101
|
Han Y, Feng H, Sun J, Liang X, Wang Z, Xing W, Dai Q, Yang Y, Han A, Wei Z, Bi Q, Ji H, Kang T, Zou W. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest 2019; 129:1895-1909. [PMID: 30830877 PMCID: PMC6486357 DOI: 10.1172/jci124590] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bone osteogenic sarcoma has a poor prognosis as the exact cell of origin and the signaling pathways underling tumor formation remain undefined. Here, we report an osteogenic tumor mouse model based on the conditional knockout of liver kinase b1 (Lkb1; also known as Stk11) in Cathepsin K (Ctsk)-Cre expressing cells. Lineage tracing studies demonstrated that Ctsk-Cre could label a population of periosteal cells. The cells functioned as mesenchymal progenitors with regard to markers and functional properties. LKB1 deficiency increased proliferation and osteoblast differentiation of Ctsk+ periosteal cells, while downregulation of mTORC1 activity, using Raptor genetic mouse model or mTORC1 inhibitor treatment, ameliorated tumor progression of Ctsk-Cre Lkb1fllfl mice. Xenograft mouse models, using human osteosarcoma cell lines, also demonstrated that LKB1 deficiency promoted tumor formation, while mTOR inhibition suppressed xenograft tumor growth. In summary, we identified periosteum-derived Ctsk-Cre expressing cells as a cell of origin for osteogenic tumor and suggested the LKB1-mTORC1 pathway as a promising target for treatment of osteogenic tumor.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jun Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoting Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Qinggang Dai
- The Second Dental Center, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhanying Wei
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetics Research Unit, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qing Bi
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
102
|
Ma G, Zhang C, Luo W, Zhao JL, Wang X, Qian Y. Construction of microRNA-messenger networks for human osteosarcoma. J Cell Physiol 2019; 234:14145-14153. [PMID: 30666640 DOI: 10.1002/jcp.28107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Osteosarcoma is the most common bone tumor in children and young adults. Although the microRNAs (miRNA) expression analyses of osteosarcoma have been performed previously, the construction of miRNA-messenger RNA (mRNA) networks for osteosarcoma is needed. This study aimed to identify osteosarcoma-related miRNAs through analyzing the microarray datasets and to construct the regulatory network of miRNA-mRNA for human osteosarcoma. The datasets were extracted from the Gene Expression Omnibus and the differentially expressed miRNAs were screened through the limma package in Bioconductor. Genes targeted by the differentially expressed miRNAs were screened out by using the Miranda, MirTarget2, PicTar, PITA, and TargetScan databases. The predicted target genes were further analyzed by Gene Ontology and pathway enrichment analysis and a regulatory network of differentially expressed miRNAs and their target osteosarcoma-associated genes was constructed. A total of 36 downregulated miRNAs and 182 upregulated miRNAs were identified in osteosarcoma samples compared with normal samples and 397 target genes for upregulated miRNAs and 222 target genes for downregulated miRNAs were obtained. The enriched pathways for target genes of differentially expressed miRNAs included transcriptional misregulation in cancer, the AMPK signaling pathway, and MAPK signaling pathway. In the regulatory network, has-miR-199a-5p targeted the highest number of genes and nemo-like kinase (NLK) was targeted by five miRNAs (hsa-miR-140-5p, hsa-miR-107, hsa-miR-324-5p, hsa-miR-199a-5p, and hsa-miR-28-5p). The has-miR-324-5p targets NLK, TGFB2, and PPARG. These miRNAs and their target genes may serve as potential therapeutic targets of osteosarcoma.
Collapse
Affiliation(s)
- Guifu Ma
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Chao Zhang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Wenyuan Luo
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Jia-Li Zhao
- Department of Orthopaedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Xuebin Wang
- Emergency Department, Gansu Provincial Hospital, Lanzhou, China
| | - Yaowen Qian
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
103
|
Loh AHP, Stewart E, Bradley CL, Chen X, Daryani V, Stewart CF, Calabrese C, Funk A, Miller G, Karlstrom A, Krafcik F, Goshorn DR, Vogel P, Bahrami A, Shelat A, Dyer MA. Combinatorial screening using orthotopic patient derived xenograft-expanded early phase cultures of osteosarcoma identify novel therapeutic drug combinations. Cancer Lett 2018; 442:262-270. [PMID: 30395907 PMCID: PMC6342199 DOI: 10.1016/j.canlet.2018.10.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
Abstract
Lead discovery in osteosarcoma has been hampered by the lack of new agents, limited representative clinical samples and paucity of accurate preclinical models. We developed orthotopic patient-derived xenografts (PDXs) that recapitulated the molecular, cellular and histologic features of primary tumors, and screened PDX-expanded short-term cultures and commercial cell lines of osteosarcoma against focused drug libraries. Osteosarcoma cells were most sensitive to HDAC, proteasome, and combination PI3K/MEK and PI3K/mTOR inhibitors, and least sensitive to PARP, RAF, ERK and MEK inhibitors. Correspondingly, PI3K signaling pathway genes were up-regulated in metastatic tumors compared to primary tumors. In combinatorial screens, as a class, HDAC inhibitors showed additive effects when combined with standard-of-care agents gemcitabine and doxorubicin. This lead discovery strategy afforded a means to perform high-throughput drug screens of tumor cells that accurately recapitulated those from original human tumors, and identified classes of novel and repurposed drugs with activity against osteosarcoma.
Collapse
Affiliation(s)
- Amos H P Loh
- Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cori L Bradley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Vinay Daryani
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher Calabrese
- Animal Resources Center, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Amy Funk
- Animal Resources Center, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Greg Miller
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Asa Karlstrom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fred Krafcik
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Goshorn
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Animal Resources Center, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA; Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
104
|
Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Proc Natl Acad Sci U S A 2018; 115:E11128-E11137. [PMID: 30385632 DOI: 10.1073/pnas.1814044115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS), the most common primary bone tumor, is highly metastatic with high chemotherapeutic resistance and poor survival rates. Using induced pluripotent stem cells (iPSCs) generated from Li-Fraumeni syndrome (LFS) patients, we investigate an oncogenic role of secreted frizzled-related protein 2 (SFRP2) in p53 mutation-associated OS development. Interestingly, we find that high SFRP2 expression in OS patient samples correlates with poor survival. Systems-level analyses identified that expression of SFRP2 increases during LFS OS development and can induce angiogenesis. Ectopic SFRP2 overexpression in normal osteoblast precursors is sufficient to suppress normal osteoblast differentiation and to promote OS phenotypes through induction of oncogenic molecules such as FOXM1 and CYR61 in a β-catenin-independent manner. Conversely, inhibition of SFRP2, FOXM1, or CYR61 represses the tumorigenic potential. In summary, these findings demonstrate the oncogenic role of SFRP2 in the development of p53 mutation-associated OS and that inhibition of SFRP2 is a potential therapeutic strategy.
Collapse
|
105
|
Abarrategi A, Gambera S, Alfranca A, Rodriguez-Milla MA, Perez-Tavarez R, Rouault-Pierre K, Waclawiczek A, Chakravarty P, Mulero F, Trigueros C, Navarro S, Bonnet D, García-Castro J. c-Fos induces chondrogenic tumor formation in immortalized human mesenchymal progenitor cells. Sci Rep 2018; 8:15615. [PMID: 30353072 PMCID: PMC6199246 DOI: 10.1038/s41598-018-33689-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal progenitor cells (MPCs) have been hypothesized as cells of origin for sarcomas, and c-Fos transcription factor has been showed to act as an oncogene in bone tumors. In this study, we show c-Fos is present in most sarcomas with chondral phenotype, while multiple other genes are related to c-Fos expression pattern. To further define the role of c-Fos in sarcomagenesis, we expressed it in primary human MPCs (hMPCs), immortalized hMPCs and transformed murine MPCs (mMPCs). In immortalized hMPCs, c-Fos expression generated morphological changes, reduced mobility capacity and impaired adipogenic- and osteogenic-differentiation potentials. Remarkably, immortalized hMPCs or mMPCs expressing c-Fos generated tumors harboring a chondrogenic phenotype and morphology. Thus, here we show that c-Fos protein has a key role in sarcomas and that c-Fos expression in immortalized MPCs yields cell transformation and chondrogenic tumor formation.
Collapse
Affiliation(s)
- Ander Abarrategi
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, E-28021, Spain
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, WC2A 3LY, UK
| | - Stefano Gambera
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, E-28021, Spain
| | - Arantzazu Alfranca
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, E-28021, Spain
| | | | | | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, WC2A 3LY, UK
| | - Alexander Waclawiczek
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, WC2A 3LY, UK
| | - Probir Chakravarty
- Bioinformatics Core, The Francis Crick Institute, London, United Kingdom
| | - Francisca Mulero
- Molecular Image Core Unit, Spanish National Cancer Research Centre, Madrid, E-28029, Spain
| | - César Trigueros
- Mesenchymal and Hematopoietic Stem Cell Laboratory, Fundación Inbiomed, San Sebastian, E-20009, Spain
| | - Samuel Navarro
- Pathology Department, University of Valencia, Valencia, E-46010, Spain
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, WC2A 3LY, UK
| | - Javier García-Castro
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, E-28021, Spain.
| |
Collapse
|
106
|
Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53. Cell Death Dis 2018; 9:844. [PMID: 30154459 PMCID: PMC6113249 DOI: 10.1038/s41419-018-0944-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
Abstract
The loss of p53 function is a central event in the genesis of osteosarcoma (OS). How mutation of p53 enables OS development from osteoblastic lineage cells is poorly understood. We and others have reported a key role for elevated and persistent activation of the cAMP/PKA/Creb1 pathway in maintenance of OS. In view of the osteoblast lineage being the cell of origin of OS, we sought to determine how these pathways interact within the context of the normal osteoblast. Normal osteoblasts (p53 WT) rapidly underwent apoptosis in response to acute elevation of cAMP levels or activity, whereas p53-deficient osteoblasts tolerated this aberrant cAMP/Creb level and activity. Using the p53 activating small-molecule Nutlin-3a and cAMP/Creb1 activator forskolin, we addressed the question of how p53 responds to the activation of cAMP. We observed that p53 acts dominantly to protect cells from excessive cAMP accumulation. We identify a Creb1-Cbp complex that functions together with and interacts with p53. Finally, translating these results we find that a selective small-molecule inhibitor of the Creb1-Cbp interaction demonstrates selective toxicity to OS cells where this pathway is constitutively active. This highlights the cAMP/Creb axis as a potentially actionable therapeutic vulnerability in p53-deficient tumors such as OS. These results define a mechanism through which p53 protects normal osteoblasts from excessive or abnormal cAMP accumulation, which becomes fundamentally compromised in OS.
Collapse
|
107
|
Wu SC, Benavente CA. Chromatin remodeling protein HELLS is upregulated by inactivation of the RB-E2F pathway and is nonessential for osteosarcoma tumorigenesis. Oncotarget 2018; 9:32580-32592. [PMID: 30220967 PMCID: PMC6135688 DOI: 10.18632/oncotarget.25953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/29/2018] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma is the most common primary bone malignancy in children and adolescents. Among the various molecular mechanisms implicated in osteosarcomagenesis, the RB-E2F pathway is of particular importance as virtually all cases of osteosarcoma display alterations in the RB-E2F pathway. In this study, we examined the transcription factor E2F family members that are associated with increased malignancy in Rb1-null osteosarcoma tumors. Using genetically engineered mouse models of osteosarcoma, we found that loss of activator E2Fs, E2F1 and E2F3, significantly delays tumor progression and increases the overall survival of the p53/Rb1-deficient osteosarcoma mouse model. We also studied the role of helicase, lymphoid specific (HELLS), a chromatin remodeling protein identified as a critical downstream effector of the RB-E2F signaling pathway in various cancers. In this study, we confirmed that the RB-E2F pathway directly regulates HELLS gene expression. We also found that HELLS mRNA is upregulated and its protein overexpressed in osteosarcoma. Using loss-of-function assays to study the role of HELLS in human osteosarcoma, we observed that HELLS has no effect on tumor proliferation and migration. Further, we pioneered the study of Hells in developmental tumor models by generating Hells conditional knockout osteosarcoma mouse models to examine the role of HELLS in osteosarcoma tumor development. We found that loss of Hells in osteosarcoma has no effect in tumor initiation and overall survival of mice. This suggests that while HELLS may serve as a biomarker for tumorigenesis and for RB-E2F pathway status, it is unlikely to serve as a relevant target for therapeutics in osteosarcoma.
Collapse
Affiliation(s)
- Stephanie C Wu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Claudia A Benavente
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
108
|
Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma. Oncogene 2018; 38:291-298. [PMID: 30093633 PMCID: PMC6756098 DOI: 10.1038/s41388-018-0444-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 07/24/2018] [Indexed: 11/27/2022]
Abstract
Leveraging the conserved cancer genomes across mammals has the potential to transform driver gene discovery in orphan cancers. Here, we combine cross-species genomics with validation across human–dog–mouse systems to uncover a new bone tumor suppressor gene. Comparative genomics of spontaneous human and dog osteosarcomas (OS) expose Disks Large Homolog 2 (DLG2) as a tumor suppressor candidate. DLG2 copy number loss occurs in 42% of human and 56% of canine OS. Functional validation through pertinent human and canine OS DLG2-deficient cell lines identifies a regulatory role of DLG2 in cell division, migration and tumorigenesis. Moreover, osteoblast-specific deletion of Dlg2 in a clinically relevant genetically engineered mouse model leads to acceleration of OS development, establishing DLG2 as a critical determinant of OS. This widely applicable cross-species approach serves as a platform to expedite the search of cancer drivers in rare human malignancies, offering new targets for cancer therapy.
Collapse
|
109
|
Olivos DJ, Perrien DS, Hooker A, Cheng YH, Fuchs RK, Hong JM, Bruzzaniti A, Chun K, Eischen CM, Kacena MA, Mayo LD. The proto-oncogene function of Mdm2 in bone. J Cell Biochem 2018; 119:8830-8840. [PMID: 30011084 DOI: 10.1002/jcb.27133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022]
Abstract
Mouse double minute 2 (Mdm2) is a multifaceted oncoprotein that is highly regulated with distinct domains capable of cellular transformation. Loss of Mdm2 is embryonically lethal, making it difficult to study in a mouse model without additional genetic alterations. Global overexpression through increased Mdm2 gene copy number (Mdm2Tg ) results in the development of hematopoietic neoplasms and sarcomas in adult animals. In these mice, we found an increase in osteoblastogenesis, differentiation, and a high bone mass phenotype. Since it was difficult to discern the cell lineage that generated this phenotype, we generated osteoblast-specific Mdm2 overexpressing (Mdm2TgOb ) mice in 2 different strains, C57BL/6 and DBA. These mice did not develop malignancies; however, these animals and the MG63 human osteosarcoma cell line with high levels of Mdm2 showed an increase in bone mineralization. Importantly, overexpression of Mdm2 corrected age-related bone loss in mice, providing a role for the proto-oncogenic activity of Mdm2 in bone health of adult animals.
Collapse
Affiliation(s)
- David J Olivos
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel S Perrien
- Departments of Medicine and Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, and Tennessee Valley Healthcare System, Nashville, Tennessee.,Department of Veterans Affairs, Nashville, Tennessee
| | - Adam Hooker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Robyn K Fuchs
- Department of Physical Therapy, Indiana University School of Health and Rehabilitation Sciences, Indianapolis, Indiana
| | - Jung Min Hong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Kristin Chun
- Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey D Mayo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Herman B Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
110
|
Zheng J, You W, Zheng C, Wan P, Chen J, Jiang X, Zhu Z, Zhang Z, Gong A, Li W, Tan J, Ji T, Guo W, Zhang S. Knockdown of FBXO39 inhibits proliferation and promotes apoptosis of human osteosarcoma U-2OS cells. Oncol Lett 2018; 16:1849-1854. [PMID: 30008875 DOI: 10.3892/ol.2018.8876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/16/2018] [Indexed: 11/05/2022] Open
Abstract
F-box proteins are essential components of the Skp-cullin-F-box complex (a type of E3 ubiquitin ligase), and participate in cell cycle and immune responses through the ubiquitin proteasome system. F-box protein 39 (FBXO39) belongs to the F-box family, which has been reported to be associated with cancer oncogenesis and progression. The present study aimed to investigate the role of FBXO39 in osteosarcoma (OS) cell proliferation and apoptosis in vitro. It was demonstrated that U-2OS cells exhibited high expression of FBXO39 compared with HOS and SaOS-2 osteosarcoma cells. Thus, knockdown of FBXO39 was performed using lentivirus-mediated short hairpin RNA (shRNA) transfection to validate the effect of FBXO39 in U-2OS cells. Western blotting and RT-qPCR analysis were used to confirm the efficiency of infection by analyzing the expression level of FBXO39. Using Celigo-based cell counting and MTT assays, it was demonstrated that FBXO39 knockdown significantly reduced the rate of cell proliferation compared with control. Caspase 3/7 activity assays and fluorescence-activated cell sorting confirmed the induction of apoptosis in U-2OS cells following FBXO39 knockdown. In conclusion, it was demonstrated that FBXO39 knockdown may significantly inhibit proliferation and promote apoptosis of U-2OS cells. Thus, FBXO39 may serve an important role in OS progression.
Collapse
Affiliation(s)
- Jianrong Zheng
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China.,Department of Traumatic Orthopedics, Huizhou Municipal Central Hospital, Huizhou, Guangdong 516000, P.R. China
| | - Wei You
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Chuanxi Zheng
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Peng Wan
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jinquan Chen
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Xiaochun Jiang
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Zhixiang Zhu
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Zhixiong Zhang
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Anqi Gong
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Wei Li
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Jifeng Tan
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Tao Ji
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Shiquan Zhang
- Department of Joint and Musculoskeletal Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
111
|
Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma. Oncogene 2018; 37:4626-4632. [PMID: 29743593 PMCID: PMC6195857 DOI: 10.1038/s41388-018-0292-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/09/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023]
Abstract
The stem cell transcription factor Sox2 is highly expressed in many cancers where it is thought to mark cancer stem cells (CSC). In osteosarcomas, the most common bone malignancy, high Sox2 expression marks and maintains a fraction of tumor initiating cells that show all the properties of CSC. Knock down of Sox2 expression abolishes tumorigenicity and suppresses the CSC phenotype. Here we show that, in a mouse model of osteosarcoma, osteoblast-specific Sox2 conditional knockout (CKO) causes a drastic reduction in the frequency and onset of tumors. The rare tumors detected in the Sox2 CKO animals were all Sox2 positive, indicating that they arose from cells that had escaped Sox2 deletion. Furthermore Sox2 inactivation in cultured osteosarcoma cells by CRISPR/CAS technology leads to a loss of viability and proliferation of the entire cell population. Inactivation of the YAP gene, a major Hippo Pathway effector which is a direct Sox2 target, causes similar results and YAP overexpression rescues cells from the lethality caused by Sox2 inactivation. These effects were osteosarcoma-specific, suggesting a mechanism of cell “addiction” to Sox2 initiated pathways. The requirement for Sox2 for osteosarcoma formation as well as for the survival of the tumor cells suggests that disruption of Sox2-initiated pathways could be an effective strategy for the treatment of osteosarcoma.
Collapse
|
112
|
Gozo MC, Jia D, Aspuria PJ, Cheon DJ, Miura N, Walts AE, Karlan BY, Orsulic S. FOXC2 augments tumor propagation and metastasis in osteosarcoma. Oncotarget 2018; 7:68792-68802. [PMID: 27634875 PMCID: PMC5356590 DOI: 10.18632/oncotarget.11990] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is a highly malignant tumor that contains a small subpopulation of tumor-propagating cells (also known as tumor-initiating cells) characterized by drug resistance and high metastatic potential. The molecular mechanism by which tumor-propagating cells promote tumor growth is poorly understood. Here, we report that the transcription factor forkhead box C2 (FOXC2) is frequently expressed in human osteosarcomas and is important in maintaining osteosarcoma cells in a stem-like state. In osteosarcoma cell lines, we show that anoikis conditions stimulate FOXC2 expression. Downregulation of FOXC2 decreases anchorage-independent growth and invasion in vitro and lung metastasis in vivo, while overexpression of FOXC2 increases tumor propagation in vivo. In osteosarcoma cell lines, we demonstrate that high levels of FOXC2 are associated with and required for the expression of osteosarcoma tumor-propagating cell markers. In FOXC2 knockdown cell lines, we show that CXCR4, a downstream target of FOXC2, can restore osteosarcoma cell invasiveness and metastasis to the lung.
Collapse
Affiliation(s)
- Maricel C Gozo
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Graduate Program in Biomedical Science and Translational Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dongyu Jia
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul-Joseph Aspuria
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dong-Joo Cheon
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Naoyuki Miura
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sandra Orsulic
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
113
|
PPARγ agonists promote differentiation of cancer stem cells by restraining YAP transcriptional activity. Oncotarget 2018; 7:60954-60970. [PMID: 27528232 PMCID: PMC5308629 DOI: 10.18632/oncotarget.11273] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/01/2016] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is a highly aggressive pediatric bone cancer in which most tumor cells remain immature and fail to differentiate into bone-forming osteoblasts. However, OS cells readily respond to adipogenic stimuli suggesting they retain mesenchymal stem cell-like properties. Here we demonstrate that nuclear receptor PPARγ agonists such as the anti-diabetic, thiazolidinedione (TZD) drugs induce growth arrest and cause adipogenic differentiation in human, mouse and canine OS cells as well as in tumors in mice. Gene expression analysis reveals that TZDs induce lipid metabolism pathways while suppressing targets of the Hippo-YAP pathway, Wnt signaling and cancer-related proliferation pathways. Significantly, TZD action appears to be restricted to the high Sox2 expressing cancer stem cell population and is dependent on PPARγ expression. TZDs also affect growth and cell fate by causing the cytoplasmic sequestration of the transcription factors SOX2 and YAP that are required for tumorigenicity. Finally, we identify a TZD-regulated gene signature based on Wnt/Hippo target genes and PPARγ that predicts patient outcomes. Together, this work highlights a novel connection between PPARγ agonist in inducing adipogenesis and mimicking the tumor suppressive hippo pathway. It also illustrates the potential of drug repurposing for TZD-based differentiation therapy for osteosarcoma.
Collapse
|
114
|
Minas TZ, Surdez D, Javaheri T, Tanaka M, Howarth M, Kang HJ, Han J, Han ZY, Sax B, Kream BE, Hong SH, Çelik H, Tirode F, Tuckermann J, Toretsky JA, Kenner L, Kovar H, Lee S, Sweet-Cordero EA, Nakamura T, Moriggl R, Delattre O, Üren A. Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model. Oncotarget 2018; 8:34141-34163. [PMID: 27191748 PMCID: PMC5470957 DOI: 10.18632/oncotarget.9388] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 12/17/2022] Open
Abstract
Ewing sarcoma (ES) involves a tumor-specific chromosomal translocation that produces the EWS-FLI1 protein, which is required for the growth of ES cells both in vitro and in vivo. However, an EWS-FLI1-driven transgenic mouse model is not currently available. Here, we present data from six independent laboratories seeking an alternative approach to express EWS-FLI1 in different murine tissues. We used the Runx2, Col1a2.3, Col1a3.6, Prx1, CAG, Nse, NEFL, Dermo1, P0, Sox9 and Osterix promoters to target EWS-FLI1 or Cre expression. Additional approaches included the induction of an endogenous chromosomal translocation, in utero knock-in, and the injection of Cre-expressing adenovirus to induce EWS-FLI1 expression locally in multiple lineages. Most models resulted in embryonic lethality or developmental defects. EWS-FLI1-induced apoptosis, promoter leakiness, the lack of potential cofactors, and the difficulty of expressing EWS-FLI1 in specific sites were considered the primary reasons for the failed attempts to create a transgenic mouse model of ES.
Collapse
Affiliation(s)
- Tsion Zewdu Minas
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Didier Surdez
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | | | - Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Michelle Howarth
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Hong-Jun Kang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Jenny Han
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Zhi-Yan Han
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | - Barbara Sax
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Barbara E Kream
- Department of Medicine, and Genetics and Genome Sciences, University of Connecticut Health Science Center, Farmington, CT, United States of America
| | - Sung-Hyeok Hong
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Haydar Çelik
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Franck Tirode
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Jeffrey A Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Department of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine, Vienna, Austria
| | - Heinrich Kovar
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria.,Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Sean Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| | - Olivier Delattre
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France.,Unité de génétique somatique, Institut Curie, Île-de-France, Paris, France
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
115
|
Walia MK, Castillo-Tandazo W, Mutsaers AJ, Martin TJ, Walkley CR. Murine models of osteosarcoma: A piece of the translational puzzle. J Cell Biochem 2018; 119:4241-4250. [PMID: 29236321 DOI: 10.1002/jcb.26601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Osteosarcoma (OS) is the most common cancer of bone in children and young adults. Despite extensive research efforts, there has been no significant improvement in patient outcome for many years. An improved understanding of the biology of this cancer and how genes frequently mutated contribute to OS may help improve outcomes for patients. While our knowledge of the mutational burden of OS is approaching saturation, our understanding of how these mutations contribute to OS initiation and maintenance is less clear. Murine models of OS have now been demonstrated to be highly valid recapitulations of human OS. These models were originally based on the frequent disruption of p53 and Rb in familial OS syndromes, which are also common mutations in sporadic OS. They have been applied to significantly improve our understanding about the functions of recurrently mutated genes in disease. The murine models can be used as a platform for preclinical testing and identifying new therapeutic targets, in addition to testing the role of additional mutations in vivo. Most recently these models have begun to be used for discovery based approaches and screens, which hold significant promise in furthering our understanding of the genetic and therapeutic sensitivities of OS. In this review, we discuss the mouse models of OS that have been reported in the last 3-5 years and newly identified pathways from these studies. Finally, we discuss the preclinical utilization of the mouse models of OS for identifying and validating actionable targets to improve patient outcome.
Collapse
Affiliation(s)
| | - Wilson Castillo-Tandazo
- St. Vincent's Institute, Fitzroy, Vic, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic, Australia
| | - Anthony J Mutsaers
- Departments of Biomedical Sciences and Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Thomas John Martin
- St. Vincent's Institute, Fitzroy, Vic, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic, Australia
| | - Carl R Walkley
- St. Vincent's Institute, Fitzroy, Vic, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic, Australia
| |
Collapse
|
116
|
Jacques C, Renema N, Lezot F, Ory B, Walkley CR, Grigoriadis AE, Heymann D. Small animal models for the study of bone sarcoma pathogenesis:characteristics, therapeutic interests and limitations. J Bone Oncol 2018; 12:7-13. [PMID: 29850398 PMCID: PMC5966525 DOI: 10.1016/j.jbo.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are the three main entities of bone sarcoma which collectively encompass more than 50 heterogeneous entities of rare malignancies. In contrast to osteosarcoma and Ewing sarcoma which mainly affect adolescents and young adults and exhibit a high propensity to metastasise to the lungs, chondrosarcoma is more frequently observed after 40 years of age and is characterised by a high frequency of local recurrence. The combination of chemotherapy, surgical resection and radiotherapy has contributed to an improved outcome for these patients. However, a large number of patients still suffer significant therapy related toxicities or die of refractory and metastatic disease. To better delineate the pathogenesis of bone sarcomas and to identify and test new therapeutic options, major efforts have been invested over the past decades in the development of relevant pre-clinical animal models. Nowadays, in vivo models aspire to mimic all the steps and the clinical features of the human disease as accurately as possible and should ideally be manipulable. Considering these features and given their small size, their conduciveness to experiments, their affordability as well as their human-like bone-microenvironment and immunity, murine pre-clinical models are interesting in the context of these pathologies. This chapter will provide an overview of the murine models of bone sarcomas, paying specific attention for the models induced by inoculation of tumour cells. The genetically-engineered mouse models of bone sarcoma will also be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Department of Medicine, St. Vincent's Hospital, University of Melbourne, Australia
| | - Agi E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London Guy's Hospital, London, UK
| | - Dominique Heymann
- University of Sheffield, Medical School, Dept of Oncology and Metabolism. INSERM, European Associated laboratory «Sarcoma Research Unit», Beech Hill Road, S10 2RX Sheffield, UK.,Institut de Cancérologie de l'Ouest, INSERM, U1232, University of Nantes, «Tumour Heterogeneity and Precision Medicine», Bld Jacques Monod, 44805 Saint-Herblain cedex, France
| |
Collapse
|
117
|
Saraf AJ, Fenger JM, Roberts RD. Osteosarcoma: Accelerating Progress Makes for a Hopeful Future. Front Oncol 2018; 8:4. [PMID: 29435436 PMCID: PMC5790793 DOI: 10.3389/fonc.2018.00004] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/05/2018] [Indexed: 11/20/2022] Open
Abstract
Patients who develop osteosarcoma in 2017 receive treatment that remains essentially unchanged since the 1970s. Outcomes likewise remain largely unimproved. Large, collaborative, multinational efforts to improve therapy have evaluated strategies leveraging both cytotoxic intensification and immunomodulatory agents. While these have confirmed our capacity to conduct such trials, results have proved largely disappointing. This has motivated efforts to focus on the basic biology of osteosarcoma, where understanding remains poor but has improved significantly. Recent advances have identified characteristic genetic features of osteosarcoma, including profound chromosomal disruption, marked patient-patient heterogeneity, and a paucity of recurrent mutations. Analyses suggest genesis in early catastrophic genetic events, although the nature of the inciting events remains unclear. While p53 and Rb inactivation occurs in most osteosarcomas, the landscape of associated driver mutations has proved extensive. Few mutations recur with high frequency, though patterns continue to emerge that suggest recurrent alterations within specific pathways. Biological pathways implicated in osteosarcoma biology through genetic and other preclinical studies include PI3K/mTOR, WNT/βcatenin, TGFβ, RANKL/NF-κB, and IGF. Unfortunately, clinical studies evaluating targeted agents have to date yielded disappointing results, as have studies examining modern immunotherapeutics. It remains unclear whether this pattern of clinical failures exposes inadequacies of our preclinical models, unrealistic expectations for single-agent responses in heavily pretreated patients, or biology less relevant than suggested. Nearly all patients who succumb to osteosarcoma develop lung metastases, which exhibit marked chemoresistance. Much scientific effort has recently sought to enhance our mechanistic understanding of metastasis biology. This research has potential to reveal novel targets for preventing and treating metastasis and for uncovering key vulnerabilities of osteosarcoma cells. Efforts to implement drug development strategies that leverage clinical studies in veterinary patients have potential to accelerate the translation of novel experimental regimens toward human studies. These could reduce costs and development timelines, prioritize agents, and refine regimens prior to human clinical trials. The rise of philanthropic groups focused on osteosarcoma has enhanced cross-disciplinary and cross-institutional focus and provided much needed resources. Transformative new therapies will likely arise from collaborative, interdisciplinary efforts that extend our understanding of osteosarcoma's most basic inner workings.
Collapse
Affiliation(s)
- Amanda J. Saraf
- Pediatric Hematology, Oncology, and BMT, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Joelle M. Fenger
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Ryan D. Roberts
- Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
118
|
LncRNA-p21 inhibited the proliferation of osteosarcoma cells via the miR-130b/PTEN/AKT signaling pathway. Biomed Pharmacother 2018; 97:911-918. [DOI: 10.1016/j.biopha.2017.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/17/2017] [Accepted: 11/03/2017] [Indexed: 12/23/2022] Open
|
119
|
Chen S, Jin Z, Dai L, Wu H, Wang J, Wang L, Zhou Z, Yang L, Gao W. Aloperine induces apoptosis and inhibits invasion in MG-63 and U2OS human osteosarcoma cells. Biomed Pharmacother 2018; 97:45-52. [DOI: 10.1016/j.biopha.2017.09.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
|
120
|
Jia RJ, Lan CG, Wang XC, Gao CT. Integrated analysis of gene expression and copy number variations in MET proto‑oncogene‑transformed human primary osteoblasts. Mol Med Rep 2017; 17:2543-2548. [PMID: 29207108 DOI: 10.3892/mmr.2017.8135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/30/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to screen the potential osteosarcoma (OS)‑associated genes and to obtain additional insight into the pathogenesis of OS. Transcriptional profile (ID: GSE28256) and copy number variations (CNV) profile were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) between MET proto‑oncogene‑transformed human primary osteoblast (MET‑HOB) samples and the control samples were identified using the Linear Models for Microarray Data package. Subsequently, CNV areas and CNVs were identified using cut‑off criterion of >30%‑overlap within the cases using detect_cnv.pl in PennCNV. Genes shared in DEGs and CNVs were obtained and discussed. Additionally, the Database for Annotation, Visualization and Integrated Discovery was used to identify significant Gene Ontology (GO) functions and pathways in DEGs with P<0.05. A total of 1,601 DEGs were screened out in MET‑HOBs and compared with control samples, including 784 upregulated genes, such as E2F transcription factor 1 (E2F1) and 2 (E2F2) and 817 downregulated genes, such as retinoblastoma 1 (RB1) and cyclin D1 (CCND1). DEGs were enriched in 344 GO terms, such as extracellular region part and extracellular matrix and 14 pathways, including pathways in cancer and extracellular matrix‑receptor interaction. Additionally, 239 duplications and 439 deletions in 678 genes from 1,313 chromosome regions were detected. A total of 12 genes were identified to be CNV‑driven genes, including cadherin 18, laminin subunit α 1, spectrin β, erythrocytic, ciliary rootlet coiled‑coil, rootletin pseudogene 2, β‑1,4-N-acetyl-galactosaminyltransferase 1, G protein regulated inducer of neurite outgrowth 1, EH domain binding protein 1‑like 1, growth factor independent 1, cathepsin Z, WNK lysine deficient protein kinase 1, glutathione S‑transferase mu 2 and microsomal glutathione S‑transferase 1. Therefore, cell cycle‑associated genes including E2F1, E2F2, RB1 and CCND1, and cell adhesion‑associated genes, such as CDH18 and LAMA1 may be used as diagnosis and/or therapeutic markers for patients with OS.
Collapse
Affiliation(s)
- Ru-Jiang Jia
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Chun-Gen Lan
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xiu-Chao Wang
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Chun-Tao Gao
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
121
|
Artigas N, Gámez B, Cubillos-Rojas M, Sánchez-de Diego C, Valer JA, Pons G, Rosa JL, Ventura F. p53 inhibits SP7/Osterix activity in the transcriptional program of osteoblast differentiation. Cell Death Differ 2017; 24:2022-2031. [PMID: 28777372 PMCID: PMC5686339 DOI: 10.1038/cdd.2017.113] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Osteoblast differentiation is achieved by activating a transcriptional network in which Dlx5, Runx2 and Osx/SP7 have fundamental roles. The tumour suppressor p53 exerts a repressive effect on bone development and remodelling through an unknown mechanism that inhibits the osteoblast differentiation programme. Here we report a physical and functional interaction between Osx and p53 gene products. Physical interaction was found between overexpressed proteins and involved a region adjacent to the OSX zinc fingers and the DNA-binding domain of p53. This interaction results in a p53-mediated repression of OSX transcriptional activity leading to a downregulation of the osteogenic programme. Moreover, we show that p53 is also able to repress key osteoblastic genes in Runx2-deficient osteoblasts. The ability of p53 to suppress osteogenesis is independent of its DNA recognition ability but requires a native conformation of p53, as a conformational missense mutant failed to inhibit OSX. Our data further demonstrates that p53 inhibits OSX binding to their responsive Sp1/GC-rich sites in the promoters of their osteogenic target genes, such as IBSP or COL1A1. Moreover, p53 interaction to OSX sequesters OSX from binding to DLX5. This competition blocks the ability of OSX to act as a cofactor of DLX5 to activate homeodomain-containing promoters. Altogether, our data support a model wherein p53 represses OSX-DNA binding and DLX5-OSX interaction, and thereby deregulates the osteogenic transcriptional network. This mechanism might have relevant roles in bone pathologies associated to osteosarcomas and ageing.
Collapse
Affiliation(s)
- Natalia Artigas
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Mónica Cubillos-Rojas
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Cristina Sánchez-de Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
122
|
Integrative genome analysis of somatic p53 mutant osteosarcomas identifies Ets2-dependent regulation of small nucleolar RNAs by mutant p53 protein. Genes Dev 2017; 31:1847-1857. [PMID: 29021240 PMCID: PMC5695086 DOI: 10.1101/gad.304972.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/11/2017] [Indexed: 12/02/2022]
Abstract
Pourebrahim et al. developed a traceable somatic osteosarcoma mouse model that is initiated with either a single p53 mutation (p53R172H) or p53 loss in osteoblasts. They identified a cluster of Ets2-dependent small nucleolar RNAs (snoRNAs) that are highly up-regulated in p53 mutant tumors. TP53 is the most frequently mutated gene in human cancer. Many mutant p53 proteins exert oncogenic gain-of-function (GOF) properties that contribute to metastasis, but the mechanisms mediating these functions remain poorly defined in vivo. To elucidate how mutant p53 GOF drives metastasis, we developed a traceable somatic osteosarcoma mouse model that is initiated with either a single p53 mutation (p53R172H) or p53 loss in osteoblasts. Our study confirmed that p53 mutant mice developed osteosarcomas with increased metastasis as compared with p53-null mice. Comprehensive transcriptome RNA sequencing (RNA-seq) analysis of 16 tumors identified a cluster of small nucleolar RNAs (snoRNAs) that are highly up-regulated in p53 mutant tumors. Regulatory element analysis of these deregulated snoRNA genes identified strong enrichment of a common Ets2 transcription factor-binding site. Homozygous deletion of Ets2 in p53 mutant mice resulted in strong down-regulation of snoRNAs and reversed the prometastatic phenotype of mutant p53 but had no effect on osteosarcoma development, which remained 100% penetrant. In summary, our studies identify Ets2 inhibition as a potential therapeutic vulnerability in p53 mutant osteosarcomas.
Collapse
|
123
|
Verma NK, Gadi A, Maurizi G, Roy UB, Mansukhani A, Basilico C. Myeloid Zinc Finger 1 and GA Binding Protein Co-Operate with Sox2 in Regulating the Expression of Yes-Associated Protein 1 in Cancer Cells. Stem Cells 2017; 35:2340-2350. [PMID: 28905448 DOI: 10.1002/stem.2705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
The transcription factor (TF) yes-associated protein 1 (YAP1) is a major effector of the tumor suppressive Hippo signaling pathway and is also necessary to maintain pluripotency in embryonic stem cells. Elevated levels of YAP1 expression antagonize the tumor suppressive effects of the Hippo pathway that normally represses YAP1 function. High YAP1 expression is observed in several types of human cancers and is particularly prominent in cancer stem cells (CSCs). The stem cell TF Sox2, which marks and maintains CSCs in osteosarcomas (OSs), promotes YAP1 expression by binding to an intronic enhancer element and YAP1 expression is also crucial for the maintainance of OS stem cells. To further understand the regulation of YAP1 expression in OSs, we subjected the YAP1 intronic enhancer to scanning mutagenesis to identify all DNA cis-elements critical for enhancer function. Through this approach, we identified two novel TFs, GA binding protein (GABP) and myeloid zinc finger 1 (MZF1), which are essential for basal YAP1 transcription. These factors are highly expressed in OSs and bind to distinct sites in the YAP1 enhancer. Depletion of either factor leads to drastically reduced YAP1 expression and thus a reversal of stem cell properties. We also found that YAP1 can regulate the expression of Sox2 by binding to two distinct DNA binding sites upstream and downstream of the Sox2 gene. Thus, Sox2 and YAP1 reinforce each others expression to maintain stemness and tumorigenicity in OSs, but the activity of MZF1 and GABP is essential for YAP1 transcription. Stem Cells 2017;35:2340-2350.
Collapse
Affiliation(s)
| | - Abhilash Gadi
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Giulia Maurizi
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Upal Basu Roy
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Alka Mansukhani
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Claudio Basilico
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
124
|
Identification of a p53 target, CD137L, that mediates growth suppression and immune response of osteosarcoma cells. Sci Rep 2017; 7:10739. [PMID: 28878391 PMCID: PMC5587585 DOI: 10.1038/s41598-017-11208-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
p53 encodes a transcription factor that transactivates downstream target genes involved in tumour suppression. Although osteosarcoma frequently has p53 mutations, the role of p53 in osteosarcomagenesis is not fully understood. To explore p53-target genes comprehensively in calvarial bone and find out novel druggable p53 target genes for osteosarcoma, we performed RNA sequencing using the calvarial bone and 23 other tissues from p53+/+ and p53−/− mice after radiation exposure. Of 23,813 genes, 69 genes were induced more than two-fold in irradiated p53+/+ calvarial bone, and 127 genes were repressed. Pathway analysis of the p53-induced genes showed that genes associated with cytokine-cytokine receptor interactions were enriched. Three genes, CD137L, CDC42 binding protein kinase gamma and Follistatin, were identified as novel direct p53 target genes that exhibited growth-suppressive effects on osteosarcoma cell lines. Of the three genes, costimulatory molecule Cd137l was induced only in calvarial bone among the 24 tissues tested. CD137L-expressing cells exhibited growth-suppressive effects in vivo. In addition, recombinant Fc-fusion Cd137l protein activated the immune response in vitro and suppressed osteosarcoma cell growth in vivo. We clarified the role of CD137L in osteosarcomagenesis and its potential therapeutic application. Our transcriptome analysis also indicated the regulation of the immune response through p53.
Collapse
|
125
|
Abstract
Osteosarcoma is the predominant form of bone cancer, affecting mostly adolescents. Recent progress made in molecular genetic studies of osteosarcoma has changed our view on the cause of the disease and ongoing therapeutic approaches for patients. As we draw closer to gaining more complete catalogs of candidate cancer driver genes in common forms of cancer, the landscape of somatic mutations in osteosarcoma is emerging from its first phase. In this review, we summarize recent whole genome and/or whole exome genomic studies, and then put these findings in the context of genetic hallmarks of somatic mutations and mutational processes in human osteosarcoma. One of the lessons learned here is that the extent of somatic mutations and complexity of the osteosarcoma genome are similar to that of common forms of adult cancer. Thus, a much higher number of samples than those currently obtained are needed to complete the catalog of driver mutations in human osteosarcoma. In parallel, genetic studies in other species have revealed candidate driver genes and their roles in the genesis of osteosarcoma. This review also summarizes newly identified drivers in genetically engineered mouse models (GEMMs) and discusses our understanding of the impact of nature and number of drivers on tumor latency, subtypes, and metastatic potentials of osteosarcoma. It is becoming apparent that a synergistic team composed of three drivers (one 'first driver' and two 'synergistic drivers') may be required to generate an animal model that recapitulates aggressive osteosarcoma with a short latency. Finally, new cancer therapies are urgently needed to improve survival rate and quality of life for osteosarcoma patients. Several vulnerabilities in osteosarcoma are illustrated in this review to exemplify the opportunities for next generation molecularly targeted therapies. However, much work remains in order to complete our understanding of the somatic mutation basis of osteosarcoma, to develop reliable animal models of human disease, and to apply this information to guide new therapeutic approaches for reducing morbidity and mortality of this rare disease.
Collapse
Affiliation(s)
- Kirby Rickel
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Fang Fang
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jianning Tao
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
126
|
|
127
|
Hsu JHR, Hubbell-Engler B, Adelmant G, Huang J, Joyce CE, Vazquez F, Weir BA, Montgomery P, Tsherniak A, Giacomelli AO, Perry JA, Trowbridge J, Fujiwara Y, Cowley GS, Xie H, Kim W, Novina CD, Hahn WC, Marto JA, Orkin SH. PRMT1-Mediated Translation Regulation Is a Crucial Vulnerability of Cancer. Cancer Res 2017; 77:4613-4625. [PMID: 28655788 DOI: 10.1158/0008-5472.can-17-0216] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and maintenance in vitro and in vivo Mechanistic studies reveal that translation-associated pathways were enriched for Prmt1 downstream targets, implicating Prmt1 in translation control. In particular, loss of Prmt1 led to a decrease in arginine methylation of the translation initiation complex, thereby disrupting its assembly and inhibiting translation. p53/Rb-null cells were sensitive to p53-induced translation stress, and analysis of human cancer cell line data from Project Achilles further revealed that Prmt1 and translation-associated pathways converged on the same functional networks. We propose that targeted therapy against Prmt1 and its associated translation-related pathways offer a mechanistic rationale for treatment of osteosarcomas and other cancers that exhibit dependencies on translation stress response. Cancer Res; 77(17); 4613-25. ©2017 AACR.
Collapse
Affiliation(s)
- Jessie Hao-Ru Hsu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Benjamin Hubbell-Engler
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Guillaume Adelmant
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Jialiang Huang
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts
| | - Cailin E Joyce
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Barbara A Weir
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Aviad Tsherniak
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Andrew O Giacomelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer A Perry
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Glenn S Cowley
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Huafeng Xie
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Woojin Kim
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Carl D Novina
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - William C Hahn
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts. .,Howard Hughes Medical Institute, Boston, Massachusetts
| |
Collapse
|
128
|
Huynh DL, Kwon T, Zhang JJ, Sharma N, Gera M, Ghosh M, Kim N, Kim Cho S, Lee DS, Park YH, Jeong DK. Wogonin suppresses stem cell-like traits of CD133 positive osteosarcoma cell via inhibiting matrix metallopeptidase-9 expression. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:304. [PMID: 28606135 PMCID: PMC5468967 DOI: 10.1186/s12906-017-1788-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/11/2017] [Indexed: 11/17/2022]
Abstract
Background Several efforts have been deployed to cure osteosarcoma, a high-grade malignant bone tumour in children and adolescents. However, some challenges such as drug resistance, relapse, and tumour metastasis remain owing to the existence of cancer stem cells (CSC). There is an urgent need to develop cost-effective and safe therapies. Methods Wogonin, an extract from the root of Scutellaria baicalensis, has long been considered as a promising natural and safe compound for anti-tumourigenesis, particularly to inhibit tumour invasion and metastasis. Hoechst 33,342 staining, wound healing assay, sphere formation assay, western blotting, and gelatin zymography assays were performed in CD133 positive osteosarcoma cell. Results In this study, we examined the effect of Wogonin on the mobility of human osteosarcoma CSC. Wogonin induces apoptosis of human osteosarcoma CSC, inhibits its mobility in vitro via downregulation of MMP-9 expression, and represses its renewal ability. Conclusions We demonstrated that Wogonin decreases the renewal capacity of CSC. By inhibiting the formation of and reducing the size of spheres, Wogonin at a concentration of 40–80 μM effectively minimizes potential risk from CSC. Taken together, we have demonstrated a new approach for developing a potential therapy for osteosarcoma.
Collapse
|
129
|
Modeling osteosarcoma progression by measuring the connectivity dynamics using an inference of multiple differential modules algorithm. Mol Med Rep 2017; 16:1047-1054. [PMID: 28586048 PMCID: PMC5562023 DOI: 10.3892/mmr.2017.6703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/08/2017] [Indexed: 02/02/2023] Open
Abstract
Understanding the dynamic changes in connectivity of molecular pathways is important for determining disease prognosis. Thus, the current study used an inference of multiple differential modules (iMDM) algorithm to identify the connectivity changes of sub-network to predict the progression of osteosarcoma (OS) based on the microarray data of OS at four Huvos grades. Initially, multiple differential co-expression networks (M-DCNs) were constructed, and weight values were assigned for each edge, followed by detection of seed genes in M-DCNs according to the topological properties. Using these seed gene as a start, an iMDM algorithm was utilized to identify the multiple candidate modules. The statistical significance was determined to select multiple differential modules (M-DMs) based on the null score distribution of candidate modules generated using randomized networks. Additionally, the significance of Module Connectivity Dynamic Score (MCDS) to quantify the dynamic change of M-DMs connectivity. Further, DAVID was employed for KEGG pathway enrichment analysis of genes in dynamic modules. In addition to the basal condition, four conditions, OS grade 1–4, were also included (M=4). In total, 4 DCNs were constructed, and each of them included 2,138 edges and 272 nodes. A total of 13 genes were identified and termed ‘seed genes’ based on the z-score distribution of 272 nodes in DCNs. Following the module search, module refinement and statistical significance analysis, a total of four 4-DMs (modules 1, 2, 3 and 4) were identified. Only one significant 4-DM (module 3 in the DCNs of grade 1, 2, 3 and 4 OS) with dynamic changes was detected when the MCDS of real 4-DMs were compared to a null distribution of MCDS of random 4-DMs. Notably, the genes of the dynamic module (module 3) were enriched in two significant pathway terms, ubiquitin-mediated proteolysis and ribosome. The seed genes with the highest degrees included protein phosphatase 1 regulatory subunit 12A (PPP1R12A), UTP3, small subunit processome component homolog (UTP3), prostaglandin E synthase 3 (PTGES3). Thus, pathway functions (ubiquitin-mediated proteolysis and ribosome) and several seed genes (PPP1R12A, UTP3, and PTGES3) in the dynamic module 3 may be associated with the progression of OS and may serve as potential therapeutic targets in OS.
Collapse
|
130
|
cFOS-SOX9 Axis Reprograms Bone Marrow-Derived Mesenchymal Stem Cells into Chondroblastic Osteosarcoma. Stem Cell Reports 2017; 8:1630-1644. [PMID: 28552607 PMCID: PMC5470112 DOI: 10.1016/j.stemcr.2017.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/13/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are proposed as the cells of origin of several subtypes of osteosarcoma (OS). However, signals that direct BMSCs to form different subtypes of OS are unclear. Here we show that the default tumor type from spontaneously transformed p53 knockout (p53_KO) BMSCs is osteoblastic OS. The development of this default tumor type caused by p53 loss can be overridden by various oncogenic signals: RAS reprograms p53_KO BMSCs into undifferentiated sarcoma, AKT enhances osteoblastic OS, while cFOS promotes chondroblastic OS formation. We focus on studying the mechanism of cFOS-induced chondroblastic OS formation. Integrated genome-wide studies reveal a regulatory mechanism whereby cFOS binds to the promoter of a key chondroblastic transcription factor, Sox9, and induces its transcription in BMSCs. Importantly, SOX9 mediates cFOS-induced cartilage formation in chondroblastic OS. In summary, oncogenes determine tumor types derived from BMSCs, and the cFOS-SOX9 axis is critical for chondroblastic OS formation. The default tumor type from p53_KO BMSCs is osteoblastic OS Oncogenes reprogram p53_KO BMSCs into different sarcomas cFOS promotes chondroblastic OS from p53_KO BMSCs SOX9 is a mediator of cFOS in promoting chondroblastic OS
Collapse
|
131
|
Yang Y, Yang R, Roth M, Piperdi S, Zhang W, Dorfman H, Rao P, Park A, Tripathi S, Freeman C, Zhang Y, Sowers R, Rosenblum J, Geller D, Hoang B, Gill J, Gorlick R. Genetically transforming human osteoblasts to sarcoma: development of an osteosarcoma model. Genes Cancer 2017; 8:484-494. [PMID: 28435520 PMCID: PMC5396624 DOI: 10.18632/genesandcancer.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and young adults. Although histologically defined by the presence of malignant osteoid, the tumor possesses lineage multipotency suggesting it could be derived from a cell anywhere on the differentiation pathway between a mesenchymal stem cell (MSC) and a mature osteoblast. To determine if preosteoblasts (pOB) could be the cell of origin differentiated MSCs were transformed with defined genetic elements. MSCs and pOB differentiated from the same MSCs were serially transformed with the oncogenes hTERT, SV40 large T antigen and H-Ras. Assays were performed to determine their tumorigenic properties, differentiation capacity and histologic appearance. When subcutaneously implanted in immunocompromised mice, cell lines derived from transformed MSC and pOB formed tumors in 4 weeks. In contrast to the transformed MSC, the pOB tumors demonstrated a histological appearance characteristic of osteosarcoma. The cell lines derived from the transformed pOB only had osteogenic and chondrogenic differentiation potential, but not adipogenic ones. However, the transformed MSC cells and standard osteosarcoma cell lines maintained their tri-lineage differentiation capacity. The inability of the transformed pOB cell line to undergo adipogenic differentiation, may suggest that osteosarcoma is derived from a cell intermediate in differentiation between an MSC and a pOB, with partial commitment to the osteoblastic lineage.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA.,Current affiliations: Department of Orthopaedic Surgery, Musculoskeletal Tumor Center, People's Hospital, Peking University, Beijing, China
| | - Rui Yang
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, NY, USA
| | - Michael Roth
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sajida Piperdi
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wendong Zhang
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Howard Dorfman
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, NY, USA.,Department of Pathology, Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, NY, USA
| | - Pulivarthi Rao
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Amy Park
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sandeep Tripathi
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carrie Freeman
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yunjia Zhang
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rebecca Sowers
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeremy Rosenblum
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Geller
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathan Gill
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Gorlick
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.,Current affiliations: Pediatrics Administration, The University of Texas MD Anderson Cancer Center, Children's Cancer Hospital, Houston, TX, USA
| |
Collapse
|
132
|
Liao S, Ruiz Y, Gulzar H, Yelskaya Z, Ait Taouit L, Houssou M, Jaikaran T, Schvarts Y, Kozlitina K, Basu-Roy U, Mansukhani A, Mahajan SS. Osteosarcoma cell proliferation and survival requires mGluR5 receptor activity and is blocked by Riluzole. PLoS One 2017; 12:e0171256. [PMID: 28231291 PMCID: PMC5322947 DOI: 10.1371/journal.pone.0171256] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/17/2017] [Indexed: 11/18/2022] Open
Abstract
Osteosarcomas are malignant tumors of bone, most commonly seen in children and adolescents. Despite advances in modern medicine, the poor survival rate of metastatic osteosarcoma has not improved in two decades. In the present study we have investigated the effect of Riluzole on a human and mouse metastatic osteosarcoma cells. We show that LM7 cells secrete glutamate in the media and that mGluR5 receptors are required for the proliferation of LM7 cells. Riluzole, which is known to inhibit glutamate release, inhibits proliferation, induces apoptosis and prevents migration of LM7 cells. This is also seen with Fenobam, a specific blocker of mGluR5. We also show that Riluzole alters the phosphorylation status of AKT/P70 S6 kinase, ERK1/2 and JNK1/2. Thus Riluzole is an effective drug to inhibit proliferation and survival of osteosarcoma cells and has therapeutic potential for the treatment of osteosarcoma exhibiting autocrine glutamate signaling.
Collapse
Affiliation(s)
- Sally Liao
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Yuleisy Ruiz
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Hira Gulzar
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Zarina Yelskaya
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Lyes Ait Taouit
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Murielle Houssou
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Trisha Jaikaran
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Yuriy Schvarts
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Kristina Kozlitina
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
| | - Upal Basu-Roy
- Department of Microbiology & Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, United States of America
| | - Alka Mansukhani
- Department of Microbiology & Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, United States of America
| | - Shahana S. Mahajan
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY, United States of America
- Brain and Mind Research Institute, Weil Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
133
|
Guo X, Yu L, Zhang Z, Dai G, Gao T, Guo W. miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1. Cancer Cell Int 2017; 17:29. [PMID: 28239298 PMCID: PMC5316195 DOI: 10.1186/s12935-017-0398-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/08/2017] [Indexed: 12/16/2022] Open
Abstract
Background Evidence is accumulating to link cancer stem cells to the pathogenesis and progression of osteosarcoma. The aim of this study is to investigate the role of miR-335 in osteosarcoma stem cells. Methods Tumor spheroid culture and flow cytometry were applied to screen out osteosarcoma stem cells. Real-time quantitative PCR was used to detect the expression level of miR-335 in MG63, U2OS and 143B osteosarcoma stem cells. The relationship of miR-335 expression with osteosarcoma stem cells was then analyzed. Transwell assay and transplantation assay were performed to elucidate biological effects of miR-335 on cell invasion and vivo tumor formation. Western Blot and luciferase assays were executed to investigate the regulation of POU5F1 by miR-335. Results The expression of miR-335 in osteosarcoma stem cells was lower than their differentiated counterparts. Cells expressing miR-335 possessed decreased stem cell-like properties. Gain or loss of function assays were applied to find that miR-335 antagonist promoted stem cell-like properties as well as invasion. Luciferase report and transfection assay showed that POU5F1 was downregulated by miR-335. Pre-miR-335 resulted in tumor enhanced sensitivity to traditional chemotherapy, whereas anti-miR-335 promoted chemoresistance. Finally, the inhibitory effect of miR-335 on in vivo tumor formation showed that combination of pre-miR-335 with cisplatin further reduced the tumor size, and miR-335 brought down the sphere formation capacity induced by cisplatin. Conclusions The current study demonstrates that miR-335 negatively regulates osteosarcoma stem cell-like properties by targeting POU5F1, and miR-335 could target CSCs to synergize with traditional chemotherapeutic agents to overcome osteosarcoma.
Collapse
Affiliation(s)
- Xiaodong Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Zhengpei Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Guo Dai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| | - Tian Gao
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Orthopedic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei China
| |
Collapse
|
134
|
Abstract
Osteosarcoma (OS) is the most common primary malignancy of bone and patients with metastatic disease or recurrences continue to have very poor outcomes. Unfortunately, little prognostic improvement has been generated from the last 20 years of research and a new perspective is warranted. OS is extremely heterogeneous in both its origins and manifestations. Although multiple associations have been made between the development of osteosarcoma and race, gender, age, various genomic alterations, and exposure situations among others, the etiology remains unclear and controversial. Noninvasive diagnostic methods include serum markers like alkaline phosphatase and a growing variety of imaging techniques including X-ray, computed tomography, magnetic resonance imaging, and positron emission as well as combinations thereof. Still, biopsy and microscopic examination are required to confirm the diagnosis and carry additional prognostic implications such as subtype classification and histological response to neoadjuvant chemotherapy. The current standard of care combines surgical and chemotherapeutic techniques, with a multitude of experimental biologics and small molecules currently in development and some in clinical trial phases. In this review, in addition to summarizing the current understanding of OS etiology, diagnostic methods, and the current standard of care, our group describes various experimental therapeutics and provides evidence to encourage a potential paradigm shift toward the introduction of immunomodulation, which may offer a more comprehensive approach to battling cancer pleomorphism.
Collapse
Affiliation(s)
- Brock A Lindsey
- Department of Orthopaedics, West Virginia University, Morgantown, WV, USA.
| | - Justin E Markel
- Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | | |
Collapse
|
135
|
Yin Z, Ding H, He E, Chen J, Li M. Up-regulation of microRNA-491-5p suppresses cell proliferation and promotes apoptosis by targeting FOXP4 in human osteosarcoma. Cell Prolif 2016; 50. [PMID: 27704627 DOI: 10.1111/cpr.12308] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/03/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND OBJECTIVES MicroRNAs are small non-coding RNAs involved in pathogenesis and progression of human malignancies. MicroRNA-491-5p (miR-491-5p) is down-regulated in many human cancers where it would serve as a tumour suppressor. However, the role played by miR-491-5p in pathogenesis of human osteosarcoma has remained largely unknown. This study has been conducted to examine effects of miR-491-5p on migration and proliferation of cells of the SAOS-2 and MG63 osteosarcoma lines, and mechanisms of those effects. MATERIALS AND METHODS Levels of miR-491-5p expression in osteosarcoma tissues and in human osteosarcoma cell lines were studied using qualitative real-time polymerase chain reaction (qRT-PCR) methods. Cell viability was detected using the CCK-8 and EdU assays, while the transwell assay was used to evaluate migration and invasion. Apoptosis was analysed uing flow cytometry and the Hoechst 33342 nuclear staining method. A dual-luciferase reporter system was used to confirm the target gene of miR-491-5p. The electrophoretic mobility shift assay (EMSA) with DIG-labelled double-stranded FOXP4 oligonucleotides was used to confirm whether or not miR-491-5p suppressed FOXP4 activation. RESULTS Cells of osteosarcoma tissues and cell lines had low levels of miR-491-5p expression, but high levels of forkhead-box P4 (FOXP4) expression. Transfection of SAOS-2 and MG63 cells with miR-491-5p mimics inhibited expression of FOXP4 protein, which suppressed cell growth and migration, but induced apoptosis. Dual-luciferase reporter assays confirmed FOXP4 as the target gene for miR-491-5p. Overexpression of miR-491-5p suppressed FOXP4 activity in SAOS-2 and MG63 cells. Knockdown of FOXP4 in SAOS-2 and MG63 cells using an RNAi strategy resulted in reduced levels of cell proliferation and migration, but increased levels of apoptosis. CONCLUSION Our in vitro studies showed that up-regulation of miR-491-5p suppressed proliferation of the human osteosarcoma cells and induced apoptosis by targeting FOXP4. These findings suggest that miR-491-5p could be further studied as a potential clinical diagnostic or predictive biomarker for human osteosarcoma.
Collapse
Affiliation(s)
- Zhixun Yin
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongmei Ding
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Erxing He
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingchen Chen
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
136
|
Horne L, Avilucea FR, Jin H, Barrott JJ, Smith-Fry K, Wang Y, Hoang BH, Jones KB. LRP5 Signaling in Osteosarcomagenesis: a Cautionary Tale of Translation from Cell Lines to Tumors. Transl Oncol 2016; 9:438-444. [PMID: 27751348 PMCID: PMC5067932 DOI: 10.1016/j.tranon.2016.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/30/2016] [Indexed: 01/08/2023] Open
Abstract
Previous reports document expression of low-density lipoprotein receptor-related protein 5 (LRP5) in osteosarcoma (OS) tissue. Expression of this Wnt receptor correlated with metastatic disease and poor disease-free survival. Forced expression of dominant-negative LRP5 (dnLRP5), which lacks the membrane binding domain of the native protein and therefore functions as a soluble receptor-sponge for Wnt ligands, reduced in vitro cellular invasion and in vivo xenograft tumor growth for osteosarcoma cell lines. Here, we use a genetically engineered mouse model of osteosarcomagenesis with and without expression of dnLRP5 to assess to what degree tumorigenesis is affected and whether Wnt/β-catenin signaling is circumvented or maintained. Each cohort of mice developed osteosarcoma at a similar ultimate prevalence, but after a slightly increased latency in those also expressing dnLRP5. On histology, there was no difference between groups, despite previous reports that the dnLRP5 osteosarcoma cells specifically undergo a mesenchymal-to-epithelial transition in vitro. Finally, immunohistochemistry showed the presence of cytosolic and nuclear β-catenin and nuclear Cyclin D1, markers consistent with preserved Wnt/β-catenin signaling despite constitutive blockade of the cell surface receipt of Wnt signaling ligand. These data suggest that canonical Wnt signaling plays a role in OS progression and that while blockade of singular nodes in signaling pathways can have dramatic effects on individual cell lines, real tumors readily evade such focused attacks.
Collapse
Affiliation(s)
- Logan Horne
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, 84112; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112
| | - Frank R Avilucea
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, 84112
| | - Huifeng Jin
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, 84112; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112
| | - Jared J Barrott
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, 84112; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112
| | - Kyllie Smith-Fry
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, 84112; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112
| | - Yanliang Wang
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, 84112; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112
| | - Bang H Hoang
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, 10461
| | - Kevin B Jones
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, 84112; Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112.
| |
Collapse
|
137
|
Heymann MF, Brown HK, Heymann D. Drugs in early clinical development for the treatment of osteosarcoma. Expert Opin Investig Drugs 2016; 25:1265-1280. [DOI: 10.1080/13543784.2016.1237503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marie-Françoise Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, University of Nantes, Nantes, France
- Nantes University Hospital, Nantes, France
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| | - Hannah K. Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| | - Dominique Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- INSERM, UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, University of Nantes, Nantes, France
- Nantes University Hospital, Nantes, France
- European Associated Laboratory, Sarcoma Research Unit, Medical School, INSERM-University of Sheffield, Sheffield, UK
| |
Collapse
|
138
|
Chen Y, Di Grappa MA, Molyneux SD, McKee TD, Waterhouse P, Penninger JM, Khokha R. RANKL blockade prevents and treats aggressive osteosarcomas. Sci Transl Med 2016; 7:317ra197. [PMID: 26659571 DOI: 10.1126/scitranslmed.aad0295] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common primary bone cancer, which occurs primarily in children and adolescents, severely affecting survivors' quality of life. Despite its chemosensitivity and treatment advances, long-term survival rates for OS patients have stagnated over the last 20 years. Thus, it is necessary to develop new molecularly targeted therapies for this metastatic bone cancer. Mutations in TP53 and RB are linked to OS predisposition and to the evolution of spontaneous OS. We established receptor activator of nuclear factor κB ligand (RANKL) as a therapeutic target for suppression and prevention of OS. Combined conditional osteoblast-specific deletions of Rb, p53, and the protein kinase A (PKA) regulatory subunit Prkar1α genes in genetically engineered mouse models (GEMMs) generate aggressive osteosarcomas, characterized by PKA, RANKL, and osteoclast hyperactivity. Whole-body Rankl deletion completely abrogates tumorigenesis. Although osteoblastic Rank deletion has little effect, osteoclastic Rank deletion delays tumorigenesis and prolongs life span. The latter is associated with inactivation of osteoclastogenesis and up-regulation of the tumor suppressor phosphatase and tensin homolog (PTEN). Further, we use these GEMMs as preclinical platforms to show that RANKL blockade with RANK-Fc arrests tumor progression and improves survival and also inhibits lung metastasis. Moreover, preemptive administration of RANK-Fc completely prevents tumorigenesis in mice highly predisposed to this aggressive cancer. Denosumab, a fully human monoclonal antibody against RANKL, is currently used to treat patients with osteoporosis or bone metastases. Our studies provide a strong rationale to consider RANKL blockade for the treatment and prevention of aggressive RANKL-overexpressing OS in humans.
Collapse
Affiliation(s)
- Yan Chen
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Marco A Di Grappa
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Sam D Molyneux
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Trevor D McKee
- Spatio-Temporal Targeting and Amplification of Radiation Response (STTARR) Program, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Paul Waterhouse
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Rama Khokha
- Princess Margaret Cancer Centre/Ontario Cancer Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
139
|
Wang J, Wu P, Chen PC, Lee C, Chen W, Hung S. Generation of Osteosarcomas from a Combination of Rb Silencing and c-Myc Overexpression in Human Mesenchymal Stem Cells. Stem Cells Transl Med 2016; 6:512-526. [PMID: 28191765 PMCID: PMC5442803 DOI: 10.5966/sctm.2015-0226] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 07/15/2016] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) was a malignant tumor occurring with unknown etiology that made prevention and early diagnosis difficult. Mesenchymal stem cells (MSCs), which were found in bone marrow, were claimed to be a possible origin of OS but with little direct evidence. We aimed to characterize OS cells transformed from human MSCs (hMSCs) and identify their association with human primary OS cells and patient survival. Genetic modification with p53 or retinoblastoma (Rb) knockdown and c-Myc or Ras overexpression was applied for hMSC transformation. Transformed cells were assayed for proliferation, differentiation, tumorigenecity, and gene expression profile. Only the combination of Rb knockdown and c-Myc overexpression successfully transformed hMSCs derived from four individual donors, with increasing cell proliferation, decreasing cell senescence rate, and increasing ability to form colonies and spheres in serum-free medium. These transformed cells lost the expression of certain surface markers, increased in osteogenic potential, and decreased in adipogenic potential. After injection in immunodeficient mice, these cells formed OS-like tumors, as evidenced by radiographic analyses and immunohistochemistry of various OS markers. Microarray with cluster analysis revealed that these transformed cells have gene profiles more similar to patient-derived primary OS cells than their normal MSC counterparts. Most importantly, comparison of OS patient tumor samples revealed that a combination of Rb loss and c-Myc overexpression correlated with a decrease in patient survival. This study successfully transformed human MSCs to OS-like cells by Rb knockdown and c-Myc overexpression that may be a useful platform for further investigation of preventive and target therapy for human OS. Stem Cells Translational Medicine 2017;6:512-526.
Collapse
Affiliation(s)
- Jir‐You Wang
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Traditional Medicine, School of Medicine, National Yang‐Ming University, Taipei, Taiwan, Republic of China
| | - Po‐Kuei Wu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Paul Chih‐Hsueh Chen
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Chia‐Wen Lee
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Wei‐Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Shih‐Chieh Hung
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Traditional Medicine, School of Medicine, National Yang‐Ming University, Taipei, Taiwan, Republic of China
- Institute of Clinical Medicine, School of Medicine, National Yang‐Ming University, Taipei, Taiwan, Republic of China
- Department of Pharmacology, School of Medicine, National Yang‐Ming University, Taipei, Taiwan, Republic of China
- Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
- Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan, Republic of China
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
140
|
Del Mare S, Husanie H, Iancu O, Abu-Odeh M, Evangelou K, Lovat F, Volinia S, Gordon J, Amir G, Stein J, Stein GS, Croce CM, Gorgoulis V, Lian JB, Aqeilan RI. WWOX and p53 Dysregulation Synergize to Drive the Development of Osteosarcoma. Cancer Res 2016; 76:6107-6117. [PMID: 27550453 DOI: 10.1158/0008-5472.can-16-0621] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/11/2016] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is a highly metastatic form of bone cancer in adolescents and young adults that is resistant to existing treatments. Development of an effective therapy has been hindered by very limited understanding of the mechanisms of osteosarcomagenesis. Here, we used genetically engineered mice to investigate the effects of deleting the tumor suppressor Wwox selectively in either osteoblast progenitors or mature osteoblasts. Mice with conditional deletion of Wwox in preosteoblasts (WwoxΔosx1) displayed a severe inhibition of osteogenesis accompanied by p53 upregulation, effects that were not observed in mice lacking Wwox in mature osteoblasts. Deletion of p53 in WwoxΔosx1 mice rescued the osteogenic defect. In addition, the Wwox;p53Δosx1 double knockout mice developed poorly differentiated osteosarcomas that resemble human osteosarcoma in histology, location, metastatic behavior, and gene expression. Strikingly, the development of osteosarcomas in these mice was greatly accelerated compared with mice lacking p53 only. In contrast, combined WWOX and p53 inactivation in mature osteoblasts did not accelerate osteosarcomagenesis compared with p53 inactivation alone. These findings provide evidence that a WWOX-p53 network regulates normal bone formation and that disruption of this network in osteoprogenitors results in accelerated osteosarcoma. The Wwox;p53Δosx1 double knockout establishes a new osteosarcoma model with significant advancement over existing models. Cancer Res; 76(20); 6107-17. ©2016 AACR.
Collapse
Affiliation(s)
- Sara Del Mare
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Hussam Husanie
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ortal Iancu
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Mohammad Abu-Odeh
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Konstantinos Evangelou
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Francesca Lovat
- Department of Cancer Biology and Genetics (CBG), The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Jonathan Gordon
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Gail Amir
- Department of Pathology, Hadassah University Hospital, Jerusalem
| | - Janet Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont
| | - Carlo M Croce
- Department of Cancer Biology and Genetics (CBG), The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Vassilis Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece. Biomedical Research Foundation of the Academy of Athens, Athens, Greece. Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jane B Lian
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Rami I Aqeilan
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel. Department of Cancer Biology and Genetics (CBG), The Ohio State University Wexner Medical Center, Columbus, Ohio. Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont.
| |
Collapse
|
141
|
Hansen SA, Hart ML, Busi S, Parker T, Goerndt A, Jones K, Amos-Landgraf JM, Bryda EC. Fischer-344 Tp53-knockout rats exhibit a high rate of bone and brain neoplasia with frequent metastasis. Dis Model Mech 2016; 9:1139-1146. [PMID: 27528400 PMCID: PMC5087826 DOI: 10.1242/dmm.025767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/05/2016] [Indexed: 01/31/2023] Open
Abstract
Somatic mutations in the Tp53 tumor suppressor gene are the most commonly seen genetic alterations in cancer, and germline mutations in Tp53 predispose individuals to a variety of early-onset cancers. Development of appropriate translational animal models that carry mutations in Tp53 and recapitulate human disease are important for drug discovery, biomarker development and disease modeling. Current Tp53 mouse and rat models have significant phenotypic and genetic limitations, and often do not recapitulate certain aspects of human disease. We used a marker-assisted speed congenic approach to transfer a well-characterized Tp53-mutant allele from an outbred rat to the genetically inbred Fischer-344 (F344) rat to create the F344-Tp53tm1(EGFP-Pac)Qly/Rrrc (F344-Tp53) strain. On the F344 genetic background, the tumor spectrum shifted, with the primary tumor types being osteosarcomas and meningeal sarcomas, compared to the hepatic hemangiosarcoma and lymphoma identified in the original outbred stock model. The Fischer model is more consistent with the early onset of bone and central nervous system sarcomas found in humans with germline Tp53 mutations. The frequency of osteosarcomas in F344-Tp53 homozygous and heterozygous animals was 57% and 36%, respectively. Tumors were highly representative of human disease radiographically and histologically, with tumors found primarily on long bones with frequent pulmonary metastases. Importantly, the rapid onset of osteosarcomas in this promising new model fills a current void in animal models that recapitulate human pediatric osteosarcomas and could facilitate studies to identify therapeutic targets. Editors' choice: Transferring a Tp53-knockout allele from an outbred rat stock to the F344 inbred rat genetic background alters the spectrum of tumors, providing a model of early-onset brain and bone sarcomas.
Collapse
Affiliation(s)
- Sarah A Hansen
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MI 65211, USA
| | - Marcia L Hart
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MI 65211, USA
| | - Susheel Busi
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MI 65211, USA
| | - Taybor Parker
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MI 65211, USA
| | - Angela Goerndt
- Rat Resource and Research Center, University of Missouri, Columbia, MI 65211, USA
| | - Kevin Jones
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - James M Amos-Landgraf
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MI 65211, USA Rat Resource and Research Center, University of Missouri, Columbia, MI 65211, USA
| | - Elizabeth C Bryda
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MI 65211, USA Rat Resource and Research Center, University of Missouri, Columbia, MI 65211, USA
| |
Collapse
|
142
|
Yin Z, Ding H, He E, Chen J, Li M. Overexpression of long non-coding RNA MFI2 promotes cell proliferation and suppresses apoptosis in human osteosarcoma. Oncol Rep 2016; 36:2033-40. [PMID: 27513470 DOI: 10.3892/or.2016.5013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/18/2016] [Indexed: 11/06/2022] Open
Abstract
The long non-coding RNA MFI2 antisense RNA is overexpressed in human cancer tissues and its increased expression is associated with occurrence and metastasis of cancer. However, the underlying mechanism in evolution and progression of human osteosarcoma is not well known. In the present study, we aimed to evaluate the molecular mechanism of lncRNA MFI2 in promoting osteosarcoma cell proliferation and suppressing apoptosis. We found that the lncRNA MFI2 was significantly overexpressed in human osteosarcoma tissues. Knockdown of lncRNA MFI2 expression suppressed MG63 and SAOS-2 cell proliferation, migration and invasion, and induced cell apoptosis. Furthermore, the expression of forkhead box P4 (FOXP4) was significantly increased and it was positively associated with lncRNA MFI2 expression in tumor tissues. In addition, knockdown of FOXP4 expression by RNA interference strategy inhibited osteosarcoma cell proliferation, migration and invasion, and promoted cell apoptosis. All the results indicated lncRNA MFI2 could promote proliferation and migration of osteosarcoma cells by regulating FOXP4 expression, which suggested critical roles of lncRNA MFI2 and FOXP4 in occurrence and development of human osteosarcoma.
Collapse
Affiliation(s)
- Zhixun Yin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Hongmei Ding
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Erming He
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Jingmhen Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Ming Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
143
|
Sato S, Tang YJ, Wei Q, Hirata M, Weng A, Han I, Okawa A, Takeda S, Whetstone H, Nadesan P, Kirsch DG, Wunder JS, Alman BA. Mesenchymal Tumors Can Derive from Ng2/Cspg4-Expressing Pericytes with β-Catenin Modulating the Neoplastic Phenotype. Cell Rep 2016; 16:917-927. [PMID: 27425618 PMCID: PMC4963269 DOI: 10.1016/j.celrep.2016.06.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 05/02/2016] [Accepted: 06/11/2016] [Indexed: 02/07/2023] Open
Abstract
The cell of origin for most mesenchymal tumors is unclear. One cell type that contributes to this lineages is the pericyte, a cell expressing Ng2/Cspg4. Using lineage tracing, we demonstrated that bone and soft tissue sarcomas driven by the deletion of the Trp53 tumor suppressor, or desmoid tumors driven by a mutation in Apc, can derive from cells expressing Ng2/Cspg4. Deletion of the Trp53 tumor suppressor gene in these cells resulted in the bone and soft tissue sarcomas that closely resemble human sarcomas, while stabilizing β-catenin in this same cell type caused desmoid tumors. Comparing expression between Ng2/Cspg4-expressing pericytes lacking Trp53 and sarcomas that arose from deletion of Trp53 showed inhibition of β-catenin signaling in the sarcomas. Activation of β-catenin inhibited the formation and growth of sarcomas. Thus, pericytes can be a cell of origin for mesenchymal tumors, and β-catenin dysregulation plays an important role in the neoplastic phenotype.
Collapse
Affiliation(s)
- Shingo Sato
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Department of Orthopaedic Surgery, Tokyo Medical and Dental, University Graduate School and Faculty of Medicine, Tokyo 113-8510, Japan; Department of Physiology and Cell Biology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuning J Tang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - Qingxia Wei
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Makoto Hirata
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Angela Weng
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Ilkyu Han
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul 151-742, Republic of Korea
| | - Atsushi Okawa
- Department of Orthopaedic Surgery, Tokyo Medical and Dental, University Graduate School and Faculty of Medicine, Tokyo 113-8510, Japan
| | - Shu Takeda
- Department of Physiology and Cell Biology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Puvindran Nadesan
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jay S Wunder
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Benjamin A Alman
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
144
|
Martin TJ. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases. Physiol Rev 2016; 96:831-71. [DOI: 10.1152/physrev.00031.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects.
Collapse
Affiliation(s)
- T. John Martin
- St Vincent's Institute of Medical Research, Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
145
|
Shekhar TM, Miles MA, Gupte A, Taylor S, Tascone B, Walkley CR, Hawkins CJ. IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget 2016; 7:33866-86. [PMID: 27129149 PMCID: PMC5085125 DOI: 10.18632/oncotarget.8980] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/16/2016] [Indexed: 12/20/2022] Open
Abstract
Outcomes for patients diagnosed with the bone cancer osteosarcoma have not improved significantly in the last four decades. Only around 60% of patients and about a quarter of those with metastatic disease survive for more than five years. Although DNA-damaging chemotherapy drugs can be effective, they can provoke serious or fatal adverse effects including cardiotoxicity and therapy-related cancers. Better and safer treatments are therefore needed. We investigated the anti-osteosarcoma activity of IAP antagonists (also known as Smac mimetics) using cells from primary and metastatic osteosarcomas that arose spontaneously in mice engineered to lack p53 and Rb expression in osteoblast-derived cells. The IAP antagonists SM-164, GDC-0152 and LCL161, which efficiently target XIAP and cIAPs, sensitized cells from most osteosarcomas to killing by low levels of TNFα but not TRAIL. RIPK1 expression levels and activity correlated with sensitivity. RIPK3 levels varied considerably between tumors and RIPK3 was not required for IAP antagonism to sensitize osteosarcoma cells to TNFα. IAP antagonists, including SM-164, lacked mutagenic activity. These data suggest that drugs targeting XIAP and cIAP1/2 may be effective for osteosarcoma patients whose tumors express abundant RIPK1 and contain high levels of TNFα, and would be unlikely to provoke therapy-induced cancers in osteosarcoma survivors.
Collapse
Affiliation(s)
- Tanmay M. Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ankita Gupte
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Brianna Tascone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Carl R. Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
146
|
Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem Cells Int 2016; 2016:3631764. [PMID: 27366153 PMCID: PMC4913005 DOI: 10.1155/2016/3631764] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs.
Collapse
|
147
|
Çelik H, Bulut G, Han J, Graham GT, Minas TZ, Conn EJ, Hong SH, Pauly GT, Hayran M, Li X, Özdemirli M, Ayhan A, Rudek MA, Toretsky JA, Üren A. Ezrin Inhibition Up-regulates Stress Response Gene Expression. J Biol Chem 2016; 291:13257-70. [PMID: 27137931 DOI: 10.1074/jbc.m116.718189] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes.
Collapse
Affiliation(s)
| | - Gülay Bulut
- From the Departments of Oncology and the Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Bahçeşehir University, 34349 Istanbul, Turkey
| | - Jenny Han
- From the Departments of Oncology and
| | | | | | | | | | - Gary T Pauly
- the Chemical Biology Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Mutlu Hayran
- the Department of Preventive Oncology, Cancer Institute, Hacettepe University, 06800 Ankara, Turkey
| | - Xin Li
- the Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, D. C. 20057
| | - Metin Özdemirli
- Pathology, Georgetown University Medical Center, Washington, D. C. 20007
| | - Ayşe Ayhan
- the Department of Pathology, Seirei Mikatahara Hospital and Hamamatsu University School of Medicine, Hamamatsu, Japan, and the Department of Pathology and
| | - Michelle A Rudek
- the Departments of Oncology and Medicine, Division of Clinical Pharmacology, School of Medicine, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
148
|
Walia MK, Ho PM, Taylor S, Ng AJ, Gupte A, Chalk AM, Zannettino AC, Martin TJ, Walkley CR. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. eLife 2016; 5. [PMID: 27070462 PMCID: PMC4854515 DOI: 10.7554/elife.13446] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/08/2016] [Indexed: 12/17/2022] Open
Abstract
Mutations in the P53 pathway are a hallmark of human cancer. The identification of pathways upon which p53-deficient cells depend could reveal therapeutic targets that may spare normal cells with intact p53. In contrast to P53 point mutations in other cancer, complete loss of P53 is a frequent event in osteosarcoma (OS), the most common cancer of bone. The consequences of p53 loss for osteoblastic cells and OS development are poorly understood. Here we use murine OS models to demonstrate that elevated Pthlh (Pthrp), cAMP levels and signalling via CREB1 are characteristic of both p53-deficient osteoblasts and OS. Normal osteoblasts survive depletion of both PTHrP and CREB1. In contrast, p53-deficient osteoblasts and OS depend upon continuous activation of this pathway and undergo proliferation arrest and apoptosis in the absence of PTHrP or CREB1. Our results identify the PTHrP-cAMP-CREB1 axis as an attractive pathway for therapeutic inhibition in OS. DOI:http://dx.doi.org/10.7554/eLife.13446.001 Bone cancer (osteosarcoma) is caused by mutations in certain genes, which results in cells growing and dividing uncontrollably. In particular, a gene that produces a protein called P53 in humans is lost in all bone cancers. However, we don’t understand what happens to the bone cells when they lose P53. Although a number of studies have identified several molecular pathways that are changed in bone cancers – such as the cyclic AMP (cAMP) pathway – how these interact to cause a cancer is not well understood. Walia et al. compared bone-forming cells from normal mice with cells from mutant mice from which the gene that produces the mouse p53 protein could be removed. This revealed that the loss of p53 causes these cells to grow faster. The activity of the cAMP pathway also increases in p53-deficient cells. Further investigation revealed that the cells grow faster only if they are able to activate the cAMP pathway, and that this pathway needs to stay active for bone cancer cells to grow and survive. This suggests that inhibiting this pathway could present a new way to treat bone cancer. Walia et al. confirmed several of their findings in human cells. Future studies will now investigate how the loss of the P53 protein in humans activates the cAMP pathway, which will be important for understanding how this cancer forms. It will also be worthwhile to begin testing ways to block this pathway to determine whether it is a useful target for therapies. DOI:http://dx.doi.org/10.7554/eLife.13446.002
Collapse
Affiliation(s)
- Mannu K Walia
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Patricia Mw Ho
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alvin Jm Ng
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Ankita Gupte
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Andrew Cw Zannettino
- Myeloma Research Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia.,ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| |
Collapse
|
149
|
Bhattacharya S, Chalk AM, Ng AJM, Martin TJ, Zannettino AC, Purton LE, Lu J, Baker EK, Walkley CR. Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene 2016; 35:5282-5294. [PMID: 27041566 DOI: 10.1038/onc.2016.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/16/2015] [Accepted: 01/03/2016] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is the most common cancer of bone and the 5th leading cause of cancer-related death in young adults. Currently, 5-year survival rates have plateaued at ~70% for patients with localized disease. Those with disseminated disease have an ~20% 5-year survival. An improved understanding of the molecular genetics of OS may yield new approaches to improve outcomes for OS patients. To this end, we applied murine models that replicate human OS to identify and understand dysregulated microRNAs (miRNAs) in OS. miRNA expression patterns were profiled in murine primary osteoblasts, osteoblast cultures and primary OS cell cultures (from primary and paired metastatic locations) isolated from two genetically engineered murine models of OS. The differentially expressed miRNA were further assessed by a cross-species comparison with human osteoblasts and OS cultures. We identified miR-155-5p and miR-148a-3p as deregulated in OS. miR-155-5p suppression or miR-148a-3p overexpression potently reduced proliferation and induced apoptosis in OS cells, yet strikingly, did not impact normal osteoblasts. To define how these miRNAs regulated OS cell fate, we used an integrated computational approach to identify putative candidate targets and then correlated these with the cell biological impact. Although we could not resolve the mechanism through which miR-148a-3p impacts OS, we identified that miR-155-5p overexpression suppressed its target Ripk1 (receptor (TNFRSF)-interacting serine-threonine kinase 1) expression, and miR-155-5p inhibition elevated Ripk1 levels. Ripk1 is directly involved in apoptosis/necroptosis. In OS cells, small interfering RNA against Ripk1 prevented cell death induced by the sequestration of miR-155-5p. Collectively, we show that miR-148a-3p and miR-155-5p are species-conserved deregulated miRNA in OS. Modulation of these miRNAs was specifically toxic to tumor cells but not normal osteoblasts, raising the possibility that these may be tractable targets for miRNA-based therapies for OS.
Collapse
Affiliation(s)
- S Bhattacharya
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - A M Chalk
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - A J M Ng
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - T J Martin
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - A C Zannettino
- Myeloma Research Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - L E Purton
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,ACRF Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - J Lu
- Department of Genetics and Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - E K Baker
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - C R Walkley
- St Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,ACRF Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
150
|
Velletri T, Xie N, Wang Y, Huang Y, Yang Q, Chen X, Chen Q, Shou P, Gan Y, Cao G, Melino G, Shi Y. P53 functional abnormality in mesenchymal stem cells promotes osteosarcoma development. Cell Death Dis 2016; 7:e2015. [PMID: 26775693 PMCID: PMC4816167 DOI: 10.1038/cddis.2015.367] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
It has been shown that p53 has a critical role in the differentiation and functionality of various multipotent progenitor cells. P53 mutations can lead to genome instability and subsequent functional alterations and aberrant transformation of mesenchymal stem cells (MSCs). The significance of p53 in safeguarding our body from developing osteosarcoma (OS) is well recognized. During bone remodeling, p53 has a key role in negatively regulating key factors orchestrating the early stages of osteogenic differentiation of MSCs. Interestingly, changes in the p53 status can compromise bone homeostasis and affect the tumor microenvironment. This review aims to provide a unique opportunity to study the p53 function in MSCs and OS. In the context of loss of function of p53, we provide a model for two sources of OS: MSCs as progenitor cells of osteoblasts and bone tumor microenvironment components. Standing at the bone remodeling point of view, in this review we will first explain the determinant function of p53 in OS development. We will then summarize the role of p53 in monitoring MSC fidelity and in regulating MSC differentiation programs during osteogenesis. Finally, we will discuss the importance of loss of p53 function in tissue microenvironment. We expect that the information provided herein could lead to better understanding and treatment of OS.
Collapse
Affiliation(s)
- T Velletri
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - N Xie
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, Rome 00133, Italy
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Y Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Q Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - X Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Q Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - P Shou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Y Gan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - G Cao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - G Melino
- Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Y Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University, School of Medicine, 320 Yueyang Road, Shanghai 200031, China.,Soochow Institutes for Translational Medicine, Soochow University, Suzhou, China
| |
Collapse
|