101
|
Mazzei M, Carrozza ML, Luisi E, Forzan M, Giusti M, Sagona S, Tolari F, Felicioli A. Infectivity of DWV associated to flower pollen: experimental evidence of a horizontal transmission route. PLoS One 2014; 9:e113448. [PMID: 25419704 PMCID: PMC4242645 DOI: 10.1371/journal.pone.0113448] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/24/2014] [Indexed: 11/19/2022] Open
Abstract
Deformed wing virus (DWV) is a honeybee pathogen whose presence is generally associated with infestation of the colony by the mite Varroa destructor, leading to the onset of infections responsible for the collapse of the bee colony. DWV contaminates bee products such as royal jelly, bee-bread and honey stored within the infected hive. Outside the hive, DWV has been found in pollen loads collected directly from infected as well as uninfected forager bees. It has been shown that the introduction of virus-contaminated pollen into a DWV-free hive results in the production of virus-contaminated food, whose role in the development of infected bees from virus-free eggs has been experimentally demonstrated. The aim of this study was twofold: (i) to ascertain the presence of DWV on pollen collected directly from flowers visited by honeybees and then quantify the viral load and (ii) determine whether the virus associated with pollen is infective. The results of our investigation provide evidence that DWV is present on pollen sampled directly from visited flowers and that, following injection in individuals belonging to the pollinator species Apis mellifera, it is able to establish an active infection, as indicated by the presence of replicating virus in the head of the injected bees. We also provide the first indication that the pollinator species Osmia cornuta is susceptible to DWV infection.
Collapse
Affiliation(s)
- Maurizio Mazzei
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | | | - Elena Luisi
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | - Mario Forzan
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | - Matteo Giusti
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | - Simona Sagona
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | - Francesco Tolari
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
| | - Antonio Felicioli
- Department of Veterinary Science, Università of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
102
|
Sandionigi A, Vicario S, Prosdocimi EM, Galimberti A, Ferri E, Bruno A, Balech B, Mezzasalma V, Casiraghi M. Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing 'phyloh' as a novel phylogenetic diversity analysis tool. Mol Ecol Resour 2014; 15:697-710. [PMID: 25367306 DOI: 10.1111/1755-0998.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/01/2022]
Abstract
The study of diversity in biological communities is an intriguing field. Huge amount of data are nowadays available (provided by the innovative DNA sequencing techniques), and management, analysis and display of results are not trivial. Here, we propose for the first time the use of phylogenetic entropy as a measure of bacterial diversity in studies of microbial community structure. We then compared our new method (i.e. the web tool phyloh) for partitioning phylogenetic diversity with the traditional approach in diversity analyses of bacteria communities. We tested phyloh to characterize microbiome in the honeybee (Apis mellifera, Insecta: Hymenoptera) and its parasitic mite varroa (Varroa destructor, Arachnida: Parasitiformes). The rationale is that the comparative analysis of honeybee and varroa microbiomes could open new perspectives concerning the role of the parasites on honeybee colonies health. Our results showed a dramatic change of the honeybee microbiome when varroa occurs, suggesting that this parasite is able to influence host microbiome. Among the different approaches used, only the entropy method, in conjunction with phylogenetic constraint as implemented in phyloh, was able to discriminate varroa microbiome from that of parasitized honeybees. In conclusion, we foresee that the use of phylogenetic entropy could become a new standard in the analyses of community structure, in particular to prove the contribution of each biological entity to the overall diversity.
Collapse
Affiliation(s)
- A Sandionigi
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - S Vicario
- Institute of Biomedical and Technologies (ITB), National Research Council (CNR), Via Giovanni Amendola, 122/D, 70126, Bari, Italy
| | - E M Prosdocimi
- DEFENS, University of Milan, Via Mangiagalli, 25, 20133, Milan, Italy
| | - A Galimberti
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - E Ferri
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - A Bruno
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - B Balech
- Institute of Biomembrane and Bioenergetics (IBBE), National Research Council (CNR), Via Giovanni Amendola, 165/A, 70126, Bari, Italy
| | - V Mezzasalma
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - M Casiraghi
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
103
|
Within-host competition among the honey bees pathogens Nosema ceranae and Deformed wing virus is asymmetric and to the disadvantage of the virus. J Invertebr Pathol 2014; 124:31-4. [PMID: 25450738 DOI: 10.1016/j.jip.2014.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/05/2014] [Accepted: 10/22/2014] [Indexed: 02/05/2023]
Abstract
Two pathogens co-infecting a common host can either interact positively (facilitation), negatively (competition) or act independently. A correlative study has suggested that two pathogens of the honey bee, Nosema ceranae and Deformed wing virus (DWV), interact negatively within a host (Costa et al., 2011). To test this hypothesis, we sequentially co-infected honey bees with these pathogens in a reciprocally crossed experimental design. Prior establishment in the host ventriculus by N. ceranae inhibited DWV while prior infection by DWV did not impact N. ceranae, highlighting an asymmetry in the competitive interaction between these emerging pathogens.
Collapse
|
104
|
Ren J, Cone A, Willmot R, Jones IM. Assembly of recombinant Israeli Acute Paralysis Virus capsids. PLoS One 2014; 9:e105943. [PMID: 25153716 PMCID: PMC4143317 DOI: 10.1371/journal.pone.0105943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/31/2014] [Indexed: 01/30/2023] Open
Abstract
The dicistrovirus Israeli Acute Paralysis Virus (IAPV) has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.
Collapse
Affiliation(s)
- Junyuan Ren
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Abigail Cone
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Rebecca Willmot
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
105
|
Ryabov EV, Wood GR, Fannon JM, Moore JD, Bull JC, Chandler D, Mead A, Burroughs N, Evans DJ. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog 2014; 10:e1004230. [PMID: 24968198 PMCID: PMC4072795 DOI: 10.1371/journal.ppat.1004230] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023] Open
Abstract
The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naïve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence) and virus levels (low/high) into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV) exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL) or high levels of a near-clonal virulent variant of DWV (group VH). These groups and unexposed controls (C) could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers our understanding of this important viral pathogen of honeybees. Honeybees are the most important managed pollinating insect, contributing billions of dollars to annual global agricultural production. Over the last century a parasitic mite, Varroa, has spread worldwide, with significant impacts on honeybee colony health as a consequence of its transmission of a cocktail of viruses while feeding on honeybee ‘blood’. The most important virus for colony health is deformed wing virus (DWV), high levels of which cause developmental deformities and premature ageing resulting in high overwintering colony losses. In experiments on individual Varroa-exposed pupae we demonstrate that a single type of virulent DWV is amplified 1,000–10,000 times in the recipient pupae, despite the mite containing a high diversity of replicating DWV strains. We could recapitulate this by direct injection of pupae with mixed virus populations, showing the virulent strain is advantaged by the route of transmission. In parallel, we detected changes in the immune response and developmental gene expression of the honeybee and propose that these contribute to the characteristic pathogenesis of DWV. Identification of a virulent strain of DWV has implications for therapeutic or prophylactic interventions to improve honeybee colony health, as well as contributing to our understanding of the biology of this important honeybee viral pathogen.
Collapse
Affiliation(s)
- Eugene V. Ryabov
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Graham R. Wood
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Jessica M. Fannon
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jonathan D. Moore
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - James C. Bull
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Dave Chandler
- Life Sciences & Warwick Crop Centre, University of Warwick, Wellesbourne, Warwickshire, United Kingdom
| | - Andrew Mead
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nigel Burroughs
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - David J. Evans
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
106
|
Locke B, Forsgren E, de Miranda JR. Increased tolerance and resistance to virus infections: a possible factor in the survival of Varroa destructor-resistant honey bees (Apis mellifera). PLoS One 2014; 9:e99998. [PMID: 24926792 PMCID: PMC4057421 DOI: 10.1371/journal.pone.0099998] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022] Open
Abstract
The honey bee ectoparasitic mite, Varroa destructor, has a world-wide distribution and inflicts more damage than all other known apicultural diseases. However, Varroa-induced colony mortality is more accurately a result of secondary virus infections vectored by the mite. This means that honey bee resistance to Varroa may include resistance or tolerance to virus infections. The aim of this study was to see if this is the case for a unique population of mite-resistant (MR) European honey bees on the island of Gotland, Sweden. This population has survived uncontrolled mite infestation for over a decade, developing specific mite-related resistance traits to do so. Using RT-qPCR techniques, we monitored late season virus infections, Varroa mite infestation and honey bee colony population dynamics in the Gotland MR population and compared this to mite-susceptible (MS) colonies in a close by apiary. From summer to autumn the deformed wing virus (DWV) titres increased similarly between the MR and MS populations, while the black queen cell virus (BQCV) and sacbrood virus (SBV) titres decreased substantially in the MR population compared to the MS population by several orders of magnitude. The MR colonies all survived the following winter with high mite infestation, high DWV infection, small colony size and low proportions of autumn brood, while the MS colonies all perished. Possible explanations for these changes in virus titres and their relevance to Varroa resistance and colony winter survival are discussed.
Collapse
Affiliation(s)
- Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
107
|
Wang H, Xie J, Shreeve TG, Ma J, Pallett DW, King LA, Possee RD. Sequence recombination and conservation of Varroa destructor virus-1 and deformed wing virus in field collected honey bees (Apis mellifera). PLoS One 2013; 8:e74508. [PMID: 24058580 PMCID: PMC3776811 DOI: 10.1371/journal.pone.0074508] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/02/2013] [Indexed: 12/23/2022] Open
Abstract
We sequenced small (s) RNAs from field collected honeybees (Apis mellifera) and bumblebees (Bombuspascuorum) using the Illumina technology. The sRNA reads were assembled and resulting contigs were used to search for virus homologues in GenBank. Matches with Varroadestructor virus-1 (VDV1) and Deformed wing virus (DWV) genomic sequences were obtained for A. mellifera but not B. pascuorum. Further analyses suggested that the prevalent virus population was composed of VDV-1 and a chimera of 5’-DWV-VDV1-DWV-3’. The recombination junctions in the chimera genomes were confirmed by using RT-PCR, cDNA cloning and Sanger sequencing. We then focused on conserved short fragments (CSF, size > 25 nt) in the virus genomes by using GenBank sequences and the deep sequencing data obtained in this study. The majority of CSF sites confirmed conservation at both between-species (GenBank sequences) and within-population (dataset of this study) levels. However, conserved nucleotide positions in the GenBank sequences might be variable at the within-population level. High mutation rates (Pi>10%) were observed at a number of sites using the deep sequencing data, suggesting that sequence conservation might not always be maintained at the population level. Virus-host interactions and strategies for developing RNAi treatments against VDV1/DWV infections are discussed.
Collapse
Affiliation(s)
- Hui Wang
- Centre for Ecology and Hydrology, Natural Environmental Research Council, Wallingford, Oxfordshire, United Kingdom
- * E-mail:
| | - Jiazheng Xie
- Beijing Genome Institute, Yantian District, Shenzhen, China
| | - Tim G. Shreeve
- Department of Biological and Medical Sciences, Oxford Brooks University, Oxford, United Kingdom
| | - Jinmin Ma
- Beijing Genome Institute, Yantian District, Shenzhen, China
| | - Denise W. Pallett
- Centre for Ecology and Hydrology, Natural Environmental Research Council, Wallingford, Oxfordshire, United Kingdom
| | - Linda A. King
- Department of Biological and Medical Sciences, Oxford Brooks University, Oxford, United Kingdom
| | - Robert D. Possee
- Centre for Ecology and Hydrology, Natural Environmental Research Council, Wallingford, Oxfordshire, United Kingdom
| |
Collapse
|
108
|
Dainat B, Neumann P. Clinical signs of deformed wing virus infection are predictive markers for honey bee colony losses. J Invertebr Pathol 2012; 112:278-80. [PMID: 23270875 DOI: 10.1016/j.jip.2012.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
The ectoparasitic mite Varroa destructor acting as a virus vector constitutes a central mechanism for losses of managed honey bee, Apis mellifera, colonies. This creates demand for an easy, accurate and cheap diagnostic tool to estimate the impact of viruliferous mites in the field. Here we evaluated whether the clinical signs of the ubiquitous and mite-transmitted deformed wing virus (DWV) can be predictive markers of winter losses. In fall and winter 2007/2008, A.m. carnica workers with apparent wing deformities were counted daily in traps installed on 29 queenright colonies. The data show that colonies which later died had a significantly higher proportion of workers with wing deformities than did those which survived. There was a significant positive correlation between V. destructor infestation levels and the number of workers displaying DWV clinical signs, further supporting the mite's impact on virus infections at the colony level. A logistic regression model suggests that colony size, the number of workers with wing deformities and V. destructor infestation levels constitute predictive markers for winter colony losses in this order of importance and ease of evaluation.
Collapse
Affiliation(s)
- Benjamin Dainat
- Swiss Bee Research Centre, Agroscope Liebefeld-Posieux Research Station ALP, Bern, Switzerland.
| | | |
Collapse
|
109
|
Abstract
The well-being of a colony and replenishment of the workers depends on a healthy queen. Diseases in queens are seldom reported, and our knowledge on viral infection in queens is limited. In this study, 86 honey bee queens were collected from beekeepers in Denmark. All queens were tested separately by two real-time PCRs: one for the presence of deformed wing virus (DWV), and one that would detect sequences of acute bee-paralysis virus, Kashmir bee virus and Israeli acute paralysis virus (AKI complex). Worker bees accompanying the queen were also analysed. The queens could be divided into three groups based on the level of infection in their head, thorax, ovary, intestines and spermatheca. Four queens exhibited egg-laying deficiency, but visually all queens appeared healthy. Viral infection was generally at a low level in terms of AKI copy numbers, with 134/430 tissues (31 %) showing the presence of viral infection ranging from 101 to 105 copies. For DWV, 361/340 tissues (84 %) showed presence of viral infection (DWV copies ranging from 102 to 1012), with 50 tissues showing viral titres >107 copies. For both AKI and DWV, the thorax was the most frequently infected tissue and the ovaries were the least frequently infected. Relative to total mass, the spermatheca showed significantly higher DWV titres than the other tissues. The ovaries had the lowest titre of DWV. No significant differences were found among tissues for AKI. A subsample of 14 queens yielded positive results for the presence of negative-sense RNA strands, thus demonstrating active virus replication in all tissues.
Collapse
Affiliation(s)
- Roy Mathew Francis
- Department of Agroecology, Science & Technology, Aarhus University, 4200 Slagelse, Denmark
| | - Steen Lykke Nielsen
- Department of Agroecology, Science & Technology, Aarhus University, 4200 Slagelse, Denmark
| | - Per Kryger
- Department of Agroecology, Science & Technology, Aarhus University, 4200 Slagelse, Denmark
| |
Collapse
|
110
|
Annoscia D, Del Piccolo F, Nazzi F. How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrcarbons and water loss in infested honeybees. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1548-1555. [PMID: 23041382 DOI: 10.1016/j.jinsphys.2012.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 05/28/2023]
Abstract
Several factors threaten the health of honeybees; among them the parasitic mite Varroa destructor and the Deformed Wing Virus play a major role. Recently, the dangerous interplay between the mite and the virus was studied in detail and the transition, triggered by mite feeding, from a benign covert infection to a devastating viral outbreak, characterized by an intense viral replication, associated with some characteristic symptoms, was described. In order to gain insight into the events preceding that crucial transition we carried out standardized lab experiments aiming at studying the effects of parasitization in asymptomatic bees to establish a relationship between such effects and bee mortality. It appears that parasitization alters the capacity of the honeybee to regulate water exchange; this, in turn, has severe effects on bee survival. These results are discussed in light of possible novel strategies aiming at mitigating the impact of the parasite on honeybee health.
Collapse
Affiliation(s)
- Desiderato Annoscia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy
| | | | | |
Collapse
|
111
|
Desai SD, Eu YJ, Whyard S, Currie RW. Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. INSECT MOLECULAR BIOLOGY 2012; 21:446-455. [PMID: 22690671 DOI: 10.1111/j.1365-2583.2012.01150.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Deformed wing virus (DWV) is a serious pathogen of the honey bee, Apis mellifera L., vectored by the parasitic mite Varroa destructor. The virus is associated with wing deformity in symptomatic bees, and premature death and reduced colony performance in asymptomatic bees. In the present study we reduced DWV infection by feeding both first instar larvae and adult A. mellifera with a double-stranded (ds) RNA construct, DWV-dsRNA, which is specific to DWV in DWV-inoculated bees, by mixing it with their food. We showed that feeding DWV to larvae causes wing deformity in adult bees in the absence of varroa mites and decreases survival rates of adult bees relative to bees not fed DWV. Feeding larvae with DWV-dsRNA in advance of inoculation with virus reduced the DWV viral level and reduced wing deformity relative to larvae fed DWV or DWV with green fluorescent protein-dsRNA (probably a result of RNA silencing), but did not affect survival to the adult stage. Feeding DWV-dsRNA did not affect larval survival rates, which suggests that dsRNA is non-toxic to larvae. Feeding adult workers with DWV-dsRNA in advance of inoculation with virus increased their longevity and reduced DWV concentration relative to controls.
Collapse
Affiliation(s)
- S D Desai
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada.
| | | | | | | |
Collapse
|
112
|
Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G, Varricchio P, Della Vedova G, Cattonaro F, Caprio E, Pennacchio F. Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog 2012; 8:e1002735. [PMID: 22719246 PMCID: PMC3375299 DOI: 10.1371/journal.ppat.1002735] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/23/2012] [Indexed: 01/09/2023] Open
Abstract
The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.
Collapse
Affiliation(s)
- Francesco Nazzi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
- * E-mail: (FN); (FP)
| | - Sam P. Brown
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Desiderato Annoscia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| | - Fabio Del Piccolo
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| | - Gennaro Di Prisco
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
| | - Paola Varricchio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
| | - Giorgio Della Vedova
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| | - Federica Cattonaro
- Istituto di Genomica Applicata, Parco Scientifico e Tecnologico Luigi Danieli, Udine, Italy
| | - Emilio Caprio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
| | - Francesco Pennacchio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Università degli Studi di Napoli “Federico II”, Portici (Napoli), Italy
- * E-mail: (FN); (FP)
| |
Collapse
|
113
|
Schöning C, Gisder S, Geiselhardt S, Kretschmann I, Bienefeld K, Hilker M, Genersch E. Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee, Apis mellifera. ACTA ACUST UNITED AC 2012; 215:264-71. [PMID: 22189770 DOI: 10.1242/jeb.062562] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ectoparasitic mite Varroa destructor and honey bee pathogenic viruses have been implicated in the recent demise of honey bee colonies. Several studies have shown that the combination of V. destructor and deformed wing virus (DWV) poses an especially serious threat to honey bee health. Mites transmitting virulent forms of DWV may cause fatal DWV infections in the developing bee, while pupae parasitised by mites not inducing or activating overt DWV infections may develop normally. Adult bees respond to brood diseases by removing affected brood. This hygienic behaviour is an essential part of the bees' immune response repertoire and is also shown towards mite-parasitised brood. However, it is still unclear whether the bees react towards the mite in the brood cell or rather towards the damage done to the brood. We hypothesised that the extent of mite-associated damage rather than the mere presence of parasitising mites triggers hygienic behaviour. Hygienic behaviour assays performed with mites differing in their potential to transmit overt DWV infections revealed that brood parasitised by 'virulent' mites (i.e. mites with a high potential to induce fatal DWV infections in parasitised pupae) were removed significantly more often than brood parasitised by 'less virulent' mites (i.e. mites with a very low potential to induce overt DWV infections) or non-parasitised brood. Chemical analyses of brood odour profiles suggested that the bees recognise severely affected brood by olfactory cues. Our results suggest that bees show selective, damage-dependent hygienic behaviour, which may be an economic way for colonies to cope with mite infestation.
Collapse
Affiliation(s)
- Caspar Schöning
- Institute for Bee Research, Friedrich-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
114
|
Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P. Predictive markers of honey bee colony collapse. PLoS One 2012; 7:e32151. [PMID: 22384162 PMCID: PMC3285648 DOI: 10.1371/journal.pone.0032151] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/23/2012] [Indexed: 11/18/2022] Open
Abstract
Across the Northern hemisphere, managed honey bee colonies, Apis mellifera, are currently affected by abrupt depopulation during winter and many factors are suspected to be involved, either alone or in combination. Parasites and pathogens are considered as principal actors, in particular the ectoparasitic mite Varroa destructor, associated viruses and the microsporidian Nosema ceranae. Here we used long term monitoring of colonies and screening for eleven disease agents and genes involved in bee immunity and physiology to identify predictive markers of honeybee colony losses during winter. The data show that DWV, Nosema ceranae, Varroa destructor and Vitellogenin can be predictive markers for winter colony losses, but their predictive power strongly depends on the season. In particular, the data support that V. destructor is a key player for losses, arguably in line with its specific impact on the health of individual bees and colonies.
Collapse
Affiliation(s)
- Benjamin Dainat
- Swiss Bee Research Centre, Agroscope Liebefeld-Posieux Research Station ALP, Bern, Switzerland.
| | | | | | | | | |
Collapse
|
115
|
Ai H, Yan X, Han R. Occurrence and prevalence of seven bee viruses in Apis mellifera and Apis cerana apiaries in China. J Invertebr Pathol 2012; 109:160-4. [DOI: 10.1016/j.jip.2011.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022]
|
116
|
Di Prisco G, Zhang X, Pennacchio F, Caprio E, Li J, Evans JD, DeGrandi-Hoffman G, Hamilton M, Chen YP. Dynamics of persistent and acute deformed wing virus infections in honey bees, Apis mellifera. Viruses 2011; 3:2425-2441. [PMID: 22355447 PMCID: PMC3280512 DOI: 10.3390/v3122425] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 11/16/2022] Open
Abstract
The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV) as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.
Collapse
Affiliation(s)
- Gennaro Di Prisco
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Universita’ degli Studi di Napoli “Federico II”, Via Universita’ n.100, 80055 Portici, Napoli, Italy; (G.D.P.); (F.P.); (E.C.)
| | - Xuan Zhang
- College of Plant Protection, Yunnan Agricultural University, Yunnan 650201, China;
| | - Francesco Pennacchio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Universita’ degli Studi di Napoli “Federico II”, Via Universita’ n.100, 80055 Portici, Napoli, Italy; (G.D.P.); (F.P.); (E.C.)
| | - Emilio Caprio
- Dipartimento di Entomologia e Zoologia Agraria “Filippo Silvestri”, Universita’ degli Studi di Napoli “Federico II”, Via Universita’ n.100, 80055 Portici, Napoli, Italy; (G.D.P.); (F.P.); (E.C.)
| | - Jilian Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Science, Xiangshan, Beijing 100093, China;
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA; (J.D.E.); (M.H.)
| | | | - Michele Hamilton
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA; (J.D.E.); (M.H.)
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA; (J.D.E.); (M.H.)
| |
Collapse
|
117
|
Evans JD, Schwarz RS. Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 2011; 19:614-20. [PMID: 22032828 DOI: 10.1016/j.tim.2011.09.003] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 10/15/2022]
Abstract
The biology and health of the honey bee Apis mellifera has been of interest to human societies for centuries. Research on honey bee health is surging, in part due to new tools and the arrival of colony-collapse disorder (CCD), an unsolved decline in bees from parts of the United States, Europe, and Asia. Although a clear understanding of what causes CCD has yet to emerge, these efforts have led to new microbial discoveries and avenues to improve our understanding of bees and the challenges they face. Here we review the known honey bee microbes and highlight areas of both active and lagging research. Detailed studies of honey bee-pathogen dynamics will help efforts to keep this important pollinator healthy and will give general insights into both beneficial and harmful microbes confronting insect colonies.
Collapse
Affiliation(s)
- Jay D Evans
- United States Department of Agriculture (USDA)-Agricultural Research Service (ARS) Bee Research Laboratory, Beltsville Agricultural Research Center (BARC) East Building 476, Beltsville, MD 20705, USA.
| | | |
Collapse
|
118
|
Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl Environ Microbiol 2011; 78:227-35. [PMID: 22020517 DOI: 10.1128/aem.06094-11] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Honey bee (Apis mellifera) colonies are declining, and a number of stressors have been identified that affect, alone or in combination, the health of honey bees. The ectoparasitic mite Varroa destructor, honey bee viruses that are often closely associated with the mite, and pesticides used to control the mite population form a complex system of stressors that may affect honey bee health in different ways. During an acaricide treatment using Apistan (plastic strips coated with tau-fluvalinate), we analyzed the infection dynamics of deformed wing virus (DWV), sacbrood virus (SBV), and black queen cell virus (BQCV) in adult bees, mite-infested pupae, their associated Varroa mites, and uninfested pupae, comparing these to similar samples from untreated control colonies. Titers of DWV increased initially with the onset of the acaricide application and then slightly decreased progressively coinciding with the removal of the Varroa mite infestation. This initial increase in DWV titers suggests a physiological effect of tau-fluvalinate on the host's susceptibility to viral infection. DWV titers in adult bees and uninfested pupae remained higher in treated colonies than in untreated colonies. The titers of SBV and BQCV did not show any direct relationship with mite infestation and showed a variety of possible effects of the acaricide treatment. The results indicate that other factors besides Varroa mite infestation may be important to the development and maintenance of damaging DWV titers in colonies. Possible biochemical explanations for the observed synergistic effects between tau-fluvalinate and virus infections are discussed.
Collapse
|
119
|
Perera OP, Snodgrass GL, Allen KC, Jackson RE, Becnel JJ, O'Leary PF, Luttrell RG. The complete genome sequence of a single-stranded RNA virus from the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois). J Invertebr Pathol 2011; 109:11-9. [PMID: 21939663 DOI: 10.1016/j.jip.2011.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 12/01/2022]
Abstract
The complete genome sequence of a single-stranded RNA virus infecting the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), was identified by sequencing cDNA prepared from insects collected from the Mississippi Delta. The 9655 nucleotide positive-sense single-stranded RNA genome of the L. lineolaris single-stranded RNA virus (LyLV-1) contained a single open reading frame of 8958 nucleotides encoding a 2986 amino acid genome polypeptide. The open reading frame was flanked by untranslated regions of 603 and 69 nucleotides at the 5'- and 3'- ends of the genome, respectively. Database searches and homology based modeling was used to identify four capsid proteins (VP1-VP4), helicase/AAA-ATPase, cysteine protease (C3P), protease 2A, and the RNA-directed RNA polymerase (RdRp). In addition, a region with weak similarity to the eukaryotic structural maintenance of chromosome (SMC) domain was identified near the amino-terminal of the polyprotein and adjacent to the VP1 domain. The amino acid sequence of LyLV-1 was approximately 44.4% similar to that of sacbrood virus (SBV) of the honey bee. The genomic organization of both viruses showed remarkable similarity with the exception of highly divergent amino acid regions flanking fairly conserved structural and non-structural polypeptide regions. High similarity to the SBV genome and similarities in the genome organization and amino acid sequence with the viruses of the family Iflaviridae suggested that LyLV-1 was a novel member of this family. Virus particles were 39 nm in diameter and appeared to transmit vertically via eggs. Although this virus may only cause covert infections under normal conditions, the potential for using this virus in biological control of L. lineolaris is discussed.
Collapse
Affiliation(s)
- Omaththage P Perera
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA.
| | | | | | | | | | | | | |
Collapse
|
120
|
Zioni N, Soroker V, Chejanovsky N. Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee. Virology 2011; 417:106-12. [PMID: 21652054 DOI: 10.1016/j.virol.2011.05.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
A country-wide screen for viral pathogens in Israeli apiaries revealed significant incidence of deformed wing virus (DWV) and Varroa destructor-1 virus (VDV-1). To understand these viruses' possible involvement in deformed wing syndrome of honey bees, we studied their replication in symptomatically and asymptomatically infected bees qualitatively and quantitatively, using RT-PCR, quantitative real-time RT-PCR, and immunodetection of the major viral capsid protein VP1. We found, for the first time, replication of VDV-1 and/or a VDV-1-DWV recombinant virus in the heads of recently emerged symptomatic bees. These viruses replicated to high copy numbers, yielding the major viral capsid VP1 processed for subsequent assembly of viral particles. Our results clearly distinguished between symptomatic and asymptomatic bees infected with VDV-1 and VDV-1-DWV and suggest the hypothesis that VDV-1, in addition to DWV, may be involved in inducing the deformed wing pathology. Thus VDV-1-DWV recombination may yield virulent strains able to cause overt infections in Varroa-infested bee colonies.
Collapse
Affiliation(s)
- Naama Zioni
- Entomology Department, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | |
Collapse
|