by the elaboration of the polysaccharide capsule. This review focuses on the role of specific components of the C. neoformans secretion machinery in protein and/or polysaccharide export, including Sec4, Sec6, Sec14, Golgi reassembly and stacking protein and extracellular exosome-like vesicles. We also address what is known about traffic of the lipid, glucosylceramide, a target of therapeutic antibodies and an important regulator of C. neoformans pathogenicity, and the role of signalling pathways in the regulation of secretion.
Collapse
|
109
|
Abstract
The ability of fungi to transition between unicellular and multicellular growth has a profound impact on our health and the economy. Many important fungal pathogens of humans, animals, and plants are dimorphic, and the ability to switch between morphological states has been associated with their virulence. Cryptococcus neoformans is a human fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised and, in some cases, immunocompetent hosts. Cryptococcus neoformans grows vegetatively as a budding yeast and switches to hyphal growth during the sexual cycle, which is important in the study of cryptococcal pathogenicity because spores resulting from sexual development are infectious propagules and can colonize the lungs of a host. In addition, sexual reproduction contributes to the genotypic variability of Cryptococcus species, which may lead to increased fitness and virulence. Despite significant advances in our understanding of the mechanisms behind the development of C. neoformans, our knowledge is still incomplete. Recent studies have led to the emergence of many intriguing questions and hypotheses. In this review, we describe and discuss the most interesting aspects of C. neoformans development and address their impact on pathogenicity.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
110
|
Qin QM, Luo J, Lin X, Pei J, Li L, Ficht TA, de Figueiredo P. Functional analysis of host factors that mediate the intracellular lifestyle of Cryptococcus neoformans. PLoS Pathog 2011; 7:e1002078. [PMID: 21698225 PMCID: PMC3116820 DOI: 10.1371/journal.ppat.1002078] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/07/2011] [Indexed: 11/18/2022] Open
Abstract
Cryptococcus neoformans (Cn), the major causative agent of human fungal meningoencephalitis, replicates within phagolysosomes of infected host cells. Despite more than a half-century of investigation into host-Cn interactions, host factors that mediate infection by this fungal pathogen remain obscure. Here, we describe the development of a system that employs Drosophila S2 cells and RNA interference (RNAi) to define and characterize Cn host factors. The system recapitulated salient aspects of fungal interactions with mammalian cells, including phagocytosis, intracellular trafficking, replication, cell-to-cell spread and escape of the pathogen from host cells. Fifty-seven evolutionarily conserved host factors were identified using this system, including 29 factors that had not been previously implicated in mediating fungal pathogenesis. Subsequent analysis indicated that Cn exploits host actin cytoskeletal elements, cell surface signaling molecules, and vesicle-mediated transport proteins to establish a replicative niche. Several host molecules known to be associated with autophagy (Atg), including Atg2, Atg5, Atg9 and Pi3K59F (a class III PI3-kinase) were also uncovered in our screen. Small interfering RNA (siRNA) mediated depletion of these autophagy proteins in murine RAW264.7 macrophages demonstrated their requirement during Cn infection, thereby validating findings obtained using the Drosophila S2 cell system. Immunofluorescence confocal microscopy analyses demonstrated that Atg5, LC3, Atg9a were recruited to the vicinity of Cn containing vacuoles (CnCvs) in the early stages of Cn infection. Pharmacological inhibition of autophagy and/or PI3-kinase activity further demonstrated a requirement for autophagy associated host proteins in supporting infection of mammalian cells by Cn. Finally, systematic trafficking studies indicated that CnCVs associated with Atg proteins, including Atg5, Atg9a and LC3, during trafficking to a terminal intracellular compartment that was decorated with the lysosomal markers LAMP-1 and cathepsin D. Our findings validate the utility of the Drosophila S2 cell system as a functional genomic platform for identifying and characterizing host factors that mediate fungal intracellular replication. Our results also support a model in which host Atg proteins mediate Cn intracellular trafficking and replication.
Collapse
Affiliation(s)
- Qing-Ming Qin
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
- Borlaug Advanced Research Center, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (QMQ); (PdF)
| | - Jijing Luo
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Jianwu Pei
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Lei Li
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
- Borlaug Advanced Research Center, Texas A&M University, College Station, Texas, United States of America
| | - Thomas A. Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Paul de Figueiredo
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
- Borlaug Advanced Research Center, Texas A&M University, College Station, Texas, United States of America
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (QMQ); (PdF)
| |
Collapse
|
111
|
Ptilomycalin A inhibits laccase and melanization in Cryptococcus neoformans. Bioorg Med Chem 2011; 19:6654-7. [PMID: 21715177 DOI: 10.1016/j.bmc.2011.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/23/2011] [Accepted: 05/23/2011] [Indexed: 11/22/2022]
Abstract
The antifungal spirocyclic guanidine alkaloid, ptilomycalin A, from marine sponge Monanchora arbuscula, inhibits melanogenesis of Cryptococcus neoformans in vitro through inhibition of biosynthesis of laccase in the melanin biosynthetic pathway with an IC(50) of 7.3 μM.
Collapse
|
112
|
Chrisman CJ, Albuquerque P, Guimaraes AJ, Nieves E, Casadevall A. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathog 2011; 7:e1002047. [PMID: 21637814 PMCID: PMC3102711 DOI: 10.1371/journal.ppat.1002047] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/11/2011] [Indexed: 11/18/2022] Open
Abstract
A remarkable aspect of the interaction of Cryptococcus
neoformans with mammalian hosts is a consistent increase in capsule
volume. Given that many aspects of the interaction of C.
neoformans with macrophages are also observed with amoebae, we
hypothesized that the capsule enlargement phenomenon also had a protozoan
parallel. Incubation of C. neoformans with Acanthamoeba
castellanii resulted in C. neoformans capsular
enlargement. The phenomenon required contact between fungal and protozoan cells
but did not require amoeba viability. Analysis of amoebae extracts showed that
the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts
from macrophages and mammalian serum also triggered cryptococcal capsular
enlargement. C. neoformans capsule enlargement required
expression of fungal phospholipase B, but not phospholipase C. Purified
phospholipids, in particular, phosphatidylcholine, and derived molecules
triggered capsular enlargement with the subsequent formation of giant cells.
These results implicate phospholipids as a trigger for both C.
neoformans capsule enlargement in vivo and
exopolysaccharide production. The observation that the incubation of C.
neoformans with phospholipids led to the formation of giant cells
provides the means to generate these enigmatic cells in vitro.
Protozoan- or mammalian-derived polar lipids could represent a danger signal for
C. neoformans that triggers capsular enlargement as a
non-specific defense mechanism against potential predatory cells. Hence,
phospholipids are the first host-derived molecules identified to trigger
capsular enlargement. The parallels apparent in the capsular response of
C. neoformans to both amoebae and macrophages provide
additional support for the notion that certain aspects of cryptococcal virulence
emerged as a consequence of environmental interactions with other microorganisms
such as protists. A key event in C. neoformans pathogenesis is capsule enlargement
in mammalian hosts. Historically, this phenomenon was attributed to high
CO2 and iron deprivation but the magnitude of capsular
enlargement observed in vivo cannot be consistently replicated
in vitro. This paper reports that C.
neoformans responds to polar lipid extracts with massive capsule
enlargement, with some cells having dimensions comparable to the giant cells
observed in vivo. Phospholipids are identified in this paper as
the inducers of capsule enlargement. Our work is important because this is the
first host-derived molecule that has been identified as a stimulus of massive
capsule enlargement thus providing a potential mechanism for the capsular
enlargement observed in vivo. Furthermore, the fact that the
signal is common to both macrophages and amoebae suggests that the capsule
enlargement response to phospholipids is a mechanism for fungal sensing of
phagocytic cell predators. This provides another example of a correspondence
between a possible environmental signal and a mechanism of virulence.
Collapse
Affiliation(s)
- Cara J. Chrisman
- Department of Microbiology and Immunology,
Albert Einstein College of Medicine, Bronx, New York, United States of
America
| | - Patricia Albuquerque
- Department of Microbiology and Immunology,
Albert Einstein College of Medicine, Bronx, New York, United States of
America
| | - Allan J. Guimaraes
- Department of Microbiology and Immunology,
Albert Einstein College of Medicine, Bronx, New York, United States of
America
| | - Edward Nieves
- Department of Developmental and Molecular
Biology, Albert Einstein College of Medicine, Bronx, New York, United States of
America
- Department of Biochemistry, Albert Einstein
College of Medicine, Bronx, New York, United States of America
| | - Arturo Casadevall
- Department of Microbiology and Immunology,
Albert Einstein College of Medicine, Bronx, New York, United States of
America
- Department of Medicine, Albert Einstein
College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
113
|
Kmetzsch L, Joffe LS, Staats CC, de Oliveira DL, Fonseca FL, Cordero RJB, Casadevall A, Nimrichter L, Schrank A, Vainstein MH, Rodrigues ML. Role for Golgi reassembly and stacking protein (GRASP) in polysaccharide secretion and fungal virulence. Mol Microbiol 2011; 81:206-18. [PMID: 21542865 DOI: 10.1111/j.1365-2958.2011.07686.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Secretion of virulence factors is a critical mechanism for the establishment of cryptococcosis, a disease caused by the yeast pathogen Cryptococcus neoformans. One key virulence strategy of C. neoformans is the release of glucuronoxylomannan (GXM), a capsule-associated immune-modulatory polysaccharide that reaches the extracellular space through secretory vesicles. Golgi reassembly and stacking protein (GRASP) is required for unconventional protein secretion mechanisms in different eukaryotic cells, but its role in polysaccharide secretion is unknown. This study demonstrates that a C. neoformans functional mutant of a GRASP orthologue had attenuated virulence in an animal model of cryptococcosis, in comparison with wild-type (WT) and reconstituted cells. Mutant cells manifested altered Golgi morphology, failed to produce typical polysaccharide capsules and showed a reduced ability to secrete GXM both in vitro and during animal infection. Isolation of GXM from cultures of WT, reconstituted or mutant strains revealed that the GRASP orthologue mutant produced polysaccharides with reduced dimensions. The mutant was also more efficiently associated to and killed by macrophages than WT and reconstituted cells. These results demonstrate that GRASP, a protein involved in unconventional protein secretion, is also required for polysaccharide secretion and virulence in C. neoformans.
Collapse
Affiliation(s)
- Lívia Kmetzsch
- Centro de Biotecnologia Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, 43421, Caixa Postal 15005, Porto Alegre, RS 91501-970, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Kronstad JW, Attarian R, Cadieux B, Choi J, D'Souza CA, Griffiths EJ, Geddes JMH, Hu G, Jung WH, Kretschmer M, Saikia S, Wang J. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 2011; 9:193-203. [PMID: 21326274 DOI: 10.1038/nrmicro2522] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcus neoformans is generally considered to be an opportunistic fungal pathogen because of its tendency to infect immunocompromised individuals, particularly those infected with HIV. However, this view has been challenged by the recent discovery of specialized interactions between the fungus and its mammalian hosts, and by the emergence of the related species Cryptococcus gattii as a primary pathogen of immunocompetent populations. In this Review, we highlight features of cryptococcal pathogens that reveal their adaptation to the mammalian environment. These features include not only remarkably sophisticated interactions with phagocytic cells to promote intracellular survival, dissemination to the central nervous system and escape, but also surprising morphological and genomic adaptations such as the formation of polyploid giant cells in the lung.
Collapse
Affiliation(s)
- James W Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Cordero RJB, Frases S, Guimaräes AJ, Rivera J, Casadevall A. Evidence for branching in cryptococcal capsular polysaccharides and consequences on its biological activity. Mol Microbiol 2011; 79:1101-17. [PMID: 21208301 DOI: 10.1111/j.1365-2958.2010.07511.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The encapsulated fungus Cryptococcus neoformans is a common cause of life-threatening disease in immunocompromised individuals. Its major virulence determinant is the polysaccharide (PS) capsule. An unsolved problem in cryptococcal biology is whether the PSs composing the capsule are linear or complex branched polymers, as well as the implications of this structural composition in pathogenesis. In this study we approached the problem by combining static and dynamic light scattering, viscosity analysis, and high-resolution microscopy and correlated the findings with biological properties. Analysis of the dependence of capsular PS molecular mass and the radius of gyration provided strong evidence against a simple linear PS configuration. Shape factors calculated from light scattering measurements in solution revealed values consistent with polymer branching. Furthermore, viscosity measurements provided complementary evidence for structural branching. Electron microscopy showed PS spherical-like structures similar to other branched PS. Finally, we show that the capacity of capsular PS to interfere in complement-mediated phagocytosis, inhibit nitric oxide production by macrophage-like cells, protect against reactive oxygen species, antibody reactivity and half-life in serum were influenced by the degree of branching, providing evidence for the notion that PS branching is an important parameter in determining the biological activity of C. neoformans PS.
Collapse
Affiliation(s)
- Radames J B Cordero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
116
|
Rodrigues ML, Fonseca FL, Frases S, Casadevall A, Nimrichter L. The still obscure attributes of cryptococcal glucuronoxylomannan. Med Mycol 2010; 47:783-8. [PMID: 19343609 DOI: 10.3109/13693780902788621] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucuronoxylomannan (GXM) is the major capsular polysaccharide of Cryptococcus neoformans. It is essential for fungal virulence and causes a number of deleterious effects to host cells. During the last decades, most of the experimental models designed to study the roles of GXM during cryptococcal infection were based on the stimulation of animal cells. This most commonly involved macrophages or other effector cells, with polysaccharide fractions obtained by precipitation with cationic detergents. More recently, it has been demonstrated that GXM interferes with the physiological state of other target cells, such as the epithelium. In addition, recent studies indicate that the structure of the polysaccharide and, consequently, its functions vary according with the method used for its purification. This raises questions as to what is native GXM and the significance of prior studies. In this paper, we discuss some of the aspects of GXM that are still poorly explored in the current literature, including the relevance of the polysaccharide in the interaction of cryptococci with non-phagocytic cells and the relationship between its structure and biological activity.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
117
|
Whittington A, Wang P. The RGS protein Crg2 is required for establishment and progression of murine pulmonary cryptococcosis. Med Mycol 2010; 49:263-75. [PMID: 20818923 DOI: 10.3109/13693786.2010.512618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cryptococcal regulators of G protein signaling (CRG) are important for growth, differentiation, and virulence of Cryptococcus neoformans. Disruption of CRG2 resulted in dysregulated cAMP signaling and attenuated virulence, whereas disruption of CRG1 increased pheromone responses and enhanced virulence in the archetypal H99 strain. In tests with newly constructed near congenic mutants, a distinction between crg2Δ and crg1Δ gene expression was not apparent during macrophage interaction. Intranasal inoculation indicated that crg2Δ, crg1Δ, and wild-type strains reached the lungs within 0.5 hours of infection. However, CFUs were significantly decreased for crg2Δ at 2, 7, and 14 days post-infection. In contrast, crg1Δ proliferated to the same extent as the wild type (WT). Lung edema was not apparent in mice infected with crg2Δ 0.5 hours post-infection, which showed little cellular infiltrate in comparison to WT. Alveolar septal thickening was most evident in mice infected with crg1Δ, while mice infected with WT exhibited decreased septal thickening at later time points. Consistent with these observations, crg2Δ was less efficient in the elicitation of Th2 immune responses in a multiplex cytokine assay. Our results suggest that Crg2 is critical for establishment of early pulmonary infection and for persistence of infection, Crg1 regulates virulence in a strain-specific manner, and crg2Δ, crg1Δ and WT can all be distinguished on the basis of host tissue responses.
Collapse
Affiliation(s)
- Amy Whittington
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | |
Collapse
|
118
|
Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A. Fungal cell gigantism during mammalian infection. PLoS Pathog 2010; 6:e1000945. [PMID: 20585557 PMCID: PMC2887474 DOI: 10.1371/journal.ppat.1000945] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 05/07/2010] [Indexed: 02/07/2023] Open
Abstract
The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cryptococcosis/immunology
- Cryptococcosis/microbiology
- Cryptococcosis/pathology
- Cryptococcus neoformans/growth & development
- Cryptococcus neoformans/pathogenicity
- Cryptococcus neoformans/radiation effects
- DNA, Fungal/genetics
- Female
- Fluorescent Antibody Technique
- Gamma Rays
- Gigantism/immunology
- Gigantism/microbiology
- Lung Diseases, Fungal/immunology
- Lung Diseases, Fungal/microbiology
- Lung Diseases, Fungal/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Macrophages, Alveolar/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Oxidative Stress
- Phagosomes/immunology
- Phagosomes/microbiology
- Phagosomes/pathology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Oscar Zaragoza
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
119
|
Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chrétien F, Heitman J, Dromer F, Nielsen K. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 2010; 6:e1000953. [PMID: 20585559 PMCID: PMC2887476 DOI: 10.1371/journal.ppat.1000953] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/12/2010] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 microm. Cell enlargement was observed in vivo, producing cells up to 100 microm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aDelta pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.
Collapse
Affiliation(s)
- Laura H. Okagaki
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anna K. Strain
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Judith N. Nielsen
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caroline Charlier
- Institut Pasteur, Unité de Mycologie Moléculaire and CNRS URA3012, Paris, France
| | - Nicholas J. Baltes
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fabrice Chrétien
- Institut Pasteur, Unité de Mycologie Moléculaire and CNRS URA3012, Paris, France
- Faculté de médecine; Université Paris XII; APHP Hôpital Henri Mondor and INSERM U955 team10, Paris, France
| | - Joseph Heitman
- Departments of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Françoise Dromer
- Institut Pasteur, Unité de Mycologie Moléculaire and CNRS URA3012, Paris, France
| | - Kirsten Nielsen
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
120
|
Gazzoni AF, Oliveira FDM, Salles EF, Mayayo E, Guarro J, Capilla J, Severo LC. Unusual morphologies of Cryptococcus spp. in tissue specimens: report of 10 cases. Rev Inst Med Trop Sao Paulo 2010; 52:145-9. [DOI: 10.1590/s0036-46652010000300006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 03/09/2010] [Indexed: 12/16/2022] Open
Abstract
Ten cases of cryptococcosis due to unusual microscopic forms of Cryptococcus sp. observed over a twenty-eight year period (1981-2009) are presented. The most important clinicopathological and laboratory data are tabulated. The uncommon forms of cryptococcal cells given are: structures resembling germ tube (one case), chains of budding yeasts (one case), pseudohyphae (two cases) and nonencapsulated yeast-like organisms (eight cases). The diagnosis was based on the histopathological findings. The causative organism was isolated and identified in seven cases; five were due to C. neoformans, and two to C. gattii. In addition, the importance of using staining histochemical techniques - Grocott's silver stain (GMS), Mayer's mucicarmine stain (MM) and Fontana-Masson stain (FM) - in the diagnosis of cryptococcosis is argued.
Collapse
Affiliation(s)
| | | | | | - Emilio Mayayo
- Rovira i Virgili University, Spain; Rovira i Virgili University, Spain
| | | | | | - Luiz Carlos Severo
- Santa Casa-Complexo Hospitalar, Brazil; CNPq, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
121
|
Abstract
Opportunistic pathogens have become of increasing medical importance over the last decade due to the AIDS pandemic. Not only is cryptococcosis the fourth-most-common fatal infectious disease in sub-Saharan Africa, but also Cryptococcus is an emerging pathogen of immunocompetent individuals. The interaction between Cryptococcus and the host's immune system is a major determinant for the outcome of disease. Despite initial infection in early childhood with Cryptococcus neoformans and frequent exposure to C. neoformans within the environment, immunocompetent individuals are generally able to contain the fungus or maintain the yeast in a latent state. However, immune deficiencies lead to disseminating infections that are uniformly fatal without rapid clinical intervention. This review will discuss the innate and adaptive immune responses to Cryptococcus and cryptococcal strategies to evade the host's defense mechanisms. It will also address the importance of these strategies in pathogenesis and the potential of immunotherapy in cryptococcosis treatment.
Collapse
|
122
|
Role of host sphingosine kinase 1 in the lung response against Cryptococcosis. Infect Immun 2010; 78:2342-52. [PMID: 20194596 DOI: 10.1128/iai.01140-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen causing pulmonary infection and a life-threatening meningoencephalitis in human hosts. The fungus infects the host through inhalation, and thus, the host response in the lung environment is crucial for containment or dissemination of C. neoformans to other organs. In the lung, alveolar macrophages (AMs) are key players in the host lung immune response, and upon phagocytosis, they can kill C. neoformans by evoking an effective immune response through a variety of signaling molecules. On the other hand, under conditions not yet fully defined, the fungus is able to survive and proliferate within macrophages. Since the host sphingosine kinase 1 (SK1) regulates many signaling functions of immune cells, particularly in macrophages, in this study we determined the role of SK1 in the host response to C. neoformans infection. Using wild-type (SK1/2(+/+)) and SK1-deficient (SK1(-/-)) mice, we found that SK1 is dispensable during infection with a facultative intracellular wild-type C. neoformans strain. However, SK1 is required to form a host lung granuloma and to prevent brain infection by a C. neoformans mutant strain lacking the cell wall-associated glycosphingolipid glucosylceramide (Delta gcs1), previously characterized as a mutant able to replicate only intracellularly. Specifically, in contrast to those from SK1/2(+/+) mice, lungs from SK1(-/-) mice have no collagen deposition upon infection with C. neoformans Delta gcs1, and AMs from these mice contain significantly more C. neoformans cells than AMs from SK1/2(+/+) mice, suggesting that under conditions in which C. neoformans is more internalized by AMs, SK1 may become important to control C. neoformans infection. Indeed, when we induced immunosuppression, a host condition in which wild-type C. neoformans cells are increasingly found intracellularly, SK1(-/-) survived significantly less than SK1/2(+/+) mice infected with a facultative intracellular wild-type strain, suggesting that SK1 has an important role in controlling C. neoformans infection under conditions in which the fungus is predominantly found intracellularly.
Collapse
|
123
|
Miyamoto-Shinohara Y, Nozawa F, Sukenobe J, Imaizumi T. Survival of yeasts stored after freeze-drying or liquid-drying. J GEN APPL MICROBIOL 2010; 56:107-19. [DOI: 10.2323/jgam.56.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
124
|
Doering TL. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol 2009; 63:223-47. [PMID: 19575556 DOI: 10.1146/annurev.micro.62.081307.162753] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryptococcus neoformans is a pathogenic fungus responsible for severe opportunistic infections. The most prominent feature of this yeast is its elaborate polysaccharide capsule, a complex structure that is required for virulence. The capsule is intimately associated with the cell wall, which underlies the capsule and offers the organism strength and flexibility in potentially hostile environments. Both structures are primarily composed of polysaccharides, offering a glimpse of the tremendous variation inherent in natural carbohydrate structures and their multiple biological functions. The steps in cell wall and capsule biosynthesis and assembly pose fascinating questions of metabolism, enzymology, cell biology, and regulation; the answers have potential application to treatment of a deadly infection. This article reviews current knowledge of cryptococcal cell wall and capsule biosynthesis and outstanding questions for the future.
Collapse
Affiliation(s)
- Tamara Lea Doering
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri, USA.
| |
Collapse
|
125
|
Oliveira DL, Nimrichter L, Miranda K, Frases S, Faull KF, Casadevall A, Rodrigues ML. Cryptococcus neoformans cryoultramicrotomy and vesicle fractionation reveals an intimate association between membrane lipids and glucuronoxylomannan. Fungal Genet Biol 2009; 46:956-63. [PMID: 19747978 DOI: 10.1016/j.fgb.2009.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 01/19/2023]
Abstract
Cryptococcus neoformans is an encapsulated pathogenic fungus. The cryptococcal capsule is composed of polysaccharides and is necessary for virulence. It has been previously reported that glucuronoxylomannan (GXM), the major capsular component, is synthesized in cytoplasmic compartments and transported to the extracellular space in vesicles, but knowledge on the organelles involved in polysaccharide synthesis and traffic is extremely limited. In this paper we report the GXM distribution in C. neoformans cells sectioned by cryoultramicrotomy and visualized by transmission electron microscopy (TEM) and polysaccharide immunogold staining. Cryosections of fungal cells showed high preservation of intracellular organelles and cell wall structure. Incubation of cryosections with an antibody to GXM revealed that cytoplasmic structures associated to vesicular compartments and reticular membranes are in close proximity to the polysaccharide. GXM was generally found in association with the membrane of intracellular compartments and within different layers of the cell wall. Analysis of extracellular fractions from cryptococcal supernatants by transmission electron microscopy in combination with serologic, chromatographic and spectroscopic methods revealed fractions containing GXM and lipids. These results indicate an intimate association of GXM and lipids in both intracellular and extracellular spaces consistent with polysaccharide synthesis and transport in membrane-associated structures.
Collapse
Affiliation(s)
- Débora L Oliveira
- Laboratorio de Estudos Integrados em Bioquimica Microbiana, Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941590, Brazil
| | | | | | | | | | | | | |
Collapse
|
126
|
Gates-Hollingsworth MA, Kozel TR. Phenotypic heterogeneity in expression of epitopes in the Cryptococcus neoformans capsule. Mol Microbiol 2009; 74:126-138. [PMID: 19758241 DOI: 10.1111/j.1365-2958.2009.06855.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The opportunistic yeast Cryptococcus neoformans is surrounded by a polysaccharide capsule comprised primarily of glucuronoxylomannan (GXM). GXM is a key component of the antigenic character of the capsule. Expression of the epitope that allows for binding of mAbs that require O-acetylation of GXM for mAb recognition was greatly influenced by cell age, growth conditions and serotype. Yeast cells of serotype A grown in vitro under capsule induction conditions showed considerable cell-to-cell variability in binding of two O-acetyl-dependent mAbs, and such mAbs uniformly failed to bind to GXM that covers yeast buds. Expression of the O-acetyl-dependent epitope increased with cell age. In contrast, all serotype A cells harvested from brain tissue bound the same O-acetyl-dependent mAbs. The ability of the cryptococcal capsule to activate the complement cascade and bind C3 occurred uniformly over the surface of all yeast cells, including the bud. Finally, the cell-to-cell variability in binding of O-acetyl-dependent mAbs with strains of serotype A was not found with strains of serotype D; almost all cells of serotype D showed homogeneous binding of O-acetyl-dependent mAbs. These results indicate that variability in expression of antigenic epitopes by GXM should be considered in selection of mAbs used for immunodiagnosis or immunotherapy.
Collapse
Affiliation(s)
| | - Thomas R Kozel
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
127
|
The capsule of the fungal pathogen Cryptococcus neoformans. ADVANCES IN APPLIED MICROBIOLOGY 2009; 68:133-216. [PMID: 19426855 DOI: 10.1016/s0065-2164(09)01204-0] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The capsule of the fungal pathogen Cryptococcus neoformans has been studied extensively in recent decades and a large body of information is now available to the scientific community. Well-known aspects of the capsule include its structure, antigenic properties and its function as a virulence factor. The capsule is composed primarily of two polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM), in addition to a smaller proportion of mannoproteins (MPs). Most of the studies on the composition of the capsule have focused on GXM, which comprises more than 90% of the capsule's polysaccharide mass. It is GalXM, however, that is of particular scientific interest because of its immunological properties. The molecular structure of these polysaccharides is very complex and has not yet been fully elucidated. Both GXM and GalXM are high molecular mass polymers with the mass of GXM equaling roughly 10 times that of GalXM. Recent findings suggest, however, that the actual molecular weight might be different to what it has traditionally been thought to be. In addition to their structural roles in the polysaccharide capsule, these molecules have been associated with many deleterious effects on the immune response. Capsular components are therefore considered key virulence determinants in C. neoformans, which has motivated their use in vaccines and made them targets for monoclonal antibody treatments. In this review, we will provide an update on the current knowledge of the C. neoformans capsule, covering aspects related to its structure, synthesis and particularly, its role as a virulence factor.
Collapse
|
128
|
Production of extracellular polysaccharides by CAP mutants of Cryptococcus neoformans. EUKARYOTIC CELL 2009; 8:1165-73. [PMID: 19542308 DOI: 10.1128/ec.00013-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The human pathogen Cryptococcus neoformans causes meningoencephalitis. The polysaccharide capsule is one of the main virulence factors and consists of two distinct polysaccharides, glucuronoxylomannan (GXM) and galactoxylomannan (GalXM). How capsular polysaccharides are synthesized, transported, and assembled is largely unknown. Previously, it was shown that mutations in the CAP10, CAP59, CAP60, and CAP64 genes result in an acapsular phenotype. Here, it is shown that these acapsular mutants do secrete GalXM and GXM-like polymers. GXM and GalXM antibodies specifically reacted with whole cells and the growth medium of the wild type and CAP mutants, indicating that the capsule polysaccharides adhere to the cell wall and are shed into the environment. These polysaccharides were purified from the medium, either with or without anion-exchange chromatography. Monosaccharide analysis of polysaccharide fractions by gas-liquid chromatography/mass spectrometry showed that wild-type cells secrete both GalXM and GXM. The CAP mutants, on the other hand, were shown to secrete GalXM and GXM-like polymers. Notably, the GalXM polymers were shown to contain glucuronic acid. One-dimensional (1)H nuclear magnetic resonance confirmed that the CAP mutants secrete GalXM and also showed the presence of O-acetylated polymers. This is the first time it is shown that CAP mutants secrete GXM-like polymers in addition to GalXM. The small amount of this GXM-like polymer, 1 to 5% of the total amount of secreted polysaccharides, may explain the acapsular phenotype.
Collapse
|
129
|
Lipophilic dye staining of Cryptococcus neoformans extracellular vesicles and capsule. EUKARYOTIC CELL 2009; 8:1373-80. [PMID: 19465562 DOI: 10.1128/ec.00044-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cryptococcus neoformans is an encapsulated yeast that causes systemic mycosis in immunosuppressed individuals. Recent studies have determined that this fungus produces vesicles that are released to the extracellular environment both in vivo and in vitro. These vesicles contain assorted cargo that includes several molecules associated with virulence and implicated in host-pathogen interactions, such as capsular polysaccharides, laccase, urease, and other proteins. To date, visualization of extracellular vesicles has relied on transmission electron microscopy, a time-consuming technique. In this work we report the use of fluorescent membrane tracers to stain lipophilic structures in cryptococcal culture supernatants and capsules. Two dialkylcarbocyanine probes with different spectral characteristics were used to visualize purified vesicles by fluorescence microscopy and flow cytometry. Dual staining of vesicles with dialkylcarbocyanine and RNA-selective nucleic acid dyes suggested that a fraction of the vesicle population carried RNA. Use of these dyes to stain whole cells, however, was hampered by their possible direct binding to capsular polysaccharide. A fluorescent phospholipid was used as additional membrane tracer to stain whole cells, revealing punctate structures on the edge of the capsule which are consistent with vesicular trafficking. Lipophilic dyes provide new tools for the study of fungal extracellular vesicles and their content. The finding of hydrophobic regions in the capsule of C. neoformans adds to the growing evidence for a structurally complex structure composed of polysaccharide and nonpolysaccharide components.
Collapse
|
130
|
Isolation and characterization of senescent Cryptococcus neoformans and implications for phenotypic switching and pathogenesis in chronic cryptococcosis. EUKARYOTIC CELL 2009; 8:858-66. [PMID: 19411622 DOI: 10.1128/ec.00017-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although several virulence factors and associated genes have been identified, the mechanisms that allow Cryptococcus neoformans to adapt during chronic infection and to persist in immunocompromised hosts remain poorly understood. Characterization of senescent cells of C. neoformans demonstrated that these cells exhibit a significantly enlarged cell body and capsule but still cross the blood-brain barrier. C. neoformans cells with advanced generational age are also more resistant to phagocytosis and killing by antifungals, which could promote their selection during chronic disease in humans. Senescent cells of RC-2, a C. neoformans strain that undergoes phenotypic switching, manifest switching rates up to 11-fold higher than those of younger cells. Infection experiments with labeled cells suggest that senescent yeast cells can potentially accumulate in vivo. Mathematical modeling incorporating different switching rates demonstrates how increased switching rates promote the emergence of hypervirulent mucoid variants during chronic infection. Our findings introduce the intriguing concept that senescence in eukaryotic pathogens could be a mechanism of microevolution that may promote pathoadaptation and facilitate evasion of an evolving immune response.
Collapse
|
131
|
Casadevall A, Nosanchuk JD, Williamson P, Rodrigues ML. Vesicular transport across the fungal cell wall. Trends Microbiol 2009; 17:158-62. [PMID: 19299133 DOI: 10.1016/j.tim.2008.12.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/27/2008] [Accepted: 12/15/2008] [Indexed: 12/17/2022]
Abstract
Recent findings indicate that fungi use vesicular transport to deliver substances across their cell walls. Fungal vesicles are similar to mammalian exosomes and could originate from cytoplasmic multivesicular bodies. Vesicular transport enables the export of large molecules across the cell wall, and vesicles contain lipids, proteins and polysaccharides, many of which are associated with virulence. Concentration of fungal products in vesicles could increase their efficiency in food acquisition and/or delivering potentially noxious substances to other cells, such as amoebae or phagocytes. The discovery of vesicular transport in fungi opens many new avenues for investigation in basic cell biology and pathogenesis.
Collapse
Affiliation(s)
- Arturo Casadevall
- Departments of Microbiology and Immunology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
132
|
Rodrigues ML, Nimrichter L, Oliveira DL, Nosanchuk JD, Casadevall A. Vesicular Trans-Cell Wall Transport in Fungi: A Mechanism for the Delivery of Virulence-Associated Macromolecules? Lipid Insights 2008; 2:27-40. [PMID: 20617119 DOI: 10.4137/lpi.s1000] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fungal cells are encaged in rigid, complex cell walls. Until recently, there was remarkably little information regarding the trans-fungal cell wall transfer of intracellular macromolecules to the extracellular space. Recently, several studies have begun to elucidate the mechanisms that fungal cells utilize to secrete a wide variety of macromolecules through the cell wall. The combined use of transmission electron microscopy, serology, biochemistry, proteomics and lipidomics have revealed that the fungal pathogens Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida parapsilosis and Sporothrix schenckii, as well as the model yeast Saccharomyces cerevisiae, each produces extracellular vesicles that carry lipids, proteins, polysaccharides and pigment-like structures of unquestionable biological significance. Compositional analysis of the C. neoformans and H. capsulatum extracellular vesicles suggests that they may function as 'virulence bags', with the potential to modulate the host-pathogen interaction in favor of the fungus. The cellular origin of the extracellular vesicles remains unknown, but morphological and biochemical features indicate that they are similar to the well-described mammalian exosomes.
Collapse
|
133
|
Zaragoza O, Chrisman CJ, Castelli MV, Frases S, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol 2008; 10:2043-57. [PMID: 18554313 DOI: 10.1111/j.1462-5822.2008.01186.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen. The most distinctive feature of C. neoformans is a polysaccharide capsule that enlarges depending on environmental stimuli. The mechanism by which C. neoformans avoids killing during phagocytosis is unknown. We hypothesized that capsule growth conferred resistance to microbicidal molecules produced by the host during infection, particularly during phagocytosis. We observed that capsule enlargement conferred resistance to reactive oxygen species produced by H(2)O(2) that was not associated with a higher catalase activity, suggesting a new function for the capsule as a scavenger of reactive oxidative intermediates. Soluble capsular polysaccharide protected C. neoformans and Saccharomyces cerevisiae from killing by H(2)O(2). Acapsular mutants had higher susceptibility to free radicals. Capsular polysaccharide acted as an antioxidant in the nitroblue tetrazolium (NBT) reduction coupled to beta-nicotinamide adenine dinucleotide (NADH)/phenazine methosulfate (PMS) assay. Capsule enlargement conferred resistance to antimicrobial peptides and the antifungal drug Amphotericin B. Interestingly, the capsule had no effect on susceptibility to azoles and increased susceptibility to fluconazole. Capsule enlargement reduced phagocytosis by environmental predators, although we also noticed that in this system, starvation of C. neoformans cells produced resistance to phagocytosis. Our results suggest that capsular enlargement is a mechanism that enhances C. neoformans survival when ingested by phagocytic cells.
Collapse
Affiliation(s)
- Oscar Zaragoza
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km 2, Majadahonda, 28220, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
134
|
Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM, Almeida IC, Nosanchuk JD. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 2008; 10:1695-710. [PMID: 18419773 DOI: 10.1111/j.1462-5822.2008.01160.x] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vesicular secretion of macromolecules has recently been described in the basidiomycete Cryptococcus neoformans, raising the question as to whether ascomycetes similarly utilize vesicles for transport. In the present study, we examine whether the clinically important ascomycete Histoplasma capsulatum produce vesicles and utilized these structures to secrete macromolecules. Transmission electron microscopy (TEM) shows transcellular secretion of vesicles by yeast cells. Proteomic and lipidomic analyses of vesicles isolated from culture supernatants reveal a rich collection of macromolecules involved in diverse processes, including metabolism, cell recycling, signalling and virulence. The results demonstrate that H. capsulatum can utilize a trans-cell wall vesicular transport secretory mechanism to promote virulence. Additionally, TEM of supernatants collected from Candida albicans, Candida parapsilosis, Sporothrix schenckii and Saccharomyces cerevisiae documents that vesicles are similarly produced by additional ascomycetes. The vesicles from H. capsulatum react with immune serum from patients with histoplasmosis, providing an association of the vesicular products with pathogenesis. The findings support the proposal that vesicular secretion is a general mechanism in fungi for the transport of macromolecules related to virulence and that this process could be a target for novel therapeutics.
Collapse
|
135
|
Diversidad del complejo de especies Cryptococcus neoformans-Cryptococcus gattii. Rev Iberoam Micol 2008; 25:S4-12. [DOI: 10.1016/s1130-1406(08)70019-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
136
|
Panepinto J, Komperda K, Frases S, Park YD, Djordjevic JT, Casadevall A, Williamson PR. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 2008; 71:1165-76. [PMID: 19210702 DOI: 10.1111/j.1365-2958.2008.06588.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell wall of pathogenic fungi such as Cryptococcus neoformans, provides a formidable barrier to secrete virulence factors that produce host cell damage. To study secretion of virulence factors to the cell periphery, sec6 RNAi mutant strains of C. neoformans were tested for virulence factor expression. The studies reported here show that SEC6 RNAi mutant strains were defective in a number of virulence factors including laccase, urease as well as soluble polysaccharide and demonstrated attenuated virulence in mice. Further analysis by transmission electron microscopy detected the production of abundant extracellular exosomes in wild-type strains containing empty plasmid, but a complete absence in the iSEC6 strain. In addition, a green fluorescent protein-laccase fusion protein demonstrated aberrant localization within cytoplasmic vesicles in iSEC6 strains. In contrast, iSEC6 strains retained normal growth at 37 degrees C, as well as substantially normal capsule formation, phospholipase activity and total secreted protein. These results provide the first molecular evidence for the existence of fungal exosomes and associate these vesicles with the virulence of C. neoformans.
Collapse
Affiliation(s)
- John Panepinto
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
137
|
Binding of the wheat germ lectin to Cryptococcus neoformans suggests an association of chitinlike structures with yeast budding and capsular glucuronoxylomannan. EUKARYOTIC CELL 2007; 7:602-9. [PMID: 18039942 DOI: 10.1128/ec.00307-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The capsule of Cryptococcus neoformans is a complex structure whose assembly requires intermolecular interactions to connect its components into an organized structure. In this study, we demonstrated that the wheat germ agglutinin (WGA), which binds to sialic acids and beta-1,4-N-acetylglucosamine (GlcNAc) oligomers, can also bind to cryptococcal capsular structures. Confocal microscopy demonstrated that these structures form round or hooklike projections linking the capsule to the cell wall, as well as capsule-associated structures during yeast budding. Chemical analysis of capsular extracts by gas chromatography coupled to mass spectrometry and high-pH anion-exchange chromatography suggested that the molecules recognized by WGA were firmly associated with the cell wall. Enzymatic treatment, competition assays, and staining with chemically modified WGA revealed that GlcNAc oligomers, but not sialic acids, were the molecules recognized by the lectin. Accordingly, treatment of C. neoformans cells with chitinase released glucuronoxylomannan (GXM) from the cell surface and reduced the capsule size. Chitinase-treated acapsular cells bound soluble GXM in a modified pattern. These results indicate an association of chitin-derived structures with GXM and budding in C. neoformans, which may represent a new mechanism by which the capsular polysaccharide interacts with the cell wall and is rearranged during replication.
Collapse
|
138
|
Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. EUKARYOTIC CELL 2007; 7:58-67. [PMID: 18039940 DOI: 10.1128/ec.00370-07] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cryptococcus neoformans produces vesicles containing its major virulence factor, the capsular polysaccharide glucuronoxylomannan (GXM). These vesicles cross the cell wall to reach the extracellular space, where the polysaccharide is supposedly used for capsule growth or delivered into host tissues. In the present study, we characterized vesicle morphology and protein composition by a combination of techniques including electron microscopy, proteomics, enzymatic activity, and serological reactivity. Secretory vesicles in C. neoformans appear to be correlated with exosome-like compartments derived from multivesicular bodies. Extracellular vesicles manifested various sizes and morphologies, including electron-lucid membrane bodies and electron-dense vesicles. Seventy-six proteins were identified by proteomic analysis, including several related to virulence and protection against oxidative stress. Biochemical tests indicated laccase and urease activities in vesicles. In addition, different vesicle proteins were recognized by sera from patients with cryptococcosis. These results reveal an efficient and general mechanism of secretion of pathogenesis-related molecules in C. neoformans, suggesting that extracellular vesicles function as "virulence bags" that deliver a concentrated payload of fungal products to host effector cells and tissues.
Collapse
|
139
|
McFadden DC, Fries BC, Wang F, Casadevall A. Capsule structural heterogeneity and antigenic variation in Cryptococcus neoformans. EUKARYOTIC CELL 2007; 6:1464-73. [PMID: 17601878 PMCID: PMC1951120 DOI: 10.1128/ec.00162-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans is a human pathogenic fungus with a capsule composed primarily of glucuronoxylomannan (GXM) that is important for virulence. Current views of GXM structure postulate a polymer composed of repeating mannose trisaccharide motifs bearing a single beta(1,2) glucuronic acid with variable xylose and O-acetyl substitutions to form six triads. GXM from different strains is notoriously variable in triad composition, but it is not known if the polymer consists of one or more motif-repeating units. We investigated the polymeric organization of GXM by using mass spectrometry to determine if its compositional motif arrangement was similar to that of bacterial capsular polysaccharides, namely, a polymer of a single repeating unit. The results were consistent with, and confirmatory for, the current view that the basic unit of GXM is a repeating mannose trisaccharide motif, but we also found evidence for the copolymerization of different GXM repeating units in one polysaccharide molecule. Analysis of GXM from isogenic phenotypic switch variants suggested structural differences caused by glucuronic acid positional effects, which implied flexibility in the synthetic pathway. Our results suggest that cryptococcal capsule synthesis is fundamentally different from that observed in prokaryotes and employs a unique eukaryotic approach, which theoretically could synthesize an infinite number of structural combinations. The biological significance of this capsule construction scheme is that it is likely to confer a powerful avoidance strategy for interactions with the immune system and phagocytic environmental predators. Consistent with this premise, the antigenic variation of a capsular epitope recognized by a nonprotective antibody was observed under different growth conditions.
Collapse
Affiliation(s)
- Diane C McFadden
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
140
|
Hu G, Steen BR, Lian T, Sham AP, Tam N, Tangen KL, Kronstad JW. Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS Pathog 2007; 3:e42. [PMID: 17367210 PMCID: PMC1828699 DOI: 10.1371/journal.ppat.0030042] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 02/06/2007] [Indexed: 11/26/2022] Open
Abstract
A defect in the PKA1 gene encoding the catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP)-dependent protein kinase A (PKA) is known to reduce capsule size and attenuate virulence in the fungal pathogen Cryptococcus neoformans. Conversely, loss of the PKA regulatory subunit encoded by pkr1 results in overproduction of capsule and hypervirulence. We compared the transcriptomes between the pka1 and pkr1 mutants and a wild-type strain, and found that PKA influences transcript levels for genes involved in cell wall synthesis, transport functions such as iron uptake, the tricarboxylic acid cycle, and glycolysis. Among the myriad of transcriptional changes in the mutants, we also identified differential expression of ribosomal protein genes, genes encoding stress and chaperone functions, and genes for secretory pathway components and phospholipid synthesis. The transcriptional influence of PKA on these functions was reminiscent of the linkage between transcription, endoplasmic reticulum stress, and the unfolded protein response in Saccharomyces cerevisiae. Functional analyses confirmed that the PKA mutants have a differential response to temperature stress, caffeine, and lithium, and that secretion inhibitors block capsule production. Importantly, we also found that lithium treatment limits capsule size, thus reinforcing potential connections between this virulence trait and inositol and phospholipid metabolism. In addition, deletion of a PKA-regulated gene, OVA1, revealed an epistatic relationship with pka1 in the control of capsule size and melanin formation. OVA1 encodes a putative phosphatidylethanolamine-binding protein that appears to negatively influence capsule production and melanin accumulation. Overall, these findings support a role for PKA in regulating the delivery of virulence factors such as the capsular polysaccharide to the cell surface and serve to highlight the importance of secretion and phospholipid metabolism as potential targets for anti-cryptococcal therapy.
Collapse
Affiliation(s)
- Guanggan Hu
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
Cryptococcus neoformans is a major cause of fungal meningoencephalitis in immunocompromised patients. Despite recent advances in the genetics and molecular biology of C. neoformans, and improved techniques for molecular epidemiology, aspects of the ecology, population structure, and mode of reproduction of this environmental pathogen remain to be established. Application of recent insights into the life cycle of C. neoformans and its different ways of engaging in sexual reproduction under laboratory conditions has just begun to affect research on the ecology and epidemiology of this human pathogenic fungus. The melding of these disparate disciplines should yield rich dividends in our understanding of the evolution of microbial pathogens, providing insights relevant to diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
142
|
Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 2006; 50:3519-28. [PMID: 17065617 PMCID: PMC1635213 DOI: 10.1128/aac.00545-06] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Joshua D Nosanchuk
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
143
|
Liu X, Hu G, Panepinto J, Williamson PR. Role of a VPS41 homologue in starvation response, intracellular survival and virulence of Cryptococcus neoformans. Mol Microbiol 2006; 61:1132-46. [PMID: 16879414 DOI: 10.1111/j.1365-2958.2006.05299.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous studies have demonstrated an important role for the vacuole in the virulence of the fungus Cryptococcus and studies in yeast have implicated the vacuolar protein Vps41 in copper loading of proteins such as iron transporters. However, our studies found that a cryptococcal vps41Delta strain displayed wild-type growth on media containing iron and copper chelators and normal activity of the copper-containing virulence factor laccase as well as almost normal growth at 37 degrees C and wild-type production of the virulence factor capsule. Despite these attributes, the vps41Delta mutant strain showed a dramatic attenuation of virulence in mice and co-incubation of mutant cells with the macrophage cell line, J774.16, resulted in a dramatic loss in viability of the vps41Delta mutant strain at 10 h compared with wild-type and complemented strains. Closer examination revealed that the vps41Delta mutant displayed a dramatic loss in viability after nutrient starvation which was traced to a failure to undergo G2 arrest, but there was no defect in the formation of autophagic or proteolytic vesicles. Our results indicate that VPS41 plays a key role in regulating starvation response in this pathogenic organism and that defects in cell cycle arrest are associated with attenuated pathogenic fitness in mammalian hosts.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Section of Infectious Diseases, Department of Medicine, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
144
|
Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, Alvarez M, Nakouzi A, Feldmesser M, Casadevall A. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. EUKARYOTIC CELL 2006; 6:48-59. [PMID: 17114598 PMCID: PMC1800364 DOI: 10.1128/ec.00318-06] [Citation(s) in RCA: 371] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment.
Collapse
Affiliation(s)
- Marcio L Rodrigues
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941590, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Maxson ME, Dadachova E, Casadevall A, Zaragoza O. Radial mass density, charge, and epitope distribution in the Cryptococcus neoformans capsule. EUKARYOTIC CELL 2006; 6:95-109. [PMID: 17114596 PMCID: PMC1800357 DOI: 10.1128/ec.00306-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure of Cryptococcus neoformans cells to gamma radiation results in a gradual release of capsular polysaccharide, in a dose-dependent manner. This method allows the systematic exploration of different capsular regions. Using this methodology, capsule density was determined to change according to the radial distribution of glucuronoxylomannan and total polysaccharide, becoming denser at the inner regions of the capsule. Scanning electron microscopy of cells following gamma radiation treatment confirmed this finding. The zeta potential of the capsule also increased as the capsule size decreased. However, neither charge nor density differences were correlated with any change in sugar composition (xylose, mannose, and glucuronic acid) in the different capsular regions, since the proportions of these sugars remained constant throughout the capsule. Analysis of the capsular antigenic properties by monoclonal antibody binding and Scatchard analysis revealed fluctuations in the binding affinity within the capsule but not in the number of antibody binding sites, suggesting that the spatial organization of high- and low-affinity epitopes within the capsule changed according to radial position. Finally, evidence is presented that the structure of the capsule changes with capsule age, since the capsule of older cells became more resistant to gamma radiation-induced ablation. In summary, the capsule of C. neoformans is heterogeneous in its spatial distribution and changes with age. Furthermore, our results suggest several mechanisms by which the capsule may protect the fungal cell against exogenous environmental factors.
Collapse
Affiliation(s)
- Michelle E Maxson
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
146
|
Yoneda A, Doering TL. A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Mol Biol Cell 2006; 17:5131-40. [PMID: 17021252 PMCID: PMC1679678 DOI: 10.1091/mbc.e06-08-0701] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cryptococcus neoformans, which causes fatal infection in immunocompromised individuals, has an elaborate polysaccharide capsule surrounding its cell wall. The cryptococcal capsule is the major virulence factor of this fungal organism, but its biosynthetic pathways are virtually unknown. Extracellular polysaccharides of eukaryotes may be made at the cell membrane or within the secretory pathway. To test these possibilities for cryptococcal capsule synthesis, we generated a secretion mutant in C. neoformans by mutating a Sec4/Rab8 GTPase homolog. At a restrictive temperature, the mutant displayed reduced growth and protein secretion, and accumulated approximately 100-nm vesicles in a polarized manner. These vesicles were not endocytic, as shown by their continued accumulation in the absence of polymerized actin, and could be labeled with anti-capsular antibodies as visualized by immunoelectron microscopy. These results indicate that glucuronoxylomannan, the major cryptococcal capsule polysaccharide, is trafficked within post-Golgi secretory vesicles. This strongly supports the conclusion that cryptococcal capsule is synthesized intracellularly and secreted via exocytosis.
Collapse
Affiliation(s)
- Aki Yoneda
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
147
|
McFadden D, Zaragoza O, Casadevall A. The capsular dynamics of Cryptococcus neoformans. Trends Microbiol 2006; 14:497-505. [PMID: 16996739 DOI: 10.1016/j.tim.2006.09.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/22/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
Cryptococcus neoformans is a soil-dwelling fungus that causes life-threatening illness in immunocompromised individuals and latently infects many healthy individuals. C. neoformans, unlike other human pathogenic fungi, is surrounded by a polysaccharide capsule that is essential for survival and enables C. neoformans to thwart the mammalian immune system. The capsule is a dynamic structure that undergoes changes in size and rearranges during budding. Here, the latest information and unresolved questions regarding capsule synthesis, structure, assembly, growth and rearrangements are discussed along with the concept that self-assembly is important in capsular dynamics.
Collapse
Affiliation(s)
- Diane McFadden
- Department of Medicine, Division of Infectious Disease, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
148
|
Clancy CJ, Nguyen MH, Alandoerffer R, Cheng S, Iczkowski K, Richardson M, Graybill JR. Cryptococcus neoformans var. grubii isolates recovered from persons with AIDS demonstrate a wide range of virulence during murine meningoencephalitis that correlates with the expression of certain virulence factors. MICROBIOLOGY-SGM 2006; 152:2247-2255. [PMID: 16849791 DOI: 10.1099/mic.0.28798-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cryptococcus neoformans is a common cause of meningoencephalitis among AIDS patients. Several C. neoformans virulence factors have been identified, but the relative importance of particular factors is unknown. This study examined the correlation of the virulence of 18 C. neoformans var. grubii isolates from AIDS patients with the expression of several well-described virulence factors. The LD50 at 15 days after intracranial inoculation of ICR mice was <100 c.f.u. for 22 % of isolates, 100-1000 for 28 %, 1000-10,000 for 11 % and >20,000 for 39 %. Higher cryptococcal concentrations in brains were noted for isolates with lower LD50 (P = 0.002). In survival studies, no immunocompetent BALB/c mice (nu/-) infected with 3 x LD50 of three virulent isolates (LD50 = 62, 99, 1280) survived beyond 23 days, whereas 100 %, 90 % and 90 % of mice infected with 20,000 c.f.u. of three hypovirulent isolates (LD50 > 20,000) survived for 60 days (P < 0.0001). Even among BALB/c nude (nu/nu) mice, survival rates over 60 days were 100 %, 70 % and 50 %, respectively, for the hypovirulent isolates. Growth rate at 37 degrees C and capsule size within brains correlated with LD50 by univariate (P = 0.0001 and 0.028, respectively) and multivariate (P = 0.017 and 0.016, respectively) analyses. There was no correlation between LD50 and capsule size in vitro, phospholipase activity, melanin formation, proteinase activity and fluconazole MIC. In conclusion, AIDS patients are susceptible to infection by C. neoformans isolates of wide-ranging virulence, including isolates that are markedly hypovirulent. The virulence of a given isolate reflects a composite of factors rather than the contribution of a dominant factor. Growth at 37 degrees C and capsule size in vivo make particularly important contributions.
Collapse
Affiliation(s)
- Cornelius J Clancy
- VA Medical Center, Gainesville, FL, USA
- Department of Medicine, Division of Infectious Diseases, University of Florida College of Medicine, FL, USA
| | - M Hong Nguyen
- VA Medical Center, Gainesville, FL, USA
- Department of Medicine, Division of Infectious Diseases, University of Florida College of Medicine, FL, USA
| | - Ruth Alandoerffer
- University of Texas Health Science Center, and the Audie Murphy Memorial Hospital, San Antonio, TX, USA
| | - Shaoji Cheng
- Department of Medicine, Division of Infectious Diseases, University of Florida College of Medicine, FL, USA
| | - Kenneth Iczkowski
- VA Medical Center, Gainesville, FL, USA
- Department of Pathology, University of Florida College of Medicine, FL, USA
| | - Malcolm Richardson
- University of Texas Health Science Center, and the Audie Murphy Memorial Hospital, San Antonio, TX, USA
| | - John R Graybill
- University of Texas Health Science Center, and the Audie Murphy Memorial Hospital, San Antonio, TX, USA
| |
Collapse
|
149
|
Zaragoza O, McClelland EE, Telzak A, Casadevall A. Equatorial ring-like channels in the Cryptococcus neoformans polysaccharide capsule. FEMS Yeast Res 2006; 6:662-6. [PMID: 16696663 DOI: 10.1111/j.1567-1364.2006.00070.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Under certain conditions, India ink particles can penetrate the capsule of the opportunistic pathogen Cryptococcus neoformans. India ink penetration gave two distinct patterns, one as a ring in the middle of the capsule, and another as a double spot located at opposite poles of the cells. These spots were perpendicularly orientated to the bud. This pattern suggests the existence of a localized structure deep in the capsule that can accumulate large insoluble particles. Although the mechanisms responsible for the assemblage and maintenance of ring-like channels are not understood, their existence deep within the capsule implies a new level of complexity for this enigmatic structure.
Collapse
Affiliation(s)
- Oscar Zaragoza
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
150
|
Jain N, Guerrero A, Fries BC. Phenotypic switching and its implications for the pathogenesis of Cryptococcus neoformans. FEMS Yeast Res 2006; 6:480-8. [PMID: 16696644 PMCID: PMC2745630 DOI: 10.1111/j.1567-1364.2006.00039.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phenotypic switching has been described in several strains of Cryptococcus neoformans. It occurs in vivo during chronic infection and is associated with differential gene expression and changes in virulence. The switch involves changes in the polysaccharide capsule and cell wall that affect the yeast's ability to resist phagocytosis. In addition, the phenotypic switch variants elicit qualitatively different inflammatory responses in the host. The host's immune response ultimately affects selection of the switch variants in animal models of chronic cryptococcosis. The biological relevance of phenotypic switching is demonstrated in several murine infection models and further underlines the importance of phenotypic switching in the setting of human disease. This includes the association of switching and poor outcome in chronic infection, the ability of the mucoid variant of strain RC-2 (RC-2 MC) but not the smooth variant (RC-2 SM) to promote increased intracranial pressure in a rat model, and lastly the observation that antifungal interventions can promote the selection of more virulent switch variants during chronic murine infection.
Collapse
Affiliation(s)
- Neena Jain
- All India Institute of Medical Sciences, New Delhi, India
| | - Abraham Guerrero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bettina C. Fries
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|