101
|
Zhang J, Sun QL, Zeng ZG, Chen S, Sun L. Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough. Microbiol Res 2015. [DOI: 10.1016/j.micres.2015.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
102
|
Characterization of the Bacterial and Sulphate Reducing Community in the Alkaline and Constantly Cold Water of the Closed Kotalahti Mine. MINERALS 2015. [DOI: 10.3390/min5030452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
103
|
Ling YC, Bush R, Grice K, Tulipani S, Berwick L, Moreau JW. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS) environment: implications for passive bioremediation by tidal inundation. Front Microbiol 2015; 6:624. [PMID: 26191042 PMCID: PMC4490247 DOI: 10.3389/fmicb.2015.00624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/08/2015] [Indexed: 11/13/2022] Open
Abstract
Coastal acid sulfate soils (CASS) constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of "passive" CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from 10 depths ranging from 0 to 20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia). Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical, and lithological factors. The results illustrate spatial overlap, or close association, of iron-, and sulfate-reducing bacteria (SRB) in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.
Collapse
Affiliation(s)
- Yu-Chen Ling
- School of Earth Sciences, University of MelbourneMelbourne, VIC, Australia
| | - Richard Bush
- Southern Cross GeoScience, Southern Cross UniversityLismore, NSW, Australia
| | - Kliti Grice
- Department of Chemistry, Western Australia Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, Curtin UniversityPerth, WA, Australia
| | - Svenja Tulipani
- Department of Chemistry, Western Australia Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, Curtin UniversityPerth, WA, Australia
| | - Lyndon Berwick
- Department of Chemistry, Western Australia Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, Curtin UniversityPerth, WA, Australia
| | - John W. Moreau
- School of Earth Sciences, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
104
|
Wang L, Cheung MK, Kwan HS, Hwang JS, Wong CK. Microbial diversity in shallow-water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing. J Basic Microbiol 2015; 55:1308-18. [PMID: 26132902 DOI: 10.1002/jobm.201400811] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/14/2015] [Indexed: 01/14/2023]
Abstract
Kueishan Island is a young volcanic island in the southernmost edge of the Okinawa Trough in the northeastern part of Taiwan. A cluster of hydrothermal vents is located off the southeastern tip of the Island at water depths between 10 and 80 m. This paper presents the results of the first study on the microbial communities in bottom sediments collected from the shallow-water hydrothermal vents of Kueishan Island. Small-subunit ribosomal RNA gene-based high-throughput 454 pyrosequencing was used to characterize the assemblages of bacteria, archaea, and small eukaryotes in sediment samples collected at various distances from the hydrothermal vents. Sediment from the vent area contained the highest diversity of archaea and the lowest diversity of bacteria and small eukaryotes. Epsilonproteobacteria were the most abundant group in the vent sediment, but their abundance decreased with increasing distance from the vent area. Most Epsilonproteobacteria belonged to the mesophilic chemolithoautotrophic genera Sulfurovum and Sulfurimonas. Recent reports on these two genera have come from deep-sea hydrothermal vents. Conversely, the relative contribution of Gammaproteobacteria to the bacterial community increased with increasing distance from the vent area. Our study revealed the contrasting effects of venting on the benthic bacterial and archaeal communities, and showed that the sediments of the shallow-waters hydrothermal vents were dominated by chemoautotrophic bacteria. The present work broadens our knowledge on microbial diversity in shallow-water hydrothermal vent habitats.
Collapse
Affiliation(s)
- Li Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chong Kim Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
105
|
Glaring MA, Vester JK, Lylloff JE, Abu Al-Soud W, Sørensen SJ, Stougaard P. Microbial diversity in a permanently cold and alkaline environment in Greenland. PLoS One 2015; 10:e0124863. [PMID: 25915866 PMCID: PMC4411134 DOI: 10.1371/journal.pone.0124863] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/09/2015] [Indexed: 02/01/2023] Open
Abstract
The submarine ikaite columns located in the Ikka Fjord in Southern Greenland represent a unique, permanently cold (less than 6°C) and alkaline (above pH 10) environment and are home to a microbial community adapted to these extreme conditions. The bacterial and archaeal community inhabiting the ikaite columns and surrounding fjord was characterised by high-throughput pyrosequencing of 16S rRNA genes. Analysis of the ikaite community structure revealed the presence of a diverse bacterial community, both in the column interior and at the surface, and very few archaea. A clear difference in overall taxonomic composition was observed between column interior and surface. Whereas the surface, and in particular newly formed ikaite material, was primarily dominated by Cyanobacteria and phototrophic Proteobacteria, the column interior was dominated by Proteobacteria and putative anaerobic representatives of the Firmicutes and Bacteroidetes. The results suggest a stratification of the ikaite columns similar to that of classical soda lakes, with a light-exposed surface inhabited by primary producers and an anoxic subsurface. This was further supported by identification of major taxonomic groups with close relatives in soda lake environments, including members of the genera Rhodobaca, Dethiobacter, Thioalkalivibrio and Tindallia, as well as very abundant groups related to uncharacterised environmental sequences originally isolated from Mono Lake in California.
Collapse
Affiliation(s)
- Mikkel A. Glaring
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jan K. Vester
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jeanette E. Lylloff
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Søren J. Sørensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Stougaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
106
|
Wei W, Isobe K, Nishizawa T, Zhu L, Shiratori Y, Ohte N, Koba K, Otsuka S, Senoo K. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME JOURNAL 2015; 9:1954-65. [PMID: 25756678 DOI: 10.1038/ismej.2015.9] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 11/09/2022]
Abstract
Denitrification is an important process in the global nitrogen cycle. The genes encoding NirK and NirS (nirK and nirS), which catalyze the reduction of nitrite to nitric oxide, have been used as marker genes to study the ecological behavior of denitrifiers in environments. However, conventional polymerase chain reaction (PCR) primers can only detect a limited range of the phylogenetically diverse nirK and nirS. Thus, we developed new PCR primers covering the diverse nirK and nirS. Clone library and qPCR analysis using the primers showed that nirK and nirS in terrestrial environments are more phylogenetically diverse and 2-6 times more abundant than those revealed with the conventional primers. RNA- and culture-based analyses using a cropland soil also suggested that microorganisms with previously unconsidered nirK or nirS are responsible for denitrification in the soil. PCR techniques still have a greater capacity for the deep analysis of target genes than PCR-independent methods including metagenome analysis, although efforts are needed to minimize the PCR biases. The methodology and the insights obtained here should allow us to achieve a more precise understanding of the ecological behavior of denitrifiers and facilitate more precise estimate of denitrification in environments.
Collapse
Affiliation(s)
- Wei Wei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Isobe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoyasu Nishizawa
- 1] Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan [2] Department of Bioresource Science, College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Lin Zhu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | | | - Nobuhito Ohte
- Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keisuke Koba
- Institute of Agriculture, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shigeto Otsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
107
|
Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME JOURNAL 2015; 9:1966-78. [PMID: 25679534 PMCID: PMC4542026 DOI: 10.1038/ismej.2015.10] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 01/30/2023]
Abstract
Recently, a novel electrogenic type of sulphur oxidation was documented in marine sediments, whereby filamentous cable bacteria (Desulfobulbaceae) are mediating electron transport over cm-scale distances. These cable bacteria are capable of developing an extensive network within days, implying a highly efficient carbon acquisition strategy. Presently, the carbon metabolism of cable bacteria is unknown, and hence we adopted a multidisciplinary approach to study the carbon substrate utilization of both cable bacteria and associated microbial community in sediment incubations. Fluorescence in situ hybridization showed rapid downward growth of cable bacteria, concomitant with high rates of electrogenic sulphur oxidation, as quantified by microelectrode profiling. We studied heterotrophy and autotrophy by following 13C-propionate and -bicarbonate incorporation into bacterial fatty acids. This biomarker analysis showed that propionate uptake was limited to fatty acid signatures typical for the genus Desulfobulbus. The nanoscale secondary ion mass spectrometry analysis confirmed heterotrophic rather than autotrophic growth of cable bacteria. Still, high bicarbonate uptake was observed in concert with the development of cable bacteria. Clone libraries of 16S complementary DNA showed numerous sequences associated to chemoautotrophic sulphur-oxidizing Epsilon- and Gammaproteobacteria, whereas 13C-bicarbonate biomarker labelling suggested that these sulphur-oxidizing bacteria were active far below the oxygen penetration. A targeted manipulation experiment demonstrated that chemoautotrophic carbon fixation was tightly linked to the heterotrophic activity of the cable bacteria down to cm depth. Overall, the results suggest that electrogenic sulphur oxidation is performed by a microbial consortium, consisting of chemoorganotrophic cable bacteria and chemolithoautotrophic Epsilon- and Gammaproteobacteria. The metabolic linkage between these two groups is presently unknown and needs further study.
Collapse
|
108
|
Wang S, Liang P, Wu Z, Su F, Yuan L, Sun Y, Wu Q, Huang X. Mixed sulfur-iron particles packed reactor for simultaneous advanced removal of nitrogen and phosphorus from secondary effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:415-424. [PMID: 25077656 DOI: 10.1007/s11356-014-3370-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
A mixed sulfur-iron particles packed reactor (SFe reactor) was developed to simultaneously remove total nitrogen (TN) and total phosphorus (TP) of the secondary effluent from municipal wastewater treatment plants. Low effluent TN (<1.5 mg/L) and TP (<0.3 mg/L) concentrations were simultaneously obtained, and high TN removal rate [1.03 g N/(L·d)] and TP removal rate [0.29 g P/(L·d)] were achieved at the hydraulic retention time (HRT) of 0.13 h. Kinetic models describing denitrification were experimentally obtained, which predicted a higher denitrification rate [1.98 g N/(L·d)] of SFe reactor than that [1.58 g N/(L·d)] of sulfur alone packed reactor due to the mutual enhancement between sulfur-based autotrophic denitrification and iron-based chemical denitrification. A high TP removal obtained in SFe reactor was attributed to chemical precipitation of iron particles. Microbial community analysis based on 16S rRNA revealed that autotrophic denitrifying bacteria Thiobacillus and Sulfuricella were the dominant genus, indicating that autotrophic denitrification played important role in nitrate removal. These results indicate that sulfur and iron particles can be packed together in a single reactor to effectively remove nitrate and phosphorus.
Collapse
Affiliation(s)
- Shenghui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Pu J, Feng C, Liu Y, Li R, Kong Z, Chen N, Tong S, Hao C, Liu Y. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater. BIORESOURCE TECHNOLOGY 2014; 173:117-123. [PMID: 25299487 DOI: 10.1016/j.biortech.2014.09.092] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
In this study, pyrite-based denitrification using untreated pyrite (UP) and acid-pretreated pyrite (AP) was evaluated as an alternative to elemental sulfur based denitrification. Pyrite-based denitrification resulted in a favorable nitrate removal rate constant (0.95 d(-1)), sulfate production of 388.00 mg/L, and a stable pH. The pretreatment of pyrite with acid led to a further increase in the nitrate removal rate constant (1.03 d(-1)) and reduction in initial sulfate concentration (224.25±7.50 mg/L). By analyzing the microbial community structure using Denaturing Gradient Gel Electrophoresis, it was confirmed that Sulfurimonas denitrificans (S. denitrificans) could utilize pyrite as an electron donor. A stable pH was observed over the entire experimental period, indicating that the use of a pH buffer reagent would not be necessary for pyrite-based denitrification. Therefore, pyrite could effectively replace elemental sulfur as an electron donor in autotrophic denitrification for nitrate-contaminated groundwater remediation.
Collapse
Affiliation(s)
- Jiaoyang Pu
- Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences, Beijing), Ministry of Education, No. 29 Xueyuan Road, Haidian District, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanping Feng
- Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences, Beijing), Ministry of Education, No. 29 Xueyuan Road, Haidian District, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Ying Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Rui Li
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhe Kong
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shuang Tong
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chunbo Hao
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ye Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
110
|
Zhang WP, Wang Y, Tian RM, Bougouffa S, Yang B, Cao HL, Zhang G, Wong YH, Xu W, Batang Z, Al-Suwailem A, Zhang XX, Qian PY. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system. Sci Rep 2014; 4:6647. [PMID: 25323200 PMCID: PMC4200420 DOI: 10.1038/srep06647] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/07/2014] [Indexed: 11/09/2022] Open
Abstract
Studies focusing on biofilm assembly in deep-sea environments are rarely conducted. To examine the effects of substrate type on microbial community assembly, biofilms were developed on different substrates for different durations at two locations in the Red Sea: in a brine pool and in nearby bottom water (NBW) adjacent to the Thuwal cold seep II. The composition of the microbial communities in 51 biofilms and water samples were revealed by classification of pyrosequenced 16S rRNA gene amplicons. Together with the microscopic characteristics of the biofilms, the results indicate a stronger selection effect by the substrates on the microbial assembly in the brine pool compared with the NBW. Moreover, the selection effect by substrate type was stronger in the early stages compared with the later stages of the biofilm development. These results are consistent with the hypotheses proposed in the framework of species sorting theory, which states that the power of species sorting during microbial community assembly is dictated by habitat conditions, duration and the structure of the source community. Therefore, the results of this study shed light on the control strategy underlying biofilm-associated marine fouling and provide supporting evidence for ecological theories important for understanding the formation of deep-sea biofilms.
Collapse
Affiliation(s)
- Wei Peng Zhang
- KAUST Global Partnership Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Yong Wang
- 1] KAUST Global Partnership Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong [2] Sanya Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, San Ya, Hai Nan, China
| | - Ren Mao Tian
- KAUST Global Partnership Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Salim Bougouffa
- KAUST Global Partnership Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Bo Yang
- KAUST Global Partnership Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hui Luo Cao
- KAUST Global Partnership Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Gen Zhang
- KAUST Global Partnership Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Yue Him Wong
- KAUST Global Partnership Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wei Xu
- King Abdullah University of Science and Technology, Thuwal, The Kingdom of Saudi Arabia
| | - Zenon Batang
- King Abdullah University of Science and Technology, Thuwal, The Kingdom of Saudi Arabia
| | - Abdulaziz Al-Suwailem
- King Abdullah University of Science and Technology, Thuwal, The Kingdom of Saudi Arabia
| | - Xi Xiang Zhang
- King Abdullah University of Science and Technology, Thuwal, The Kingdom of Saudi Arabia
| | - Pei-Yuan Qian
- KAUST Global Partnership Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
111
|
Mino S, Kudo H, Arai T, Sawabe T, Takai K, Nakagawa S. Sulfurovum aggregans sp. nov., a hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent chimney, and an emended description of the genus Sulfurovum. Int J Syst Evol Microbiol 2014; 64:3195-3201. [DOI: 10.1099/ijs.0.065094-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel mesophilic, strictly hydrogen-oxidizing, sulfur-, nitrate- and thiosulfate-reducing bacterium, designated strain Monchim33T, was isolated from a deep-sea hydrothermal vent chimney at the Central Indian Ridge. The non-motile, rod-shaped cells were Gram-stain-negative and non-sporulating. Growth was observed between 15 and 37 °C (optimum 33 °C; 3.2 h doubling time) and between pH 5.4 and 8.6 (optimum pH 6.0). The isolate was a strictly anaerobic chemolithoautotroph capable of using molecular hydrogen as the sole energy source and carbon dioxide as the sole carbon source. The G+C content of the genomic DNA was 42.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate belonged to the genus
Sulfurovum
and was closely related to
Sulfurovum sp.
NBC37-1 and
Sulfurovum lithotrophicum
42BKT (95.6 and 95.4 % similarity, respectively). DNA–DNA hybridization demonstrated that the novel isolate could be differentiated genotypically from
Sulfurovum sp.
NBC37-1 and
Sulfurovum lithotrophicum
. On the basis of the molecular and physiological traits of the new isolate, the name Sulfurovum aggregans sp. nov. is proposed, with the type strain Monchim33T ( = JCM 19824T = DSM 27205T).
Collapse
Affiliation(s)
- Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Hideaki Kudo
- Laboratory of Studies on Marine Bioresources Conservation and Management, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Takayuki Arai
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Ken Takai
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Satoshi Nakagawa
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| |
Collapse
|
112
|
Han Y, Perner M. The role of hydrogen for Sulfurimonas denitrificans' metabolism. PLoS One 2014; 9:e106218. [PMID: 25170905 PMCID: PMC4149538 DOI: 10.1371/journal.pone.0106218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022] Open
Abstract
Sulfurimonas denitrificans was originally isolated from coastal marine sediments. It can grow with thiosulfate and nitrate or sulfide and oxygen. Recently sequencing of its genome revealed that it encodes periplasmic and cytoplasmic [NiFe]-hydrogenases but the role of hydrogen for its metabolism has remained unknown. We show the first experimental evidence that S. denitrificans can indeed express a functional hydrogen uptake active hydrogenase and can grow on hydrogen. In fact, under the provided conditions it grew faster and denser on hydrogen than on thiosulfate alone and even grew with hydrogen in the absence of reduced sulfur compounds. In our experiments, at the time points tested, the hydrogen uptake activity appeared to be related to the periplasmic hydrogenase and not to the cytoplasmic hydrogenase. Our data suggest that under the provided conditions S. denitrificans can grow more efficiently with hydrogen than with thiosulfate.
Collapse
Affiliation(s)
- Yuchen Han
- Molecular Biology of Microbial Consortia, University of Hamburg, Biocenter Klein Flottbek, Hamburg, Germany
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, University of Hamburg, Biocenter Klein Flottbek, Hamburg, Germany
- * E-mail:
| |
Collapse
|
113
|
Engelbrektson A, Hubbard CG, Tom LM, Boussina A, Jin YT, Wong H, Piceno YM, Carlson HK, Conrad ME, Anderson G, Coates JD. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Front Microbiol 2014; 5:315. [PMID: 25071731 PMCID: PMC4092371 DOI: 10.3389/fmicb.2014.00315] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM) treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (per)chlorate (10 mM). Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Per)chlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (per)chlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved.
Collapse
Affiliation(s)
- Anna Engelbrektson
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | | | - Lauren M Tom
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - Aaron Boussina
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Yong T Jin
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Hayden Wong
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Yvette M Piceno
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - Hans K Carlson
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA
| | - Mark E Conrad
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - Gary Anderson
- Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley Berkeley, CA, USA ; Lawrence Berkeley National Laboratory, Earth Sciences Division Berkeley, CA, USA
| |
Collapse
|
114
|
Souring in low-temperature surface facilities of two high-temperature Argentinian oil fields. Appl Microbiol Biotechnol 2014; 98:8017-29. [DOI: 10.1007/s00253-014-5843-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
115
|
Jan C, Petersen JM, Werner J, Teeling H, Huang S, Glöckner FO, Golyshina OV, Dubilier N, Golyshin PN, Jebbar M, Cambon-Bonavita MA. The gill chamber epibiosis of deep-sea shrimp Rimicaris exoculata: an in-depth metagenomic investigation and discovery of Zetaproteobacteria. Environ Microbiol 2014; 16:2723-38. [PMID: 24447589 DOI: 10.1111/1462-2920.12406] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 01/14/2014] [Indexed: 11/29/2022]
Abstract
The gill chamber of deep-sea hydrothermal vent shrimp Rimicaris exoculata hosts a dense community of epibiotic bacteria dominated by filamentous Epsilonproteobacteria and Gammaproteobacteria. Using metagenomics on shrimp from the Rainbow hydrothermal vent field, we showed that both epibiont groups have the potential to grow autotrophically and oxidize reduced sulfur compounds or hydrogen with oxygen or nitrate. For carbon fixation, the Epsilonproteobacteria use the reductive tricarboxylic acid cycle, whereas the Gammaproteobacteria use the Calvin-Benson-Bassham cycle. Only the epsilonproteobacterial epibionts had the genes necessary for producing ammonium. This ability likely minimizes direct competition between epibionts and also broadens the spectrum of environmental conditions that the shrimp may successfully inhabit. We identified genes likely to be involved in shrimp-epibiont interactions, as well as genes for nutritional and detoxification processes that might benefit the host. Shrimp epibionts at Rainbow are often coated with iron oxyhydroxides, whose origin is intensely debated. We identified 16S rRNA sequences and functional genes affiliated with iron-oxidizing Zetaproteobacteria, which indicates that biological iron oxidation might play a role in forming these deposits. Fluorescence in situ hybridizations confirmed the presence of active Zetaproteobacteria in the R. exoculata gill chamber, thus providing the first evidence for a Zetaproteobacteria-invertebrate association.
Collapse
Affiliation(s)
- Cyrielle Jan
- UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), Université de Bretagne Occidentale, Plouzané, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Pjevac P, Kamyshny A, Dyksma S, Mußmann M. Microbial consumption of zero-valence sulfur in marine benthic habitats. Environ Microbiol 2014; 16:3416-30. [DOI: 10.1111/1462-2920.12410] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/20/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Petra Pjevac
- Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Alexey Kamyshny
- Department of Geological and Environmental Sciences; The Faculty of Natural Sciences; Ben-Gurion University of the Negev; Beer Sheva Israel
| | - Stefan Dyksma
- Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology; Bremen Germany
| |
Collapse
|
117
|
Cai L, Shao MF, Zhang T. Non-contiguous finished genome sequence and description of Sulfurimonas hongkongensis sp. nov., a strictly anaerobic denitrifying, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from marine sediment. Stand Genomic Sci 2014; 9:1302-10. [PMID: 25197498 PMCID: PMC4149026 DOI: 10.4056/sigs.4948668] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report a type strain AST-10 representing a novel species Sulfurimonas hongkongensis within Epsilonproteobacteria, which is involved in marine sedimentary sulfur oxidation and denitrification. Strain AST-10T (= DSM 22096T = JCM 18418T) was isolated from the coastal sediment at the Kai Tak Approach Channel connected to Victoria Harbour in Hong Kong. It grew chemolithoautotrophically using thiosulfate, sulfide or hydrogen as the sole electron donor and nitrate as the electron acceptor under anoxic conditions. It was rod-shaped and grew at 15-35°C (optimum at 30°C), pH 6.5-8.5 (optimum at 7.0-7.5), and 10-60 g L-1 NaCl (optimum at 30 g L-1). Genome sequencing and annotation of strain AST-10T showed a 2,302,023 bp genome size, with 34.9% GC content, 2,290 protein-coding genes, and 42 RNA genes, including 3 rRNA genes.
Collapse
Affiliation(s)
- Lin Cai
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Ming-Fei Shao
- Department of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
118
|
Bourbonnais A, Juniper SK, Butterfield DA, Anderson RE, Lehmann MF. Diversity and abundance of Bacteria and nirS-encoding denitrifiers associated with the Juan de Fuca Ridge hydrothermal system. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0813-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
119
|
Vetriani C, Voordeckers JW, Crespo-Medina M, O'Brien CE, Giovannelli D, Lutz RA. Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME JOURNAL 2014; 8:1510-21. [PMID: 24430487 DOI: 10.1038/ismej.2013.246] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022]
Abstract
Despite the frequent isolation of nitrate-respiring Epsilonproteobacteria from deep-sea hydrothermal vents, the genes coding for the nitrate reduction pathway in these organisms have not been investigated in depth. In this study we have shown that the gene cluster coding for the periplasmic nitrate reductase complex (nap) is highly conserved in chemolithoautotrophic, nitrate-reducing Epsilonproteobacteria from deep-sea hydrothermal vents. Furthermore, we have shown that the napA gene is expressed in pure cultures of vent Epsilonproteobacteria and it is highly conserved in microbial communities collected from deep-sea vents characterized by different temperature and redox regimes. The diversity of nitrate-reducing Epsilonproteobacteria was found to be higher in moderate temperature, diffuse flow vents than in high temperature black smokers or in low temperatures, substrate-associated communities. As NapA has a high affinity for nitrate compared with the membrane-bound enzyme, its occurrence in vent Epsilonproteobacteria may represent an adaptation of these organisms to the low nitrate concentrations typically found in vent fluids. Taken together, our findings indicate that nitrate reduction is widespread in vent Epsilonproteobacteria and provide insight on alternative energy metabolism in vent microorganisms. The occurrence of the nap cluster in vent, commensal and pathogenic Epsilonproteobacteria suggests that the ability of these bacteria to respire nitrate is important in habitats as different as the deep-sea vents and the human body.
Collapse
Affiliation(s)
- Costantino Vetriani
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - James W Voordeckers
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Melitza Crespo-Medina
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Charles E O'Brien
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Donato Giovannelli
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA [3] Institute of Marine Science - ISMAR, National Research Council of Italy, CNR, Ancona, Italy
| | - Richard A Lutz
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
120
|
Mammitzsch K, Jost G, Jürgens K. Impact of dissolved inorganic carbon concentrations and pH on growth of the chemolithoautotrophic epsilonproteobacterium Sulfurimonas gotlandica GD1T. Microbiologyopen 2014; 3:80-8. [PMID: 24376054 PMCID: PMC3937731 DOI: 10.1002/mbo3.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/08/2013] [Accepted: 10/22/2013] [Indexed: 11/09/2022] Open
Abstract
Epsilonproteobacteria have been found globally distributed in marine anoxic/sulfidic areas mediating relevant transformations within the sulfur and nitrogen cycles. In the Baltic Sea redox zones, chemoautotrophic epsilonproteobacteria mainly belong to the Sulfurimonas gotlandica GD17 cluster for which recently a representative strain, S. gotlandica GD1(T), could be established as a model organism. In this study, the potential effects of changes in dissolved inorganic carbon (DIC) and pH on S. gotlandica GD1(T) were examined. Bacterial cell abundance within a broad range of DIC concentrations and pH values were monitored and substrate utilization was determined. The results showed that the DIC saturation concentration for achieving maximal cell numbers was already reached at 800 μmol L(-1), which is well below in situ DIC levels. The pH optimum was between 6.6 and 8.0. Within a pH range of 6.6-7.1 there was no significant difference in substrate utilization; however, at lower pH values maximum cell abundance decreased sharply and cell-specific substrate consumption increased.
Collapse
Affiliation(s)
- Kerstin Mammitzsch
- Sektion Biologische Meereskunde, Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, D-18119, Rostock, Germany
| | | | | |
Collapse
|
121
|
Zhang T, Bain TS, Barlett MA, Dar SA, Snoeyenbos-West OL, Nevin KP, Lovley DR. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1. Microbiology (Reading) 2014; 160:123-129. [DOI: 10.1099/mic.0.069930-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S° with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Timothy S. Bain
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Melissa A. Barlett
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Shabir A. Dar
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | | | - Kelly P. Nevin
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
122
|
Mitchell HM, Rocha GA, Kaakoush NO, O’Rourke JL, Queiroz DMM. The Family Helicobacteraceae. THE PROKARYOTES 2014:337-392. [DOI: 10.1007/978-3-642-39044-9_275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
123
|
Akerman NH, Butterfield DA, Huber JA. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol 2013; 4:185. [PMID: 23847608 PMCID: PMC3703533 DOI: 10.3389/fmicb.2013.00185] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/18/2013] [Indexed: 11/13/2022] Open
Abstract
Microorganisms throughout the dark ocean use reduced sulfur compounds for chemolithoautotrophy. In many deep-sea hydrothermal vents, sulfide oxidation is quantitatively the most important chemical energy source for microbial metabolism both at and beneath the seafloor. In this study, the presence and activity of vent endemic Epsilonproteobacteria was examined in six low-temperature diffuse vents over a range of geochemical gradients from Axial Seamount, a deep-sea volcano in the Northeast Pacific. PCR primers were developed and applied to target the sulfur oxidation soxB gene of Epsilonproteobacteria. soxB genes belonging to the genera Sulfurimonas and Sulfurovum are both present and expressed at most diffuse vent sites, but not in background seawater. Although Sulfurovum-like soxB genes were detected in all fluid samples, the RNA profiles were nearly identical among the vents and suggest that Sulfurimonas-like species are the primary Epsilonproteobacteria responsible for actively oxidizing sulfur via the Sox pathway at each vent. Community patterns of subseafloor Epsilonproteobacteria 16S rRNA genes were best matched to methane concentrations in vent fluids, as well as individual vent locations, indicating that both geochemistry and geographical isolation play a role in structuring subseafloor microbial populations. The data show that in the subseafloor at Axial Seamount, Epsilonproteobacteria are expressing the soxB gene and that microbial patterns in community distribution are linked to both vent location and chemistry.
Collapse
Affiliation(s)
- Nancy H Akerman
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory Woods Hole, MA, USA
| | | | | |
Collapse
|
124
|
Siegert M, Taubert M, Seifert J, von Bergen-Tomm M, Basen M, Bastida F, Gehre M, Richnow HH, Krüger M. The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction and biomass decomposition. FEMS Microbiol Ecol 2013; 86:231-45. [DOI: 10.1111/1574-6941.12156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/16/2013] [Accepted: 05/29/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Michael Siegert
- Bundesanstalt für Geowissenschaften und Rohstoffe Hannover; Hannover; Germany
| | - Martin Taubert
- School of Environmental Sciences; University of East Anglia; Norwich; UK
| | - Jana Seifert
- Institute of Animal Nutrition; University of Hohenheim; Stuttgart; Germany
| | | | - Mirko Basen
- Max-Planck-Institut für Marine Mikrobiologie; Bremen; Germany
| | - Felipe Bastida
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig; Germany
| | - Matthias Gehre
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig; Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig; Germany
| | - Martin Krüger
- Bundesanstalt für Geowissenschaften und Rohstoffe Hannover; Hannover; Germany
| |
Collapse
|
125
|
Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A, Petersen S. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments. GEOBIOLOGY 2013; 11:340-355. [PMID: 23647923 DOI: 10.1111/gbi.12039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes.
Collapse
Affiliation(s)
- M Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
126
|
Labrenz M, Grote J, Mammitzsch K, Boschker HTS, Laue M, Jost G, Glaubitz S, Jürgens K. Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic redoxcline, and an emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 2013; 63:4141-4148. [PMID: 23749282 PMCID: PMC3836495 DOI: 10.1099/ijs.0.048827-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A psychro- and aerotolerant bacterium was isolated from the sulfidic water of a pelagic redox zone of the central Baltic Sea. The slightly curved rod- or spiral-shaped cells were motile by one polar flagellum or two bipolar flagella. Growth was chemolithoautotrophic, with nitrate or nitrite as electron acceptor and either a variety of sulfur species of different oxidation states or hydrogen as electron donor. Although the bacterium was able to utilize organic substances such as acetate, pyruvate, peptone and yeast extract for growth, these compounds yielded considerably lower cell numbers than obtained with reduced sulfur or hydrogen; in addition, bicarbonate supplementation was necessary. The cells also had an absolute requirement for NaCl. Optimal growth occurred at 15 °C and at pH 6.6–8.0. The predominant fatty acid of this organism was 16 : 1ω7c, with 3-OH 14 : 0, 16 : 0, 16 : 1ω5c+t and 18 : 1ω7c present in smaller amounts. The DNA G+C content was 33.6 mol%. As determined in 16S rRNA gene sequence phylogeny analysis, the isolate belongs to the genus Sulfurimonas, within the class Epsilonproteobacteria, with 93.7 to 94.2 % similarity to the other species of the genus Sulfurimonas, Sulfurimonas autotrophica, Sulfurimonas paralvinellae and Sulfurimonas denitrificans. However, the distinct physiological and genotypic differences from these previously described taxa support the description of a novel species, Sulfurimonas gotlandica sp. nov. The type strain is GD1T ( = DSM 19862T = JCM 16533T). Our results also justify an emended description of the genus Sulfurimonas.
Collapse
Affiliation(s)
- Matthias Labrenz
- IOW Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Germany
| | - Jana Grote
- IOW Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Germany
| | - Kerstin Mammitzsch
- IOW Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Germany
| | | | - Michael Laue
- Arbeitsbereich Medizinische Biologie und Elektronenmikroskopisches Zentrum (EMZ), Universität Rostock, Germany
| | - Günter Jost
- IOW Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Germany
| | - Sabine Glaubitz
- IOW Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Germany
| | - Klaus Jürgens
- IOW Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Germany
| |
Collapse
|
127
|
Olins HC, Rogers DR, Frank KL, Vidoudez C, Girguis PR. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. GEOBIOLOGY 2013; 11:279-293. [PMID: 23551687 DOI: 10.1111/gbi.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/25/2013] [Indexed: 06/02/2023]
Abstract
Chemosynthetic primary production supports hydrothermal vent ecosystems, but the extent of that productivity and its governing factors have not been well constrained. To better understand anaerobic primary production within massive vent deposits, we conducted a series of incubations at 4, 25, 50 and 90 °C using aggregates recovered from hydrothermal vent structures. We documented in situ geochemistry, measured autochthonous organic carbon stable isotope ratios and assessed microbial community composition and functional gene abundances in three hydrothermal vent chimney structures from Middle Valley on the Juan de Fuca Ridge. Carbon fixation rates were greatest at lower temperatures and were comparable among chimneys. Stable isotope ratios of autochthonous organic carbon were consistent with the Calvin-Benson-Bassham cycle being the predominant mode of carbon fixation for all three chimneys. Chimneys exhibited marked differences in vent fluid geochemistry and microbial community composition, with structures being differentially dominated by gamma (γ) or epsilon (ε) proteobacteria. Similarly, qPCR analyses of functional genes representing different carbon fixation pathways showed striking differences in gene abundance among chimney structures. Carbon fixation rates showed no obvious correlation with observed in situ vent fluid geochemistry, community composition or functional gene abundance. Together, these data reveal that (i) net anaerobic carbon fixation rates among these chimneys are elevated at lower temperatures, (ii) clear differences in community composition and gene abundance exist among chimney structures, and (iii) tremendous spatial heterogeneity within these environments likely confounds efforts to relate the observed rates to in situ microbial and geochemical factors. We also posit that microbes typically thought to be mesophiles are likely active and growing at cooler temperatures, and that their activity at these temperatures comprises the majority of endolithic anaerobic primary production in hydrothermal vent chimneys.
Collapse
Affiliation(s)
- H C Olins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
128
|
Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME JOURNAL 2013; 7:1556-67. [PMID: 23619306 PMCID: PMC3721115 DOI: 10.1038/ismej.2013.45] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/31/2013] [Accepted: 02/11/2013] [Indexed: 01/04/2023]
Abstract
Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host-symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry.
Collapse
|
129
|
Nazina TN, Pavlova NK, Tatarkin YV, Shestakova NM, Babich TL, Sokolova DS, Ivoilov VS, Khisametdinov MR, Ibatullin RR, Tourova TP, Belyaev SS, Ivanov MV. Microorganisms of the carbonate petroleum reservoir 302 of the Romashkinskoe oilfield and their biotechnological potential. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713020124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
130
|
Dahle H, Roalkvam I, Thorseth IH, Pedersen RB, Steen IH. The versatile in situ gene expression of an Epsilonproteobacteria-dominated biofilm from a hydrothermal chimney. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:282-290. [PMID: 23584970 DOI: 10.1111/1758-2229.12016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 10/03/2012] [Accepted: 11/05/2012] [Indexed: 06/02/2023]
Abstract
The Epsilonproteobacteria, including members of the genus Sulfurovum, are regarded as important primary producers in hydrothermal systems. However, their in situ gene expression in this habitat has so far not been investigated. We report a metatranscriptomic analysis of a Sulfurovum-dominated biofilm from one of the chimneys at the Loki's Castle hydrothermal system, located at the Arctic Mid Ocean Ridge. Transcripts involved in hydrogen oxidation, oxidation of sulfur species, aerobic respiration and denitrification were abundant and mostly assigned to Sulfurovum, indicating that members of this genus utilize multiple chemical energy sources simultaneously for primary production. Sulfurovum also seemed to have a diverse expression of transposases, potentially involved in horizontal gene transfer. Other transcripts were involved in CO₂ fixation by the reverse TCA cycle, the CRISPR-Cas system, heavy metal resistance, and sensing and responding to changing environmental conditions. Through pyrosequencing of PCR amplified 16S rRNA genes, the Sulfurovum-dominated biofilm was compared with another biofilm from the same chimney, revealing a large shift in the community structure of Epsilonproteobacteria-dominated biofilms over a few metres.
Collapse
Affiliation(s)
- Håkon Dahle
- Department of Biology, Centre for Geobiology, University of Bergen, Norway.
| | | | | | | | | |
Collapse
|
131
|
Sylvan JB, Sia TY, Haddad AG, Briscoe LJ, Toner BM, Girguis PR, Edwards KJ. Low temperature geomicrobiology follows host rock composition along a geochemical gradient in lau basin. Front Microbiol 2013; 4:61. [PMID: 23543862 PMCID: PMC3608910 DOI: 10.3389/fmicb.2013.00061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/04/2013] [Indexed: 02/01/2023] Open
Abstract
The East Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila, and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria, and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity) to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria, and ε-proteobacteria, while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis.
Collapse
Affiliation(s)
- Jason B Sylvan
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Nguyen Pham H, Tan R, Miyanaga K, Tanji Y. Investigation of Hydrogen Sulfide Production in a Polluted Estuary by Using a Vertical Column Simulator. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2013. [DOI: 10.1252/jcej.12we256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Reasmey Tan
- Department of Bioengineering, Tokyo Institute of Technology
| | | | - Yasunori Tanji
- Department of Bioengineering, Tokyo Institute of Technology
| |
Collapse
|
133
|
Fajardo C, Mosquera-Corral A, Campos JL, Méndez R. Autotrophic denitrification with sulphide in a sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 113:552-556. [PMID: 22704254 DOI: 10.1016/j.jenvman.2012.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/15/2011] [Accepted: 03/08/2012] [Indexed: 06/01/2023]
Abstract
In this study a sequencing batch reactor was used to simultaneously remove both sulphide and nitrate via an autotrophic denitrification process. The sulphide loading rates were gradually increased from 200 mg S(2-) L(-1) d(-1)-450 mg S(2-) L(-1)d(-1)while the nitrogen loading rates were kept at 450 mg NO(3)(-)-N L(-1)d(-1). The obtained results demonstrated that it was possible to carry out autotrophic denitrification in a Sequencing Batch Reactor with removal efficiencies of sulphide and nitrogen of 100% and 67%, respectively. The efficiency of the process was influenced by the pH value in the reactor. The operation at pH values higher than 9.0 decreased the efficiency of sulphide oxidation into sulphate to 11.3%. The main bacteria populations present in the sludge belonged to Thiobacillus genus.
Collapse
Affiliation(s)
- C Fajardo
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Rúa Lope Gómez de Marzoa, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
134
|
Enrichment and identification of large filamentous sulfur bacteria related to Beggiatoa species from brackishwater ecosystems of Tamil Nadu along the southeast coast of India. Syst Appl Microbiol 2012; 35:396-403. [DOI: 10.1016/j.syapm.2012.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 11/20/2022]
|
135
|
Fuchsman CA, Murray JW, Staley JT. Stimulation of autotrophic denitrification by intrusions of the bosporus plume into the anoxic black sea. Front Microbiol 2012; 3:257. [PMID: 22826706 PMCID: PMC3399223 DOI: 10.3389/fmicb.2012.00257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/30/2012] [Indexed: 12/03/2022] Open
Abstract
Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O2 and NO3−) into the oxic, suboxic, and anoxic layers. Prominent oxygen intrusions caused an overlap of NOx− and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume) indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria CandidatusScalindua were present. These results provide evidence for a modified ecosystem with different N2 production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139) was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N2 production pathway in the central Black Sea as well.
Collapse
Affiliation(s)
- Clara A Fuchsman
- School of Oceanography, University of Washington Seattle, WA, USA
| | | | | |
Collapse
|
136
|
Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank. ISME JOURNAL 2012; 7:161-72. [PMID: 22791235 DOI: 10.1038/ismej.2012.73] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite its immense size, logistical and methodological constraints have largely limited microbiological investigations of the subseafloor basement biosphere. In this study, a unique sampling system was used to collect fluids from the subseafloor basaltic crust via a Circulation Obviation Retrofit Kit (CORK) observatory at Integrated Ocean Drilling Program borehole 1301A, located at a depth of 2667 m in the Pacific Ocean on the eastern flank of the Juan de Fuca Ridge. Here, a fluid delivery line directly accesses a 3.5 million years old basalt-hosted basement aquifer, overlaid by 262 m of sediment, which serves as a barrier to direct exchange with bottom seawater. At an average of 1.2 × 10(4) cells ml(-1), microorganisms in borehole fluids were nearly an order of magnitude less abundant than in surrounding bottom seawater. Ribosomal RNA genes were characterized from basement fluids, providing the first snapshots of microbial community structure using a high-integrity fluid delivery line. Interestingly, microbial communities retrieved from different CORKs (1026B and 1301A) nearly a decade apart shared major community members, consistent with hydrogeological connectivity. However, over three sampling years, the dominant gene clone lineage changed from relatives of Candidatus Desulforudis audaxviator within the bacterial phylum Firmicutes in 2008 to the Miscellaneous Crenarchaeotic Group in 2009 and a lineage within the JTB35 group of Gammaproteobacteria in 2010, and statistically significant variation in microbial community structure was observed. The enumeration of different phylogenetic groups of cells within borehole 1301A fluids supported our observation that the deep subsurface microbial community was temporally dynamic.
Collapse
|
137
|
Makita H, Nakagawa S, Miyazaki M, Nakamura KI, Inagaki F, Takai K. Thiofractor thiocaminus gen. nov., sp. nov., a novel hydrogen-oxidizing, sulfur-reducing epsilonproteobacterium isolated from a deep-sea hydrothermal vent chimney in the Nikko Seamount field of the northern Mariana Arc. Arch Microbiol 2012; 194:785-94. [PMID: 22526267 DOI: 10.1007/s00203-012-0814-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022]
Abstract
A novel chemolithoautotrophic hydrogen-oxidizing and sulfur-reducing bacterium, strain 496Chim(T), was isolated from a deep-sea hydrothermal vent chimney collected from the hydrothermal field at the summit of Nikko Seamount field, in the Mariana Arc. Cells were rods or curved rods, motile by means of a single polar flagellum. Growth was observed between 15 and 45 °C (optimum 37 °C; doubling time, 2.1 h) and between pH 5.3 and 8.0 (optimum pH 6.0). The isolate was a strictly anaerobic, obligate chemolithoautotroph capable of growth using molecular hydrogen as the sole energy source, carbon dioxide as the sole carbon source, ammonium or nitrate as the sole nitrogen source, and elemental sulfur as the electron acceptor. The G+C content of genomic DNA was 35 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the new isolate belonged to the class Epsilonproteobacteria, but the isolate was distantly related to the previously described Epsilonproteobacteria species potentially at the genus level (<90 %). On the basis of its physiological and molecular characteristics, strain 496Chim(T) (=DSM 22050(Τ) = JCM 15747(Τ) = NBRC 105224(Τ)) represents the sole species of a new genus, Thiofractor, for which the name Thiofractor thiocaminus is proposed.
Collapse
Affiliation(s)
- Hiroko Makita
- Subsurface Geobiology and Advanced Research Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
| | | | | | | | | | | |
Collapse
|
138
|
Distinct and diverse anaerobic bacterial communities in boreal lakes dominated by candidate division OD1. ISME JOURNAL 2012; 6:1640-52. [PMID: 22418623 DOI: 10.1038/ismej.2012.21] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lakes have a central role in the carbon cycle of the boreal landscape. These systems typically stratify in summer and their hypolimnetic microbial communities influence burial of biogenic organic matter in sediments. The composition of bacterial communities in these suboxic habitats was studied by pyrosequencing of 16S rRNA amplicons from five lakes with variable dissolved organic carbon (DOC) concentrations. Bacterioplankton communities in the hypolimnetic waters were clearly different from the surface layer with candidate division OD1, Chlorobi and Bacteroidetes as dominant community members. Several operational taxonomic units (OTUs) affiliated with candidate division OD1 were abundant and consistently present in the suboxic hypolimnion in these boreal lakes. The overall representation of this group was positively correlated with DOC and methane concentrations. Network analysis of time-series data revealed contrasting temporal patterns but suggested similar ecological roles among the abundant OTUs affiliated with candidate division OD1. Together, stable isotope data and taxonomic classification point to methane oxidation and autotrophic denitrification as important processes in the suboxic zone of boreal lakes. Our data revealed that while hypolimnetic bacterial communities are less dynamic, they appear to be more diverse than communities from the oxic surface layer. An appreciable proportion of the hypolimnetic bacteria belong to poorly described phyla.
Collapse
|
139
|
Gittel A, Kofoed MVW, Sørensen KB, Ingvorsen K, Schramm A. Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Syst Appl Microbiol 2012; 35:165-74. [PMID: 22381470 DOI: 10.1016/j.syapm.2012.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 11/26/2022]
Abstract
Members of Epsilonproteobacteria and Deferribacteres have been implied in nitrate-induced souring control in high-temperature oil production facilities. Here we report on their diversity and abundance in the injection and production part of a nitrate-treated, off-shore oil facility (Halfdan, Denmark) and aimed to assess their potential in souring control. Nitrate addition to deoxygenated seawater shifted the low-biomass seawater community dominated by Gammaproteobacteria closely affiliated with the genus Colwellia to a high-biomass community with significantly higher species richness. Epsilonproteobacteria accounted for less than 1% of the total bacterial community in the nitrate-amended injection water and were most likely outcompeted by putative nitrate-reducing, methylotrophic Gammaproteobacteria of the genus Methylophaga. Reservoir passage and recovery of the oil resulted in a significant change in the bacterial community. Members of the thermophilic Deferribacteres were the second major fraction of the bacterial community in the production water (~30% of the total bacterial community). They were not found in the injection water and were therefore assumed to be indigenous to the reservoir. Additional diversity analysis and targeted quantification of periplasmic nitrate reductase (napA) genes indicated that most resident Deferribacteres possessed the functional potential to contribute to nitrate reduction in the system. In sum, the dominance of nitrate-reducing Deferribacteres and the low relative abundance of Epsilonproteobacteria throughout the production facility suggested that the Deferribacteres play a major role in nitrate-induced souring control at high temperatures.
Collapse
Affiliation(s)
- Antje Gittel
- Department of Biosciences, Microbiology, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
140
|
Haaijer SCM, Crienen G, Jetten MSM, Op den Camp HJM. Anoxic iron cycling bacteria from an iron sulfide- and nitrate-rich freshwater environment. Front Microbiol 2012; 3:26. [PMID: 22347219 PMCID: PMC3271277 DOI: 10.3389/fmicb.2012.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/16/2012] [Indexed: 11/30/2022] Open
Abstract
In this study, both culture-dependent and culture-independent methods were used to determine whether the iron sulfide mineral- and nitrate-rich freshwater nature reserve Het Zwart Water accommodates anoxic microbial iron cycling. Molecular analyses (16S rRNA gene clone library and fluorescence in situ hybridization, FISH) showed that sulfur-oxidizing denitrifiers dominated the microbial population. In addition, bacteria resembling the iron-oxidizing, nitrate-reducing Acidovorax strain BrG1 accounted for a major part of the microbial community in the groundwater of this ecosystem. Despite the apparent abundance of strain BrG1-like bacteria, iron-oxidizing nitrate reducers could not be isolated, likely due to the strictly autotrophic cultivation conditions adopted in our study. In contrast an iron-reducing Geobacter sp. was isolated from this environment while FISH and 16S rRNA gene clone library analyses did not reveal any Geobacter sp.-related sequences in the groundwater. Our findings indicate that iron-oxidizing nitrate reducers may be of importance to the redox cycling of iron in the groundwater of our study site and illustrate the necessity of employing both culture-dependent and independent methods in studies on microbial processes.
Collapse
Affiliation(s)
- Suzanne C M Haaijer
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | | | | | | |
Collapse
|
141
|
Rossmassler K, Engel AS, Twing KI, Hanson TE, Campbell BJ. Drivers of epsilonproteobacterial community composition in sulfidic caves and springs. FEMS Microbiol Ecol 2011; 79:421-32. [DOI: 10.1111/j.1574-6941.2011.01231.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/08/2011] [Accepted: 10/12/2011] [Indexed: 11/29/2022] Open
Affiliation(s)
- Karen Rossmassler
- School of Marine Science and Policy; University of Delaware; Lewes; DE; USA
| | - Annette S. Engel
- Department of Geology and Geophysics; Louisiana State University, Baton Rouge, LA, USA
| | - Katrina I. Twing
- School of Marine Science and Policy; University of Delaware; Lewes; DE; USA
| | | | | |
Collapse
|
142
|
Saini R, Kapoor R, Kumar R, Siddiqi TO, Kumar A. CO2 utilizing microbes — A comprehensive review. Biotechnol Adv 2011; 29:949-60. [PMID: 21856405 DOI: 10.1016/j.biotechadv.2011.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Rashmi Saini
- Department of Botany, North Campus, University of Delhi, New Delhi-110007, India
| | | | | | | | | |
Collapse
|
143
|
Srinivasan V, Morowitz HJ, Huber H. What is an autotroph? Arch Microbiol 2011; 194:135-40. [DOI: 10.1007/s00203-011-0755-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 07/24/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
144
|
Fuchsman CA, Kirkpatrick JB, Brazelton WJ, Murray JW, Staley JT. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol Ecol 2011; 78:586-603. [PMID: 22066565 DOI: 10.1111/j.1574-6941.2011.01189.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 07/08/2011] [Accepted: 08/14/2011] [Indexed: 11/26/2022] Open
Abstract
The Black Sea is a permanently anoxic basin with a well-defined redox gradient. We combine environmental 16S rRNA gene data from clone libraries, terminal restriction fragment length polymorphisms, and V6 hypervariable region pyrosequences to provide the most detailed bacterial survey to date. Furthermore, this data set is informed by comprehensive geochemical data; using this combination of information, we put forward testable hypotheses regarding possible metabolisms of uncultured bacteria from the Black Sea's suboxic zone (microaerophily, nitrate reduction, manganese cycling, and oxidation of methane, ammonium, and sulfide). Dominant bacteria in the upper suboxic zone included members of the SAR11, SAR324, and Microthrix groups and in the deep suboxic zone included members of BS-GSO-2, Marine Group A, and SUP05. A particulate fraction (30 μm filter) was used to distinguish between free-living and aggregate-attached communities in the suboxic zone. The particulate fraction contained greater diversity of V6 tag sequences than the bulk water samples. Lentisphaera, Epsilonproteobacteria, WS3, Planctomycetes, and Deltaproteobacteria were enriched in the particulate fraction, whereas SAR11 relatives dominated the free-living fraction. On the basis of the bacterial assemblages and simple modeling, we find that in suboxic waters, the interior of sinking aggregates potentially support manganese reduction, sulfate reduction, and sulfur oxidation.
Collapse
Affiliation(s)
- Clara A Fuchsman
- School of Oceanography, University of Washington, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
145
|
Charneski CA, Honti F, Bryant JM, Hurst LD, Feil EJ. Atypical at skew in Firmicute genomes results from selection and not from mutation. PLoS Genet 2011; 7:e1002283. [PMID: 21935355 PMCID: PMC3174206 DOI: 10.1371/journal.pgen.1002283] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/12/2011] [Indexed: 11/18/2022] Open
Abstract
The second parity rule states that, if there is no bias in mutation or selection, then within each strand of DNA complementary bases are present at approximately equal frequencies. In bacteria, however, there is commonly an excess of G (over C) and, to a lesser extent, T (over A) in the replicatory leading strand. The low G+C Firmicutes, such as Staphylococcus aureus, are unusual in displaying an excess of A over T on the leading strand. As mutation has been established as a major force in the generation of such skews across various bacterial taxa, this anomaly has been assumed to reflect unusual mutation biases in Firmicute genomes. Here we show that this is not the case and that mutation bias does not explain the atypical AT skew seen in S. aureus. First, recently arisen intergenic SNPs predict the classical replication-derived equilibrium enrichment of T relative to A, contrary to what is observed. Second, sites predicted to be under weak purifying selection display only weak AT skew. Third, AT skew is primarily associated with largely non-synonymous first and second codon sites and is seen with respect to their sense direction, not which replicating strand they lie on. The atypical AT skew we show to be a consequence of the strong bias for genes to be co-oriented with the replicating fork, coupled with the selective avoidance of both stop codons and costly amino acids, which tend to have T-rich codons. That intergenic sequence has more A than T, while at mutational equilibrium a preponderance of T is expected, points to a possible further unresolved selective source of skew. When considering a single strand of DNA, it is not necessarily the case that the frequency of each base should equal its complementary partner, such that A = T and G = C. For the leading strand, it is typically the case that Gs are more common than Cs, and Ts more common than As. This bias is widely thought to arise due to different mutational biases during replication. The Firmicutes exhibit an atypical preference for A over T on the leading strand, and here we show that selection, rather than mutation, can explain this exception. For those bases within coding regions, selection acts to inflate the frequency of A over T in order to avoid stop codons and to use metabolically cheap amino acids. Because genes are not orientated randomly, this manifests as an overall enrichment of A on the leading strand. Furthermore, a direct examination of mutational patterns is inconsistent with the observed enrichment of As. Curiously, our data also point to an unresolved source of selection on synonymous and intergenic sites, which are widely assumed to be neutral.
Collapse
|
146
|
Roalkvam I, Jørgensen SL, Chen Y, Stokke R, Dahle H, Hocking WP, Lanzén A, Haflidason H, Steen IH. New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiol Ecol 2011; 78:233-43. [PMID: 21676010 DOI: 10.1111/j.1574-6941.2011.01153.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Methane seepages typically harbor communities of anaerobic methane oxidizers (ANME); however, knowledge about fine-scale vertical variation of ANME in response to geochemical gradients is limited. We investigated microbial communities in sediments below a white microbial mat in the G11 pockmark at Nyegga by 16S rRNA gene tag pyrosequencing and real-time quantitative PCR. A vertical stratification of dominating ANME communities was observed at 4 cmbsf (cm below seafloor) and below in the following order: ANME-2a/b, ANME-1 and ANME-2c. The ANME-1 community was most numerous and comprised single or chains of cells with typical rectangular morphology, accounting up to 89.2% of the retrieved 16S rRNA gene sequences. Detection rates for sulfate-reducing Deltaproteobacteria possibly involved in anaerobic oxidation of methane were low throughout the core. However, a correlation in the abundance of Candidate division JS-1 with ANME-2 was observed, indicating involvement in metabolisms occurring in ANME-2-dominated horizons. The white microbial mat and shallow sediments were dominated by organisms affiliated with Sulfurovum (Epsilonproteobacteria) and Methylococcales (Gammaproteobacteria), suggesting that aerobic oxidation of sulfur and methane is taking place. In intermediate horizons, typical microbial groups associated with methane seeps were recovered. The data are discussed with respect to co-occurring microbial assemblages and interspecies interactions.
Collapse
Affiliation(s)
- Irene Roalkvam
- Department of Biology, Centre for Geobiology, University of Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Crépeau V, Cambon Bonavita MA, Lesongeur F, Randrianalivelo H, Sarradin PM, Sarrazin J, Godfroy A. Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEMS Microbiol Ecol 2011; 76:524-40. [DOI: 10.1111/j.1574-6941.2011.01070.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
148
|
Sikorski J, Munk C, Lapidus A, Ngatchou Djao OD, Lucas S, Glavina Del Rio T, Nolan M, Tice H, Han C, Cheng JF, Tapia R, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Sims D, Meincke L, Brettin T, Detter JC, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Lang E, Spring S, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP. Complete genome sequence of Sulfurimonas autotrophica type strain (OK10). Stand Genomic Sci 2010; 3:194-202. [PMID: 21304749 PMCID: PMC3035374 DOI: 10.4056/sigs.1173118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sulfurimonas autotrophica Inagaki et al. 2003 is the type species of the genus Sulfurimonas. This genus is of interest because of its significant contribution to the global sulfur cycle as it oxidizes sulfur compounds to sulfate and by its apparent habitation of deep-sea hydrothermal and marine sulfidic environments as potential ecological niche. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the second complete genome sequence of the genus Sulfurimonas and the 15th genome in the family Helicobacteraceae. The 2,153,198 bp long genome with its 2,165 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
149
|
Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 2010; 88:1027-42. [DOI: 10.1007/s00253-010-2847-1] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/13/2010] [Accepted: 08/14/2010] [Indexed: 11/26/2022]
|
150
|
Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA, Vollmer W, Salama NR. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization. Cell 2010; 141:822-33. [PMID: 20510929 PMCID: PMC2920535 DOI: 10.1016/j.cell.2010.03.046] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/29/2010] [Accepted: 03/19/2010] [Indexed: 02/07/2023]
Abstract
The mechanisms by which bacterial cells generate helical cell shape and its functional role are poorly understood. Helical shape of the human pathogen Helicobacter pylori may facilitate penetration of the thick gastric mucus where it replicates. We identified four genes required for helical shape: three LytM peptidoglycan endopeptidase homologs (csd1-3) and a ccmA homolog. Surrounding the cytoplasmic membrane of most bacteria, the peptidoglycan (murein) sacculus is a meshwork of glycan strands joined by peptide crosslinks. Intact cells and isolated sacculi from mutants lacking any single csd gene or ccmA formed curved rods and showed increased peptidoglycan crosslinking. Quantitative morphological analyses of multiple-gene deletion mutants revealed each protein uniquely contributes to a shape-generating pathway. This pathway is required for robust colonization of the stomach in spite of normal directional motility. Our findings suggest that the coordinated action of multiple proteins relaxes peptidoglycan crosslinking, enabling helical cell curvature and twist.
Collapse
Affiliation(s)
- Laura K. Sycuro
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195 USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520 USA
| | | | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Chelsea A. Stern
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Nina R. Salama
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| |
Collapse
|