101
|
ADAP regulates cell cycle progression of T cells via control of cyclin E and Cdk2 expression through two distinct CARMA1-dependent signaling pathways. Mol Cell Biol 2012; 32:1908-17. [PMID: 22411628 DOI: 10.1128/mcb.06541-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion and degranulation-promoting adapter protein (ADAP) is a multifunctional scaffold that regulates T cell receptor-mediated activation of integrins via association with the SKAP55 adapter and the NF-κB pathway through interactions with both the CARMA1 adapter and serine/threonine kinase transforming growth factor β-activated kinase 1 (TAK1). ADAP-deficient T cells exhibit impaired proliferation following T cell receptor stimulation, but the contribution of these distinct functions of ADAP to this defect is not known. We demonstrate that loss of ADAP results in a G₁-S transition block in cell cycle progression following T cell activation due to impaired accumulation of cyclin-dependent kinase 2 (Cdk2) and cyclin E. The CARMA1-binding site in ADAP is critical for mitogen-activated protein (MAP) kinase kinase 7 (MKK7) phosphorylation and recruitment to the protein kinase C θ (PKCθ) signalosome and subsequent c-Jun kinase (JNK)-mediated Cdk2 induction. Cyclin E expression following T cell receptor stimulation of ADAP-deficient T cells is transient and associated with enhanced cyclin E ubiquitination. Both the CARMA1- and TAK1-binding sites in ADAP are critical for restraining cyclin E ubiquitination and turnover independently of ADAP-dependent JNK activation. T cell receptor-mediated proliferation was most dramatically impaired by the loss of ADAP interactions with CARMA1 or TAK1 rather than SKAP55. Thus, ADAP coordinates distinct CARMA1-dependent control of key cell cycle proteins in T cells.
Collapse
|
102
|
Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012; 26:203-34. [PMID: 22302935 DOI: 10.1101/gad.183434.111] [Citation(s) in RCA: 1350] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to sense and adjust to the environment is crucial to life. For multicellular organisms, the ability to respond to external changes is essential not only for survival but also for normal development and physiology. Although signaling events can directly modify cellular function, typically signaling acts to alter transcriptional responses to generate both transient and sustained changes. Rapid, but transient, changes in gene expression are mediated by inducible transcription factors such as NF-κB. For the past 25 years, NF-κB has served as a paradigm for inducible transcription factors and has provided numerous insights into how signaling events influence gene expression and physiology. Since its discovery as a regulator of expression of the κ light chain gene in B cells, research on NF-κB continues to yield new insights into fundamental cellular processes. Advances in understanding the mechanisms that regulate NF-κB have been accompanied by progress in elucidating the biological significance of this transcription factor in various physiological processes. NF-κB likely plays the most prominent role in the development and function of the immune system and, not surprisingly, when dysregulated, contributes to the pathophysiology of inflammatory disease. As our appreciation of the fundamental role of inflammation in disease pathogenesis has increased, so too has the importance of NF-κB as a key regulatory molecule gained progressively greater significance. However, despite the tremendous progress that has been made in understanding the regulation of NF-κB, there is much that remains to be understood. In this review, we highlight both the progress that has been made and the fundamental questions that remain unanswered after 25 years of study.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
103
|
Abstract
Liver fibrosis is the result of the entire organism responding to a chronic injury. Every cell type in the liver contributes to the fibrosis. This paper first discusses key intracellular signaling pathways that are induced during liver fibrosis. The paper then examines the effects of these signaling pathways on the major cell types in the liver. This will provide insights into the molecular pathophysiology of liver fibrosis and should identify therapeutic targets.
Collapse
|
104
|
Aigelsreiter A, Haybaeck J, Schauer S, Kiesslich T, Bettermann K, Griessbacher A, Stojakovic T, Bauernhofer T, Samonigg H, Kornprat P, Lackner C, Pichler M. NEMO expression in human hepatocellular carcinoma and its association with clinical outcome. Hum Pathol 2011; 43:1012-9. [PMID: 22176836 DOI: 10.1016/j.humpath.2011.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 12/19/2022]
Abstract
The nuclear factor κ-light-chain enhancer of activated B-cells (NF-κB) signaling pathway is regarded as an important factor in inflammation and carcinogenesis. Recently, a role in hepatocarcinogenesis has been attributed to the NF-κB regulatory subunit IKKγ (NEMO) using knockout mice. However, a detailed investigation of NEMO expression in human hepatocellular carcinomas (HCCs) has not yet been reported. We selected 85 HCC patients who had undergone curative liver resection and analyzed NEMO expression of the respective tumors by immunohistochemistry, Western blotting, and real-time PCR. NEMO expression was correlated with clinicopathological parameters, and the impact on 5-year disease-free survival and 5-year overall survival was calculated using multivariate Cox proportional models. In our study, complete loss of NEMO immunoreactivity was found in 34 (40%) of 85 HCCs compared with their adjacent nonneoplastic tissue (P < .05). NEMO messenger RNA (mRNA) expression was detected in all HCC cases; however, no correlation between NEMO immunoreactivity and mRNA level was found. Five-year overall survival rates for patients with low and high NEMO expression were 22% and 50%, respectively (P = .049). However, high tumor stage, but not level of NEMO expression, was confirmed as an independent poor prognostic factor for 5-year disease-free survival (hazards ratio [HR] = 2.1, 95% confidence interval [CI] = 1.3-3.6, P = .009) and 5-year overall survival (HR = 2.5, CI = 1.4-4.4, P = .002). In conclusion, a loss of NEMO immunoreactivity occurs in a substantial proportion of human HCCs. Although low NEMO expression is correlated with a poor 5-year overall survival in patients with HCC, NEMO cannot be regarded as an independent prognostic marker for predicting the clinical outcome of patients suffering from HCC.
Collapse
|
105
|
Liedtke C, Trautwein C. The role of TNF and Fas dependent signaling in animal models of inflammatory liver injury and liver cancer. Eur J Cell Biol 2011; 91:582-9. [PMID: 22153863 DOI: 10.1016/j.ejcb.2011.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/23/2011] [Accepted: 10/06/2011] [Indexed: 02/04/2023] Open
Abstract
Tumor Necrosis Factor (TNF) alpha is a pleiotropic cytokine triggering either pro-inflammatory effects via NF-κB related pathways or apoptosis through activation of caspase-8. The related death ligands Fas and TRAIL use homologous receptors and similar signaling cascades but predominantly induce apoptosis. Here, we summarize our experimental approaches to analyze the mechanisms and consequences of TNF and Fas signaling with the ultimate aim to define molecular targets for the treatment of inflammatory liver disease and liver cancer. By using conditional knockout technology in mice we genetically dissected the I-kappa B kinase (IKK) complex consisting of IKK1/IKKα, IKK2/IKKβ and IKKγ/NEMO. We demonstrated that IKK2/IKKβ, but not IKKγ/NEMO might be a promising target for the prevention of liver injury after ischemia and reperfusion or treating steatohepatitis. Genetic inactivation of IKKγ/NEMO defined a new animal model of spontaneous hepatitis and hepatocarcinogenesis involving constitutive activation of caspase-8 and basal apoptosis. We further show that caspase-8 is not only regulated by post-translational modifications as suggested earlier, but also by complex transcriptional regulation. Targeted stimulation of the caspase-8 promoter by interferons alpha and gamma, cytotoxic drugs or p53 can substantially sensitize hepatoma cells for apoptosis, whereas hepatocellular carcinoma frequently present an inactive caspase-8 gene promoter. In conclusion, our work demonstrates that therapeutic intervention in the TNF-NF-κB-caspase-8 network is technically feasible and could be of potential benefit in inflammatory liver disease.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | |
Collapse
|
106
|
Moujalled DM, Cook WD, Lluis JM, Khan NR, Ahmed AU, Callus BA, Vaux DL. In mouse embryonic fibroblasts, neither caspase-8 nor cellular FLICE-inhibitory protein (FLIP) is necessary for TNF to activate NF-κB, but caspase-8 is required for TNF to cause cell death, and induction of FLIP by NF-κB is required to prevent it. Cell Death Differ 2011; 19:808-15. [PMID: 22095280 DOI: 10.1038/cdd.2011.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Binding of TNF to TNF receptor-1 can give a pro-survival signal through activation of p65/RelA NF-κB, but also signals cell death. To determine the roles of FLICE-inhibitory protein (FLIP) and caspase-8 in TNF-induced activation of NF-κB and apoptosis, we used mouse embryonic fibroblasts derived from FLIP and caspase-8 gene-deleted mice, and treated them with TNF and a smac-mimetic compound that causes degradation of cellular inhibitor of apoptosis proteins (cIAPs). In cells treated with smac mimetic, TNF and Fas Ligand caused wild-type and FLIP(-/-) MEFs to die, whereas caspase-8(-/-) MEFs survived, indicating that caspase-8 is necessary for death of MEFs triggered by these ligands when IAPs are degraded. By contrast, neither caspase-8 nor FLIP was required for TNF to activate p65/RelA NF-κB, because IκB was degraded, p65 translocated to the nucleus, and an NF-κB reporter gene activated normally in caspase-8(-/-) or FLIP(-/-) MEFs. Reconstitution of FLIP(-/-) MEFs with the FLIP isoforms FLIP-L, FLIP-R, or FLIP-p43 protected these cells from dying when treated with TNF or FasL, whether or not cIAPs were depleted. These results show that in MEFs, caspase-8 is necessary for TNF- and FasL-induced death, and FLIP is needed to prevent it, but neither caspase-8 nor FLIP is required for TNF to activate NF-κB.
Collapse
Affiliation(s)
- D M Moujalled
- La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, VIC 3086, Australia
| | | | | | | | | | | | | |
Collapse
|
107
|
Park E, Liu B, Xia X, Zhu F, Jami WB, Hu Y. Role of IKKα in skin squamous cell carcinomas. Future Oncol 2011; 7:123-34. [PMID: 21174543 DOI: 10.2217/fon.10.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are two major types of skin cancer derived from keratinocytes. SCC is a more aggressive type of cancer than BCC in humans. One significant difference between SCC and BCC is that SCC development is generally associated with cell dedifferentiation and morphological changes. When SCC is converted to spindle cell carcinoma, the latest stage of cancer, the tumor cells change to a fibroblastic cell morphology (epithelial-to-mesenchymal transition) and lose their differentiation markers. Recently, several laboratories have reported altered IκB kinase α (IKKα) protein localization, downregulated IKKα, and IKKα gene deletions and mutations in human SCCs of the skin, lung, esophagus, and neck and head. In addition, IKKα reduction promotes chemical carcinogen- and ultraviolet B-induced skin carcinogenesis, and IKKα deletion in keratinocytes causes spontaneous skin SCCs, but not BCCs, in mice. Thus, IKKα emerges as a bona fide skin tumor suppressor. In this article, we will discuss the role of IKKα in skin SCC development.
Collapse
Affiliation(s)
- Eunmi Park
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
108
|
Brigelius-Flohé R, Flohé L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 2011; 15:2335-81. [PMID: 21194351 PMCID: PMC3166203 DOI: 10.1089/ars.2010.3534] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct signaling by free radicals is restricted to O(2)•- and •NO and can be excluded for fast reacting radicals such as •OH, •OR, or Cl•; (ii) oxidant signals are H(2)O(2), enzymatically generated lipid hydroperoxides, and peroxynitrite; (iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a postulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for system complementation. The impact of NF-κB and Nrf2 on hormesis, management of inflammatory diseases, and cancer prevention is critically discussed.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| | | |
Collapse
|
109
|
The prevalence of TNFα-induced necrosis over apoptosis is determined by TAK1-RIP1 interplay. PLoS One 2011; 6:e26069. [PMID: 22016814 PMCID: PMC3189922 DOI: 10.1371/journal.pone.0026069] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/19/2011] [Indexed: 12/22/2022] Open
Abstract
Death receptor-induced programmed necrosis is regarded as a secondary death mechanism dominating only in cells that cannot properly induce caspase-dependent apoptosis. Here, we show that in cells lacking TGFβ-activated Kinase-1 (TAK1) expression, catalytically active Receptor Interacting Protein 1 (RIP1)-dependent programmed necrosis overrides apoptotic processes following Tumor Necrosis Factor-α (TNFα) stimulation and results in rapid cell death. Importantly, the activation of the caspase cascade and caspase-8-mediated RIP1 cleavage in TNFα-stimulated TAK1 deficient cells is not sufficient to prevent RIP1-dependent necrosome formation and subsequent programmed necrosis. Our results demonstrate that TAK1 acts independently of its kinase activity to prevent the premature dissociation of ubiquitinated-RIP1 from TNFα-stimulated TNF-receptor I and also to inhibit the formation of TNFα-induced necrosome complex consisting of RIP1, RIP3, FADD, caspase-8 and cFLIPL. The surprising prevalence of catalytically active RIP1-dependent programmed necrosis over apoptosis despite ongoing caspase activity implicates a complex regulatory mechanism governing the decision between both cell death pathways following death receptor stimulation.
Collapse
|
110
|
Londhe VA, Maisonet TM, Lopez B, Jeng JM, Xiao J, Li C, Minoo P. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis. Respir Res 2011; 12:134. [PMID: 21985298 PMCID: PMC3202236 DOI: 10.1186/1465-9921-12-134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/10/2011] [Indexed: 02/05/2023] Open
Abstract
Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.
Collapse
Affiliation(s)
- Vedang A Londhe
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Mailcode 175217, Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
111
|
Iwai K. Linear polyubiquitin chains: a new modifier involved in NFκB activation and chronic inflammation, including dermatitis. Cell Cycle 2011; 10:3095-104. [PMID: 21900745 DOI: 10.4161/cc.10.18.17437] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ubiquitin conjugation system regulates a wide variety of biological phenomena, including protein degradation and signal transduction, by regulating protein function via polyubiquitin conjugation in most cases. Several types of polyubiquitin chains exist in cells, and the type of polyubiquitin chain conjugated to a protein seems to determine how that protein is regulated. We identified a novel linear polyubiquitin chain and the ubiquitin-protein ligase complex that assembles it, designated LUBAC. Both were shown to have crucial roles in the canonical NFκB activation pathway. This year, three groups, including our laboratory, identified SHARPIN as a new subunit of LUBAC. Of great interest, Sharpin was identified as a causative gene of chronic proliferative dermatitis in mice (cpdm), which is characterized by numerous inflammatory symptoms including chronic dermatitis, arthritis and immune disorders. Deletion of SHARPIN drastically reduces the amount of LUBAC and attenuates signal-induced NFκB activation. The pleomorphic symptoms of cpdm mice suggest that LUBAC-mediated NFκB activation may play critical roles in mammals and be involved in various disorders. A forward look into the linear polyubiquitin research is also discussed.
Collapse
Affiliation(s)
- Kazuhiro Iwai
- Department of Biophysics and Biochemistry, Graduate School of Medicine, Cell Biology and Metabolism Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
112
|
Möser CV, Kynast K, Baatz K, Russe OQ, Ferreirós N, Costiuk H, Lu R, Schmidtko A, Tegeder I, Geisslinger G, Niederberger E. The Protein Kinase IKKε Is a Potential Target for the Treatment of Inflammatory Hyperalgesia. THE JOURNAL OF IMMUNOLOGY 2011; 187:2617-25. [DOI: 10.4049/jimmunol.1004088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
113
|
Abstract
The progression from cardiac injury to symptomatic heart failure has been intensely studied over the last decade, and is largely attributable to a loss of functional cardiac myocytes through necrosis, intrinsic and extrinsic apoptosis pathways and autophagy. Therefore, the molecular regulation of these cellular programs has been rigorously investigated in the hopes of identifying a potential cell target that could promote cell survival and/or inhibit cell death to avert, or at least prolong, the degeneration toward symptomatic heart failure. The nuclear factor (NF)-κB super family of transcription factors has been implicated in the regulation of immune cell maturation, cell survival, and inflammation in many cell types, including cardiac myocytes. Recent studies have shown that NF-κB is cardioprotective during acute hypoxia and reperfusion injury. However, prolonged activation of NF-κB appears to be detrimental and promotes heart failure by eliciting signals that trigger chronic inflammation through enhanced elaboration of cytokines including tumor necrosis factor α, interleukin-1, and interleukin-6, leading to endoplasmic reticulum stress responses and cell death. The underlying mechanisms that account for the multifaceted and differential outcomes of NF-κB on cardiac cell fate are presently unknown. Herein, we posit a novel paradigm in which the timing, duration of activation, and cellular context may explain mechanistically the differential outcomes of NF-κB signaling in the heart that may be essential for future development of novel therapeutic interventions designed to target NF-κB responses and heart failure following myocardial injury.
Collapse
Affiliation(s)
- Joseph W Gordon
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
114
|
Liu B, Willette-Brown J, Liu S, Chen X, Fischer SM, Hu Y. IKKα represses a network of inflammation and proliferation pathways and elevates c-Myc antagonists and differentiation in a dose-dependent manner in the skin. Cell Death Differ 2011; 18:1854-64. [PMID: 21566664 DOI: 10.1038/cdd.2011.56] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inhibitor of nuclear factor κB kinase-α (IKKα) is required for maintaining skin homeostasis and preventing skin tumorigenesis. However, its signaling has not been extensively investigated. In the present study, we generated two mouse lines that expressed different levels of transgenic IKKα in the basal epidermis under the control of keratin-5 promoter and further evaluated their effects on the major pathways of inflammation, proliferation, and differentiation in the skin. Regardless of the transgenic IKKα levels, the mice develop normally. Because IKKα deletion in keratinocytes blocks terminal differentiation and induces epidermal hyperplasia and skin inflammation, we depleted the endogenous IKKα in these transgenic mice and found that the transgenic IKKα represses epidermal thickness and induces terminal differentiation in a dose-dependent manner. Also, transgenic IKKα was found to elevate expression of Max dimer protein 1 (Mad1) and ovo-like 1, c-Myc antagonists, but repress activities of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), Jun-amino-terminal kinases, c-Jun, signal transducer and activator of transcription 3 (Stat3), and growth factor levels in a dose-dependent fashion in the skin. Moreover, EGFR reduction represses IKKα deletion-induced excessive ERK, Stat3 and c-Jun activities, and skin inflammation. These new findings indicate that elevated IKKα expression not only represses epidermal thickness and induces terminal differentiation, but also suppresses skin inflammation by an integrated loop. Thus, IKKα maintains skin homeostasis through a broad range of signaling pathways.
Collapse
Affiliation(s)
- B Liu
- Department of Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | | | | | |
Collapse
|
115
|
Flood PM, Qian L, Peterson LJ, Zhang F, Shi JS, Gao HM, Hong JS. Transcriptional Factor NF-κB as a Target for Therapy in Parkinson's Disease. PARKINSONS DISEASE 2011; 2011:216298. [PMID: 21603248 PMCID: PMC3095232 DOI: 10.4061/2011/216298] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/21/2011] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by chronic inflammation. Nuclear factor κB (NF-κB) is a family of inducible transcription factors that are expressed in a wide variety of cells and tissues, including microglia, astrocytes, and neurons, and the classical NF-κB pathway plays a key role in the activation and regulation of inflammatory mediator production during inflammation. Activation of the classical NF-κB pathway is mediated through the activity of the IKK kinase complex, which consists of a heterotrimer of IKKα, IKKβ, and IKKγ subunits. Targeting NF-κB has been proposed as an approach to the treatment of acute and chronic inflammatory conditions, and the use of inhibitors specific for either IKKβ or IKKγ has now been found to inhibit neurodegeneration of TH+ DA-producing neurons in murine and primate models of Parkinson's disease. These studies suggest that targeting the classical pathway of NF-κB through the inhibition of the IKK complex can serve as a useful therapeutic approach to the treatment of PD.
Collapse
Affiliation(s)
- Patrick M Flood
- Department of Periodontology and the Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, NC 27599-7454, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Cell death induction by tumor necrosis factor has been an intensively studied area for the last two decades. Although it may appear that the skeleton should have been picked clean by now, new secrets about tumor necrosis factor death signaling are still being uncovered. In particular, the recent evidence that ubiquitination of the death kinase receptor-interacting protein 1 regulates its participation in apoptotic and necrotic cell death is opening up unexplored avenues in the catacombs of tumor necrosis factor death signaling. In this minireview, we focus on two major cell-death checkpoints that determine whether receptor-interacting protein 1 functions as a pro-survival or pro-death molecule.
Collapse
|
117
|
Luedde T, Schwabe RF. NF-κB in the liver--linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8:108-18. [PMID: 21293511 PMCID: PMC3295539 DOI: 10.1038/nrgastro.2010.213] [Citation(s) in RCA: 1064] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic cirrhosis and hepatocellular carcinoma (HCC) are the most common causes of death in patients with chronic liver disease. Chronic liver injury of virtually any etiology triggers inflammatory and wound-healing responses that in the long run promote the development of hepatic fibrosis and HCC. Here, we review the role of the transcription factor nuclear factor-κB (NF-κB), a master regulator of inflammation and cell death, in the development of hepatocellular injury, liver fibrosis and HCC, with a particular focus on the role of NF-κB in different cellular compartments of the liver. We propose that NF-κB acts as a central link between hepatic injury, fibrosis and HCC, and that it may represent a target for the prevention or treatment of liver fibrosis and HCC. However, NF-κB acts as a two-edged sword and inhibition of NF-κB may not only exert beneficial effects but also negatively impact hepatocyte viability, especially when NF-κB inhibition is pronounced. Finding appropriate targets or identifying drugs that either exert only a moderate effect on NF-κB activity or that can be specifically delivered to nonparenchymal cells will be essential to avoid the increase in liver injury associated with complete NF-κB blockade in hepatocytes.
Collapse
|
118
|
Abstract
NF-κB was first discovered and characterized 25 years ago as a key regulator of inducible gene expression in the immune system. Thus, it is not surprising that the clearest biological role of NF-κB is in the development and function of the immune system. Both innate and adaptive immune responses as well as the development and maintenance of the cells and tissues that comprise the immune system are, at multiple steps, under the control of the NF-κB family of transcription factors. Although this is a well-studied area of NF-κB research, new and significant findings continue to accumulate. This review will focus on these areas of recent progress while also providing a broad overview of the roles of NF-κB in mammalian immunobiology.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
119
|
Sasaki CY, Ghosh P, Longo DL. Recruitment of RelB to the Csf2 promoter enhances RelA-mediated transcription of granulocyte-macrophage colony-stimulating factor. J Biol Chem 2011; 286:1093-102. [PMID: 21071440 PMCID: PMC3020716 DOI: 10.1074/jbc.m110.119438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 10/29/2010] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF) induces expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) but lymphotoxin β (LTβ) does not. Here we report that priming of cells with agonistic LTβ receptor antibody synergistically enhanced TNF-induced GM-CSF expression. The LTβ priming process was not due to an increase in TNF-mediated nuclear translocation of p65, p65 DNA binding, or NF-κB transactivational activity. The synergistic effect of LTβ priming was not observed with other TNF-responsive genes such as Ccl2 or RelB, which suggested that this effect was not a general increase in TNF signaling. Furthermore, RelB and p65 were both independently recruited to the GM-CSF promoter when cells were primed with LTβ followed by TNF treatment. As a consequence, an increase in both chromatin accessibility and the recruitment of RNA polymerase II were observed to the GM-CSF promoter. Taken together, these findings suggested that LTβ signaling amplified TNF-mediated GM-CSF expression by facilitating chromatin access and the co-recruitment of RNA polymerase II to increase gene transcription. Moreover, the novel priming process described here underscores the complexity of the interactions between the classical and alternative NF-κB signaling pathways.
Collapse
Affiliation(s)
- Carl Y. Sasaki
- From the Laboratory of Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Paritosh Ghosh
- From the Laboratory of Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Dan L. Longo
- From the Laboratory of Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
120
|
Matsumiya T, Imaizumi T, Yoshida H, Satoh K. Antiviral signaling through retinoic acid-inducible gene-I-like receptors. Arch Immunol Ther Exp (Warsz) 2011; 59:41-8. [PMID: 21234810 DOI: 10.1007/s00005-010-0107-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/20/2010] [Indexed: 12/25/2022]
Abstract
The innate immune system is essential for the first line of host defense against micropathogens. In virus-infected cells, exposed viral nucleotides are sensed by pattern recognition receptors (PRRs), resulting in the induction of type I interferon. Retinoic acid-inducible gene-I-like receptors (RLRs) are a member of PRRs and are known to be crucial molecules in innate immune responses. Upon viral recognition, RLRs recruit their specific adaptor molecules, leading to the activation of antiviral signaling molecules including interferon regulatory factor-3 and nuclear factor-κB. Mitochondrial antiviral signaling (MAVS) protein is also known as one of the adaptor molecules responsible for antiviral signaling triggered by RLRs. Recent reports have identified numerous intracellular molecules involved in the antiviral responses mediated by RLRs/MAVS. Several viral proteins interfere with the RLR/MAVS signaling, allowing the virus to evade the host defense. In this review, we comprehensively update RLR-dependent antiviral signaling with special reference to the RLRs/MAVS-mediated responses.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki City, Aomori, 036-8562, Japan.
| | | | | | | |
Collapse
|
121
|
Abstract
A large body of literature describes elaborate NF-κB signaling networks induced by inflammatory and immune signals. Decades of research has revealed that transcriptionally functional NF-κB dimers are activated by two major pathways, canonical and non-canonical. Both pathways involve the release of NF-κB dimers from inactive cytoplasmic complexes to cause their nuclear translocation to modulate gene expression programs and biological responses. NF-κB is also responsive to genotoxic agents; however, signal communication networks that are initiated in the nucleus following DNA damage induction are less defined. Evidence in the literature supports the presence of such signaling pathways induced by multiple distinct genotoxic agents, resulting in the activation of cytoplasmic IKK complex. An example is a pathway that involves the DNA damage-responsive kinase ataxia telangiectasia mutated (ATM) and a series of post-translational modifications of NF-κB essential modulator (NEMO) in the nucleus of a genotoxin-exposed cell. Recent evidence also suggests that this nuclear-initiated NF-κB signaling pathway plays significant physiological and pathological roles, particularly in lymphocyte development and human cancer progression. This review will summarize these new developments, while identifying significant unanswered questions and providing new hypotheses that may be addressed in future studies.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
122
|
Abstract
Hepatocellular carcinoma (HCC), the major form of primary liver cancer, is one of the most deadly human cancers. The pathogenesis of HCC is frequently linked with continuous hepatocyte death, inflammatory cell infiltration and compensatory liver regeneration. Understanding the molecular signaling pathways driving or mediating these processes during liver tumorigenesis is important for the identification of novel therapeutic targets for this dreadful disease. The classical IKKβ-dependent NF-κB signaling pathway has been shown to promote hepatocyte survival in both developing and adult livers. In addition, it also plays a crucial role in liver inflammatory responses by controlling the expression of an array of growth factors and cytokines. One of these cytokines is IL-6, which is best known for its role in the liver acute phase response. IL-6 exerts many of its functions via activation of STAT3, a transcription factor found to be important for HCC development. This review will focus on recent studies on the roles of NF-κB and STAT3 in liver cancer. Interactions between the two pathways and their potential as therapeutic targets will also be discussed.
Collapse
Affiliation(s)
- Guobin He
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive MC 0723, La Jolla, CA 92093-0723, USA
- Current address: Isis Pharmaceuticals Inc., 1896 Rutherford Road, Carlsbad, CA 92008–7326. E-mail:
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California at San Diego, 9500 Gilman Drive MC 0723, La Jolla, CA 92093-0723, USA
| |
Collapse
|
123
|
Cubero FJ, Trautwein C. Oxidative Stress and Liver Injury. MOLECULAR PATHOLOGY LIBRARY 2011:427-435. [DOI: 10.1007/978-1-4419-7107-4_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
124
|
Li YH, Chen MHC, Gong HY, Hu SY, Li YW, Lin GH, Lin CC, Liu W, Wu JL. Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish. J Biol Chem 2010; 285:41001-9. [PMID: 20961855 DOI: 10.1074/jbc.m110.138743] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The mechanism that regulates embryonic liver morphogenesis remains elusive. Progranulin (PGRN) is postulated to play a critical role in regulating pathological liver growth. Nevertheless, the exact regulatory mechanism of PGRN in relation to its functional role in embryonic liver development remains to be elucidated. In our study, the knockdown of progranulin A (GrnA), an orthologue of mammalian PGRN, using antisense morpholinos resulted in impaired liver morphogenesis in zebrafish (Danio rerio). The vital role of GrnA in hepatic outgrowth and not in liver bud formation was further confirmed using whole-mount in situ hybridization markers. In addition, a GrnA deficiency was also found to be associated with the deregulation of MET-related genes in the neonatal liver using a microarray analysis. In contrast, the decrease in liver size that was observed in grnA morphants was avoided when ectopic MET expression was produced by co-injecting met mRNA and grnA morpholinos. This phenomenon suggests that GrnA might play a role in liver growth regulation via MET signaling. Furthermore, our study has shown that GrnA positively modulates hepatic MET expression both in vivo and in vitro. Therefore, our data have indicated that GrnA plays a vital role in embryonic liver morphogenesis in zebrafish. As a result, a novel link between PGRN and MET signaling is proposed.
Collapse
Affiliation(s)
- Yen-Hsing Li
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Kingeter LM, Paul S, Maynard SK, Cartwright NG, Schaefer BC. Cutting edge: TCR ligation triggers digital activation of NF-kappaB. THE JOURNAL OF IMMUNOLOGY 2010; 185:4520-4. [PMID: 20855880 DOI: 10.4049/jimmunol.1001051] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR-mediated activation of the transcription factor NF-κB is required for T cell proliferation, survival, and effector differentiation. Although this pathway is the subject of intense study, it is not known whether TCR signaling to NF-κB is digital (switch-like) or analog in nature. Through analysis of the phosphorylation and degradation of IκBα and the nuclear translocation and phosphorylation of the NF-κB subunit RelA, we show that TCR-directed NF-κB activation is digital. Furthermore, digitization occurs well upstream of the IκB kinase complex, as protein kinase C translocation to the immunologic synapse and activation-associated aggregation of Bcl10 and Malt1 also demonstrate both digital behavior and high correlation with RelA nuclear translocation. Thus, similar to the TCR-to-MAPK signaling cascade, analog Ag inputs are converted to digital activation outputs to NF-κB at an early step downstream of TCR ligation.
Collapse
Affiliation(s)
- Lara M Kingeter
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
126
|
Sayama K, Yamamoto M, Shirakata Y, Hanakawa Y, Hirakawa S, Dai X, Tohyama M, Tokumaru S, Shin MS, Sakurai H, Akira S, Hashimoto K. E2 Polyubiquitin-conjugating enzyme Ubc13 in keratinocytes is essential for epidermal integrity. J Biol Chem 2010; 285:30042-9. [PMID: 20663875 DOI: 10.1074/jbc.m110.106484] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E2 polyubiquitin-conjugating enzyme Ubc13 is a mediator of innate immune reactions. Ubc13 mediates the conjugation of keratin (K)63-linked polyubiquitin chains onto TNF receptor-associated factor 6 and IKKγ during NF-κB activation. In contrast to K48-linked polyubiquitin chains, K63-linked polyubiquitin chains function in nonproteasomal biological processes. Although Ubc13 has been shown to be critical for Toll-like receptor (TLR) and IL-1 receptor signaling, the function of Ubc13 in the epidermis has not been studied. We generated keratinocyte-specific Ubc13-deficient mice (Ubc13(flox/flox)K5-Cre). At birth, the skin of the Ubc13(flox/flox)K5-Cre mice was abnormally shiny and smooth; in addition, the mice did not grow and died by postnatal day 2. Histological analysis showed atrophy of the epidermis with keratinocyte apoptosis. Immunohistochemical analyses revealed reduced proliferation, abnormal differentiation, and apoptosis of keratinocytes in the Ubc13(flox/flox)K5-Cre mouse epidermis. In culture, Ubc13(flox/flox)K5-Cre keratinocyte growth was impaired, and spontaneous cell death occurred. Moreover, the deletion of Ubc13 from cultured Ubc13(flox/flox) keratinocytes by means of an adenoviral vector carrying Cre recombinase also resulted in spontaneous cell death. Therefore, Ubc13 is essential for keratinocyte growth, differentiation, and survival. Analyses of intracellular signaling revealed that the IL-1 and TNF-induced activation of JNK, p38, and NF-κB pathways was impaired in Ubc13(flox/flox)K5-Cre keratinocytes. In conclusion, Ubc13 appears to be essential for epidermal integrity in mice.
Collapse
Affiliation(s)
- Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Baima ET, Guzova JA, Mathialagan S, Nagiec EE, Hardy MM, Song LR, Bonar SL, Weinberg RA, Selness SR, Woodard SS, Chrencik J, Hood WF, Schindler JF, Kishore N, Mbalaviele G. Novel insights into the cellular mechanisms of the anti-inflammatory effects of NF-kappaB essential modulator binding domain peptides. J Biol Chem 2010; 285:13498-506. [PMID: 20167598 PMCID: PMC2859510 DOI: 10.1074/jbc.m109.099895] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The classical nuclear factor κB (NF-κB) signaling pathway is under the control of the IκB kinase (IKK) complex, which consists of IKK-1, IKK-2, and NF-κB essential modulator (NEMO). This complex is responsible for the regulation of cell proliferation, survival, and differentiation. Dysregulation of this pathway is associated with several human diseases, and as such, its inhibition offers an exciting opportunity for therapeutic intervention. NEMO binding domain (NBD) peptides inhibit the binding of recombinant NEMO to IKK-2 in vitro. However, direct evidence of disruption of this binding by NBD peptides in biological systems has not been provided. Using a cell system, we expanded on previous observations to show that NBD peptides inhibit inflammation-induced but not basal cytokine production. We report that these peptides cause the release of IKK-2 from an IKK complex and disrupt NEMO-IKK-2 interactions in cells. We demonstrate that by interfering with NEMO-IKK-2 interactions, NBD peptides inhibit IKK-2 phosphorylation, without affecting signaling intermediates upstream of the IKK complex of the NF-κB pathway. Furthermore, in a cell-free system of IKK complex activation by TRAF6 (TNF receptor-associated factor 6), we show that these peptides inhibit the ability of this complex to phosphorylate downstream substrates, such as p65 and inhibitor of κBα (IκBα). Thus, consistent with the notion that NEMO regulates IKK-2 catalytic activity by serving as a scaffold, appropriately positioning IKK-2 for activation by upstream kinase(s), our findings provide novel insights into the molecular mechanisms by which NBD peptides exert their anti-inflammatory effects in cells.
Collapse
Affiliation(s)
- Eric T Baima
- Department of Inflammation, Pfizer Inc., Chesterfield, Missouri 63017, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
A mutation of Ikbkg causes immune deficiency without impairing degradation of IkappaB alpha. Proc Natl Acad Sci U S A 2010; 107:3046-51. [PMID: 20133626 DOI: 10.1073/pnas.0915098107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Null alleles of the gene encoding NEMO (NF-kappaB essential modulator) are lethal in hemizygous mice and men, whereas hypomorphic alleles typically cause a syndrome of immune deficiency and ectodermal dysplasia. Here we describe an allele of Ikbkg in mice that impaired Toll-like receptor signaling, lymph node formation, development of memory and regulatory T cells, and Ig production, but did not cause ectodermal dysplasia. Degradation of IkappaB alpha, which is considered a primary requirement for NEMO-mediated immune signaling, occurred normally in response to Toll-like receptor stimulation, yet ERK phosphorylation and NF-kappaB p65 nuclear translocation were severely impaired. This selective loss of function highlights the immunological importance of NEMO-regulated pathways beyond IkappaB alpha degradation, and offers a biochemical explanation for rare immune deficiencies in man.
Collapse
|
129
|
|
130
|
Fan Y, Yu Y, Shi Y, Sun W, Xie M, Ge N, Mao R, Chang A, Xu G, Schneider MD, Zhang H, Fu S, Qin J, Yang J. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation. J Biol Chem 2009; 285:5347-60. [PMID: 20038579 DOI: 10.1074/jbc.m109.076976] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-beta-activated kinase 1 (TAK1) plays an essential role in the tumor necrosis factor alpha (TNFalpha)- and interleukin-1beta (IL-1beta)-induced IkappaB kinase (IKK)/nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK)/activator protein 1 (AP-1) activation. Here we report that TNFalpha and IL-1beta induce Lys(63)-linked TAK1 polyubiquitination at the Lys(158) residue within the kinase domain. Tumor necrosis factor receptor-associated factors 2 and 6 (TRAF2 and -6) act as the ubiquitin E3 ligases to mediate Lys(63)-linked TAK1 polyubiquitination at the Lys(158) residue in vivo and in vitro. Lys(63)-linked TAK1 polyubiquitination at the Lys(158) residue is required for TAK1-mediated IKK complex recruitment. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with TAK1 wild type or a TAK1 mutant containing a K158R mutation revealed the importance of this site in TNFalpha and IL-1beta-mediated IKK/NF-kappaB and JNK/AP-1 activation as well as IL-6 gene expression. Our findings demonstrate that Lys(63)-linked polyubiquitination of TAK1 at Lys(158) is essential for its own kinase activation and its ability to mediate its downstream signal transduction pathways in response to TNFalpha and IL-1beta stimulation.
Collapse
Affiliation(s)
- Yihui Fan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Pasparakis M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol 2009; 9:778-88. [PMID: 19855404 DOI: 10.1038/nri2655] [Citation(s) in RCA: 411] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nuclear factor-kappaB (NF-kappaB) signalling pathway regulates immune responses and is implicated in the pathogenesis of many inflammatory diseases. Given the well established pro-inflammatory functions of NF-kappaB, inhibition of this pathway would be expected to have anti-inflammatory effects. However, recent studies in mouse models have led to surprising and provocative results, as NF-kappaB inhibition in epithelial cells resulted in the spontaneous development of severe chronic inflammatory conditions. These findings indicate that NF-kappaB signalling acts in non-immune cells to control the maintenance of tissue immune homeostasis. This Review discusses the mechanisms by which NF-kappaB activity in non-immune cells regulates tissue immune homeostasis and prevents the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Manolis Pasparakis
- Institute of Genetics, Centre for Molecular Medicine (CMMC), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany.
| |
Collapse
|
132
|
Solt LA, Madge LA, May MJ. NEMO-binding domains of both IKKalpha and IKKbeta regulate IkappaB kinase complex assembly and classical NF-kappaB activation. J Biol Chem 2009; 284:27596-608. [PMID: 19666475 DOI: 10.1074/jbc.m109.047563] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proinflammatory NF-kappaB activation requires the IkappaB (inhibitor of NF-kappaB) kinase (IKK) complex that contains two catalytic subunits named IKKalpha and IKKbeta and a regulatory subunit named NF-kappaB essential modulator (NEMO). NEMO and IKKbeta are essential for tumor necrosis factor (TNF)-induced NF-kappaB activation, and we recently demonstrated that NEMO and IKKalpha are sufficient for interleukin (IL)-1-induced signaling. IKKalpha and IKKbeta both contain a functional NEMO-binding domain (NBD); however, the role of NEMO association with each kinase in NF-kappaB signaling and IKK complex formation remains unclear. To address this question, we stably reconstituted IKKalpha(-/-) and IKKbeta(-/-) murine embryonic fibroblasts (MEFs) with wild-type (WT) or NBD-deficient (DeltaNBD) versions of IKKalpha and IKKbeta, respectively. TNF-induced classical NF-kappaB activation in IKKbeta(-/-) MEFs was rescued by IKKbeta(WT) but not IKKbeta(DeltaNBD), whereas neither IKKbeta(WT) nor IKKbeta(DeltaNBD) affected IL-1-induced NF-kappaB signaling. As previously described, classical NF-kappaB transcriptional activity was absent in IKKalpha(-/-) cells. Reconstitution with either IKKalpha(WT) or IKKalpha(DeltaNBD) rescued both IL-1 and TNF-induced transcription, demonstrating that NEMO association is not required for IKKalpha-dependent regulation of NF-kappaB-dependent transcription. Stably expressed IKKalpha(WT) or IKKbeta(WT) associated with endogenous IKKs and NEMO in IKKalpha(-/-) or IKKbeta(-/-) MEFs, respectively, resulting in formation of the heterotrimeric IKKalpha-IKKbeta-NEMO complex. In contrast, although the IKKalpha(DeltaNBD) and IKKbeta(DeltaNBD) mutants associated with endogenous IKKs containing an NBD, these dimeric endogenous IKK-IKK(DeltaNBD) complexes did not associate with NEMO. These findings therefore demonstrate that formation of the heterotrimeric IKKalpha-IKKbeta-NEMO holocomplex absolutely requires two intact NEMO-binding domains.
Collapse
Affiliation(s)
- Laura A Solt
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
133
|
Morioka S, Omori E, Kajino T, Kajino-Sakamoto R, Matsumoto K, Ninomiya-Tsuji J. TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP. Oncogene 2009; 28:2257-65. [PMID: 19421137 PMCID: PMC2796077 DOI: 10.1038/onc.2009.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a potent inducer of cell death in several cancer cells, but many cells are resistant to TRAIL. The mechanism that determines sensitivity to TRAIL-killing is still elusive. Here we report that deletion of TAK1 kinase greatly increased activation of caspase-3 and induced cell death following TRAIL stimulation in keratinocytes and fibroblasts as well as cancer cells. Although TAK1 kinase is involved in NF-κB pathway, ablation of NF-κB did not alter sensitivity to TRAIL. We found that TRAIL could induce accumulation of reactive oxygen species (ROS) when TAK1 was deleted. Furthermore, we found that TAK1 deletion induces TRAIL-dependent downregulation of cIAP, which enhances activation of caspase-3. These results demonstrate that TAK1 deletion facilitates TRAIL-induced cell death by activating caspase through ROS and downregulation of cIAP. Thus, inhibition of TAK1 can be an effective approach to increase TRAIL sensitivity.
Collapse
Affiliation(s)
- S Morioka
- Department of Molecular Biology, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|
134
|
Mbalaviele G, Sommers CD, Bonar SL, Mathialagan S, Schindler JF, Guzova JA, Shaffer AF, Melton MA, Christine LJ, Tripp CS, Chiang PC, Thompson DC, Hu Y, Kishore N. A novel, highly selective, tight binding IkappaB kinase-2 (IKK-2) inhibitor: a tool to correlate IKK-2 activity to the fate and functions of the components of the nuclear factor-kappaB pathway in arthritis-relevant cells and animal models. J Pharmacol Exp Ther 2009; 329:14-25. [PMID: 19168710 DOI: 10.1124/jpet.108.143800] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor (NF)-kappaB activation has been clearly linked to the pathogenesis of multiple inflammatory diseases including arthritis. The central role that IkappaB kinase-2 (IKK-2) plays in regulating NF-kappaB signaling in response to inflammatory stimuli has made this enzyme an attractive target for therapeutic intervention. Although diverse chemical classes of IKK-2 inhibitors have been identified, the binding kinetics of these inhibitors has limited the scope of their applications. In addition, safety assessments of IKK-2 inhibitors based on a comprehensive understanding of the pharmacokinetic/pharmacodynamic relationships have yet to be reported. Here, we describe a novel, potent, and highly selective IKK-2 inhibitor, PHA-408 [8-(5-chloro-2-(4-methylpiperazin-1-yl)isonicotinamido)-1-(4-fluorophenyl)-4,5-dihydro-1H-benzo[g]indazole-3-carboxamide]. PHA-408 is an ATP-competitive inhibitor, which binds IKK-2 tightly with a relatively slow off rate. In arthritis-relevant cells and animal models, PHA-408 suppresses inflammation-induced cellular events, including IkappaBalpha phosphorylation and degradation, p65 phosphorylation and DNA binding activity, the expression of inflammatory mediators, and joint pathology. PHA-408 was efficacious in a chronic model of arthritis with no adverse effects at maximally efficacious doses. Stemming from its ability to bind tightly to IKK-2, as a novelty, we demonstrated that PHA-408-mediated inhibition of IKK-2 activity correlated very well with its ability to modulate the fate of IKK-2 substrates and downstream transcriptional events. We ultimately directly linked IKK-2 activity ex vivo and in vivo to markers of inflammation with the inhibitor plasma concentrations. Thus, PHA-408 represents a powerful tool to further gain insight into the mechanisms by which IKK-2 regulates NF-kappaB signaling and validates IKK-2 as a therapeutic target.
Collapse
Affiliation(s)
- Gabriel Mbalaviele
- Department of Inflammation, Pfizer St. Louis Laboratories, Chesterfield, MO 63017, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 2009; 36:4-12. [PMID: 18600481 DOI: 10.1007/s12016-008-8091-0] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver is a unique organ with respect to its anatomical location, allowing continuous blood flow from the gastrointestinal tract through the sinusoids, and its cellular composition, comprising metabolically active hepatocytes, nonhepatocytic parenchymal cells, and various immune cell populations. Cytokines are key mediators within the complex interplay of intrahepatic immune cells and hepatocytes, as they can activate effector functions of immune cells, as well as hepatocytic intracellular signaling pathways controlling cellular homeostasis. Kupffer cells and liver-infiltrating monocyte-derived macrophages are primary sources of cytokines such as tumor-necrosis factor-alpha (TNF-alpha) and interleukin-6. The liver is also enriched in natural killer (NK) and NK T cells, which fulfill functions in pathogen defense, T cell recruitment, and modulation of liver injury. TNF-alpha can activate specific intracellular pathways in hepatocytes that influence cell fate in different manners, e.g., proapoptotic signals via the caspase cascade, but also survival pathways, namely the nuclear factor (NF)-kappaB pathway. NF-kappaB regulates important functions in liver physiology and pathology. Recent experiments with genetically modified mice demonstrated important and partly controversial functions of this pathway, e.g., in cytokine-mediated hepatocyte apoptosis or ischemia-reperfusion injury. The exact dissection of the contribution of recruited and resident immune cells, their soluble cytokine and chemokine mediators, and the intracellular hepatocytic response in liver homeostasis and injury could potentially identify novel targets for the treatment of acute and chronic liver disease, liver fibrosis, or cirrhosis.
Collapse
Affiliation(s)
- Frank Tacke
- Medical Clinic III, RWTH-University Hospital Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | | | | |
Collapse
|
136
|
Abstract
The NF-kappaB signaling pathway has particular relevance to several liver diseases including hepatitis (liver infection by Helicobacter, viral hepatitis induced by HBV and HCV), liver fibrosis and cirrhosis and hepatocellular carcinoma. Furthermore, the NF-kappaB signaling pathway is a potential target for development of hepatoprotective agents. Several types of drugs including: selective estrogen receptor modulators (SERMs), antioxidants, proteasome inhibitors, IKK inhibitors and nucleic acid-based decoys have been shown to interfere with NF-kappaB activity at different levels and may be useful for the treatment of liver diseases. However, NF-kappaB also plays an important hepatoprotective function that needs to be taken into consideration during development of new therapeutic regimens.
Collapse
Affiliation(s)
- B Sun
- Liver Transplantation Center of the First Affiliated Hospital and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | | |
Collapse
|
137
|
Xu Y, Fang F, St Clair DK, Sompol P, Josson S, St Clair WH. SN52, a novel nuclear factor-kappaB inhibitor, blocks nuclear import of RelB:p52 dimer and sensitizes prostate cancer cells to ionizing radiation. Mol Cancer Ther 2008; 7:2367-76. [PMID: 18723484 DOI: 10.1158/1535-7163.mct-08-0238] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The activation of nuclear factor-kappaB (NF-kappaB) is thought to protect cancer cells against therapy-induced cytotoxicity. RelB, a member of the NF-kappaB family in the alternative pathway, is uniquely expressed at a high level in prostate cancer with high Gleason scores. Here, we show that ionizing radiation (IR) enhances nuclear import of RelB, leading to up-regulation of its target gene, manganese superoxide dismutase (MnSOD), and renders prostate cancer cells resistant to IR. To selectively block RelB nuclear import, we designed a cell-permeable SN52 peptide, a variant of the SN50 peptide that has been shown to block nuclear import of NF-kappaB family members in the classic pathway. Inhibition of IR-induced NF-kappaB activation by SN50 and SN52 was achieved by selectively interrupting the association of p50 and p52 with nuclear import factors importin-alpha1 and importin-beta1. Importantly, SN52 seems to be more efficient for radiosensitization of prostate cancer cells at clinically relevant radiation doses and has less cytotoxicity to normal prostate epithelial cells compared with the toxicity observed with SN50. These results suggest that targeting the alternative pathway is a promising approach to selectively radiosensitize prostate cancers and that SN52 may serve as a prototype biological agent for sensitizing prostate cancers to clinically relevant doses of IR.
Collapse
Affiliation(s)
- Yong Xu
- Department of Radiation Medicine, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
138
|
Kajino-Sakamoto R, Inagaki M, Lippert E, Akira S, Robine S, Matsumoto K, Jobin C, Ninomiya-Tsuji J. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. THE JOURNAL OF IMMUNOLOGY 2008; 181:1143-52. [PMID: 18606667 DOI: 10.4049/jimmunol.181.2.1143] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have revealed that TAK1 kinase is an essential intermediate in several innate immune signaling pathways. In this study, we investigated the role of TAK1 signaling in maintaining intestinal homeostasis by generating enterocyte-specific constitutive and inducible gene-deleted TAK1 mice. We found that enterocyte-specific constitutive TAK1-deleted mice spontaneously developed intestinal inflammation as observed by histological analysis and enhanced expression of IL-1beta, MIP-2, and IL-6 around the time of birth, which was accompanied by significant enterocyte apoptosis. When TAK1 was deleted in the intestinal epithelium of 4-wk-old mice using an inducible knockout system, enterocytes underwent apoptosis and intestinal inflammation developed within 2-3 days following the initiation of gene deletion. We found that enterocyte apoptosis and intestinal inflammation were strongly attenuated when enterocyte-specific constitutive TAK1-deleted mice were crossed to TNF receptor 1(-/-) mice. However, these mice later (>14 days) developed ileitis and colitis. Thus, TAK1 signaling in enterocytes is essential for preventing TNF-dependent epithelium apoptosis and the TNF-independent development of ileitis and colitis. We propose that aberration in TAK1 signaling might disrupt intestinal homeostasis and favor the development of inflammatory disease.
Collapse
Affiliation(s)
- Rie Kajino-Sakamoto
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Dong J, Jimi E, Zhong H, Hayden MS, Ghosh S. Repression of gene expression by unphosphorylated NF-kappaB p65 through epigenetic mechanisms. Genes Dev 2008; 22:1159-73. [PMID: 18408078 DOI: 10.1101/gad.1657408] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cells from a "knock-in" mouse expressing a NF-kappaB p65 mutant bearing an alanine instead of serine at position 276 (S276A) display a significant reduction of NF-kappaB-dependent transcription, even though the mutant p65 forms appropriate complexes that translocate normally to the nucleus and bind to DNA. Surprisingly, however, instead of the expected embryonic lethality from hepatocyte apoptosis seen in the absence of NF-kappaB activity, the S276A knock-in embryos die at different embryonic days due to variegated developmental abnormalities. We now demonstrate that this variegated phenotype is due to epigenetic repression resulting from the recruitment of histone deacetylases by the nonphosphorylatable form of NF-kappaB into the vicinity of genes positioned fortuitously near NF-kappaB-binding sites. Therefore, unphosphorylated nuclear NF-kappaB can affect expression of genes not normally regulated by NF-kappaB through epigenetic mechanisms.
Collapse
Affiliation(s)
- Jie Dong
- Department of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
140
|
Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation. Mol Cell Biol 2008; 28:3538-47. [PMID: 18347055 DOI: 10.1128/mcb.02098-07] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stimulation through the interleukin-1 receptor (IL-1R) and some Toll-like receptors (TLRs) induces ubiquitination of TRAF6 and IRAK-1, signaling components required for NF-kappaB and mitogen-activated protein kinase activation. Here we show that although TRAF6 and IRAK-1 acquired Lys63 (K63)-linked polyubiquitin chains upon IL-1 stimulation, only ubiquitinated IRAK-1 bound NEMO, the regulatory subunit of IkappaB kinase (IKK). The sites of IRAK-1 ubiquitination were mapped to Lys134 and Lys180, and arginine substitution of these residues impaired IL-1R/TLR-mediated IRAK-1 ubiquitination, NEMO binding, and NF-kappaB activation. K63-linked ubiquitination of IRAK-1 required enzymatically active TRAF6, indicating that it is the physiologically relevant E3. Thus, K63-linked polyubiquitination of proximal signaling proteins is a common mechanism used by diverse innate immune receptors for recruiting IKK and activating NF-kappaB.
Collapse
|
141
|
NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-kappaB activation. Proc Natl Acad Sci U S A 2008; 105:3023-8. [PMID: 18287044 DOI: 10.1073/pnas.0712313105] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism by which the Carma1-Bcl10-MALT1 (CBM) complex couples T cell antigen receptor (TCR) signaling to IkappaB kinase (IKK) and NF-kappaB activation is not known. Here, we show that Bcl10 undergoes K63-linked polyubiquitination in response to T cell activation and subsequently binds NEMO, the regulatory subunit of IKK. This interaction requires the ubiquitin-binding activity of NEMO. The sites of Bcl10 ubiquitination were mapped to K31 and K63. Mutation of these residues did not affect TCR signaling-induced CBM complex assembly but prevented Bcl10 ubiquitination, NEMO binding, and NF-kappaB activation. Therefore, the regulated ubiquitination of Bcl10 and its recognition by NEMO are a critical link between the CBM complex, IKK recruitment, and NF-kappaB activation.
Collapse
|
142
|
Bloor S, Ryzhakov G, Wagner S, Butler PJG, Smith DL, Krumbach R, Dikic I, Randow F. Signal processing by its coil zipper domain activates IKK gamma. Proc Natl Acad Sci U S A 2008; 105:1279-84. [PMID: 18216269 PMCID: PMC2234129 DOI: 10.1073/pnas.0706552105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Indexed: 02/04/2023] Open
Abstract
NF-kappaB activation occurs upon degradation of its inhibitor I-kappaB and requires prior phosphorylation of the inhibitor by I-kappaB kinase (IKK). Activity of IKK is governed by its noncatalytic subunit IKKgamma. Signaling defects due to missense mutations in IKKgamma have been correlated to its inability to either become ubiquitylated or bind ubiquitin noncovalently. Because the relative contribution of these events to signaling had remained unknown, we have studied mutations in the coil-zipper (CoZi) domain of IKKgamma that either impair signaling or cause constitutive NF-kappaB activity. Certain signaling-deficient alleles neither bound ubiquitin nor were they ubiquitylated by TRAF6. Introducing an activating mutation into those signaling-impaired alleles restored their ubiquitylation and created mutants constitutively activating NF-kappaB without repairing the ubiquitin-binding defect. Constitutive activity therefore arises downstream of ubiquitin binding but upstream of ubiquitylation. Such constitutive activity reveals a signal-processing function for IKKgamma beyond that of a mere ubiquitin-binding adaptor. We propose that this signal processing may involve homophilic CoZi interactions as suggested by the enhanced affinity of CoZi domains from constitutively active IKKgamma.
Collapse
Affiliation(s)
| | | | - Sebastian Wagner
- Goethe University Medical School, Institute for Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - P. Jonathan G. Butler
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom; and
| | | | | | - Ivan Dikic
- Goethe University Medical School, Institute for Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | |
Collapse
|
143
|
Davé SH, Tilstra JS, Matsuoka K, Li F, Karrasch T, Uno JK, Sepulveda AR, Jobin C, Baldwin AS, Robbins PD, Plevy SE. Amelioration of chronic murine colitis by peptide-mediated transduction of the IkappaB kinase inhibitor NEMO binding domain peptide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:7852-9. [PMID: 18025231 PMCID: PMC3203537 DOI: 10.4049/jimmunol.179.11.7852] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The NF-kappaB family of transcription factors is a central regulator of chronic inflammation. The phosphorylation of IkappaB proteins by the IkappaB kinase (IKK) complex (IKKalpha, IKKbeta, and NF-kappaB essential modulator or NEMO) is a key step in NF-kappaB activation. Peptides corresponding to the NEMO binding domain (NBD) of IKK blocks NF-kappaB activation without inhibiting basal NF-kappaB activity. In this report, we determined the effects of the IKK inhibitor peptide (NBD) in a model of spontaneously occurring chronic murine colitis, the IL-10-deficient (IL-10(-/-)) mouse. Using a novel cationic peptide transduction domain (PTD) consisting of eight lysine residues (8K), we were able to transduce the NBD peptide into cells and tissues. In a NF-kappaB reporter system, 8K-NBD dose-dependently inhibits TNF-induced NF-kappaB activation. Furthermore, 8K-NBD inhibited nuclear translocation of NF-kappaB family members. In NF-kappaB(EGFP) knock-in mice, 8K-NBD inhibited LPS-activated NF-kappaB (EGFP activity) in the ileum but did not inhibit basal NF-kappaB in Peyer's patches. IL-10(-/-) mice treated systemically with 8K-NBD demonstrate amelioration of established colitis, decreased NF-kappaB activation in the lamina propria, and a reduction in spontaneous intestinal IL-12 p40, TNF, IFN-gamma, and IL-17 production. These results demonstrate that inhibitors of IKK, in particular a PTD-NBD peptide, may be therapeutic in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Shaival H. Davé
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jeremy S. Tilstra
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Katsuyoshi Matsuoka
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Fengling Li
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Thomas Karrasch
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Jennifer K. Uno
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Antonia R. Sepulveda
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Christian Jobin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Theralogics Inc., Chapel Hill, NC 27599
| | - Paul D. Robbins
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Scott E. Plevy
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
144
|
Breitwieser W, Lyons S, Flenniken AM, Ashton G, Bruder G, Willington M, Lacaud G, Kouskoff V, Jones N. Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes Dev 2007; 21:2069-82. [PMID: 17699753 PMCID: PMC1948861 DOI: 10.1101/gad.430207] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 06/28/2007] [Indexed: 11/24/2022]
Abstract
The ATF2 transcription factor is phosphorylated by the stress-activated mitogen-activated protein kinases (MAPKs) JNK and p38. We show that this phosphorylation is essential for ATF2 function in vivo, since a mouse carrying mutations in the critical phosphorylation sites has a strong phenotype identical to that seen upon deletion of the DNA-binding domain. In addition, combining this mutant with a knockout of the ATF2 homolog, ATF7, results in embryonic lethality with severe abnormalities in the developing liver and heart. The mutant fetal liver is characterized by high levels of apoptosis in developing hepatocytes and haematopoietic cells. Furthermore, we observe a significant increase in active p38 due to loss of a negative feedback loop involving the ATF2-dependent transcriptional activation of MAPK phosphatases. In embryonic liver cells, this increase drives apoptosis, since it can be suppressed by chemical inhibition of p38. Our findings demonstrate the importance of finely regulating the activities of MAPKs during development.
Collapse
Affiliation(s)
- Wolfgang Breitwieser
- Cell Regulation Department, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Steve Lyons
- Cell Regulation Department, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Ann Marie Flenniken
- Cell Regulation Department, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Garry Ashton
- Histology Department, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Gail Bruder
- Cell Regulation Department, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Mark Willington
- Cell Regulation Department, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Georges Lacaud
- Stem Cell Biology Department, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Valerie Kouskoff
- Stem Cell and Haematopoiesis Department, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | - Nic Jones
- Cell Regulation Department, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| |
Collapse
|
145
|
Zheng H, Ye L, Fang X, Li B, Wang Y, Xiang X, Kong L, Wang W, Zeng Y, Ye L, Wu Z, She Y, Zhou X. Torque teno virus (SANBAN isolate) ORF2 protein suppresses NF-kappaB pathways via interaction with IkappaB kinases. J Virol 2007; 81:11917-24. [PMID: 17686849 PMCID: PMC2168763 DOI: 10.1128/jvi.01101-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Since the first discovery of Torque teno virus (TTV) in 1997, many researchers focused on its epidemiology and transcriptional regulation, but the function of TTV-encoded proteins remained unknown. The function of the TTV open reading frame (ORF) in the nuclear factor kappaB (NF-kappaB) pathway has not yet been established. In this study, we found for the first time that the TTV ORF2 protein could suppress NF-kappaB activity in a dose-dependent manner in the canonical NF-kappaB pathway. By Western blot analysis, we proved that the TTV ORF2 protein did not alter the level of NF-kappaB expression but prevented the p50 and p65 subunits from entering the nucleus due to the inhibition of IkappaBalpha protein degradation. Further immunoprecipitation assays showed that the TTV ORF2 protein could physically interact with IKKbeta as well as IKKalpha, but not IKKgamma. Luciferase assays and Western blot experiments showed that the TTV ORF2 protein could also suppress NF-kappaB activity in the noncanonical NF-kappaB pathway and block the activation and translocation of p52. Finally, we found that the TTV ORF2 protein inhibited the transcription of NF-kappaB-mediated downstream genes (interleukin 6 [IL-6], IL-8, and COX-2) through down-regulation of NF-kappaB. Together, these data indicate that the TTV ORF2 protein suppresses the canonical and noncanonical NF-kappaB pathways, suggesting that the TTV ORF2 protein may be involved in regulating the innate and adaptive immunity of organisms, contributing to TTV pathogenesis, and even be related to some diseases.
Collapse
Affiliation(s)
- Hong Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Gloire G, Horion J, El Mjiyad N, Bex F, Chariot A, Dejardin E, Piette J. Promoter-dependent Effect of IKKα on NF-κB/p65 DNA Binding. J Biol Chem 2007; 282:21308-18. [PMID: 17537731 DOI: 10.1074/jbc.m610728200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IKKalpha regulates many chromatin events in the nuclear phase of the NF-kappaB program, including phosphorylation of histone H3 and removal of co-repressors from NF-kappaB-dependent promoters. However, all of the nuclear functions of IKKalpha are not understood. In this study, using mouse embryonic fibroblasts IKKalpha knock-out and reexpressing IKKalpha after retroviral transduction, we demonstrate that IKKalpha contributes to NF-kappaB/p65 DNA binding activity on an exogenous kappaB element and on some, but not all, endogenous NF-kappaB-target promoters. Indeed, p65 chromatin immunoprecipitation assays revealed that IKKalpha is crucial for p65 binding on kappaB sites of icam-1 and mcp-1 promoters but not on ikappabalpha promoter. The mutation of IKKalpha putative nuclear localization sequence, which prevents its nuclear translocation, or of crucial serines in the IKKalpha activation loop completely inhibits p65 binding on icam-1 and mcp-1 promoters and rather enhances p65 binding on the ikappabalpha promoter. Further molecular studies demonstrated that the removal of chromatin-bound HDAC3, a histone deacetylase inhibiting p65 DNA binding, is differentially regulated by IKKalpha in a promoter-specific manner. Indeed, whereas the absence of IKKalpha induces HDAC3 recruitment and repression on the icam-1 promoter, it has an opposite effect on the ikappabalpha promoter, where a better p65 binding occurs. We conclude that nuclear IKKalpha is required for p65 DNA binding in a gene-specific manner.
Collapse
Affiliation(s)
- Geoffrey Gloire
- GIGA-Research, Virology-Immunology, and Medical Chemistry Units, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
147
|
Abbott DW, Yang Y, Hutti JE, Madhavarapu S, Kelliher MA, Cantley LC. Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains. Mol Cell Biol 2007; 27:6012-25. [PMID: 17562858 PMCID: PMC1952158 DOI: 10.1128/mcb.00270-07] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
K63 polyubiquitin chains spatially and temporally link innate immune signaling effectors such that cytokine release can be coordinated. Crohn's disease is a prototypical inflammatory disorder in which this process may be faulty as the major Crohn's disease-associated protein, NOD2 (nucleotide oligomerization domain 2), regulates the formation of K63-linked polyubiquitin chains on the I kappa kinase (IKK) scaffolding protein, NEMO (NF-kappaB essential modifier). In this work, we study these K63-linked ubiquitin networks to begin to understand the biochemical basis for the signaling cross talk between extracellular pathogen Toll-like receptors (TLRs) and intracellular pathogen NOD receptors. This work shows that TLR signaling requires the same ubiquitination event on NEMO to properly signal through NF-kappaB. This ubiquitination is partially accomplished through the E3 ubiquitin ligase TRAF6. TRAF6 is activated by NOD2, and this activation is lost with a major Crohn's disease-associated NOD2 allele, L1007insC. We further show that TRAF6 and NOD2/RIP2 share the same biochemical machinery (transforming growth factor beta-activated kinase 1 [TAK1]/TAB/Ubc13) to activate NF-kappaB, allowing TLR signaling and NOD2 signaling to synergistically augment cytokine release. These findings suggest a biochemical mechanism for the faulty cytokine balance seen in Crohn's disease.
Collapse
Affiliation(s)
- Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Room 5123 Wolstein Research Building, Cleveland, OH 44106, and Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
148
|
Tono C, Takahashi Y, Terui K, Sasaki S, Kamio T, Tandai S, Sato T, Kudo K, Toki T, Tachibana N, Yoshioka T, Nakahata T, Morio T, Nishikomori R, Ito E. Correction of immunodeficiency associated with NEMO mutation by umbilical cord blood transplantation using a reduced-intensity conditioning regimen. Bone Marrow Transplant 2007; 39:801-4. [PMID: 17417663 DOI: 10.1038/sj.bmt.1705658] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
149
|
Solt LA, Madge LA, Orange JS, May MJ. Interleukin-1-induced NF-kappaB activation is NEMO-dependent but does not require IKKbeta. J Biol Chem 2007; 282:8724-33. [PMID: 17244613 PMCID: PMC2824644 DOI: 10.1074/jbc.m609613200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of NF-kappaB by the pro-inflammatory cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1) requires the IkappaB kinase (IKK) complex, which contains two kinases named IKKalpha and IKKbeta and a critical regulatory subunit named NEMO. Although we have previously demonstrated that NEMO associates with both IKKs, genetic studies reveal that only its interaction with IKKbeta is required for TNF-induced NF-kappaB activation. To determine whether NEMO and IKKalpha can form a functional IKK complex capable of activating the classical NF-kappaB pathway in the absence of IKKbeta, we utilized a panel of mouse embryonic fibroblasts (MEFs) lacking each of the IKK complex subunits. This confirmed that TNF-induced IkappaBalpha degradation absolutely requires NEMO and IKKbeta. In contrast, we consistently observed intact IkappaBalpha degradation and NF-kappaB activation in response to IL-1 in two separate cell lines lacking IKKbeta. Furthermore, exogenously expressed, catalytically inactive IKKbeta blocked TNF- but not IL-1-induced IkappaBalpha degradation in wild-type MEFs, and reconstitution of IKKalpha/beta double knockout cells with IKKalpha rescued IL-1- but not TNF-induced NF-kappaB activation. Finally, we have shown that incubation of IKKbeta-deficient MEFs with a cell-permeable peptide that blocks the interaction of NEMO with the IKKs inhibits IL-1-induced NF-kappaB activation. Our results therefore demonstrate that NEMO and IKKalpha can form a functional IKK complex that activates the classical NF-kappaB pathway in response to IL-1 but not TNF. These findings further suggest NEMO differentially regulates the fidelity of the IKK subunits activated by distinct upstream signaling pathways.
Collapse
Affiliation(s)
- Laura A. Solt
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104
| | - Lisa A. Madge
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104
| | - Jordan S. Orange
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Michael J. May
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
150
|
Sadler KC, Krahn KN, Gaur NA, Ukomadu C. Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci U S A 2007; 104:1570-5. [PMID: 17242348 PMCID: PMC1785278 DOI: 10.1073/pnas.0610774104] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In contrast to the deregulated hepatocellular division that is a feature of many hepatic diseases and malignancies, physiologic liver growth during embryonic development and after partial hepatectomy (PH) in adults is characterized by tightly controlled cell proliferation. We used forward genetic screening in zebrafish to test the hypothesis that a similar genetic program governs physiologic liver growth during hepatogenesis and regeneration after PH. We identified the uhrf1 gene, a cell cycle regulator and transcriptional activator of top2a expression, as required for hepatic outgrowth and embryonic survival. By developing a methodology to perform PH on adult zebrafish, we found that liver regeneration inuhrf1+/- adult animals is impaired.uhrf1 transcript levels dramatically increase after PH in both mice, and zebrafish and top2a is not up-regulated in uhrf1+/- livers after PH. This indicates that uhrf1 is required for physiologic liver growth in both embryos and adults and illustrates that zebrafish livers regenerate.
Collapse
Affiliation(s)
- Kirsten C. Sadler
- *Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115; and
- Brookdale Department of Molecular Cell and Developmental Biology and Department of Medicine/Division of Liver Disease, Mount Sinai School of Medicine, New York, NY 10029-6574
- To whom correspondence should be addressed. E-mail:
or
| | - Katherine N. Krahn
- Brookdale Department of Molecular Cell and Developmental Biology and Department of Medicine/Division of Liver Disease, Mount Sinai School of Medicine, New York, NY 10029-6574
| | - Naseem A. Gaur
- *Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115; and
| | - Chinweike Ukomadu
- *Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115; and
- To whom correspondence should be addressed. E-mail:
or
| |
Collapse
|