101
|
Lièvre M, Wuyts N, Cookson SJ, Bresson J, Dapp M, Vasseur F, Massonnet C, Tisné S, Bettembourg M, Balsera C, Bédiée A, Bouvery F, Dauzat M, Rolland G, Vile D, Granier C. Phenotyping the kinematics of leaf development in flowering plants: recommendations and pitfalls. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:809-21. [PMID: 24123939 DOI: 10.1002/wdev.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Leaves of flowering plants are produced from the shoot apical meristem at regular intervals and they grow according to a developmental program that is determined by both genetic and environmental factors. Detailed frameworks for multiscale dynamic analyses of leaf growth have been developed in order to identify and interpret phenotypic differences caused by either genetic or environmental variations. They revealed that leaf growth dynamics are non-linearly and nonhomogeneously distributed over the lamina, in the leaf tissues and cells. The analysis of the variability in leaf growth, and its underlying processes, has recently gained momentum with the development of automated phenotyping platforms that use various technologies to record growth at different scales and at high throughput. These modern tools are likely to accelerate the characterization of gene function and the processes that underlie the control of shoot development. Combined with powerful statistical analyses, trends have emerged that may have been overlooked in low throughput analyses. However, in many examples, the increase in throughput allowed by automated platforms has led to a decrease in the spatial and/or temporal resolution of growth analyses. Concrete examples presented here indicate that simplification of the dynamic leaf system, without consideration of its spatial and temporal context, can lead to important misinterpretations of the growth phenotype.
Collapse
Affiliation(s)
- Maryline Lièvre
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Rodriguez RE, Debernardi JM, Palatnik JF. Morphogenesis of simple leaves: regulation of leaf size and shape. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:41-57. [PMID: 24902833 DOI: 10.1002/wdev.115] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plants produce new organs throughout their life span. Leaves first initiate as rod-like structures protruding from the shoot apical meristem, while they need to pass through different developmental stages to become the flat organ specialized in photosynthesis. Leaf morphogenesis is an active process regulated by many genes and pathways that can generate organs with a wide variety of sizes and shapes. Important differences in leaf architecture can be seen among different species, but also in single individuals. A key aspect of leaf morphogenesis is the precise control of cell proliferation. Modification or manipulation of this process may lead to leaves with different sizes and shapes, and changes in the organ margins and curvature. Many genes required for leaf development have been identified in Arabidopsis thaliana, and the mechanisms underlying leaf morphogenesis are starting to be unraveled at the molecular level.
Collapse
Affiliation(s)
- Ramiro E Rodriguez
- IBR (Instituto de Biología Molecular y Celular de Rosario) - CONICET/UNR, Rosario, Argentina
| | | | | |
Collapse
|
103
|
Nguyen HM, Schippers JHM, Gõni-Ramos O, Christoph MP, Dortay H, van der Hoorn RAL, Mueller-Roeber B. An upstream regulator of the 26S proteasome modulates organ size in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:25-36. [PMID: 23252408 DOI: 10.1111/tpj.12097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/06/2012] [Accepted: 12/12/2012] [Indexed: 05/18/2023]
Abstract
In both animal and plant kingdoms, body size is a fundamental but still poorly understood attribute of biological systems. Here we report that the Arabidopsis NAC transcription factor 'Regulator of Proteasomal Gene Expression' (RPX) controls leaf size by positively modulating proteasome activity. We further show that the cis-element recognized by RPX is evolutionarily conserved between higher plant species. Upon over-expression of RPX, plants exhibit reduced growth, which may be reversed by a low concentration of the pharmacological proteasome inhibitor MG132. These data suggest that the rate of protein turnover during growth is a critical parameter for determining final organ size.
Collapse
Affiliation(s)
- Hung M Nguyen
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Straße 24-25, Haus 20, 14476, Potsdam-Golm, Germany
| | | | | | | | | | | | | |
Collapse
|
104
|
Noir S, Bömer M, Takahashi N, Ishida T, Tsui TL, Balbi V, Shanahan H, Sugimoto K, Devoto A. Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. PLANT PHYSIOLOGY 2013; 161:1930-51. [PMID: 23439917 PMCID: PMC3613466 DOI: 10.1104/pp.113.214908] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phytohormones regulate plant growth from cell division to organ development. Jasmonates (JAs) are signaling molecules that have been implicated in stress-induced responses. However, they have also been shown to inhibit plant growth, but the mechanisms are not well understood. The effects of methyl jasmonate (MeJA) on leaf growth regulation were investigated in Arabidopsis (Arabidopsis thaliana) mutants altered in JA synthesis and perception, allene oxide synthase and coi1-16B (for coronatine insensitive1), respectively. We show that MeJA inhibits leaf growth through the JA receptor COI1 by reducing both cell number and size. Further investigations using flow cytometry analyses allowed us to evaluate ploidy levels and to monitor cell cycle progression in leaves and cotyledons of Arabidopsis and/or Nicotiana benthamiana at different stages of development. Additionally, a novel global transcription profiling analysis involving continuous treatment with MeJA was carried out to identify the molecular players whose expression is regulated during leaf development by this hormone and COI1. The results of these studies revealed that MeJA delays the switch from the mitotic cell cycle to the endoreduplication cycle, which accompanies cell expansion, in a COI1-dependent manner and inhibits the mitotic cycle itself, arresting cells in G1 phase prior to the S-phase transition. Significantly, we show that MeJA activates critical regulators of endoreduplication and affects the expression of key determinants of DNA replication. Our discoveries also suggest that MeJA may contribute to the maintenance of a cellular "stand-by mode" by keeping the expression of ribosomal genes at an elevated level. Finally, we propose a novel model for MeJA-regulated COI1-dependent leaf growth inhibition.
Collapse
|
105
|
Van Houtte H, López-Galvis L, Vandesteene L, Beeckman T, Van Dijck P. Redundant and non-redundant roles of the trehalose-6-phosphate phosphatases in leaf growth, root hair specification and energy-responses in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2013; 8:e23209. [PMID: 23299328 PMCID: PMC3676493 DOI: 10.4161/psb.23209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 05/05/2023]
Abstract
The Arabidopsis trehalose-6-phosphate phosphatase (TPP) gene family arose mainly from whole genome duplication events and consists of 10 genes (TPPA-J). All the members encode active TPP enzymes, possibly regulating the levels of trehalose-6-phosphate, an established signaling metabolite in plants. GUS activity studies revealed tissue-, cell- and stage-specific expression patterns for the different members of the TPP gene family. Here we list additional examples of the remarkable features of the TPP gene family. TPPA-J expression levels seem, in most of the cases, differently regulated in response to light, darkness and externally supplied sucrose. Disruption of the TPPB gene leads to Arabidopsis plants with larger leaves, which is the result of an increased cell number in the leaves. Arabidopsis TPPA and TPPG are preferentially expressed in atrichoblast cells. TPPA and TPPG might fulfill redundant roles during the differentiation process of root epidermal cells, since the tppa tppg double mutant displays a hairy root phenotype, while the respective single knockouts have a distribution of trichoblast and atrichoblast cells similar to the wild type. These new data portray redundant and non-redundant functions of the TPP proteins in regulatory pathways of Arabidopsis.
Collapse
Affiliation(s)
- Hilde Van Houtte
- Department of Molecular Microbiology; VIB; Leuven, Belgium
- Laboratory of Molecular Cell Biology; Institute of Botany and Microbiology; KU Leuven; Leuven, Belgium
| | - Lorena López-Galvis
- Department of Molecular Microbiology; VIB; Leuven, Belgium
- Laboratory of Molecular Cell Biology; Institute of Botany and Microbiology; KU Leuven; Leuven, Belgium
- Department of Plant Systems Biology; VIB; Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Ghent, Belgium
| | - Lies Vandesteene
- Department of Molecular Microbiology; VIB; Leuven, Belgium
- Laboratory of Molecular Cell Biology; Institute of Botany and Microbiology; KU Leuven; Leuven, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology; VIB; Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Ghent, Belgium
| | - Patrick Van Dijck
- Department of Molecular Microbiology; VIB; Leuven, Belgium
- Laboratory of Molecular Cell Biology; Institute of Botany and Microbiology; KU Leuven; Leuven, Belgium
| |
Collapse
|
106
|
Agulló-Antón MÁ, Olmos E, Pérez-Pérez JM, Acosta M. Evaluation of ploidy level and endoreduplication in carnation (Dianthus spp.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 201-202:1-11. [PMID: 23352398 DOI: 10.1016/j.plantsci.2012.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/26/2012] [Accepted: 11/19/2012] [Indexed: 05/12/2023]
Abstract
Carnation (Dianthus caryophyllus L.) is one of the fifth most important ornamental species worldwide. Many desirable plant characteristics, such as big size, adaptation under stress, and intra or interspecific hybridization capability, are dependent on plant ploidy level. We optimized a quick flow cytometry method for DNA content determination in wild and cultivated carnation samples that allowed a systematic evaluation of ploidy levels in Dianthus species. The DNA content of different carnation cultivars and wild Dianthus species was determined using internal reference standards. The precise characterization of ploidy, endoreduplication and C-value of D. caryophyllus 'Master' makes it a suitable standard cultivar for ploidy level determination in other carnation cultivars. Mixoploidy was rigorously characterized in different regions of several organs from D. caryophyllus 'Master', which combined with a detailed morphological description suggested some distinctive developmental traits of this species. Both the number of endoreduplication cycles and the proportion of endopolyploid cells were highly variable in the petals among the cultivars studied, differently to the values found in leaves. Our results suggest a positive correlation between ploidy, cell size and petal size in cultivated carnation, which should be considered in breeding programs aimed to obtain new varieties with large flowers.
Collapse
|
107
|
Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol Syst Biol 2013; 8:606. [PMID: 22929616 PMCID: PMC3435506 DOI: 10.1038/msb.2012.39] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/25/2012] [Indexed: 01/09/2023] Open
Abstract
Deep profiling of the transcriptome and proteome during leaf development reveals unexpected responses to water deficit, as well as a surprising lack of protein-level fluctuations during the day–night cycle, despite clear changes at the transcript level. ![]()
Transcript and protein variation patterns reflect the functional stages of the leaf. Protein and transcript levels correlate well during leaf development, with some notable exceptions. Diurnal transcript-level fluctuations are not matched by corresponding diurnal fluctuations in the detected proteome. Continuous reduced soil water content results in reduced leaf growth, but the plant adapts at molecular levels without showing a typical drought response.
Leaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response. Clustering of the protein and transcript data using a decision tree revealed different patterns in abundance changes across the growth stages and between end-of-day and end-of-night that are linked to specific biological functions. Correlations between protein and transcript levels depend on the time-of-day and also on protein localisation and function. Surprisingly, only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level.
Collapse
|
108
|
Nelissen H, Rymen B, Coppens F, Dhondt S, Fiorani F, Beemster GTS. Kinematic analysis of cell division in leaves of mono- and dicotyledonous species: a basis for understanding growth and developing refined molecular sampling strategies. Methods Mol Biol 2013; 959:247-64. [PMID: 23299681 DOI: 10.1007/978-1-62703-221-6_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cellular level processes cell division and cell expansion form a crucial level linking regulatory processes at the molecular level to whole plant growth rates and organ size and shape. With the rapid progress in molecular profiling, quantification of cellular activities becomes increasingly important to determine sampling strategies that are most informative to understand the molecular basis for organ and plant level phenotypes. Inversely, to understand phenotypes caused by genetic or environmental perturbations it is crucial to know how the cell division and expansion parameters are affected spatially and temporally. Kinematic analyses provide a powerful and rigorous mathematical framework to quantify cell division and cell expansion rates. In dicotyledonous leaves, these processes are primarily changing over time, resulting in division, expansion, and mature phases of development. Monocotyledonous leaves have a persistent spatial gradient, with an intercalary meristem where division takes place, an expansion zone, and a mature part of the leaf. Here we describe in detail how to perform kinematic analyses in leaves of the model species Arabidopsis thaliana and in the leaves of the monocotyledonous crop species Zea mays. These methods can readily be used and adapted to suit other species using relatively standard equipment present in most laboratories. Importantly, the obtained results can be used to design sampling techniques for proliferating, expanding and mature cells.
Collapse
Affiliation(s)
- Hilde Nelissen
- Department of Plant Systems Biology/Department of Plant Biotechnology and Bioinformatics, VIB/University of Ghent, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
109
|
Zhiponova MK, Vanhoutte I, Boudolf V, Betti C, Dhondt S, Coppens F, Mylle E, Maes S, González-García MP, Caño-Delgado AI, Inzé D, Beemster GTS, De Veylder L, Russinova E. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. THE NEW PHYTOLOGIST 2013; 197:490-502. [PMID: 23253334 DOI: 10.1111/nph.12036] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/07/2012] [Indexed: 05/03/2023]
Abstract
Brassinosteroid (BR) hormones control plant growth through acting on both cell expansion and division. Here, we examined the role of BRs in leaf growth using the Arabidopsis BR-deficient mutant constitutive photomorphogenesis and dwarfism (cpd). We show that the reduced size of cpd leaf blades is a result of a decrease in cell size and number, as well as in venation length and complexity. Kinematic growth analysis and tissue-specific marker gene expression revealed that the leaf phenotype of cpd is associated with a prolonged cell division phase and delayed differentiation. cpd-leaf-rescue experiments and leaf growth analysis of BR biosynthesis and signaling gain-of-function mutants showed that BR production and BR receptor-dependent signaling differentially control the balance between cell division and expansion in the leaf. Investigation of cell cycle markers in leaves of cpd revealed the accumulation of mitotic proteins independent of transcription. This correlated with an increase in cyclin-dependent kinase activity, suggesting a role for BRs in control of mitosis.
Collapse
Affiliation(s)
- Miroslava K Zhiponova
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Isabelle Vanhoutte
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Véronique Boudolf
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Camilla Betti
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Sara Maes
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Mary-Paz González-García
- Molecular Genetics Department, Centre for Research in Agricultural Genomics CSIC-IRTA-UAB, 08013, Barcelona, Spain
| | - Ana I Caño-Delgado
- Molecular Genetics Department, Centre for Research in Agricultural Genomics CSIC-IRTA-UAB, 08013, Barcelona, Spain
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | | | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
| |
Collapse
|
110
|
Lin L, Zhong SH, Cui XF, Li J, He ZH. Characterization of temperature-sensitive mutants reveals a role for receptor-like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:707-20. [PMID: 22805005 DOI: 10.1111/j.1365-313x.2012.05109.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature-sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub-2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) receptor-like kinase gene whose functions in leaf development have not been demonstrated. The sub-2 mutant displayed impaired blade development, asymmetric leaf shape and altered venation patterning under high ambient temperature (30°C), but these defects were less pronounced at normal growth temperature (22°C). Loss of SCM/SUB function results in reduced cell proliferation and abnormal cell expansion, as well as altered auxin patterning. SCM/SUB is initially expressed throughout leaf primordia and becomes restricted to the vascular cells, coinciding with its roles in early leaf patterning and venation formation. Furthermore, constitutive expression of the SCM/SUB gene also restricts organ growth by inhibiting the transition from cell proliferation to expansion. We propose the existence of a SCM/SUB-mediated developmental stage-specific signal for leaf patterning, and highlight the importance of the balance between cell proliferation and differentiation for leaf morphogenesis.
Collapse
Affiliation(s)
- Lin Lin
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
111
|
Shi H, Wang LL, Sun LT, Dong LL, Liu B, Chen LP. Cell division and endoreduplication play important roles in stem swelling of tuber mustard (Brassica juncea Coss. var. tumida Tsen et Lee). PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:956-963. [PMID: 22639957 DOI: 10.1111/j.1438-8677.2012.00580.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We investigated spatio-temporal variations in cell division and the occurrence of endoreduplication in cells of tuber mustard stems during development. Cells in the stem had 8C nuclei (C represents DNA content of a two haploid genome), since it is an allotetraploid species derived from diploid Brassica rapa (AA) and B. nigra (BB), thus indicating the occurrence of endoreduplication. Additionally, we observed a dynamic change of cell ploidy in different regions of the swollen stems, with a decrease in 4C proportion in P4-1 and a sharp increase in 8C cells that became the dominant cell type (86.33% at most) in the inner pith cells. Furthermore, cDNAs of 14 cell cycle genes and four cell expansion genes were cloned and their spatial transcripts analysed in order to understand their roles in stem development. The expression of most cell cycle genes peaked in regions of the outer pith (P2 or P3), some genes regulating S/G2 and G2/M (BjCDKB1;2, BjCYCB1;1 and BjCYCB1;2) significantly decrease in P5 and P6, while G1/S regulators (BjE2Fa, BjE2Fb and BjE2Fc) showed a relative high expression level in the inner pith (P5) where cells were undergoing endoreduplication. Coincidentally, BjXTH1and BjXTH2 were exclusively expressed in the endoreduplicated cells. Our results suggest that cells of outer pith regions (P2 and P3) mainly divide for cell proliferation, while cells of the inner pith expand through endoreduplication. Endoreduplication could trigger expression of BjXTH1 and BjXTH2 and thus function in cell expansion of the pith tissue.
Collapse
Affiliation(s)
- H Shi
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
112
|
Bonhomme L, Valot B, Tardieu F, Zivy M. Phosphoproteome dynamics upon changes in plant water status reveal early events associated with rapid growth adjustment in maize leaves. Mol Cell Proteomics 2012; 11:957-72. [PMID: 22787273 PMCID: PMC3494150 DOI: 10.1074/mcp.m111.015867] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 06/14/2012] [Indexed: 01/17/2023] Open
Abstract
Plant growth adjustment during water deficit is a crucial adaptive response. The rapid fine-tuned control achieved at the post-translational level is believed to be of considerable importance for regulating early changes in plant growth reprogramming. Aiming at a better understanding of early responses to contrasting plant water statuses, we carried out a survey of the protein phosphorylation events in the growing zone of maize leaves upon a range of water regimes. In this study, the impact of mild and severe water deficits were evaluated in comparison with constant optimal watering and with recovery periods lasting 5, 10, 20, 30, 45, and 60 min. Using four biological replicates per treatment and a robust quantitative phosphoproteomic methodology based on stable-isotope labeling, we identified 3664 unique phosphorylation sites on 2496 proteins. The abundance of nearly 1250 phosphorylated peptides was reproducibly quantified and profiled with high confidence among treatments. A total of 138 phosphopeptides displayed highly significant changes according to water regimes and enabled to identify specific patterns of response to changing plant water statuses. Further quantification of protein amounts emphasized that most phosphorylation changes did not reflect protein abundance variation. During water deficit and recovery, extensive changes in phosphorylation status occurred in critical regulators directly or indirectly involved in plant growth and development. These included proteins influencing epigenetic control, gene expression, cell cycle-dependent processes and phytohormone-mediated responses. Some of the changes depended on stress intensity whereas others depended on rehydration duration, including rapid recoveries that occurred as early as 5 or 10 mins after rewatering. By combining a physiological approach and a quantitative phosphoproteomic analysis, this work provides new insights into the in vivo early phosphorylation events triggered by rapid changes in plant water status, and their possible involvement in plant growth-related processes.
Collapse
Affiliation(s)
- Ludovic Bonhomme
- From the ‡INRA/University Paris-Sud/CNRS/AgroParisTech, UMR 0320/UMR 8120 Génétique Végétale, Gif-sur-Yvette, 91190, France
| | - Benoît Valot
- §INRA, Plateforme d'Analyse Protéomique de Paris Sud Ouest, PAPPSO, Gif-sur-Yvette, 91190, France
| | - François Tardieu
- ¶INRA, Laboratoire d'Ecophysiologiedes Plantes sous Stress Environnementaux, LEPSE, Montpellier, 34060, France
| | - Michel Zivy
- From the ‡INRA/University Paris-Sud/CNRS/AgroParisTech, UMR 0320/UMR 8120 Génétique Végétale, Gif-sur-Yvette, 91190, France
| |
Collapse
|
113
|
SAMBA, a plant-specific anaphase-promoting complex/cyclosome regulator is involved in early development and A-type cyclin stabilization. Proc Natl Acad Sci U S A 2012; 109:13853-8. [PMID: 22869741 DOI: 10.1073/pnas.1211418109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multiprotein E3 ubiquitin ligase involved in ubiquitin-dependent proteolysis of key cell cycle regulatory proteins, including the destruction of mitotic cyclins at the metaphase-to-anaphase transition. Despite its importance, the role of the APC/C in plant cells and the regulation of its activity during cell division remain poorly understood. Here, we describe the identification of a plant-specific negative regulator of the APC/C complex, designated SAMBA. In Arabidopsis thaliana, SAMBA is expressed during embryogenesis and early plant development and plays a key role in organ size control. Samba mutants produced larger seeds, leaves, and roots, which resulted from enlarged root and shoot apical meristems, and, additionally, they had a reduced fertility attributable to a hampered male gametogenesis. Inactivation of SAMBA stabilized A2-type cyclins during early development. Our data suggest that SAMBA regulates cell proliferation during early development by targeting CYCLIN A2 for APC/C-mediated proteolysis.
Collapse
|
114
|
Goh HH, Sloan J, Dorca-Fornell C, Fleming A. Inducible repression of multiple expansin genes leads to growth suppression during leaf development. PLANT PHYSIOLOGY 2012; 159:1759-70. [PMID: 22740614 PMCID: PMC3425211 DOI: 10.1104/pp.112.200881] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Expansins are cell wall proteins implicated in the control of plant growth via loosening of the extracellular matrix. They are encoded by a large gene family, and data linked to loss of single gene function to support a role of expansins in leaf growth remain limited. Here, we provide a quantitative growth analysis of transgenics containing an inducible artificial microRNA construct designed to down-regulate the expression of a number of expansin genes that an expression analysis indicated are expressed during the development of Arabidopsis (Arabidopsis thaliana) leaf 6. The results support the hypothesis that expansins are required for leaf growth and show that decreased expansin gene expression leads to a more marked repression of growth during the later stage of leaf development. In addition, a histological analysis of leaves in which expansin gene expression was suppressed indicates that, despite smaller leaves, mean cell size was increased. These data provide functional evidence for a role of expansins in leaf growth, indicate the importance of tissue/organ developmental context for the outcome of altered expansin gene expression, and highlight the separation of the outcome of expansin gene expression at the cellular and organ levels.
Collapse
Affiliation(s)
- Hoe-Han Goh
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
115
|
Vandoorne B, Mathieu AS, Van den Ende W, Vergauwen R, Périlleux C, Javaux M, Lutts S. Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4359-73. [PMID: 22577185 PMCID: PMC3421980 DOI: 10.1093/jxb/ers095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 05/07/2023]
Abstract
Root chicory (Cichorium intybus var. sativum) is a cash crop cultivated for inulin production in Western Europe. This plant can be exposed to severe water stress during the last 3 months of its 6-month growing period. The aim of this study was to quantify the effect of a progressive decline in water availability on plant growth, photosynthesis, and sugar metabolism and to determine its impact on inulin production. Water stress drastically decreased fresh and dry root weight, leaf number, total leaf area, and stomatal conductance. Stressed plants, however, increased their water-use efficiency and leaf soluble sugar concentration, decreased the shoot-to-root ratio and lowered their osmotic potential. Despite a decrease in photosynthetic pigments, the photosynthesis light phase remained unaffected under water stress. Water stress increased sucrose phosphate synthase activity in the leaves but not in the roots. Water stress inhibited sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1 fructosyltransferase after 19 weeks of culture and slightly increased fructan 1-exohydrolase activity. The root inulin concentration, expressed on a dry-weight basis, and the mean degree of polymerization of the inulin chain remained unaffected by water stress. Root chicory displayed resistance to water stress, but that resistance was obtained at the expense of growth, which in turn led to a significant decrease in inulin production.
Collapse
Affiliation(s)
- B. Vandoorne
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte L 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
- Earth and Life Institute – Environmental Sciences (ELI-E), Université catholique de Louvain, 2 (Bte 2) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - A.-S. Mathieu
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte L 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - W. Van den Ende
- Laboratory of Molecular Plant Physiology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - R. Vergauwen
- Laboratory of Molecular Plant Physiology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - C. Périlleux
- Laboratory of Plant Physiology, Department of Life Sciences, University of Liège, B22 Sart Tilman, 27 Boulevard du Rectorat, B-4000 Liège, Belgium
| | - M. Javaux
- Earth and Life Institute – Environmental Sciences (ELI-E), Université catholique de Louvain, 2 (Bte 2) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
- Agrosphere (IBG-3), Institut für Bio- und Geowissenschaften - Forschungszentrum Juelich GmBH, Juelich, Germany
| | - S. Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte L 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
116
|
Gonzalez N, Vanhaeren H, Inzé D. Leaf size control: complex coordination of cell division and expansion. TRENDS IN PLANT SCIENCE 2012; 17:332-40. [PMID: 22401845 DOI: 10.1016/j.tplants.2012.02.003] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 05/18/2023]
Abstract
Size control of multicellular organisms poses a longstanding biological question that has always fascinated scientists. Currently the question is far from being resolved because of the complexity of and interconnection between cell division and cell expansion, two different events necessary to form a mature organ. Because of the importance of plants for food and renewable energy sources, dissecting the genetic networks underlying plant growth and organ size is becoming a high priority in plant science worldwide. Here, we review the current understanding of the cellular and molecular mechanisms that govern leaf organ size and discuss future prospects on research aiming at understanding organ size regulation.
Collapse
|
117
|
Claeys H, Skirycz A, Maleux K, Inzé D. DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. PLANT PHYSIOLOGY 2012; 159:739-47. [PMID: 22535421 PMCID: PMC3375938 DOI: 10.1104/pp.112.195032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Drought is responsible for considerable yield losses in agriculture due to its detrimental effects on growth. Drought responses have been extensively studied, but mostly on the level of complete plants or mature tissues. However, stress responses were shown to be highly tissue and developmental stage specific, and dividing tissues have developed unique mechanisms to respond to stress. Previously, we studied the effects of osmotic stress on dividing leaf cells in Arabidopsis (Arabidopsis thaliana) and found that stress causes early mitotic exit, in which cells end their mitotic division and start endoreduplication earlier. In this study, we analyzed this phenomenon in more detail. Osmotic stress induces changes in gibberellin metabolism, resulting in the stabilization of DELLAs, which are responsible for mitotic exit and earlier onset of endoreduplication. Consequently, this response is absent in mutants with altered gibberellin levels or DELLA activity. Mitotic exit and onset of endoreduplication do not correlate with an up-regulation of known cell cycle inhibitors but are the result of reduced levels of DP-E2F-LIKE1/E2Fe and UV-B-INSENSITIVE4, both inhibitors of the developmental transition from mitosis to endoreduplication by modulating anaphase-promoting complex/cyclosome activity, which are down-regulated rapidly after DELLA stabilization. This work fits into an emerging view of DELLAs as regulators of cell division by regulating the transition to endoreduplication and differentiation.
Collapse
|
118
|
Quimbaya M, Vandepoele K, Raspé E, Matthijs M, Dhondt S, Beemster GTS, Berx G, De Veylder L. Identification of putative cancer genes through data integration and comparative genomics between plants and humans. Cell Mol Life Sci 2012; 69:2041-55. [PMID: 22218400 PMCID: PMC11114995 DOI: 10.1007/s00018-011-0909-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/11/2011] [Accepted: 12/13/2011] [Indexed: 11/27/2022]
Abstract
Coordination of cell division with growth and development is essential for the survival of organisms. Mistakes made during replication of genetic material can result in cell death, growth defects, or cancer. Because of the essential role of the molecular machinery that controls DNA replication and mitosis during development, its high degree of conservation among organisms is not surprising. Mammalian cell cycle genes have orthologues in plants, and vice versa. However, besides the many known and characterized proliferation genes, still undiscovered regulatory genes are expected to exist with conserved functions in plants and humans. Starting from genome-wide Arabidopsis thaliana microarray data, an integrative strategy based on coexpression, functional enrichment analysis, and cis-regulatory element annotation was combined with a comparative genomics approach between plants and humans to detect conserved cell cycle genes involved in DNA replication and/or DNA repair. With this systemic strategy, a set of 339 genes was identified as potentially conserved proliferation genes. Experimental analysis confirmed that 20 out of 40 selected genes had an impact on plant cell proliferation; likewise, an evolutionarily conserved role in cell division was corroborated for two human orthologues. Moreover, association analysis integrating Homo sapiens gene expression data with clinical information revealed that, for 45 genes, altered transcript levels and relapse risk clearly correlated. Our results illustrate how a systematic exploration of the A. thaliana genome can contribute to the experimental identification of new cell cycle regulators that might represent novel oncogenes or/and tumor suppressors.
Collapse
Affiliation(s)
- Mauricio Quimbaya
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, Technologiepark 927, 9052 Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Eric Raspé
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, Technologiepark 927, 9052 Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Michiel Matthijs
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Stijn Dhondt
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Gerrit T. S. Beemster
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, Technologiepark 927, 9052 Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| |
Collapse
|
119
|
Abstract
The size of plant organs, such as leaves and flowers, is determined by an interaction of genotype and environmental influences. Organ growth occurs through the two successive processes of cell proliferation followed by cell expansion. A number of genes influencing either or both of these processes and thus contributing to the control of final organ size have been identified in the last decade. Although the overall picture of the genetic regulation of organ size remains fragmentary, two transcription factor/microRNA-based genetic pathways are emerging in the control of cell proliferation. However, despite this progress, fundamental questions remain unanswered, such as the problem of how the size of a growing organ could be monitored to determine the appropriate time for terminating growth. While genetic analysis will undoubtedly continue to advance our knowledge about size control in plants, a deeper understanding of this and other basic questions will require including advanced live-imaging and mathematical modeling, as impressively demonstrated by some recent examples. This should ultimately allow the comparison of the mechanisms underlying size control in plants and in animals to extract common principles and lineage-specific solutions.
Collapse
Affiliation(s)
- Anahid E Powell
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
120
|
Ruts T, Matsubara S, Wiese-Klinkenberg A, Walter A. Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response? JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3339-51. [PMID: 22223810 DOI: 10.1093/jxb/err334] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants are sessile organisms forced to adjust to their surrounding environment. In a single plant the photoautotrophic shoot is exposed to pronounced environmental variations recurring in a day-night 24 h (diel) cycle, whereas the heterotrophic root grows in a temporally less fluctuating environment. The contrasting habitats of shoots and roots are reflected in different diel growth patterns and their responsiveness to environmental stimuli. Differences between diel leaf growth patterns of mono- and dicotyledonous plants correspond to their different organization and placement of growth zones. In monocots, heterotrophic growth zones are organized linearly and protected from the environment by sheaths of older leaves. In contrast, photosynthetically active growth zones of dicot leaves are exposed directly to the environment and show characteristic, species-specific diel growth patterns. It is hypothesized that the different exposure to environmental constraints and simultaneously the sink/source status of the growing organs may have induced distinct endogenous control of diel growth patterns in roots and leaves of monocot and dicot plants. Confronted by strong temporal fluctuations in environment, the circadian clock may facilitate robust intrinsic control of leaf growth in dicot plants.
Collapse
Affiliation(s)
- Tom Ruts
- Forschungszentrum Jülich, IBG-2: Plant Sciences, Wilhelm-Johnen-Strasse, Jülich, Germany
| | | | | | | |
Collapse
|
121
|
Combined linkage and association mapping reveals CYCD5;1 as a quantitative trait gene for endoreduplication in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:4678-83. [PMID: 22392991 DOI: 10.1073/pnas.1120811109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endoreduplication is the process where a cell replicates its genome without mitosis and cytokinesis, often followed by cell differentiation. This alternative cell cycle results in various levels of endoploidy, reaching 4× or higher one haploid set of chromosomes. Endoreduplication is found in animals and is widespread in plants, where it plays a major role in cellular differentiation and plant development. Here, we show that variation in endoreduplication between Arabidopsis thaliana accessions Columbia-0 and Kashmir is controlled by two major quantitative trait loci, ENDO-1 and ENDO-2. A local candidate gene association analysis in a set of 87 accessions, combined with expression analysis, identified CYCD5;1 as the most likely candidate gene underlying ENDO-2, operating as a rate-determining factor of endoreduplication. In accordance, both the overexpression and silencing of CYCD5;1 were effective in changing DNA ploidy levels, confirming CYCD5;1 to be a previously undescribed quantitative trait gene underlying endoreduplication in Arabidopsis.
Collapse
|
122
|
Hunter CT, Kirienko DH, Sylvester AW, Peter GF, McCarty DR, Koch KE. Cellulose Synthase-Like D1 is integral to normal cell division, expansion, and leaf development in maize. PLANT PHYSIOLOGY 2012; 158:708-24. [PMID: 22123901 PMCID: PMC3271761 DOI: 10.1104/pp.111.188466] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/26/2011] [Indexed: 05/03/2023]
Abstract
The Cellulose Synthase-Like D (CslD) genes have important, although still poorly defined, roles in cell wall formation. Here, we show an unexpected involvement of CslD1 from maize (Zea mays) in cell division. Both division and expansion were altered in the narrow-organ and warty phenotypes of the csld1 mutants. Leaf width was reduced by 35%, due mainly to a 47% drop in the number of cell files across the blade. Width of other organs was also proportionally reduced. In leaf epidermis, the deficiency in lateral divisions was only partially compensated by a modest, uniform increase in cell width. Localized clusters of misdivided epidermal cells also led to the formation of warty lesions, with cell clusters bulging from the epidermal layer, and some cells expanding to volumes 75-fold greater than normal. The decreased cell divisions and localized epidermal expansions were not associated with detectable changes in the cell wall composition of csld1 leaf blades or epidermal peels, yet a greater abundance of thin, dense walls was indicated by high-resolution x-ray tomography of stems. Cell-level defects leading to wart formation were traced to sites of active cell division and expansion at the bases of leaf blades, where cytokinesis and cross-wall formation were disrupted. Flow cytometry confirmed a greater frequency of polyploid cells in basal zones of leaf blades, consistent with the disruption of cytokinesis and/or the cell cycle in csld1 mutants. Collectively, these data indicate a previously unrecognized role for CSLD activity in plant cell division, especially during early phases of cross-wall formation.
Collapse
Affiliation(s)
- Charles T Hunter
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | |
Collapse
|
123
|
Petrovská B, Cenklová V, Pochylová Ž, Kourová H, Doskočilová A, Plíhal O, Binarová L, Binarová P. Plant Aurora kinases play a role in maintenance of primary meristems and control of endoreduplication. THE NEW PHYTOLOGIST 2012; 193:590-604. [PMID: 22150830 DOI: 10.1111/j.1469-8137.2011.03989.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• The conserved family of Aurora kinases has multiple functions during mitosis. The roles of plant Aurora kinases have been characterized using inhibitor treatments. • We down-regulated Aurora kinases in Arabidopsis thaliana using RNA interference (RNAi). We carried out a detailed phenotypic analysis of Aurora RNAi plants, biochemical and microscopic studies of AtAurora1 kinase together with AtTPX2 (targeting protein for Xklp2) and γ-tubulin. • Cell division defects were observed in plants with reduced expression of Aurora kinases. Furthermore, the maintenance of primary meristems was compromised and RNAi seedlings entered endoreduplication prematurely. AtAurora1, its activator AtTPX2, and γ-tubulin were associated with microtubules in vitro; they were attached to regrowing kinetochore microtubules and colocalized on spindle microtubules and with a subset of early phragmoplast microtubules. Only the AtAurora1 kinase was translocated to the area of the cell plate. • RNAi silencing of Aurora kinases showed that, in addition to their function in regulating mitosis, the kinases are required for maintaining meristematic activity and controlling the switch from meristematic cell proliferation to differentiation and endoreduplication. The colocalization and co-fractionation of AtAurora1 with AtTPX2, and γ-tubulin on microtubules in a cell cycle-specific manner suggests that AtAurora1 kinase may function to phosphorylate substrates that are critical to the spatiotemporal regulation of acentrosomal microtubule formation and organization.
Collapse
Affiliation(s)
- Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, v.v.i., Sokolovská 6, Olomouc 772 00, Czech Republic
| | - Věra Cenklová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Žaneta Pochylová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Hana Kourová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Anna Doskočilová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Ondřej Plíhal
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Lenka Binarová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Pavla Binarová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
124
|
Andriankaja M, Dhondt S, De Bodt S, Vanhaeren H, Coppens F, De Milde L, Mühlenbock P, Skirycz A, Gonzalez N, Beemster GTS, Inzé D. Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev Cell 2012; 22:64-78. [PMID: 22227310 DOI: 10.1016/j.devcel.2011.11.011] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 09/08/2011] [Accepted: 11/23/2011] [Indexed: 01/05/2023]
Abstract
Early leaf growth is sustained by cell proliferation and subsequent cell expansion that initiates at the leaf tip and proceeds in a basipetal direction. Using detailed kinematic and gene expression studies to map these stages during early development of the third leaf of Arabidopsis thaliana, we showed that the cell-cycle arrest front did not progress gradually down the leaf, but rather was established and abolished abruptly. Interestingly, leaf greening and stomatal patterning followed a similar basipetal pattern, but proliferative pavement cell and formative meristemoid divisions were uncoordinated in respect to onset and persistence. Genes differentially expressed during the transition from cell proliferation to expansion were enriched in genes involved in cell cycle, photosynthesis, and chloroplast retrograde signaling. Proliferating primordia treated with norflurazon, a chemical inhibitor of retrograde signaling, showed inhibited onset of cell expansion. Hence, differentiation of the photosynthetic machinery is important for regulating the exit from proliferation.
Collapse
|
125
|
Heyman J, Van den Daele H, De Wit K, Boudolf V, Berckmans B, Verkest A, Kamei CLA, De Jaeger G, Koncz C, De Veylder L. Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome. THE PLANT CELL 2011; 23:4394-410. [PMID: 22167059 PMCID: PMC3269873 DOI: 10.1105/tpc.111.091793] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that regulates progression through the cell cycle by marking key cell division proteins for destruction. To ensure correct cell cycle progression, accurate timing of APC/C activity is important, which is obtained through its association with both activating and inhibitory subunits. However, although the APC/C is highly conserved among eukaryotes, no APC/C inhibitors are known in plants. Recently, we have identified ULTRAVIOLET-B-INSENSITIVE4 (UVI4) as a plant-specific component of the APC/C. Here, we demonstrate that UVI4 uses conserved APC/C interaction motifs to counteract the activity of the CELL CYCLE SWITCH52 A1 (CCS52A1) activator subunit, inhibiting the turnover of the A-type cyclin CYCA2;3. UVI4 is expressed in an S phase-dependent fashion, likely through the action of E2F transcription factors. Correspondingly, uvi4 mutant plants failed to accumulate CYCA2;3 during the S phase and prematurely exited the cell cycle, triggering the onset of the endocycle. We conclude that UVI4 regulates the temporal inactivation of APC/C during DNA replication, allowing CYCA2;3 to accumulate above the level required for entering mitosis, and thereby regulates the meristem size and plant growth rate.
Collapse
Affiliation(s)
- Jefri Heyman
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Hilde Van den Daele
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Kevin De Wit
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Véronique Boudolf
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Barbara Berckmans
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Aurine Verkest
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Claire Lessa Alvim Kamei
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
| | - Csaba Koncz
- Max-Planck-Institut für Züchtungsforschung, D–50829 Cologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, H–6723 Szeged, Hungary
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B–9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B–9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
126
|
Irigoyen S, Karlsson PM, Kuruvilla J, Spetea C, Versaw WK. The sink-specific plastidic phosphate transporter PHT4;2 influences starch accumulation and leaf size in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1765-77. [PMID: 21960139 PMCID: PMC3327177 DOI: 10.1104/pp.111.181925] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/29/2011] [Indexed: 05/03/2023]
Abstract
Nonphotosynthetic plastids are important sites for the biosynthesis of starch, fatty acids, and amino acids. The uptake and subsequent use of cytosolic ATP to fuel these and other anabolic processes would lead to the accumulation of inorganic phosphate (Pi) if not balanced by a Pi export activity. However, the identity of the transporter(s) responsible for Pi export is unclear. The plastid-localized Pi transporter PHT4;2 of Arabidopsis (Arabidopsis thaliana) is expressed in multiple sink organs but is nearly restricted to roots during vegetative growth. We identified and used pht4;2 null mutants to confirm that PHT4;2 contributes to Pi transport in isolated root plastids. Starch accumulation was limited in pht4;2 roots, which is consistent with the inhibition of starch synthesis by excess Pi as a result of a defect in Pi export. Reduced starch accumulation in leaves and altered expression patterns for starch synthesis genes and other plastid transporter genes suggest metabolic adaptation to the defect in roots. Moreover, pht4;2 rosettes, but not roots, were significantly larger than those of the wild type, with 40% greater leaf area and twice the biomass when plants were grown with a short (8-h) photoperiod. Increased cell proliferation accounted for the larger leaf size and biomass, as no changes were detected in mature cell size, specific leaf area, or relative photosynthetic electron transport activity. These data suggest novel signaling between roots and leaves that contributes to the regulation of leaf size.
Collapse
Affiliation(s)
| | | | | | | | - Wayne K. Versaw
- Department of Biology and Interdepartmental Program in Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas 77843 (S.I., W.K.V.); Division of Molecular Genetics, Department of Physics, Chemistry, and Biology, Linköping University, 581 83 Linkoeping, Sweden (P.M.K., J.K., C.S.); Department of Plant and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden (P.M.K., C.S.)
| |
Collapse
|
127
|
Iwata E, Ikeda S, Matsunaga S, Kurata M, Yoshioka Y, Criqui MC, Genschik P, Ito M. GIGAS CELL1, a novel negative regulator of the anaphase-promoting complex/cyclosome, is required for proper mitotic progression and cell fate determination in Arabidopsis. THE PLANT CELL 2011; 23:4382-93. [PMID: 22167058 PMCID: PMC3269872 DOI: 10.1105/tpc.111.092049] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Increased cellular ploidy is widespread during developmental processes of multicellular organisms, especially in plants. Elevated ploidy levels are typically achieved either by endoreplication or endomitosis, which are often regarded as modified cell cycles that lack an M phase either entirely or partially. We identified GIGAS CELL1 (GIG1)/OMISSION OF SECOND DIVISION1 (OSD1) and established that mutation of this gene triggered ectopic endomitosis. On the other hand, it has been reported that a paralog of GIG1/OSD1, UV-INSENSITIVE4 (UVI4), negatively regulates endoreplication onset in Arabidopsis thaliana. We showed that GIG1/OSD1 and UVI4 encode novel plant-specific inhibitors of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. These proteins physically interact with APC/C activators, CDC20/FZY and CDH1/FZR, in yeast two-hybrid assays. Overexpression of CDC20.1 and CCS52B/FZR3 differentially promoted ectopic endomitosis in gig1/osd1 and premature occurrence of endoreplication in uvi4. Our data suggest that GIG1/OSD1 and UVI4 may prevent an unscheduled increase in cellular ploidy by preferentially inhibiting APC/C(CDC20) and APC/C(FZR), respectively. Generation of cells with a mixed identity in gig1/osd1 further suggested that the APC/C may have an unexpected role for cell fate determination in addition to its role for proper mitotic progression.
Collapse
Affiliation(s)
- Eriko Iwata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Saki Ikeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Tokyo University of Science, Noda Chiba 278-8510, Japan
| | - Mariko Kurata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yasushi Yoshioka
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Marie-Claire Criqui
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, 67084 Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, 67084 Strasbourg, France
| | - Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Address correspondence to
| |
Collapse
|
128
|
Keller CP, Grundstad ML, Evanoff MA, Keith JD, Lentz DS, Wagner SL, Culler AH, Cohen JD. Auxin-induced leaf blade expansion in Arabidopsis requires both wounding and detachment. PLANT SIGNALING & BEHAVIOR 2011; 6:1997-2007. [PMID: 22101347 PMCID: PMC3337194 DOI: 10.4161/psb.6.12.18026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Elevation of leaf auxin (indole-3-acetic acid; IAA) levels in intact plants has been consistently found to inhibit leaf expansion whereas excised leaf strips grow faster when treated with IAA. Here we test two hypothetical explanations for this difference in growth sensitivity to IAA by expanding leaf tissues in vivo versus in vitro. We asked if, in Arabidopsis, IAA-induced growth of excised leaf strips results from the wounding required to excise tissue and/or results from detachment from the plant and thus loss of some shoot or root derived growth controlling factors. We tested the effect of a range of exogenous IAA concentrations on the growth of intact attached, wounded attached, detached intact, detached wounded as well as excised leaf strips. After 24 h, the growth of intact attached, wounded attached, and detached intact leaves was inhibited by IAA concentrations as little as 1 µM in some experiments. Growth of detached wounded leaves and leaf strips was induced by IAA concentrations as low as 10 µM. Stress, in the form of high light, increased the growth response to IAA by leaf strips and reduced growth inhibition response by intact detached leaves. Endogenous free IAA content of intact attached leaves and excised leaf strips was found not to change over the course of 24 h. Together these results indicate growth induction of Arabidopsis leaf blade tissue by IAA requires both substantial wounding as well as detachment from the plant and suggests in vivo that IAA induces parallel pathways leading to growth inhibition.
Collapse
|
129
|
Pedersen DS, Coppens F, Ma L, Antosch M, Marktl B, Merkle T, Beemster GTS, Houben A, Grasser KD. The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes. THE NEW PHYTOLOGIST 2011; 192:577-89. [PMID: 21781122 DOI: 10.1111/j.1469-8137.2011.03828.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
• The high mobility group (HMG)-box represents a DNA-binding domain that is found in various eukaryotic DNA-interacting proteins. Proteins that contain three copies of the HMG-box domain, termed 3 × HMG-box proteins, appear to be specific to plants. The Arabidopsis genome encodes two 3 × HMG-box proteins that were studied here. • DNA interactions were examined using electrophoretic mobility shift assays, whereas expression, subcellular localization and chromosome association were mainly analysed by different types of fluorescence microscopy. • The 3 × HMG-box proteins bind structure specifically to DNA, display DNA bending activity and, in addition to the three HMG-box domains, the basic N-terminal domain contributes to DNA binding. The expression of the two Arabidopsis genes encoding 3 × HMG-box proteins is linked to cell proliferation. In synchronized cells, expression is cell cycle dependent and peaks in cells undergoing mitosis. 3 × HMG-box proteins are excluded from the nuclei of interphase cells and localize to the cytosol, but, during mitosis, they associate with condensed chromosomes. The 3 × HMG-box2 protein generally associates with mitotic chromosomes, while 3 × HMG-box1 is detected specifically at 45S rDNA loci. • In addition to mitotic chromosomes the 3 × HMG-box proteins associate with meiotic chromosomes, suggesting that they are involved in a general process of chromosome function related to cell division, such as chromosome condensation and/or segregation.
Collapse
Affiliation(s)
- Dorthe S Pedersen
- Cell Biology and Plant Biochemistry, Regensburg University, Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Berckmans B, Lammens T, Van Den Daele H, Magyar Z, Bögre L, De Veylder L. Light-dependent regulation of DEL1 is determined by the antagonistic action of E2Fb and E2Fc. PLANT PHYSIOLOGY 2011; 157:1440-51. [PMID: 21908689 PMCID: PMC3252145 DOI: 10.1104/pp.111.183384] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Endoreduplication represents a variation on the cell cycle in which multiple rounds of DNA replication occur without subsequent chromosome separation and cytokinesis, thereby increasing the cellular DNA content. It is known that the DNA ploidy level of cells is controlled by external stimuli such as light; however, limited knowledge is available on how environmental signals regulate the endoreduplication cycle at the molecular level. Previously, we had demonstrated that the conversion from a mitotic cell cycle into an endoreduplication cycle is controlled by the atypical E2F transcription factor, DP-E2F-LIKE1 (DEL1), that represses the endocycle onset. Here, the Arabidopsis (Arabidopsis thaliana) DEL1 gene was identified as a transcriptional target of the classical E2Fb and E2Fc transcription factors that antagonistically control its transcript levels through competition for a single E2F cis-acting binding site. In accordance with the reported opposite effects of light on the protein levels of E2Fb and E2Fc, DEL1 transcription depended on the light regime. Strikingly, modified DEL1 expression levels uncoupled the link between light and endoreduplication in hypocotyls, implying that DEL1 acts as a regulatory connection between endocycle control and the photomorphogenic response.
Collapse
|
131
|
Eloy NB, de Freitas Lima M, Van Damme D, Vanhaeren H, Gonzalez N, De Milde L, Hemerly AS, Beemster GTS, Inzé D, Ferreira PCG. The APC/C subunit 10 plays an essential role in cell proliferation during leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:351-63. [PMID: 21711400 DOI: 10.1111/j.1365-313x.2011.04691.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The largest E3 ubiquitin-ligase complex, known as anaphase-promoting complex/cyclosome (APC/C), regulates the proteolysis of cell cycle regulators such as CYCLIN B and SECURIN that are essential for sister-chromatid separation and exit from mitosis. Despite its importance, the role of APC/C in plant cells and the regulation of its activity during cell division remain poorly understood. Here, the Arabidopsis thaliana APC/C subunit APC10 was characterized and shown to functionally complement an apc10 yeast mutant. The APC10 protein was located in specific nuclear bodies, most probably resulting from its association with the proteasome complex. An apc10 Arabidopsis knockout mutant strongly impaired female gametogenesis. Surprisingly, constitutive overexpression of APC10 enhanced leaf size. Through kinematic analysis, the increased leaf size was found to be due to enhanced rates of cell division during the early stages of leaf development and, at the molecular level, by increased APC/C activity as measured by an amplification of the proteolysis rate of the mitotic cyclin, CYCB1;1.
Collapse
Affiliation(s)
- Nubia B Eloy
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Asl LK, Dhondt S, Boudolf V, Beemster GT, Beeckman T, Inzé D, Govaerts W, De Veylder L. Model-based analysis of Arabidopsis leaf epidermal cells reveals distinct division and expansion patterns for pavement and guard cells. PLANT PHYSIOLOGY 2011; 156:2172-83. [PMID: 21693673 PMCID: PMC3149966 DOI: 10.1104/pp.111.181180] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/21/2011] [Indexed: 05/18/2023]
Abstract
To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery.
Collapse
|
133
|
Tisné S, Barbier F, Granier C. The ERECTA gene controls spatial and temporal patterns of epidermal cell number and size in successive developing leaves of Arabidopsis thaliana. ANNALS OF BOTANY 2011; 108:159-68. [PMID: 21586531 PMCID: PMC3119605 DOI: 10.1093/aob/mcr091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/02/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS ERECTA has been identified as a pleiotropic regulator of developmental and physiological processes in Arabidopsis thaliana. Previous work demonstrated a role for ERECTA in the control of compensation between epidermal cell expansion and division in leaves. METHODS In this work, spatial and temporal analyses of epidermal cell division and expansion were performed on successive developing vegetative leaves of Arabidopsis thaliana in both ERECTA and erecta lines, LER and Ler, respectively, to understand how the ERECTA gene regulates compensation between these two processes. KEY RESULTS The loss of ERECTA function leads to a low cell expansion rate in all zones of a leaf and in all successive leaves of a plant. This low cell expansion rate is counterbalanced by an increase in the duration of cell division. As a consequence, the ERECTA mutation eliminates the tip to base cellular gradient generally observed in the leaf epidermis and also flattens the heteroblastic changes in epidermal cell area and number within a rosette. Ablation of floral buds eliminates the heteroblastic changes in cellular patterns in an ERECTA-dependent manner. CONCLUSIONS The results provide a detailed description of changes in leaf growth dynamics and cellular variables in both LER and Ler. Altogether they suggest that ERECTA influences leaf cellular development in relation to whole plant ontogeny.
Collapse
Affiliation(s)
- Sébastien Tisné
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA-AGRO-M, UMR 759, 2 Place Viala, 34060 Montpellier Cedex 1, France
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - François Barbier
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA-AGRO-M, UMR 759, 2 Place Viala, 34060 Montpellier Cedex 1, France
- Agrocampus Ouest, Centre d'Angers, UMR SAGAH, IFR QUASAV 149, 2 rue le Nôtre, 49045 Angers Cedex, France
| | - Christine Granier
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA-AGRO-M, UMR 759, 2 Place Viala, 34060 Montpellier Cedex 1, France
- For correspondence. E-mail
| |
Collapse
|
134
|
Skirycz A, Claeys H, De Bodt S, Oikawa A, Shinoda S, Andriankaja M, Maleux K, Eloy NB, Coppens F, Yoo SD, Saito K, Inzé D. Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. THE PLANT CELL 2011; 23:1876-88. [PMID: 21558544 PMCID: PMC3123952 DOI: 10.1105/tpc.111.084160] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/25/2011] [Accepted: 04/13/2011] [Indexed: 05/18/2023]
Abstract
Despite its relevance for agricultural production, environmental stress-induced growth inhibition, which is responsible for significant yield reductions, is only poorly understood. Here, we investigated the molecular mechanisms underlying cell cycle inhibition in young proliferating leaves of the model plant Arabidopsis thaliana when subjected to mild osmotic stress. A detailed cellular analysis demonstrated that as soon as osmotic stress is sensed, cell cycle progression rapidly arrests, but cells are kept in a latent ambivalent state allowing a quick recovery (pause). Remarkably, cell cycle arrest coincides with an increase in 1-aminocyclopropane-1-carboxylate levels and the activation of ethylene signaling. Our work showed that ethylene acts on cell cycle progression via inhibition of cyclin-dependent kinase A activity independently of EIN3 transcriptional control. When the stress persists, cells exit the mitotic cell cycle and initiate the differentiation process (stop). This stop is reflected by early endoreduplication onset, in a process independent of ethylene. Nonetheless, the potential to partially recover the decreased cell numbers remains due to the activity of meristemoids. Together, these data present a conceptual framework to understand how environmental stress reduces plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Hannes Claeys
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Stefanie De Bodt
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Akira Oikawa
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shoko Shinoda
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Megan Andriankaja
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Katrien Maleux
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Nubia Barbosa Eloy
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Sang-Dong Yoo
- Department of Biological Science, Sungkyunkwan University, Suwon 110-645, Korea
| | - Kazuki Saito
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
135
|
Vercruyssen L, Gonzalez N, Werner T, Schmülling T, Inzé D. Combining enhanced root and shoot growth reveals cross talk between pathways that control plant organ size in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1339-52. [PMID: 21205622 PMCID: PMC3046590 DOI: 10.1104/pp.110.167049] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/31/2010] [Indexed: 05/19/2023]
Abstract
Functionally distinct Arabidopsis (Arabidopsis thaliana) genes that positively affect root or shoot growth when ectopically expressed were combined to explore the feasibility of enhanced biomass production. Enhanced root growth resulting from cytokinin deficiency was obtained by overexpressing CYTOKININ OXIDASE/DEHYDROGENASE3 (CKX3) under the control of the root-specific PYK10 promoter. Plants harboring the PYK10-CKX3 construct were crossed with four different transgenic lines showing enhanced leaf growth. For all combinations, the phenotypic traits of the individual lines could be combined, resulting in an overall growth increase. Unexpectedly, three out of four combinations had more than additive effects. Both leaf and root growth were synergistically enhanced in plants ectopically expressing CKX3 and BRASSINOSTEROID INSENSITIVE1, indicating cross talk between cytokinins and brassinosteroids. In agreement, treatment of PYK10-CKX3 plants with brassinolide resulted in a dramatic increase in lateral root growth that could not be observed in wild-type plants. Coexpression of CKX3 and the GROWTH-REGULATING FACTOR5 (GRF5) antagonized the effects of GRF5 overexpression, revealing an interplay between cytokinins and GRF5 during leaf cell proliferation. The combined overexpression of CKX3 and GIBBERELLIN 20-OXIDASE1 led to a synergistic increase in leaf growth, suggesting an antagonistic growth control by cytokinins and gibberellins. Only additive effects on root and shoot growth were visible in plants ectopically expressing both CKX3 and ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1, hinting at an independent action mode. Our results show new interactions and contribute to the molecular and physiological understanding of biomass production at the whole plant level.
Collapse
|
136
|
Malladi A, Johnson LK. Expression profiling of cell cycle genes reveals key facilitators of cell production during carpel development, fruit set, and fruit growth in apple (Malusxdomestica Borkh.). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:205-19. [PMID: 20732881 PMCID: PMC2993910 DOI: 10.1093/jxb/erq258] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/01/2010] [Accepted: 08/02/2010] [Indexed: 05/19/2023]
Abstract
Cell production is an essential facilitator of fruit growth and development. Cell production during carpel/floral-tube growth, fruit set, and fruit growth, and its regulation by cell cycle genes were investigated in apple (Malus×domestica Borkh.). Cell production was inhibited during late carpel/floral-tube development, resulting in growth arrest before bloom. Fruit set re-activated cell production between 8 d and 11 d after full bloom (DAFB) and triggered fruit growth. The early phase of fruit growth involved rapid cell production followed by exit from cell proliferation at ∼24 DAFB. Seventy-one cell cycle genes were identified, and expression of 59 genes was investigated using quantitative RT-PCR. Changes in expression of 19 genes were consistently associated with transitions in cell production during carpel/floral-tube growth, fruit set, and fruit growth. Fourteen genes, including B-type cyclin-dependent kinases (CDKs) and A2-, B1-, and B2-type cyclins, were positively associated with cell production, suggesting that availability of G2/M phase regulators of the cell cycle is limiting for cell proliferation. Enhanced expression of five genes including that of the putative CDK inhibitors, MdKRP4 and MdKRP5, was associated with reduced cell production. Exit from cell proliferation at G0/G1 during fruit growth was facilitated by multiple mechanisms including down-regulation of putative regulators of G1/S and G2/M phase progression and up-regulation of KRP genes. Interestingly, two CDKA genes and several CDK-activating factors were up-regulated during this period, suggesting functions for these genes in mediating exit from cell proliferation at G0/G1. Together, the data indicate that cell cycle genes are important facilitators of cell production during apple fruit development.
Collapse
Affiliation(s)
- Anish Malladi
- Department of Horticulture, 1111 Miller Plant Sciences, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
137
|
Horiguchi G, Tsukaya H. Organ size regulation in plants: insights from compensation. FRONTIERS IN PLANT SCIENCE 2011; 2:24. [PMID: 22639585 PMCID: PMC3355714 DOI: 10.3389/fpls.2011.00024] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 06/15/2011] [Indexed: 05/18/2023]
Abstract
The regulation of organ size in higher organisms is a fundamental issue in developmental biology. In flowering plants, a phenomenon called "compensation" has been observed where a cell proliferation defect in developing leaf primordia triggers excessive cell expansion. As a result, final leaf size is not significantly reduced compared to that expected from the reduction in leaf cell numbers. Recent genetic studies have revealed several key features of the compensation phenomenon. Compensation is induced either cell autonomously or non-cell autonomously depending on the trigger that impairs cell proliferation; a certain type of compensation is induced only when cell proliferation is impaired beyond a threshold level. Excessive cell expansion is achieved by either an increased cell expansion rate or a prolonged period of cell expansion via genetic pathways that are also required for normal cell expansion. These results indicate that cell proliferation and cell expansion are coordinated through multiple pathways during leaf size determination. Further classification of compensation pathways and their characterization at the molecular level will provide a deeper understanding of organ size regulation.
Collapse
Affiliation(s)
- Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo UniversityTokyo, Japan
- *Correspondence: Gorou Horiguchi, Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan. e-mail:
| | | |
Collapse
|
138
|
Dhondt S, Coppens F, De Winter F, Swarup K, Merks RM, Inzé D, Bennett MJ, Beemster GT. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. PLANT PHYSIOLOGY 2010; 154:1183-95. [PMID: 20739610 PMCID: PMC2971598 DOI: 10.1104/pp.110.158857] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/21/2010] [Indexed: 05/20/2023]
Abstract
SHORT-ROOT (SHR) and SCARECROW (SCR) are required for stem cell maintenance in the Arabidopsis (Arabidopsis thaliana) root meristem, ensuring its indeterminate growth. Mutation of SHR and SCR genes results in disorganization of the quiescent center and loss of stem cell activity, resulting in the cessation of root growth. This paper reports on the role of SHR and SCR in the development of leaves, which, in contrast to the root, have a determinate growth pattern and lack a persistent stem cell niche. Our results demonstrate that inhibition of leaf growth in shr and scr mutants is not a secondary effect of the compromised root development but is caused by an effect on cell division in the leaves: a reduced cell division rate and early exit of the proliferation phase. Consistent with the observed cell division phenotype, the expression of SHR and SCR genes in leaves is closely associated with cell division activity in most cell types. The increased cell cycle duration is due to a prolonged S-phase duration, which is mediated by up-regulation of cell cycle inhibitors known to restrain the activity of the transcription factor, E2Fa. Therefore, we conclude that, in contrast to their specific roles in cortex/endodermis differentiation and stem cell maintenance in the root, SHR and SCR primarily function as general regulators of cell proliferation in leaves.
Collapse
|
139
|
Gonzalez N, De Bodt S, Sulpice R, Jikumaru Y, Chae E, Dhondt S, Van Daele T, De Milde L, Weigel D, Kamiya Y, Stitt M, Beemster GT, Inzé D. Increased leaf size: different means to an end. PLANT PHYSIOLOGY 2010; 153:1261-79. [PMID: 20460583 PMCID: PMC2899902 DOI: 10.1104/pp.110.156018] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The final size of plant organs, such as leaves, is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However, this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight into the genetic control of leaf size in Arabidopsis (Arabidopsis thaliana) by performing a comparative analysis of transgenic lines that produce enlarged leaves under standardized environmental conditions. To this end, we selected five genes belonging to different functional classes that all positively affect leaf size when overexpressed: AVP1, GRF5, JAW, BRI1, and GA20OX1. We show that the increase in leaf area in these lines depended on leaf position and growth conditions and that all five lines affected leaf size differently; however, in all cases, an increase in cell number was, entirely or predominantly, responsible for the leaf size enlargement. By analyzing hormone levels, transcriptome, and metabolome, we provide deeper insight into the molecular basis of the growth phenotype for the individual lines. A comparative analysis between these data sets indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously overexpressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.
Collapse
|
140
|
Skirycz A, Inzé D. More from less: plant growth under limited water. Curr Opin Biotechnol 2010; 21:197-203. [PMID: 20363612 DOI: 10.1016/j.copbio.2010.03.002] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 11/29/2022]
Abstract
When subjected to abiotic stresses, plants actively re-program their growth by modulating both cell division and cell expansion. Growth decreases rapidly upon stress onset but it recovers and adapts once stress conditions become stable. Here, we review recent advances in understanding the mechanisms underlying both stress-induced growth repression and adaptation with an emphasis on drought and leaf growth and we briefly discuss how this knowledge can be translated into crops. It is now clear that stress response of growing and mature leaves is distinct and should be studied separately. Both cell proliferation and expansion are regulated by common signaling pathways involving gibberellins and DELLA proteins while down stream effector genes are stage specific.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
| | | |
Collapse
|
141
|
Massonnet C, Vile D, Fabre J, Hannah MA, Caldana C, Lisec J, Beemster GT, Meyer RC, Messerli G, Gronlund JT, Perkovic J, Wigmore E, May S, Bevan MW, Meyer C, Rubio-Díaz S, Weigel D, Micol JL, Buchanan-Wollaston V, Fiorani F, Walsh S, Rinn B, Gruissem W, Hilson P, Hennig L, Willmitzer L, Granier C. Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three Arabidopsis accessions cultivated in ten laboratories. PLANT PHYSIOLOGY 2010; 152:2142-57. [PMID: 20200072 PMCID: PMC2850010 DOI: 10.1104/pp.109.148338] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/20/2010] [Indexed: 05/17/2023]
Abstract
A major goal of the life sciences is to understand how molecular processes control phenotypes. Because understanding biological systems relies on the work of multiple laboratories, biologists implicitly assume that organisms with the same genotype will display similar phenotypes when grown in comparable conditions. We investigated to what extent this holds true for leaf growth variables and metabolite and transcriptome profiles of three Arabidopsis (Arabidopsis thaliana) genotypes grown in 10 laboratories using a standardized and detailed protocol. A core group of four laboratories generated similar leaf growth phenotypes, demonstrating that standardization is possible. But some laboratories presented significant differences in some leaf growth variables, sometimes changing the genotype ranking. Metabolite profiles derived from the same leaf displayed a strong genotype x environment (laboratory) component. Genotypes could be separated on the basis of their metabolic signature, but only when the analysis was limited to samples derived from one laboratory. Transcriptome data revealed considerable plant-to-plant variation, but the standardization ensured that interlaboratory variation was not considerably larger than intralaboratory variation. The different impacts of the standardization on phenotypes and molecular profiles could result from differences of temporal scale between processes involved at these organizational levels. Our findings underscore the challenge of describing, monitoring, and precisely controlling environmental conditions but also demonstrate that dedicated efforts can result in reproducible data across multiple laboratories. Finally, our comparative analysis revealed that small variations in growing conditions (light quality principally) and handling of plants can account for significant differences in phenotypes and molecular profiles obtained in independent laboratories.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Christine Granier
- INRA, SUPAGRO-UMR LEPSE, 34060 Montpellier cedex, France (C. Massonnet, D.V., J.F., C.G.); Max-Planck-Institute of Molecular Plant Physiology, 14476 Golm, Germany (M.A.H., C.C., J.L., R.C.M., L.W.); Department of Plant Systems Biology, Flanders Institute for Biotechnology, B–9052 Ghent, Belgium (G.T.S.B., F.F., P.H.); Department of Plant Biotechnology and Genetics, Ghent University, B–9052 Ghent, Belgium (G.T.S.B., F.F., P.H.); Department of Biology, Plant Biotechnology, Eidgenössische Technische Hochschule Zürich, 8092 Zurich, Switzerland (G.M., W.G., L.H.); Warwick Horticulture Research International, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom (J.T.G., V.B.-W.); Max-Planck Institute of Developmental Biology, D–72076 Tuebingen, Germany (J.P., D.W.); Plant Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, United Kingdom (E.W., S.M.); Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UJ, United Kingdom (M.W.B.); Unité de Nutrition Azotée des Plantes, Institut Jean-Pierre Bourgin, UMR 1318, INRA, 78026 Versailles cedex, France (C. Meyer); División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain (S.R.-D., J.L.M.); Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, 4058 Basel, Switzerland (S.W., B.R.)
| |
Collapse
|
142
|
Xu Y, Cao H, Chong K. APC-targeted RAA1 degradation mediates the cell cycle and root development in plants. PLANT SIGNALING & BEHAVIOR 2010; 5:218-23. [PMID: 20037474 PMCID: PMC2881264 DOI: 10.4161/psb.5.3.10661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein degradation by the ubiquitin-proteasome system is necessary for a normal cell cycle. As compared with knowledge of the mechanism in animals and yeast, that in plants is less known. Here we summarize research into the regulatory mechanism of protein degradation in the cell cycle in plants. Anaphase-promoting complex/cyclosome (APC), in the E3 family of enzymes, plays an important role in maintaining normal mitosis. APC activation and substrate specificity is determined by its activators, which can recognize the destruction box (D-box) in APC target proteins. Oryza sativa root architecture-associated 1 (OsRAA1) with GTP-binding activity was originally cloned from rice. Overexpression of of OsRAA1 inhibits the growth of primary roots in rice. Knockdown lines showed reduced height of seedlings because of abnormal cell division. OsRAA1 transgenic rice and fission yeast show a higher proportion of metaphase cells than that of controls, which suggests a blocked transition from metaphase to anaphase during mitosis. OsRAA1 co-localizes with spindle tubulin. It contains the D-box motif and interacts with OsRPT4 of the regulatory particle of 26S proteasome. OsRAA1 may be a cell cycle inhibitor that can be degraded by the ubiquitin-proteasome system, and its disruption is necessary for the transition from metaphase to anaphase during root growth in rice.
Collapse
Affiliation(s)
- Yunyuan Xu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
143
|
Skirycz A, De Bodt S, Obata T, De Clercq I, Claeys H, De Rycke R, Andriankaja M, Van Aken O, Van Breusegem F, Fernie AR, Inzé D. Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. PLANT PHYSIOLOGY 2010; 152:226-44. [PMID: 19906889 PMCID: PMC2799359 DOI: 10.1104/pp.109.148965] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/06/2009] [Indexed: 05/18/2023]
Abstract
When subjected to stress, plants reprogram their growth by largely unknown mechanisms. To provide insights into this process, the growth of Arabidopsis (Arabidopsis thaliana) leaves that develop under mild osmotic stress was studied. Early during leaf development, cell number and size were reduced by stress, but growth was remarkably adaptable, as division and expansion rates were identical to controls within a few days of leaf initiation. To investigate the molecular basis of the observed adaptability, leaves with only proliferating, exclusively expanding, and mature cells were analyzed by transcriptomics and targeted metabolomics. The stress response measured in growing and mature leaves was largely distinct; several hundred transcripts and multiple metabolites responded exclusively in the proliferating and/or expanding leaves. Only a few genes were differentially expressed across the three stages. Data analysis showed that proliferation and expansion were regulated by common regulatory circuits, involving ethylene and gibberellins but not abscisic acid. The role of ethylene was supported by the analysis of ethylene-insensitive mutants. Exclusively in proliferating cells, stress induced genes of the so-called "mitochondrial dysfunction regulon," comprising alternative oxidase. Up-regulation for eight of these genes was confirmed with promoter:beta-glucuronidase reporter lines. Furthermore, mitochondria of stress-treated dividing cells were morphologically distinct from control ones, and growth of plants overexpressing the alternative oxidase gene was more tolerant to osmotic and drought stresses. Taken together, our data underline the value of analyzing stress responses in development and demonstrate the importance of mitochondrial respiration for sustaining cell proliferation under osmotic stress conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dirk Inzé
- Department of Plant Biotechnology and Genetics, Ghent University, B–9052 Ghent, Belgium (A.S., S.D.B., I.D.C., H.C., R.D.R., M.A., O.V.A., F.V.B., D.I.); Department of Plant Systems Biology, Flanders Institute for Biotechnology, B–9052 Ghent, Belgium (A.S., S.D.B., I.D.C., H.C., M.A., O.V.A., F.V.B., D.I.); and Max-Planck Institute for Molecular Plant Physiology, D–14476 Potsdam-Golm, Germany (T.O., A.R.F.)
| |
Collapse
|
144
|
Rymen B, Coppens F, Dhondt S, Fiorani F, Beemster GTS. Kinematic analysis of cell division and expansion. Methods Mol Biol 2010; 655:203-27. [PMID: 20734263 DOI: 10.1007/978-1-60761-765-5_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant growth is readily analysed at the macroscopic level by measuring size and/or mass. Although it is commonly known that the rate of growth is determined by cell division and subsequent cell expansion, relatively few studies describing growth phenotypes include studies of the dynamics of these processes. Kinematic analyses provide a powerful and rigorous framework to perform such studies and have been adapted to the specific characteristics of various plant organs. Here we describe in detail how to perform these analyses in root tips and leaves of the model species Arabidopsis thaliana and in the leaves of the monocotyledonous crop species, Zea mays. These methods can be readily used and adapted to suit other species in most laboratories.
Collapse
Affiliation(s)
- Bart Rymen
- Department Plant Systems Biology, Flanders Institute for Biotechnology & Department Plant Biotechnology and Genetics, Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
145
|
Ishida T, Adachi S, Yoshimura M, Shimizu K, Umeda M, Sugimoto K. Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis. Development 2010; 137:63-71. [DOI: 10.1242/dev.035840] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amplification of genomic DNA by endoreduplication often marks the initiation of cell differentiation in animals and plants. The transition from mitotic cycles to endocycles should be developmentally programmed but how this process is regulated remains largely unknown. We show that the plant growth regulator auxin modulates the switch from mitotic cycles to endocycles in Arabidopsis; high levels of TIR1-AUX/IAA-ARF-dependent auxin signalling are required to repress endocycles, thus maintaining cells in mitotic cycles. By contrast, lower levels of TIR1-AUX/IAA-ARF-dependent auxin signalling trigger an exit from mitotic cycles and an entry into endocycles. Our data further demonstrate that this auxin-mediated modulation of the mitotic-to-endocycle switch is tightly coupled with the developmental transition from cell proliferation to cell differentiation in the Arabidopsis root meristem. The transient reduction of auxin signalling by an auxin antagonist PEO-IAA rapidly downregulates the expression of several core cell cycle genes, and we show that overexpressing one of the genes, CYCLIN A2;3 (CYCA2;3), partially suppresses an early initiation of cell differentiation induced by PEO-IAA. Taken together, these results suggest that auxin-mediated mitotic-to-endocycle transition might be part of the developmental programmes that balance cell proliferation and cell differentiation in the Arabidopsis root meristem.
Collapse
Affiliation(s)
- Takashi Ishida
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Sumiko Adachi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101, Japan
| | - Mika Yoshimura
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kohei Shimizu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0101, Japan
| | - Keiko Sugimoto
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
146
|
Abstract
Plant organs grow to characteristic, species-specific sizes and shapes. At the cellular level, organ growth is initially characterized by cell proliferation, which gives way to cell expansion at later stages. Using mainly Arabidopsis thaliana as a model species, a number of factors have been isolated in recent years that promote or restrict organ growth, with the altered organ size being associated with changes in cell number, in cell size, or in both. However, cells in an organ do not appear to follow a strictly autonomous program of proliferation and expansion, and their behavior is coordinated in at least three different respects: normally sized organs can be formed consisting of altered numbers of cells with compensatory changes in the size of the individual cells, suggesting that cellular behavior is subject to organ-wide control; the growth of cells derived from more than one clonal origin is coordinated within a plant lateral organ with its different histological layers; and growth of cells in different regions of an organ is coordinated to generate a reasonably flat leaf or floral organ. Organ growth is strongly modulated by environmental factors, and the molecular basis for this regulation is beginning to be understood. Given the complexity of organ growth as a dynamic four-dimensional process, precise quantification of growth parameters and mathematical modeling are increasingly used to understand this fascinating problem of plant biology.
Collapse
Affiliation(s)
- Holger Breuninger
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
147
|
Mao L, Van Hemert JL, Dash S, Dickerson JA. Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 2009; 10:346. [PMID: 19845953 PMCID: PMC2772859 DOI: 10.1186/1471-2105-10-346] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 10/21/2009] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biological networks characterize the interactions of biomolecules at a systems-level. One important property of biological networks is the modular structure, in which nodes are densely connected with each other, but between which there are only sparse connections. In this report, we attempted to find the relationship between the network topology and formation of modular structure by comparing gene co-expression networks with random networks. The organization of gene functional modules was also investigated. RESULTS We constructed a genome-wide Arabidopsis gene co-expression network (AGCN) by using 1094 microarrays. We then analyzed the topological properties of AGCN and partitioned the network into modules by using an efficient graph clustering algorithm. In the AGCN, 382 hub genes formed a clique, and they were densely connected only to a small subset of the network. At the module level, the network clustering results provide a systems-level understanding of the gene modules that coordinate multiple biological processes to carry out specific biological functions. For instance, the photosynthesis module in AGCN involves a very large number (> 1000) of genes which participate in various biological processes including photosynthesis, electron transport, pigment metabolism, chloroplast organization and biogenesis, cofactor metabolism, protein biosynthesis, and vitamin metabolism. The cell cycle module orchestrated the coordinated expression of hundreds of genes involved in cell cycle, DNA metabolism, and cytoskeleton organization and biogenesis. We also compared the AGCN constructed in this study with a graphical Gaussian model (GGM) based Arabidopsis gene network. The photosynthesis, protein biosynthesis, and cell cycle modules identified from the GGM network had much smaller module sizes compared with the modules found in the AGCN, respectively. CONCLUSION This study reveals new insight into the topological properties of biological networks. The preferential hub-hub connections might be necessary for the formation of modular structure in gene co-expression networks. The study also reveals new insight into the organization of gene functional modules.
Collapse
Affiliation(s)
- Linyong Mao
- Virtual Reality Applications Center, Iowa State University, Ames, IA 50010, USA.
| | | | | | | |
Collapse
|
148
|
Rojas CA, Eloy NB, Lima MDF, Rodrigues RL, Franco LO, Himanen K, Beemster GTS, Hemerly AS, Ferreira PCG. Overexpression of the Arabidopsis anaphase promoting complex subunit CDC27a increases growth rate and organ size. PLANT MOLECULAR BIOLOGY 2009; 71:307-18. [PMID: 19629716 DOI: 10.1007/s11103-009-9525-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 07/09/2009] [Indexed: 05/22/2023]
Abstract
The Anaphase Promoting Complex (APC) controls CDK activity by targeting the ubiquitin-dependent proteolysis of S-phase and mitosis-promoting cyclins. Here, we report that the ectopic expression of the Arabidopsis CDC27a, an APC subunit, accelerates plant growth and results in plants with increased biomass production. CDC27a overexpression was associated to apical meristem restructuration, protoplasts with higher (3)H-thimidine incorporation and altered cell-cycle marker expression. Total protein extracts immunoprecipitated with a CDC27a antibody showed ubiquitin ligase activity, indicating that the Arabidopsis CDC27a gets incorporated into APC complexes. These results indicate a role of AtCDC27a in regulation of plant growth and raise the possibility that the activity of the APC and the rates of plant cell division could be regulated by the concentration of the CDC27a subunit.
Collapse
Affiliation(s)
- Cristian Antonio Rojas
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Horiguchi G, Gonzalez N, Beemster GTS, Inzé D, Tsukaya H. Impact of segmental chromosomal duplications on leaf size in the grandifolia-D mutants of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:122-33. [PMID: 19508432 DOI: 10.1111/j.1365-313x.2009.03940.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The number of cells in an organ is a major factor that specifies its size. However, the genetic basis of cell number determination is not well understood. To obtain insight into this genetic basis, three grandifolia-D (gra-D) mutants of Arabidopsis thaliana were characterized that developed huge leaves with two to three times more cells than the wild-type. Genetic and microarray analyses showed that a large segmental duplication had occurred in all the gra-D mutants, consisting of the lower part of chromosome 4. In the duplications, genes were found that encode AINTEGUMENTA (ANT), a factor that extends the duration of cell proliferation, and CYCD3;1, a G(1)/S cyclin. The expression levels of both genes increased and the duration of cell proliferation in the leaf primordia was extended in the gra-D mutants. Data obtained by RNAi-mediated knockdown of ANT expression suggested that ANT contributed to the huge-leaf phenotype, but that it was not the sole factor. Introduction of an extra genomic copy of CYCD3;1 into the wild-type partially mimicked the gra-D phenotype. Furthermore, combined elevated expression of ANT and CYCD3;1 enhanced cell proliferation in a cumulative fashion. These results indicate that the duration of cell proliferation in leaves is determined in part by the interaction of ANT and CYCD3;1, and also demonstrate the potential usefulness of duplication mutants in the elucidation of genetic relationships that are difficult to uncover by standard single-gene mutations or gain-of-function analysis. We also discuss the potential effect of chromosomal duplication on evolution of organ size.
Collapse
Affiliation(s)
- Gorou Horiguchi
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
150
|
Sonoda Y, Sako K, Maki Y, Yamazaki N, Yamamoto H, Ikeda A, Yamaguchi J. Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:68-78. [PMID: 19500299 DOI: 10.1111/j.1365-313x.2009.03932.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ubiquitin/26S proteasome pathway plays a central role in the degradation of short-lived regulatory proteins, to control many cellular events. To further understand this pathway, we focused on the RPT2 subunit of the 26S proteasome regulatory particle. The Arabidopsis genome contains two genes, AtRPT2a and AtRPT2b, which encode paralog molecules of the RPT2 subunit, with a difference of only three amino acids in the protein sequences. Both genes showed similar mRNA accumulation patterns. However, the rpt2a mutant showed a specific phenotype of enlarged leaves caused by increased cell size, in correlation with increased ploidy. Detailed analyses revealed that cell expansion is increased in the rpt2a mutant by extended endoreduplication early in leaf development. The transcription of genes encoding cell cycle-related components, for DNA replication licensing and the G2/M phase, was also promoted in the rpt2a mutant, suggesting that extended endoreduplication was caused by increased DNA replication, and disrupted regulation of the G2/M checkpoint, at the proliferation stage of leaf development.
Collapse
Affiliation(s)
- Yutaka Sonoda
- Faculty of Advanced Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|