101
|
Beran O, Lawrence DA, Andersen N, Dzupova O, Kalmusova J, Musilek M, Holub M. Sequential analysis of biomarkers in cerebrospinal fluid and serum during invasive meningococcal disease. Eur J Clin Microbiol Infect Dis 2009; 28:793-9. [PMID: 19205764 PMCID: PMC2693780 DOI: 10.1007/s10096-009-0708-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 01/15/2009] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to determine the profile of different inflammatory molecules in serum and cerebrospinal fluid (CSF) during invasive meningococcal disease (IMD). Their relationship with IMD severity was also assessed. A cohort of 12 patients with IMD was investigated. Paired serum and CSF samples were obtained at the time of diagnostic and follow-up lumbar puncture and were examined using Luminex analysis. IMD severity correlated with serum interleukin-6 (IL-6) and interleukin-1 receptor antagonist (IL-1 ra) on admission. Furthermore, the CSF levels of IL-1 beta, IL-1 ra, IL-6, IL-8, macrophage inflammatory protein-1 beta (MIP-1 beta), and monocyte chemoattractant protein-1 (MCP-1) were significantly higher than their respective serum levels. The strongest correlations were found between serum concentrations of IL-1 beta and IL-1 ra, IL-6, IL-8, and MIP-1 beta, whereas the strongest correlations in CSF were found between endotoxin and IL-8, IL-17, MIP-1 beta, and MCP-1. As was expected, the concentrations of inflammatory molecules in both serum and CSF significantly decreased after antibiotic treatment. With regard to kinetics, a severe course of IMD correlated positively with rapid declines of CSF IL-6 and cortisol levels. Sequential multiple analyses revealed patterns of inflammatory responses that were associated with the severity of IMD, as well as with the compartmentalization and kinetics of the immune reaction.
Collapse
Affiliation(s)
- O. Beran
- 1st Medical Faculty, Teaching Hospital Bulovka, 3rd Department of Infectious and Tropical Diseases, Charles University in Prague, Prague, Czech Republic
| | - D. A. Lawrence
- Wadsworth Center, New York State Department of Health, Albany, USA
| | - N. Andersen
- Wadsworth Center, New York State Department of Health, Albany, USA
| | - O. Dzupova
- 3rd Medical Faculty, Teaching Hospital Bulovka, Department of Infectious Diseases, Charles University in Prague, Prague, Czech Republic
| | - J. Kalmusova
- National Institute of Public Health, National Reference Laboratory for Meningococcal Infections, Prague, Czech Republic
| | - M. Musilek
- National Institute of Public Health, National Reference Laboratory for Meningococcal Infections, Prague, Czech Republic
| | - M. Holub
- 1st Medical Faculty, Teaching Hospital Bulovka, 3rd Department of Infectious and Tropical Diseases, Charles University in Prague, Prague, Czech Republic
- 3rd Department of Infectious and Tropical Diseases, Teaching Hospital Bulovka, Budínova 2, Prague 8, 180 81 Czech Republic
| |
Collapse
|
102
|
Bennett JS, Thompson EAL, Kriz P, Jolley KA, Maiden MCJ. A common gene pool for the Neisseria FetA antigen. Int J Med Microbiol 2009; 299:133-9. [PMID: 18718812 PMCID: PMC3968273 DOI: 10.1016/j.ijmm.2008.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/10/2008] [Accepted: 06/24/2008] [Indexed: 11/25/2022] Open
Abstract
Meningococcal FetA is an iron-regulated, immunogenic outer membrane protein and vaccine component. The most diverse region of this protein is a previously defined variable region (VR) that has been shown to be immunodominant. In this analysis, a total of 275 Neisseria lactamica isolates, collected during studies of nasopharyngeal bacterial carriage in infants, were examined for the presence of a fetA gene. The fetA VR nucleotide sequence was determined for 217 of these isolates, with fetA apparently absent from 58 isolates, the majority of which belonged to the ST-624 clonal complex. The VR in N. lactamica was compared to the same region in N. meningitidis, N. gonorrhoeae, and a number of other commensal Neisseria. Identical fetA variable region sequences were identified among commensal and pathogenic Neisseria, suggesting a common gene pool, differing from other antigens in this respect. Carriage of commensal Neisseria species, such as N. lactamica, that express FetA may be involved in the development of natural immunity to meningococcal disease.
Collapse
Affiliation(s)
- Julia S Bennett
- Department of Zoology, The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
103
|
Zaiss NH, Rupnik M, Kuijper EJ, Harmanus C, Michielsen D, Janssens K, Nübel U. Typing Clostridium difficile strains based on tandem repeat sequences. BMC Microbiol 2009; 9:6. [PMID: 19133124 PMCID: PMC2628660 DOI: 10.1186/1471-2180-9-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 01/08/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genotyping of epidemic Clostridium difficile strains is necessary to track their emergence and spread. Portability of genotyping data is desirable to facilitate inter-laboratory comparisons and epidemiological studies. RESULTS This report presents results from a systematic screen for variation in repetitive DNA in the genome of C. difficile. We describe two tandem repeat loci, designated 'TR6' and 'TR10', which display extensive sequence variation that may be useful for sequence-based strain typing. Based on an investigation of 154 C. difficile isolates comprising 75 ribotypes, tandem repeat sequencing demonstrated excellent concordance with widely used PCR ribotyping and equal discriminatory power. Moreover, tandem repeat sequences enabled the reconstruction of the isolates' largely clonal population structure and evolutionary history. CONCLUSION We conclude that sequence analysis of the two repetitive loci introduced here may be highly useful for routine typing of C. difficile. Tandem repeat sequence typing resolves phylogenetic diversity to a level equivalent to PCR ribotypes. DNA sequences may be stored in databases accessible over the internet, obviating the need for the exchange of reference strains.
Collapse
|
104
|
Abstract
As the use of nucleotide sequence-based typing has become more widespread in the investigation of microbial epidemiology, there has been a natural requirement for curated Internet-based databases that can act as central authorities for nomenclature and type definitions. These facilitate the sharing and comparison of data between laboratories without the need for reference samples. Here, the use of the most common multilocus sequence typing (MLST) and antigen sequence databases are described. In particular, for MLST, the steps required for allele sequence and profile identification are explained along with a detailed overview of searching and matching isolate records. BLAST searching of antigen sequence databases is also described.
Collapse
Affiliation(s)
- Keith A Jolley
- Department of Zoology and Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
105
|
Sloan AM, Henderson AM, Tsang RSW. Characterization of serogroup A Neisseria meningitidis from invasive meningococcal disease cases in Canada between 1979 and 2006: Epidemiological links to returning travellers. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2008; 19:227-32. [PMID: 19412379 PMCID: PMC2605869 DOI: 10.1155/2008/523021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/17/2007] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Serogroup A Neisseria meningitidis has repeatedly caused epidemics of invasive meningococcal disease (IMD) in developing nations since the 1960s. The present study is the first detailed study of serogroup A bacteria isolated in Canada. METHODS Thirty-four serogroup A meningococcal isolates collected from individuals with IMD in Canada between 1979 and 2006 were characterized by serology and multilocus sequence typing of seven housekeeping enzyme genes and genes encoding three outer membrane protein antigens. RESULTS Isolates were assigned to either the sequence type (ST)-1 or the ST-5 clonal complex. Clones within the ST-1 complex were recovered between 1979 and 1992, while clones of the ST-5 complex were isolated between 1987 and 2006; respectively, they accounted for 70.6% and 29.4% of all isolates studied. Isolates of the ST-1 complex were characterized by serosubtype antigen P1.3 or P1.3,6 with PorB allele 60 (serotype 4) and FetA sequence F5-1, while isolates of the ST-5 complex were characterized by serosubtype antigen P1.9 with PorB allele 47 (also serotype 4) and FetA sequence F3-1. CONCLUSIONS The Canadian serogroup A IMD isolates likely originated in travellers returning from hyperendemic or epidemic areas of the globe where serogroup A bacteria circulate. Although the Canadian cases of serogroup A IMD were caused by clones known to have caused epidemics in developing countries, disease incidence remained low in Canada.
Collapse
Affiliation(s)
- Angela M Sloan
- International Centre for Infectious Diseases, Winnipeg, Manitoba
| | - Averil M Henderson
- Vaccine Preventable Bacterial Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Raymond SW Tsang
- International Centre for Infectious Diseases, Winnipeg, Manitoba
- Vaccine Preventable Bacterial Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| |
Collapse
|
106
|
Russell JE, Urwin R, Gray SJ, Fox AJ, Feavers IM, Maiden MCJ. Molecular epidemiology of meningococcal disease in England and Wales 1975-1995, before the introduction of serogroup C conjugate vaccines. MICROBIOLOGY (READING, ENGLAND) 2008; 154:1170-1177. [PMID: 18375809 PMCID: PMC2885627 DOI: 10.1099/mic.0.2007/014761-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 11/28/2022]
Abstract
A comprehensive meningococcal vaccine is yet to be developed. In the absence of a vaccine that immunizes against the serogroup B capsular polysaccharide, this can only be achieved by targeting subcapsular antigens, and a number of outer-membrane proteins (OMPs) are under consideration as candidates. A major obstacle to the development of such a vaccine is the antigenic diversity of these OMPs, and obtaining population data that accurately identify and catalogue these variants is an important component of vaccine design. The recently proposed meningococcal molecular strain-typing scheme indexes the diversity of two OMPs, PorA and FetA, that are vaccine candidates, as well as the capsule and multilocus sequence type. This scheme was employed to survey 323 meningococci isolated from invasive disease in England and Wales from 1975 to 1995, before the introduction of meningococcal conjugated serogroup C polysaccharide vaccines in 1999. The eight-locus typing scheme provided high typeability (99.4 %) and discrimination (Simpson's diversity index 0.94-0.99). The data showed cycling of meningococcal genotypes and antigenic types in the absence of planned interventions. Notwithstanding high genetic and antigenic diversity, most of the isolates belonged to one of seven clonal complexes, with 11 predominant strain types. Combinations of PorA and FetA, chosen on the basis of their prevalence over time, generated vaccine recipes that included protein variants found in 80 % or more of the disease isolates for this time period. If adequate immune responses can be generated, these results suggest that control of meningococcal disease with relatively simple protein component vaccines may be possible.
Collapse
Affiliation(s)
- Joanne E. Russell
- Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, OX1 3SY, UK
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts EN6 3QG, UK
| | - Rachel Urwin
- Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, OX1 3SY, UK
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J. Gray
- Meningococcal Reference Unit, Health Protection Agency, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WZ, UK
| | - Andrew J. Fox
- Meningococcal Reference Unit, Health Protection Agency, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WZ, UK
| | - Ian M. Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts EN6 3QG, UK
| | - Martin C. J. Maiden
- Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, OX1 3SY, UK
| |
Collapse
|
107
|
Claus H, Elias J, Meinhardt C, Frosch M, Vogel U. Deletion of the meningococcal fetA gene used for antigen sequence typing of invasive and commensal isolates from Germany: frequencies and mechanisms. J Clin Microbiol 2007; 45:2960-4. [PMID: 17626167 PMCID: PMC2045310 DOI: 10.1128/jcm.00696-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen sequence typing (ST) of FetA is part of the molecular typing scheme of Neisseria meningitidis. Among invasive meningococcal isolates from 2,201 patients in Germany, we identified 11 strains lacking the fetA gene because of deletions mediated by repeat arrays flanking the gene, i.e., Correia elements, repeat sequence 13 (RS13), and duplicated RS3. Geographic mapping and multilocus ST of invasive isolates revealed that fetA deletion was a sporadic event without genetic fixation. Among 821 carrier strains, 12 strains lacked fetA, suggesting that fetA is maintained during asymptomatic carriage. Interestingly, most of these isolates belonged to the multilocus ST-35 clonal complex (cc). ST-35 cc strains and the recently published ST-192 strains from Burkina Faso may benefit from loss of fetA, but their infrequent occurrence among invasive isolates currently does not affect fetA antigen ST.
Collapse
Affiliation(s)
- Heike Claus
- University of Würzburg, Institute for Hygiene and Microbiology, National Reference Centre for Meningococci, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
108
|
Wedege E, Bolstad K, Aase A, Herstad TK, McCallum L, Rosenqvist E, Oster P, Martin D. Functional and specific antibody responses in adult volunteers in new zealand who were given one of two different meningococcal serogroup B outer membrane vesicle vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:830-8. [PMID: 17494638 PMCID: PMC1951067 DOI: 10.1128/cvi.00039-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/25/2007] [Accepted: 04/25/2007] [Indexed: 11/20/2022]
Abstract
This study presents detailed analyses of total and specific serum antibody levels among 26 and 24 adult volunteers before vaccination and after the third dose of the meningococcal serogroup B outer membrane vesicle (OMV) vaccines MeNZB and MenBvac, respectively, in a clinical trial in New Zealand (V. Thornton, D. Lennon, K. Rasanathan, J. O'Hallahan, P. Oster, J. Stewart, S. Tilman, I. Aaberge, B. Feiring, H. Nokleby, E. Rosenqvist, K. White, S. Reid, K. Mulholland, M. J. Wakefield, and D. Martin, Vaccine 24:1395-1400, 2006). With the homologous vaccine strains as targets, both vaccines induced significant increases in serum bactericidal and opsonophagocytic activities and in the levels of immunoglobulin G (IgG) to OMV antigens in an enzyme-linked immunosorbent assay (ELISA) and to live meningococci by flow cytometry. They also induced high levels of activity against the heterologous strains, particularly in terms of opsonophagocytic activity and IgG binding to live bacteria. The antibody levels with the homologous and heterologous strains in the four assays showed high and significant positive correlations. Specific IgG binding to 10 major OMV antigens in each vaccine was measured by scanning of immunoblots; ELISAs for two antigens, lipopolysaccharide and Neisseria surface protein A (NspA), were also performed. Both vaccines elicited significant increases in IgG binding to all homologous and heterologous OMV antigens except NspA. The total IgG band intensity on the blots correlated significantly with the IgG levels determined by the OMV ELISA and flow cytometry. In conclusion, the results of the various immunological assays showed that both OMV vaccines gave rise to high levels of specific and cross-reacting antibodies.
Collapse
Affiliation(s)
- E Wedege
- Norwegian Institute of Public Health, Department of Bacteriology and Immunology, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Taha MK, Vázquez JA, Hong E, Bennett DE, Bertrand S, Bukovski S, Cafferkey MT, Carion F, Christensen JJ, Diggle M, Edwards G, Enríquez R, Fazio C, Frosch M, Heuberger S, Hoffmann S, Jolley KA, Kadlubowski M, Kechrid A, Kesanopoulos K, Kriz P, Lambertsen L, Levenet I, Musilek M, Paragi M, Saguer A, Skoczynska A, Stefanelli P, Thulin S, Tzanakaki G, Unemo M, Vogel U, Zarantonelli ML. Target gene sequencing to characterize the penicillin G susceptibility of Neisseria meningitidis. Antimicrob Agents Chemother 2007; 51:2784-92. [PMID: 17517841 PMCID: PMC1932518 DOI: 10.1128/aac.00412-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical isolates of Neisseria meningitidis with reduced susceptibility to penicillin G (intermediate isolates, Pen(I)) harbor alterations in the penA gene encoding the penicillin binding protein 2 (PBP2). A 402-bp DNA fragment in the 3' half of penA was sequenced from a collection of 1,670 meningococcal clinical isolates from 22 countries that spanned 60 years. Phenotyping, genotyping, and the determination of MICs of penicillin G were also performed. A total of 139 different penA alleles were detected with 38 alleles that were highly related, clustered together in maximum-likelihood analysis and corresponded to the penicillin G-susceptible isolates. The remaining 101 penA alleles were highly diverse, corresponded to different genotypes or phenotypes, and accounted for 38% of isolates, but no clonal expansion was detected. Analysis of the altered alleles that were represented by at least five isolates showed high correlation with the Pen(I) phenotype. The deduced amino acid sequence of the corresponding PBP2 comprised five amino acid residues that were always altered. This correlation was not complete for rare alleles, suggesting that other mechanisms may also be involved in conferring reduced susceptibility to penicillin. Evidence of mosaic structures through events of interspecies recombination was also detected in altered alleles. A new website was created based on the data from this work (http://neisseria.org/nm/typing/penA). These data argue for the use of penA sequencing to identify isolates with reduced susceptibility to penicillin G and as a tool to improve typing of meningococcal isolates, as well as to analyze DNA exchange among Neisseria species.
Collapse
|
110
|
Elias J, Harmsen D, Claus H, Hellenbrand W, Frosch M, Vogel U. Spatiotemporal analysis of invasive meningococcal disease, Germany. Emerg Infect Dis 2007; 12:1689-95. [PMID: 17283618 PMCID: PMC3372358 DOI: 10.3201/eid1211.060682] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Meningococcal disease clustering was found by DNA sequence–based finetyping and cluster detection software. Meningococci can cause clusters of disease. Specimens from 1,616 patients in Germany obtained over 42 months were typed by serogrouping and sequence typing of PorA and FetA and yielded a highly diverse dataset (Simpson's index 0.963). A retrospective spatiotemporal scan statistic (SaTScan) was applied in an automated fashion to identify clusters for each finetype defined by serogroup variable region (VR) VR1 and VR2 of the PorA and VR of the FetA. A total of 26 significant clusters (p<0.05) were detected. On average, a cluster consisted of 2.6 patients. The median population in the geographic area of a cluster was 475,011, the median cluster duration was 4.0 days, and the proportion of cases in spatiotemporal clusters was 4.2%. The study exemplifies how the combination of molecular finetyping and spatiotemporal analysis can be used to assess an infectious disease in a large European country.
Collapse
|
111
|
Marsh JW, O'Leary MM, Shutt KA, Harrison LH. Deletion of fetA gene sequences in serogroup B and C Neisseria meningitidis isolates. J Clin Microbiol 2007; 45:1333-5. [PMID: 17287336 PMCID: PMC1865809 DOI: 10.1128/jcm.02422-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunogenic iron-regulated FetA outer membrane protein of Neisseria meningitidis is one of various outer membrane proteins that have been considered potential meningococcal vaccine candidates. In this report, we describe the characterization of three meningococcal isolates that have deleted fetA sequences through genetic recombination at repetitive elements.
Collapse
Affiliation(s)
- Jane W Marsh
- University of Pittsburgh School of Medicine, 865 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
112
|
Claus H, Vogel U, Swiderek H, Frosch M, Schoen C. Microarray analyses of meningococcal genome composition and gene regulation: a review of the recent literature: Table 1. FEMS Microbiol Rev 2007; 31:43-51. [PMID: 17096662 DOI: 10.1111/j.1574-6976.2006.00047.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The development of microarrays for genome comparison and transcriptional profiling along with the public availability of several meningococcal genome sequences has promoted studies elucidating (i) intraspecific and interspecific genomic differences of members of the genus Neisseria, and (ii) the transcriptional response of meningococci to a variety of environmental stresses such as heat shock, iron starvation, serum treatment, and contact with eukaryotic cells. Furthermore, microarray-based finetyping of meningococci is in development. It will remain a difficult, but important, goal to identify sets of genes determining the virulence potential of hypervirulent meningococcal lineages in comparison with apathogenic ones. The recent identification of the meningococcal disease-associated island through the application of microarray analyses has been a step towards this aim. Transcriptional profiling of meningococci has brought about the compilation of large datasets, which also provide information about several regulons. Meningococcal microarray analysis has established a basis for studies clarifying the function of previously unknown genes, and has supported the identification of interesting vaccine candidates. However, harmonization of protocols and tools, as well as central databases are needed to foster the comparability of studies and the integration of knowledge.
Collapse
Affiliation(s)
- Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
113
|
Fox AJ, Taha MK, Vogel U. Standardized nonculture techniques recommended for European reference laboratories. FEMS Microbiol Rev 2007; 31:84-8. [PMID: 17147691 DOI: 10.1111/j.1574-6976.2006.00048.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Culture-confirmed diagnosis of meningococcal invasive infections is often hindered by early antibiotic treatment. Nonculture molecular standardized methods are now essential tools for the immediate management of meningococcal infections. The European Monitoring Group on Meningococci (EMGM) recommends the following measures. (1) The implementation of standardized protocols of extraction methods for DNA isolation from clinical specimens for PCR-based identification and genogrouping of Neisseria meningitidis. (2) The use of molecular approaches (sequencing of target genes) for the determination of meningococcal susceptibility to antibiotics, such as sequencing of penA and rpoB genes for susceptibility to penicillin G and rifampicin, respectively. (3) The use of nonculture strain characterization by multilocus sequence typing (MLST) and sequence typing of porA and fetA. These approaches can be implemented either by individual reference laboratories or through collaboration and referral between centres.
Collapse
Affiliation(s)
- Andrew J Fox
- Institute for Hygiene and Mikrobiologie, National Reference Centre for Meningococci, Würzburg, Germany
| | | | | |
Collapse
|
114
|
Kortekaas J, Pettersson A, van der Biezen J, Weynants VE, van der Ley P, Poolman J, Bos MP, Tommassen J. Shielding of immunogenic domains in Neisseria meningitidis FrpB (FetA) by the major variable region. Vaccine 2007; 25:72-84. [PMID: 16914236 DOI: 10.1016/j.vaccine.2006.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 07/12/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
The meningococcal iron-limitation-inducible outer membrane protein FrpB (FetA) has been shown to induce bactericidal antibodies, and is, therefore, considered a vaccine candidate. However, these antibodies are strain specific and, consistently, epitope mapping showed that they are directed against a region, located in a surface-exposed loop, L5, that displays considerable sequence variability between strains. Here, we attempted to redirect the immune response to more conserved domains of the protein by deleting L5. Immunization with an FrpB protein lacking L5 resulted in a bactericidal antibody response, and epitope mapping showed that these antibodies were directed against loop L3, which also displays considerable sequence variability. To re-direct the immune response further, immunizations were performed with an FrpB protein lacking both L5 and L3. The antibodies obtained were not bactericidal. Furthermore, the bactericidal antibodies against L3 were only bactericidal in the absence of L5, and immunofluorescence microscopy experiments showed that L5 efficiently shields other immunogenic cell surface-exposed epitopes outside of this region on living cells. Whereas the ability of micro-organisms to vary surface-exposed domains that are targets for protective immunity has long been established, the current work shows that such domains can be remarkably efficient in shielding other, more conserved epitopes.
Collapse
Affiliation(s)
- Jeroen Kortekaas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Jolley KA, Brehony C, Maiden MCJ. Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiol Rev 2006; 31:89-96. [PMID: 17168996 DOI: 10.1111/j.1574-6976.2006.00057.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The diversity and dynamics of Neisseria meningitidis populations generate a requirement for high resolution, comprehensive, and portable typing schemes for meningococcal disease surveillance. Molecular approaches, specifically DNA amplification and sequencing, are the methods of choice for various reasons, including: their generic nature and portability, comprehensive coverage, and ready implementation to culture negative clinical specimens. The following target genes are recommended: (1) the variable regions of the antigen-encoding genes porA and fetA and, if additional resolution is required, the porB gene for rapid investigation of disease outbreaks and investigating the distribution of antigenic variants; (2) the seven multilocus sequence typing loci-these data are essential for the most effective national, and international management of meningococcal disease, as well as being invaluable in studies of meningococcal population biology and evolution. These targets have been employed extensively in reference laboratories throughout the world and validated protocols have been published. It is further recommended that a modified nomenclature be adopted of the form: serogroup: PorA type: FetA type: sequence type (clonal complex), thus: B: P1.19,15: F5-1: ST-33 (cc32).
Collapse
Affiliation(s)
- Keith A Jolley
- The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
116
|
Caugant DA, Fogg C, Bajunirwe F, Piola P, Twesigye R, Mutebi F, Frøholm LO, Rosenqvist E, Batwala V, Aaberge IS, Rottingen JA, Guerin PJ. Pharyngeal carriage of Neisseria meningitidis in 2–19-year-old individuals in Uganda. Trans R Soc Trop Med Hyg 2006; 100:1159-63. [PMID: 16765397 DOI: 10.1016/j.trstmh.2006.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 01/04/2006] [Accepted: 01/13/2006] [Indexed: 11/15/2022] Open
Abstract
In southern Uganda, only sporadic cases of serogroup A meningococcal disease have been reported since 2000. As part of an immunogenicity study of the tetravalent meningococcal polysaccharide vaccine, nasopharyngeal swab samples were collected twice, 4 weeks apart, from 2-19-year-old healthy individuals in Mbarara, Uganda. Only 15 (2.0%) of the 750 individuals carried meningococci asymptomatically. Most of the strains were non-serogroupable and none were serogroup A. However, two individuals carried a serogroup W135 strain, sequence type (ST)-11, similar to the clone that was responsible for the epidemic in Burkina Faso in 2002. Our study further demonstrates the geographical spread of serogroup W135 ST-11 strain and thus the potential epidemic risk.
Collapse
Affiliation(s)
- Dominique A Caugant
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Nydalen, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Elias J, Vogel U. IS1301 fingerprint analysis of Neisseria meningitidis strains belonging to the ET-15 clone. J Clin Microbiol 2006; 45:159-67. [PMID: 17093016 PMCID: PMC1828961 DOI: 10.1128/jcm.01322-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meningococci of the ET-15 clone frequently cause clusters of invasive meningococcal disease (IMD) and are associated with a high case-fatality ratio. Timely typing of strains from outbreaks of IMD caused by this clone is hampered by the low variability of its surface antigens. We present a new Southern blot-based typing method for ET-15 meningococci based on the insertion element IS1301, which was present in all 70 ET-15 strains tested. Fingerprints were stable in vitro over a period of 100 days of cultivation on agar plates. The discriminatory power of IS1301 fingerprinting exceeded that of typing by serogrouping and antigen sequencing of the outer membrane proteins PorA and FetA, as determined by the analysis of 52 epidemiologically unrelated strains. In addition, the method provided conclusive results with regard to the comparison of strains from clusters of IMD. The investigation of insertion sites of IS1301 revealed several new intragenic insertions, among others, into open reading frames homologous to mafB and tspB. A previously described insertion in nadA was present in more than two-thirds of the strains analyzed, suggesting that NadA is probably an unreliable vaccine candidate for the prevention of ET-15 disease.
Collapse
Affiliation(s)
- Johannes Elias
- Institute for Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany.
| | | |
Collapse
|
118
|
Elias J, Claus H, Frosch M, Vogel U. Evidence for indirect nosocomial transmission of Neisseria meningitidis resulting in two cases of invasive meningococcal disease. J Clin Microbiol 2006; 44:4276-8. [PMID: 16943350 PMCID: PMC1698315 DOI: 10.1128/jcm.00613-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nosocomial transmission of Neisseria meningitidis has only rarely been reported. Here, we present a significant spatiotemporal association of two cases of invasive meningococcal disease identified by retrospective cluster analysis with the program SaTScan. The most likely epidemiological link was simultaneous hospitalization, resulting in indirect nosocomial transmission.
Collapse
Affiliation(s)
- Johannes Elias
- National Reference Centre for Meningococci, Institute for Hygiene and Microbiology, University of Würzburg, Germany
| | | | | | | |
Collapse
|
119
|
Vipond C, Suker J, Jones C, Tang C, Feavers IM, Wheeler JX. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 2006; 6:3400-13. [PMID: 16645985 DOI: 10.1002/pmic.200500821] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the absence of a suitable carbohydrate-based vaccine, outer membrane vesicle (OMV) vaccines have been used to disrupt outbreaks of serogroup B meningococcal disease for more than 20 years. Proteomic technology provides physical methods with the potential to assess the composition and consistency of these complex vaccines. 2-DE, combined with MS, were used to generate a proteome map of an OMV vaccine, developed to disrupt a long-running outbreak of group B disease in New Zealand. Seventy four spots from the protein map were identified including the outer membrane protein (OMP) antigens: PorA, PorB, RmpM and OpcA. Protein identification indicates that, in addition to OMPs, OMV vaccines contain periplasmic, membrane-associated and cytoplasmic proteins. 2-D-DIGE technology highlighted differences between preclinical development batches of vaccines from two different manufacturers.
Collapse
Affiliation(s)
- Caroline Vipond
- Department of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, UK.
| | | | | | | | | | | |
Collapse
|
120
|
Beernink PT, Leipus A, Granoff DM. Rapid genetic grouping of factor h-binding protein (genome-derived neisserial antigen 1870), a promising group B meningococcal vaccine candidate. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:758-63. [PMID: 16829612 PMCID: PMC1489572 DOI: 10.1128/cvi.00097-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/27/2006] [Accepted: 05/16/2006] [Indexed: 11/20/2022]
Abstract
The most important antigen component of a promising multicomponent group B meningococcal recombinant protein vaccine is based on genome-derived neisserial antigen 1870, which recently was renamed factor H-binding protein (FHBP) to reflect one of its critical functions as a complement regulatory protein. Neisseria meningitidis strains can be subdivided into three FHBP variant groups based on divergence of FHBP amino acid sequences. Within each variant group, amino acid sequences are >90% conserved. To develop an FHBP-based group B vaccine, it is important to know the distribution of FHBP variant 1, 2, and 3 strains in different geographic regions, since antibodies against FHBP are bactericidal against strains within the homologous group but show minimal activity against strains from other groups. We have devised a high-throughput, quantitative PCR-based method that allows rapid and precise assignment of FHBP genes into each of the three major variant lineages. Among 48 group B isolates from patients hospitalized in California in 2003 to 2004, 83%, 13%, and 4%, respectively, had variant 1, 2, and 3 genes. Thus, a vaccine based on the variant 1 protein has the potential to prevent the majority of cases of group B disease. The quantitative PCR-based method will be useful for determining and monitoring the prevalence of meningococcal isolates with genes encoding different FHBP variant proteins. The technique also is suitable for monitoring variation of genes encoding other protein antigens targeted for vaccination.
Collapse
Affiliation(s)
- Peter T Beernink
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | | |
Collapse
|
121
|
Jolley KA, Maiden MCJ. AgdbNet - antigen sequence database software for bacterial typing. BMC Bioinformatics 2006; 7:314. [PMID: 16790057 PMCID: PMC1543660 DOI: 10.1186/1471-2105-7-314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 06/21/2006] [Indexed: 11/29/2022] Open
Abstract
Background Bacterial typing schemes based on the sequences of genes encoding surface antigens require databases that provide a uniform, curated, and widely accepted nomenclature of the variants identified. Due to the differences in typing schemes, imposed by the diversity of genes targeted, creating these databases has typically required the writing of one-off code to link the database to a web interface. Here we describe agdbNet, widely applicable web database software that facilitates simultaneous BLAST querying of multiple loci using either nucleotide or peptide sequences. Results Databases are described by XML files that are parsed by a Perl CGI script. Each database can have any number of loci, which may be defined by nucleotide and/or peptide sequences. The software is currently in use on at least five public databases for the typing of Neisseria meningitidis, Campylobacter jejuni and Streptococcus equi and can be set up to query internal isolate tables or suitably-configured external isolate databases, such as those used for multilocus sequence typing. The style of the resulting website can be fully configured by modifying stylesheets and through the use of customised header and footer files that surround the output of the script. Conclusion The software provides a rapid means of setting up customised Internet antigen sequence databases. The flexible configuration options enable typing schemes with differing requirements to be accommodated.
Collapse
Affiliation(s)
- Keith A Jolley
- The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Martin CJ Maiden
- The Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| |
Collapse
|
122
|
Kortekaas J, Müller SA, Ringler P, Gregorini M, Weynants VE, Rutten L, Bos MP, Tommassen J. Immunogenicity and structural characterisation of an in vitro folded meningococcal siderophore receptor (FrpB, FetA). Microbes Infect 2006; 8:2145-53. [PMID: 16797200 DOI: 10.1016/j.micinf.2006.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 11/19/2022]
Abstract
The iron-limitation-inducible protein FrpB of Neisseria meningitidis is an outer-membrane-localized siderophore receptor. Because of its abundance and its capacity to elicit bactericidal antibodies, it is considered a vaccine candidate. Bactericidal antibodies against FrpB are, however, type-specific. Hence, an FrpB-based vaccine should comprise several FrpB variants to be capable of providing broad protection. To facilitate the development of a meningococcal subunit vaccine, we have established a procedure to obtain large quantities of the protein in a native-like conformation. The protein was expressed without its signal sequence in Escherichia coli, where it accumulated in inclusion bodies. After in vitro folding, the protein was biochemically, biophysically and biologically characterised. Our results show that in vitro folded FrpB assembles into oligomers, presumably dimers, and that it induces high levels of bactericidal antibodies in laboratory animals.
Collapse
Affiliation(s)
- Jeroen Kortekaas
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Norheim G, Rosenqvist E, Aseffa A, Yassin MA, Mengistu G, Kassu A, Fikremariam D, Tamire W, Høiby EA, Alebel T, Berhanu D, Merid Y, Harboe M, Caugant DA. Characterization of Neisseria meningitidis isolates from recent outbreaks in Ethiopia and comparison with those recovered during the epidemic of 1988 to 1989. J Clin Microbiol 2006; 44:861-71. [PMID: 16517868 PMCID: PMC1393097 DOI: 10.1128/jcm.44.3.861-871.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/16/2005] [Accepted: 11/18/2005] [Indexed: 12/31/2022] Open
Abstract
The objectives of this study were to collect and characterize epidemic meningococcal isolates from Ethiopia from 2002 to 2003 and to compare them to 21 strains recovered during the previous large epidemic of 1988 to 1989. Ninety-five patients in all age groups with clinical signs of meningitis and a turbid cerebrospinal fluid (CSF) sample were included in the study of isolates from 2002 to 2003. Seventy-one patients (74.7%) were confirmed as having Neisseria meningitidis either by culture (n = 40) or by porA PCR (n = 31) of their CSF. The overall case fatality rate (CFR) was 11.6%; the N. meningitidis-specific CFR was 4.2%. All 40 strains were fully susceptible to all antibiotics tested except sulfonamide, were serotyped as A:4/21:P1.20,9, and belonged to sequence type 7 (ST-7). The strains from 1988 to 1989 were also equally susceptible and were characterized as A:4/21:P1.20,9, but they belonged to ST-5. Antigenic characterization of the strains revealed differences in the repertoire of lipooligosaccharides and Opa proteins between the old and the recent strains. PCR analysis of the nine lgt genes revealed the presence of the lgtAHFG genes in both old and recent strains; lgtB was present in only some of the strains, but no correlation with sequence type was observed. Further analysis showed that in addition to their pgm alleles, the Ethiopian ST-5 and ST-7 strains also differed in their tbpB, opa, fetA, and lgtA genes. The occurrence of new antigenic structures in strains sharing the same serogroup, PorA, and PorB may help explain the replacement of ST-5 by ST-7 in the African meningitis belt.
Collapse
MESH Headings
- Adolescent
- Adult
- Base Sequence
- Child
- Child, Preschool
- DNA, Bacterial/genetics
- Disease Outbreaks/history
- Ethiopia/epidemiology
- Female
- Genes, Bacterial
- Genotype
- History, 20th Century
- History, 21st Century
- Humans
- Infant
- Male
- Meningitis, Meningococcal/epidemiology
- Meningitis, Meningococcal/history
- Meningitis, Meningococcal/microbiology
- Middle Aged
- Molecular Sequence Data
- Neisseria meningitidis, Serogroup A/classification
- Neisseria meningitidis, Serogroup A/genetics
- Neisseria meningitidis, Serogroup A/isolation & purification
- Phenotype
- Serotyping
- Time Factors
Collapse
Affiliation(s)
- Gunnstein Norheim
- Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Neisseria meningitidis is the leading cause of bacterial meningitis in the United States and worldwide. A serogroup A/C/W-135/Y polysaccharide meningococcal vaccine has been licensed in the United States since 1981 but has not been used universally outside of the military. On 14 January 2005, a polysaccharide conjugate vaccine that covers meningococcal serogroups A, C, W-135, and Y was licensed in the United States for 11- to 55-year-olds and is now recommended for the routine immunization of adolescents and other high-risk groups. This review covers the changing epidemiology of meningococcal disease in the United States, issues related to vaccine prevention, and recommendations on the use of the new vaccine.
Collapse
Affiliation(s)
- Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, 521 Parran Hall, 130 Desoto St., University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
125
|
Abstract
Disease caused by Neisseria meningitidis is associated with high mortality rates and significant sequelae. Polysaccharide meningococcal vaccines have been available for > 20 years, and have been used in travellers to control outbreaks, and in some countries for adolescents entering college, although they provide only a short duration of immunity and do not produce a herd effect. Monovalent and quadrivalent (A, C, Y, W-135) meningococcal conjugate vaccines have recently been licensed and endorsed for use in infants, children, adolescents and adults in various countries. Among the key features of the new meningococcal conjugate vaccines are stimulation of both B cell-dependent and T cell-dependent immune responses, induction of immunological memory and booster effects, longer-term protection, reduction of nasopharyngeal carriage of N. meningitidis, and herd immunity. Large, randomised, double-blind studies in adults, adolescents, children and infants have demonstrated the immunogenicity and safety of the new meningococcal conjugate vaccine formulations.
Collapse
Affiliation(s)
- Michael E Pichichero
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
126
|
de Filippis I, Vicente ACP. Multilocus sequence typing and repetitive element-based polymerase chain reaction analysis of Neisseria meningitidis isolates in Brazil reveal the emergence of 11 new sequence types genetically related to the ST-32 and ST-41/44 complexes and high prevalence of strains related to hypervirulent lineages. Diagn Microbiol Infect Dis 2005; 53:161-7. [PMID: 16243472 DOI: 10.1016/j.diagmicrobio.2005.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 06/21/2005] [Indexed: 11/28/2022]
Abstract
Eighty-four strains of Neisseria meningitidis isolated from patients with meningococcal disease in 4 states of Brazil were analyzed by multilocus sequence typing and repetitive element-based polymerase chain reaction (Rep-PCR). The majority of strains analyzed (82%) belonged to 4 hypervirulent lineages, and 11 of 20 new sequence type (STs) characterized were related to hypervirulent lineages. Sequences of fetA and porA genes were analyzed, and the majority were related to profiles present in the ST-32 complex/electrophoretic type (ET)-5 complex. Rep-PCR analysis showed a unique electrophoretic pattern among strains related to hypervirulent lineages. Considering that 81% of the strains were serogroup B and strains belonging to the ST-32/ET-5 complex are genetically related to the Cuban vaccine strain used in a mass vaccination from 1990 to 1994 in Brazil, we believe that this vaccine did not confer effective herd immunity even among the age group within the vaccine showed higher efficacy. Our results once more raise the question about which strains should be used in the development of a new vaccine against N. meningitidis serogroup B.
Collapse
Affiliation(s)
- Ivano de Filippis
- Depto. De Microbiologia, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Ctuz, Rio de Janeiro 21045-900, Brazil.
| | | |
Collapse
|
127
|
Norheim G, Aase A, Caugant DA, Høiby EA, Fritzsønn E, Tangen T, Kristiansen P, Heggelund U, Rosenqvist E. Development and characterisation of outer membrane vesicle vaccines against serogroup A Neisseria meningitidis. Vaccine 2005; 23:3762-74. [PMID: 15893613 DOI: 10.1016/j.vaccine.2005.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 02/17/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
Neisseria meningitidis bacteria of serogroup A are causing recurring meningitis epidemics on the African continent. An outer membrane vesicle (OMV) vaccine against serogroup A meningococci made from a subgroup III serogroup A meningococcal strain was previously shown to induce antibodies with serum bactericidal activity (SBA) in mice. We have here further investigated the properties of OMV vaccines made from five different subgroup III serogroup A meningococcal strains grown in a synthetic medium with low iron content. In addition to the major outer membrane proteins (PorA, PorB, RmpM, Opa and OpcA), small amounts of the NadA, TdfH, Omp85, FetA, FbpA and NspA outer membrane proteins, as well as lipooligosaccharides, were detected in the vaccines. The OMV vaccines were used to immunise mice. Anti-meningococcal IgG antibodies in the mouse sera were analysed by immunoblotting and by enzyme-linked immunosorbent assay against OMVs, and against live meningococcal cells in SBA and a flow-cytometric assay. The vaccines induced antibodies with high SBA and opsonophagocytic activity. The strongest IgG responses were directed against PorA. Significant SBA responses were also observed against a subgroup III strain, which did not express PorA, whereas no SBA was observed against a clone IV-1 serogroup A strain. An OMV vaccine from serogroup A meningococci may be an alternative to polysaccharide and conjugate polysaccharide vaccines for Africa.
Collapse
Affiliation(s)
- Gunnstein Norheim
- Division of Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Swiderek H, Claus H, Frosch M, Vogel U. Evaluation of custom-made DNA microarrays for multilocus sequence typing of Neisseria meningitidis. Int J Med Microbiol 2005; 295:39-45. [PMID: 15861815 DOI: 10.1016/j.ijmm.2004.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Multilocus sequence typing (MLST) has become the gold standard for typing of a variety of bacterial and fungal micro-organisms. Others recently reported the successful use of the tiling DNA array technology to sequence-type Staphylococcus aureus. We now evaluated microarrays based on polymorphism-directed oligonucleotide design for typing of Neisseria meningitidis. The rationale behind this approach was to minimize the number of microarray probes by exploiting the comprehensive knowledge of polymorphisms combined in the Neisseria MLST website. Initial experiments using model oligonucleotides of 28-32 base-pairs in length revealed that the hybridization protocols used were highly specific. However, despite of several optimization steps, the rate of misidentification of oligonucleotides remained > 1.8% in consecutive validation experiments using arrays representing the genetic diversity at three MLST loci. We assume that the high density of polymorphic sites and the extensive GC-content variations at N. meningitidis MLST loci hinder the successful implementation of MLST microarrays based on polymorphism-directed oligonucleotide design.
Collapse
Affiliation(s)
- Halina Swiderek
- Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
129
|
Urwin R, Russell JE, Thompson EAL, Holmes EC, Feavers IM, Maiden MCJ. Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect Immun 2004; 72:5955-62. [PMID: 15385499 PMCID: PMC517544 DOI: 10.1128/iai.72.10.5955-5962.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Neisseria meningitidis is a major cause of meningitis and septicemia worldwide. Outer membrane proteins (OMPs) are candidates in the search for comprehensive meningococcal vaccines; however, the formulation of OMP vaccines is complicated by antigenic diversity, which is generated by high levels of genetic reassortment and strong positive selection in the meningococcal antigen genes. The genetic and antigenic diversity of three OMPs (FetA, PorA, and PorB) among a global collection of meningococcal isolates representative of the major hyperinvasive clonal complexes was determined. There was evidence for antigenic structuring among the three OMPs that could not be explained purely by descent. These observations violated the predictions of the clonal and epidemic clonal models of population structure but were in concordance with models of strain structure which propose that host immunity selects for nonoverlapping antigen combinations. The patterns of antigenic variant combinations suggested that an OMP-based vaccine with as few as six PorA and five FetA variant sequences could generate homologous immune responses against all 78 isolates examined.
Collapse
Affiliation(s)
- Rachel Urwin
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
130
|
Vogel U, Claus H, von Müller L, Bunjes D, Elias J, Frosch M. Bacteremia in an immunocompromised patient caused by a commensal Neisseria meningitidis strain harboring the capsule null locus (cnl). J Clin Microbiol 2004; 42:2898-901. [PMID: 15243035 PMCID: PMC446252 DOI: 10.1128/jcm.42.7.2898-2901.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/18/2004] [Accepted: 04/15/2004] [Indexed: 01/15/2023] Open
Abstract
We recently described the capsule null locus (cnl) of constitutively unencapsulated Neisseria meningitidis clonal lineages. cnl meningococci were recovered from healthy carriers at high frequency. We here report on the first case of invasive disease caused by cnl meningococci in a severely immunosuppressed patient with chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplantation. The sequence type 845 strain was extensively typed and, furthermore, shown to be sensitive to serum bactericidal activity.
Collapse
Affiliation(s)
- Ulrich Vogel
- National Reference Laboratory for Meningococci, Institute for Hygiene and Microbiology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
131
|
Abstract
Meningococcal disease is one of the most feared and serious infections in the young and its prevention by vaccination is an important goal. The high degree of antigenic variability of the organism makes the meningococcus a challenging target for vaccine prevention. Meningococcal polysaccharide vaccines against serogroup A and C are efficacious and have been widely used, often in combination with serogroup Y and W135 components. Their relative lack of immunogenicity in young children and infants can be overcome by conjugation to a protein carrier. The effectiveness of serogroup C glycoconjugate vaccines in children of all ages has been demonstrated and they have now been introduced into routine vaccination schedules. Conjugate vaccines against other serogroups, including A, Y, and W135 will soon be available and it is hoped they may emulate this success. Prevention of serogroup B disease has proven more elusive. Several serogroup B vaccines based on outer membrane vesicles have been shown to be immunogenic and reasonably effective in adults and older children, but the protection offered by them is chiefly strain-specific. Multivalent recombinant PorA vaccines have been developed to broaden the protective effect, but no efficacy data are available as yet. Intensive efforts have been directed at other outer membrane protein vaccine candidates and lipopolysaccharide, and some of these have been shown to offer protection in experimental animal models. Nonpathogenic Neisseriae spp. such as Neisseria lactamica are also possible vaccine candidates. Previously unknown proteins have been identified from in silico analysis of the meningococcal genome and their vaccine potential explored. However, none of these has yet been presented as the 'universal' protective antigen and work in this field continues to be held back by our limited knowledge concerning the mechanisms of natural protection against serogroup B meningococci.
Collapse
Affiliation(s)
- Jens U Rüggeberg
- Department of Child Health and Vaccine Institute, St George's Hospital Medical School, London, UK
| | | |
Collapse
|