101
|
Vigne E, Gottula J, Schmitt-Keichinger C, Komar V, Ackerer L, Belval L, Rakotomalala L, Lemaire O, Ritzenthaler C, Fuchs M. A strain-specific segment of the RNA-dependent RNA polymerase of grapevine fanleaf virus determines symptoms in Nicotiana species. J Gen Virol 2013; 94:2803-2813. [PMID: 24088345 DOI: 10.1099/vir.0.057646-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Factors involved in symptom expression of viruses from the genus Nepovirus in the family Secoviridae such as grapevine fanleaf virus (GFLV) are poorly characterized. To identify symptom determinants encoded by GFLV, infectious cDNA clones of RNA1 and RNA2 of strain GHu were developed and used alongside existing infectious cDNA clones of strain F13 in a reverse genetics approach. In vitro transcripts of homologous combinations of RNA1 and RNA2 induced systemic infection in Nicotiana benthamiana and Nicotiana clevelandii with identical phenotypes to WT virus strains, i.e. vein clearing and chlorotic spots on N. benthamiana and N. clevelandii for GHu, respectively, and lack of symptoms on both hosts for F13. The use of assorted transcripts mapped symptom determinants on RNA1 of GFLV strain GHu, in particular within the distal 408 nt of the RNA-dependent RNA polymerase (1E(Pol)), as shown by RNA1 transcripts for which coding regions or fragments derived thereof were swapped. Semi-quantitative analyses indicated no significant differences in virus titre between symptomatic and asymptomatic plants infected with various recombinants. Also, unlike the nepovirus tomato ringspot virus, no apparent proteolytic cleavage of GFLV protein 1E(Pol) was detected upon virus infection or transient expression in N. benthamiana. In addition, GFLV protein 1E(Pol) failed to suppress silencing of EGFP in transgenic N. benthamiana expressing EGFP or to enhance GFP expression in patch assays in WT N. benthamiana. Together, our results suggest the existence of strain-specific functional domains, including a symptom determinant module, on the RNA-dependent RNA polymerase of GFLV.
Collapse
Affiliation(s)
- Emmanuelle Vigne
- Université de Strasbourg, UMR 1131 'Santé de la Vigne et Qualité du Vin', 68021 Colmar, France
- INRA, UMR 1131 'Santé de la Vigne et Qualité du Vin', 68021 Colmar, France
| | - John Gottula
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Corinne Schmitt-Keichinger
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Véronique Komar
- Université de Strasbourg, UMR 1131 'Santé de la Vigne et Qualité du Vin', 68021 Colmar, France
- INRA, UMR 1131 'Santé de la Vigne et Qualité du Vin', 68021 Colmar, France
| | - Léa Ackerer
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Lorène Belval
- Université de Strasbourg, UMR 1131 'Santé de la Vigne et Qualité du Vin', 68021 Colmar, France
- INRA, UMR 1131 'Santé de la Vigne et Qualité du Vin', 68021 Colmar, France
| | - Lalaina Rakotomalala
- Université de Strasbourg, UMR 1131 'Santé de la Vigne et Qualité du Vin', 68021 Colmar, France
- INRA, UMR 1131 'Santé de la Vigne et Qualité du Vin', 68021 Colmar, France
| | - Olivier Lemaire
- Université de Strasbourg, UMR 1131 'Santé de la Vigne et Qualité du Vin', 68021 Colmar, France
- INRA, UMR 1131 'Santé de la Vigne et Qualité du Vin', 68021 Colmar, France
| | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Marc Fuchs
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| |
Collapse
|
102
|
Wang XL, Wang J, Li ZQ. Correlation of continuous ryegrass regrowth with cytokinin induced by root nitrate absorption. JOURNAL OF PLANT RESEARCH 2013; 126:685-97. [PMID: 23828031 DOI: 10.1007/s10265-013-0574-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 04/05/2013] [Indexed: 05/18/2023]
Abstract
This study investigated the separate and combined effects of nitrate (NO3 (-)) and cytokinin additions on continuous ryegrass regrowth after defoliation and the underlying mechanisms. Our results showed that frequent defoliation reduced the biomass of newly grown leaves and roots, the root soluble carbohydrate contents, the root vitality (an indicator of root absorption capacity), and the leaf contents of NO3 (-), zeatin and zeatin riboside (Z + ZR), and isopentenyl adenine and isopentenyl adenosine (IP + IPA). NO3 (-)addition to the roots or leaves increased the biomass of newly grown leaves as well as the leaf contents of NO3 (-), Z + ZR, and IP + IPA without increasing the root-to-shoot delivery of endogenous cytokinin. Interestingly, cytokinin directly added to the leaves also increased the biomass of newly grown leaves and their Z + ZR and IP + IPA contents, suggesting that nitrate-induced leaf cytokinin production mediates the growth-promoting effects of nitrate. We also found that cytokinin had a direct whereas NO3 (-) had an indirect effect on the biomass of newly grown leaves. Taken together, our results indicate that leaf cytokinin production induced by NO3 (-) absorbed through the roots plays a key role in continuous ryegrass regrowth after defoliation.
Collapse
Affiliation(s)
- Xiao-Ling Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
103
|
Yang DL, Yang Y, He Z. Roles of plant hormones and their interplay in rice immunity. MOLECULAR PLANT 2013; 6:675-85. [PMID: 23589608 DOI: 10.1093/mp/sst056] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.
Collapse
Affiliation(s)
- Dong-Lei Yang
- The Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
104
|
Wang GK, Zhang M, Gong JF, Guo QF, Feng YN, Wang W. Increased gibberellin contents contribute to accelerated growth and development of transgenic tobacco overexpressing a wheat ubiquitin gene. PLANT CELL REPORTS 2012; 31:2215-27. [PMID: 22926030 DOI: 10.1007/s00299-012-1331-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/28/2012] [Accepted: 08/02/2012] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE Overexpressing TaUb2 promoted stem growth and resulted in early flowering in transgenic tobacco plants. Ubiquitin are involved in the production, metabolism and proper function of gibberellin. The ubiquitin-26S proteasome system (UPS), in which ubiquitin (Ub) functions as a marker, is a post-translational regulatory system that plays a prominent role in various biological processes. To investigate the impact of different Ub levels on plant growth and development, transgenic tobacco (Nicotiana tabacum L.) plants were engineered to express an Ub gene (TaUb2) from wheat (Triticum aestivum L.) under the control of cauliflower mosaic virus 35S promoter. Transgenic tobacco plants overexpressing TaUb2 demonstrated an accelerated growth rate at early stage and an early flowering phenotype in development. The preceding expression of MADS-box genes also corresponded to the accelerated developmental phenotypes of the transgenic tobacco plants compared to that of wild-type (WT). Total gibberellin (GA) and active GA contents in transgenic tobacco plants were higher than those in WT at the corresponding developmental stages, and some GA metabolism genes were upregulated. Treatment with GA(3) conferred a similarly accelerated grown rate in WT plants to that of transgenic tobacco plants, while growth was inhibited when transgenic tobacco plants were treated with a GA biosynthesis inhibitor. Thus, the results suggest that Ub are involved in the production, metabolism and proper function of GA, which is important in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Guo-Kun Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
105
|
Coat proteins, host factors and plant viral replication. Curr Opin Virol 2012; 2:712-8. [DOI: 10.1016/j.coviro.2012.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 11/24/2022]
|
106
|
Satoh K, Kondoh H, De Leon TB, Macalalad RJA, Cabunagan RC, Cabauatan PQ, Mauleon R, Kikuchi S, Choi IR. Gene expression responses to Rice tungro spherical virus in susceptible and resistant near-isogenic rice plants. Virus Res 2012. [PMID: 23183448 DOI: 10.1016/j.virusres.2012.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rice cultivar Taichung Native 1 (TN1) is susceptible to Rice tungro spherical virus (RTSV). TW16 is a backcross line developed between TN1 and RTSV-resistant cultivar Utri Merah. RTSV accumulation in TW16 was significantly lower than in TN1, although both TN1 and TW16 remained asymptomatic. We compared the gene expression profiles of TN1 and TW16 infected by RTSV to identify the gene expression patterns accompanying the accumulation and suppression of RTSV. About 11% and 12% of the genes in the entire genome were found differentially expressed by RTSV in TN1 and TW16, respectively. About 30% of the differentially expressed genes (DEGs) were detected commonly in both TN1 and TW16. DEGs related to development and stress response processes were significantly overrepresented in both TN1 and TW16. Evident differences in gene expression between TN1 and TW16 instigated by RTSV included (1) suppression of more genes for development-related transcription factors in TW16; (2) activation of more genes for development-related peptide hormone RALF in TN1; (3) TN1- and TW16-specific regulation of genes for jasmonate synthesis and pathway, and genes for stress-related transcription factors such as WRKY, SNAC, and AP2-EREBP; (4) activation of more genes for glutathione S-transferase in TW16; (5) activation of more heat shock protein genes in TN1; and (6) suppression of more genes for Golden2-like transcription factors involved in plastid development in TN1. The results suggest that a significant number of defense and development-related genes are still regulated in asymptomatic plants even with a very low level of RTSV, and that the TN1- and TW16-specific gene regulations might be associated with regulation of RTSV accumulation in the plants.
Collapse
Affiliation(s)
- Kouji Satoh
- Plant Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Wang MB, Masuta C, Smith NA, Shimura H. RNA silencing and plant viral diseases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1275-85. [PMID: 22670757 DOI: 10.1094/mpmi-04-12-0093-cr] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.
Collapse
Affiliation(s)
- Ming-Bo Wang
- CSIRO Division of Plant Industry, Canberra, Australia.
| | | | | | | |
Collapse
|
108
|
Tiwari N, Sharma PK, Malathi VG. Functional characterization of βC1 gene of Cotton leaf curl Multan betasatellite. Virus Genes 2012; 46:111-9. [PMID: 23054431 DOI: 10.1007/s11262-012-0828-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022]
Abstract
Whitefly-transmitted Begomoviruses having circular single stranded DNA genome cause severe leaf curl diseases in the tropical and subtropical region. The majority of Old World monopartite begomoviruses with DNA A component is associated with a satellite DNA of 1.3 kb length referred to as betasatellites. The presence of betasatellite is required to express typical symptoms in the primary hosts. Increased symptom expression in betasatellite's presence is attributed to a 13-15 kDa βC1 protein encoded by the βC1 gene on complementary sense strand. The exact mechanism by which the βC1 protein contributes to the symptoms' severity and helper viral DNA's accumulation is not yet understood. Here, we studied the βC1 protein of Cotton leaf curl Multan betasatellite, associated with mono and bipartite begomoviruses. The βC1 protein was expressed in prokaryotic system as 6XHis-βC1 fusion protein and recombinant protein showed size- and sequence-specific DNA binding activity. The host proteins which may interact with βC1 were identified by binding βC1 recombinant protein with heptapeptide in phage display library. The βC1-interacting host proteins predicted belong to metabolic and defense pathways, indicating that βC1 protein has a pivotal role in viral pathogenicity.
Collapse
Affiliation(s)
- Neha Tiwari
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
109
|
Song S, Dai X, Zhang WH. A rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5559-68. [PMID: 22859682 PMCID: PMC3444269 DOI: 10.1093/jxb/ers206] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
F-box proteins play diverse roles in regulating numerous physiological processes in plants. This study isolated a gene (OsFbx352) from rice encoding an F-box domain protein and characterized its role in seed germination. Expression of OsFbx352 was upregulated by abscisic acid (ABA). The transcripts of OsFbx352 were increased upon imbibition of rice seeds and the increase was markedly suppressed by glucose. Germination of seeds with overexpression of OsFbx352 was less suppressed by glucose than that of wild-type seeds, while glucose had greater inhibition for germination of seeds with knockdown of OsFbx352 by RNA interference (RNAi) than that of wild-type seeds. The differential response of germination of the transgenic and wild-type seeds to glucose may be accounted for by differences in ABA content among overexpressing, RNAi, and wild-type seeds such that overexpression of OsFbx352 and knockdown of OsFbx352 led to lower and higher ABA contents, respectively, than that of wild-type seeds in the presence of glucose. Overexpression of OsFbx352 led to a reduction in expression of genes responsible for ABA synthesis (OsNced2, OsNced3) and an increase in expression of genes encoding ABA catabolism (OsAba-ox2, OsAba-ox3) in the presence of glucose. These findings indicate that OsFbx352 plays a regulatory role in the regulation of glucose-induced suppression of seed germination by targeting ABA metabolism.
Collapse
Affiliation(s)
- Shiyong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences,Beijing 100093PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049PR China
| | - Xiaoyan Dai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences,Beijing 100093PR China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences,Beijing 100093PR China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
110
|
RNA silencing suppressor Pns11 of rice gall dwarf virus induces virus-like symptoms in transgenic rice. Arch Virol 2012; 157:1531-9. [DOI: 10.1007/s00705-012-1339-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/04/2012] [Indexed: 01/10/2023]
|
111
|
Wang XL, Liu D, Li ZQ. Effects of the coordination mechanism between roots and leaves induced by root-breaking and exogenous cytokinin spraying on the grazing tolerance of ryegrass. JOURNAL OF PLANT RESEARCH 2012; 125:407-16. [PMID: 21748489 DOI: 10.1007/s10265-011-0442-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 06/15/2011] [Indexed: 05/18/2023]
Abstract
The grazing tolerance mechanism of ryegrass was investigated by examining the effects of roots on leaves under frequent defoliation. The study consisted of four treatments: (1) with root breaking and cytokinin spraying, (2) root breaking without cytokinin spraying, (3) cytokinin spraying with no root breaking, and (4) no root breaking and no cytokinin spraying. Results showed that root breaking or frequent defoliation inhibited the ryegrass regrowth, which resulted in low biomass of the newly grown leaves and roots, as well as low soluble carbohydrate content and xylem sap quantity in the roots. Spraying with exogenous cytokinin promoted the increase in newly grown leaf biomass, but decreased root biomass, root soluble carbohydrate content, and root xylem sap quantity. Determination of gibberellic acid, indole-3-acetic acid, abscisic acid, and zeatin riboside (ZR) in roots, newly grown leaves, and stubbles showed that cytokinin is a key factor in ryegrass regrowth under frequent defoliation. Root breaking and frequent defoliation both decreased the ZR content in roots and in newly grown leaves, whereas spraying with exogenous cytokinin increased the ZR content in roots and in newly grown leaves. Therefore, cytokinin enhances the above ground productivity at the cost of root growth under frequent defoliation.
Collapse
Affiliation(s)
- Xiao-Ling Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
112
|
Cho SY, Cho WK, Sohn SH, Kim KH. Interaction of the host protein NbDnaJ with Potato virus X minus-strand stem-loop 1 RNA and capsid protein affects viral replication and movement. Biochem Biophys Res Commun 2012; 417:451-6. [PMID: 22166218 DOI: 10.1016/j.bbrc.2011.11.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/27/2011] [Indexed: 11/15/2022]
Abstract
Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP.
Collapse
Affiliation(s)
- Sang-Yun Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
113
|
Masuta C, Inaba JI, Shimura H. The 2b proteins of Cucumber mosaic virus generally have the potential to differentially induce necrosis on Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:43-5. [PMID: 22301966 PMCID: PMC3357366 DOI: 10.4161/psb.7.1.18526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant viral symptoms are rarely explained by direct molecular interaction between a viral protein and a host factor, but rather understood as a consequence of arms race between host RNA silencing and viral silencing suppressors. However, we have recently demonstrated that the 2b protein (2b) of Cucumber mosaic virus (CMV) HL strain could bind to Arabidopsis catalase that is important in scavenging cellular hydrogen peroxide, leading to the induction of distinct necrosis on Arabidopsis. Because we previously used virulent strains of subgroup I CMV in the study, we here further analyzed mild strains of subgroup II CMV, which share 70 to 80% sequence homology with subgroup I, to understand whether the necrosis induction is a general phenomenon to compromise host defense system mediated by catalase in the pathosystem of any CMV strains and Arabidopsis. Based on the results, we concluded that 2bs of subgroup II could also bind to catalase, resulting in decrease in catalase activity and weak necrosis on Arabidopsis. Because the 2b-catalase interaction did not prevent CMVs from spreading, it may eventually operate in favor of CMV.
Collapse
Affiliation(s)
- Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | |
Collapse
|
114
|
Pallas V, García JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 2011; 92:2691-2705. [PMID: 21900418 DOI: 10.1099/vir.0.034603-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant viruses are biotrophic pathogens that need living tissue for their multiplication and thus, in the infection-defence equilibrium, they do not normally cause plant death. In some instances virus infection may have no apparent pathological effect or may even provide a selective advantage to the host, but in many cases it causes the symptomatic phenotypes of disease. These pathological phenotypes are the result of interference and/or competition for a substantial amount of host resources, which can disrupt host physiology to cause disease. This interference/competition affects a number of genes, which seems to be greater the more severe the symptoms that they cause. Induced or repressed genes belong to a broad range of cellular processes, such as hormonal regulation, cell cycle control and endogenous transport of macromolecules, among others. In addition, recent evidence indicates the existence of interplay between plant development and antiviral defence processes, and that interference among the common points of their signalling pathways can trigger pathological manifestations. This review provides an update on the latest advances in understanding how viruses affect substantial cellular processes, and how plant antiviral defences contribute to pathological phenotypes.
Collapse
Affiliation(s)
- Vicente Pallas
- Instituto de Biología Molecular y Celular de las Plantas, CSIC-Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
115
|
Inaba JI, Kim BM, Shimura H, Masuta C. Virus-induced necrosis is a consequence of direct protein-protein interaction between a viral RNA-silencing suppressor and a host catalase. PLANT PHYSIOLOGY 2011; 156:2026-36. [PMID: 21622812 PMCID: PMC3149961 DOI: 10.1104/pp.111.180042] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/26/2011] [Indexed: 05/19/2023]
Abstract
Many plant host factors are known to interact with viral proteins during pathogenesis, but how a plant virus induces a specific disease symptom still needs further research. A lily strain of Cucumber mosaic virus (CMV-HL) can induce discrete necrotic spots on infected Arabidopsis (Arabidopsis thaliana) plants; other CMV strains can induce similar spots, but they are not as distinct as those induced by CMV-HL. The CMV 2b protein (2b), a known RNA-silencing suppressor, is involved in viral movement and symptom induction. Using in situ proximity ligation assay immunostaining and the protoplast assays, we report here that CMV 2b interacts directly with Catalase3 (CAT3) in infected tissues, a key enzyme in the breakdown of toxic hydrogen peroxide. Interestingly, CAT3, normally localized in the cytoplasm (glyoxysome), was recruited to the nucleus by an interaction between 2b and CAT3. Although overexpression of CAT3 in transgenic plants decreased the accumulation of CMV and delayed viral symptom development to some extent, 2b seems to neutralize the cellular catalase contributing to the host defense response, thus favoring viral infection. Our results thus provide evidence that, in addition to altering the type of symptom by disturbing microRNA pathways, 2b can directly bind to a host factor that is important in scavenging cellular hydrogen peroxide and thus interfere specifically with that host factor, leading to the induction of a specific necrosis.
Collapse
|
116
|
Abstract
The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant immune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mechanism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional genetics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
117
|
Satoh K, Shimizu T, Kondoh H, Hiraguri A, Sasaya T, Choi IR, Omura T, Kikuchi S. Relationship between symptoms and gene expression induced by the infection of three strains of Rice dwarf virus. PLoS One 2011; 6:e18094. [PMID: 21445363 PMCID: PMC3062569 DOI: 10.1371/journal.pone.0018094] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/21/2011] [Indexed: 11/18/2022] Open
Abstract
Background Rice dwarf virus (RDV) is the causal agent of rice dwarf disease, which often results in severe yield losses of rice in East Asian countries. The disease symptoms are stunted growth, chlorotic specks on leaves, and delayed and incomplete panicle exsertion. Three RDV strains, O, D84, and S, were reported. RDV-S causes the most severe symptoms, whereas RDV-O causes the mildest. Twenty amino acid substitutions were found in 10 of 12 virus proteins among three RDV strains. Methodology/Principal Findings We analyzed the gene expression of rice in response to infection with the three RDV strains using a 60-mer oligonucleotide microarray to examine the relationship between symptom severity and gene responses. The number of differentially expressed genes (DEGs) upon the infection of RDV-O, -D84, and -S was 1985, 3782, and 6726, respectively, showing a correlation between the number of DEGs and symptom severity. Many DEGs were related to defense, stress response, and development and morphogenesis processes. For defense and stress response processes, gene silencing-related genes were activated by RDV infection and the degree of activation was similar among plants infected with the three RDV strains. Genes for hormone-regulated defense systems were also activated by RDV infection, and the degree of activation seemed to be correlated with the concentration of RDV in plants. Some development and morphogenesis processes were suppressed by RDV infection, but the degree of suppression was not correlated well with the RDV concentration. Conclusions/Significance Gene responses to RDV infection were regulated differently depending on the gene groups regulated and the strains infecting. It seems that symptom severity is associated with the degree of gene response in defense-related and development- and morphogenesis-related processes. The titer levels of RDV in plants and the amino acid substitutions in RDV proteins could be involved in regulating such gene responses.
Collapse
Affiliation(s)
- Kouji Satoh
- Research Team for Vector-borne Plant Pathogens, National Agricultural Research Center, Tsukuba, Ibaraki, Japan
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takumi Shimizu
- Research Team for Vector-borne Plant Pathogens, National Agricultural Research Center, Tsukuba, Ibaraki, Japan
| | - Hiroaki Kondoh
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akihiro Hiraguri
- Research Team for Vector-borne Plant Pathogens, National Agricultural Research Center, Tsukuba, Ibaraki, Japan
| | - Takahide Sasaya
- Research Team for Vector-borne Plant Pathogens, National Agricultural Research Center, Tsukuba, Ibaraki, Japan
| | - Il-Ryong Choi
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, Metro Manila, Philippines
| | - Toshihiro Omura
- Research Team for Vector-borne Plant Pathogens, National Agricultural Research Center, Tsukuba, Ibaraki, Japan
| | - Shoshi Kikuchi
- Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
118
|
Li J, Jiang J, Qian Q, Xu Y, Zhang C, Xiao J, Du C, Luo W, Zou G, Chen M, Huang Y, Feng Y, Cheng Z, Yuan M, Chong K. Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. THE PLANT CELL 2011; 23:628-40. [PMID: 21325138 PMCID: PMC3077781 DOI: 10.1105/tpc.110.081901] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 12/30/2010] [Accepted: 01/21/2011] [Indexed: 05/17/2023]
Abstract
The kinesins are a family of microtubule-based motor proteins that move directionally along microtubules and are involved in many crucial cellular processes, including cell elongation in plants. Less is known about kinesins directly regulating gene transcription to affect cellular physiological processes. Here, we describe a rice (Oryza sativa) mutant, gibberellin-deficient dwarf1 (gdd1), that has a phenotype of greatly reduced length of root, stems, spikes, and seeds. This reduced length is due to decreased cell elongation and can be rescued by exogenous gibberellic acid (GA₃) treatment. GDD1 was cloned by a map-based approach, was expressed constitutively, and was found to encode the kinesin-like protein BRITTLE CULM12 (BC12). Microtubule cosedimentation assays revealed that BC12/GDD1 bound to microtubules in an ATP-dependent manner. Whole-genome microarray analysis revealed the expression of ent-kaurene oxidase (KO2), which encodes an enzyme involved in GA biosynthesis, was downregulated in gdd1. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that GDD1 bound to the element ACCAACTTGAA in the KO2 promoter. In addition, GDD1 was shown to have transactivation activity. The level of endogenous GAs was reduced in gdd1, and the reorganization of cortical microtubules was altered. Therefore, BC12/GDD1, a kinesin-like protein with transcription regulation activity, mediates cell elongation by regulating the GA biosynthesis pathway in rice.
Collapse
Affiliation(s)
- Juan Li
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiafu Jiang
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yunyuan Xu
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cui Zhang
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Du
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Luo
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guoxing Zou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Mingluan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yunqing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Zhukuan Cheng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Kang Chong
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
119
|
Ren B, Guo Y, Gao F, Zhou P, Wu F, Meng Z, Wei C, Li Y. Multiple functions of Rice dwarf phytoreovirus Pns10 in suppressing systemic RNA silencing. J Virol 2010; 84:12914-23. [PMID: 20926568 PMCID: PMC3004324 DOI: 10.1128/jvi.00864-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 08/31/2010] [Indexed: 12/29/2022] Open
Abstract
RNA silencing is a potent mechanism of antiviral defense response in plants and other organisms. For counterdefense, viruses have evolved a variety of suppressors of RNA silencing (VSRs) that can inhibit distinct steps of a silencing pathway. We previously identified Pns10 encoded by Rice dwarf phytoreovirus (RDV) as a VSR, the first of its kind from double-stranded RNA (dsRNA) viruses. In this study we investigated the mechanisms of Pns10 function in suppressing systemic RNA silencing in the widely used Nicotiana benthamiana model plant. We report that Pns10 suppresses local and systemic RNA silencing triggered by sense mRNA, enhances viral replication and/or viral RNA stability in inoculated leaves, accelerates the systemic spread of viral infection, and enables viral invasion of shoot apices. Mechanistically, Pns10 interferes with the perception of silencing signals in recipient tissues, binds double-stranded small interfering RNA (siRNAs) with two-nucleotide 3' overhangs, and causes the downregulated expression of RDR6. These results significantly deepen our mechanistic understanding of the VSR functions encoded by a dsRNA virus and contribute additional evidence that binding siRNAs and interfering with RDR6 expression are broad mechanisms of VSR functions encoded by diverse groups of viruses.
Collapse
Affiliation(s)
- Bo Ren
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Yuanyuan Guo
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Feng Gao
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Peng Zhou
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Feng Wu
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Zheng Meng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Chunhong Wei
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Yi Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China, Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| |
Collapse
|
120
|
Li W, Wu J, Weng S, Zhang Y, Zhang D, Shi C. Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. PLANTA 2010; 232:1383-96. [PMID: 20830595 DOI: 10.1007/s00425-010-1263-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/25/2010] [Indexed: 05/15/2023]
Abstract
A dwarf mutant, dwarf 62 (d62), was isolated from rice cultivar 93-11 by mutagenesis with γ-rays. Under normal growth conditions, the mutant had multiple abnormal phenotypes, such as dwarfism, wide and dark-green leaf blades, reduced tiller numbers, late and asynchronous heading, short roots, partial male sterility, etc. Genetic analysis indicated that the abnormal phenotypes were controlled by the recessive mutation of a single nuclear gene. Using molecular markers, the D62 gene was fine mapped in 131-kb region at the short arm of chromosome 6. Positional cloning of D62 gene revealed that it was the same locus as DLT/OsGRAS-32, which encodes a member of the GRAS family. In previous studies, the DLT/OsGRAS-32 is confirmed to play positive roles in brassinosteroid (BR) signaling. Sequence analysis showed that the d62 carried a 2-bp deletion in ORF region of D62 gene which led to a loss-of-function mutation. The function of D62 gene was confirmed by complementation experiment. RT-PCR analysis and promoter activity analysis showed that the D62 gene expressed in all tested tissues including roots, stems, leaves and panicles of rice plant. The d62 mutant exhibited decreased activity of α-amylase in endosperm and reduced content of endogenous GA(1). The expression levels of gibberellin (GA) biosynthetic genes including OsCPS1, OsKS1, OsKO1, OsKAO, OsGA20ox2/SD1 and OsGA2ox3 were significantly increased in d62 mutant. Briefly, these results demonstrated that the D62 (DLT/OsGRAS-32) not only participated in the regulation of BR signaling, but also influenced GA metabolism in rice.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | | | | | | | | | | |
Collapse
|
121
|
He Y, Wei Q, Ge J, Jiang A, Gan L, Song Z, Cai D. Genome duplication effects on pollen development and the interrelated physiological substances in tetraploid rice with polyploid meiosis stability. PLANTA 2010; 232:1219-28. [PMID: 20717831 DOI: 10.1007/s00425-010-1249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/29/2010] [Indexed: 05/07/2023]
Abstract
The breeding of polyploid rice made no breakthrough for a long time because of low seed set. The discovery and application of polyploid meiosis stability (PMeS) material played a pivotal role in solving this problem. Our results indicated that genome duplication led to different outcomes in different rice cultivars in terms of pollen fertility, viability, and the accumulation of important physiological substances such as free proline and endogenous hormones. Pollen from the PMeS HN2026-4X lines showed a high fertility and viability similar to those of HN2026-2X (4X indicates tetraploid while 2X indicates the diploid), whereas both rates decreased dramatically in Balilla-4X. The results of pollen microstructure and ultrastructure investigations suggested that the pollen development pattern in HN2026-4X appeared normal at all stages, but a lot of changes were discovered in Balilla-4X. Stable meiosis, timely tapetum degradation, and normal mitochondria development were critical factors insuring the high frequency pollen fertility of PMeS rice. The free proline content increased markedly in HN2026-4X as compared to HN2026-2X, but it was decreased for Balilla-4X. Genome duplication effects on regulating endogenous hormones accumulation in pollen were evident, resulting in the clear difference between PMeS HN2026-4X and Balilla-4X. The accumulation of IAA, ZR, and GA in mature pollen distinguished HN2026-4X from Balilla-4X, which was linked to normal pollen development. In particular, the excessive accumulation of ABA at the meiosis stage may be correlated to disorganized meiosis in Balilla-4X. All the results provided unequivocal evidence that genome duplication played specific roles in the normal pollen development of PMeS HN2026-4X.
Collapse
Affiliation(s)
- Yuchi He
- Faculty of Life Science, Hubei University, Wuhan, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
122
|
Ji X, Wei C, Li Y. Expression of rice dwarf phytoreovirus Pns6 and the specificity analysis of its monoclonal antibodies. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:958-64. [PMID: 19911132 DOI: 10.1007/s11427-009-0129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 05/16/2009] [Indexed: 10/20/2022]
Abstract
The genome of rice dwarf phytoreovirus (RDV) is composed of 12 double-stranded RNA segments, of which segment S6 encodes a non-structural protein Pns6 identified as the movement protein. In this report, Pns6 with a 6-histidine tag at the N-terminal was expressed in E. coli after induction under low temperature (18 degrees C) and low concentration (0.4 mmol/L and 0.2 mmol/L) of IPTG, and then purified by Ni-chelated affinity chromatography. Stability analysis indicated that the expressed HisPns6 protein was stable at 37 degrees C after 24 h treatment. This recombinant protein was then used to make monoclonal antibody. Total 18 hybridoma clones were obtained. The specificity of antibodies was tested by Western blot using native Pns6 extracted from RDV-infected rice leaves, and 15 positive clones were confirmed. Mapping of the antigenic sites of Pns6 using antibodies showed that the most sensitive antigen determinant is located in the C-terminal region (the 296th-509th amino acids) of Pns6, which is confirms bioinformatics analysis.
Collapse
Affiliation(s)
- Xu Ji
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
| | | | | |
Collapse
|
123
|
García-Marcos A, Pacheco R, Martiáñez J, González-Jara P, Díaz-Ruíz JR, Tenllado F. Transcriptional changes and oxidative stress associated with the synergistic interaction between Potato virus X and Potato virus Y and their relationship with symptom expression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1431-44. [PMID: 19810812 DOI: 10.1094/mpmi-22-11-1431] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many virus diseases of economic importance to agriculture result from mixtures of different pathogens invading the host at a given time. This contrasts with the relatively scarce studies available on the molecular events associated with virus-host interactions in mixed infections. Compared with single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) resulted in increased systemic symptoms (synergism) that led to necrosis of the newly emerging leaves and death of the plant. A comparative transcriptional analysis was undertaken to identify quantitative and qualitative differences in gene expression during this synergistic infection and correlate these changes with the severe symptoms it caused. Global transcription profiles of doubly infected leaves were compared with those from singly infected leaves using gene ontology enrichment analysis and metabolic pathway annotator software. Functional gene categories altered by the double infection comprise suites of genes regulated coordinately, which are associated with chloroplast functions (downregulated), protein synthesis and degradation (upregulated), carbohydrate metabolism (upregulated), and response to biotic stimulus and stress (upregulated). The expressions of reactive oxygen species-generating enzymes as well as several mitogen-activated protein kinases were also significantly induced. Accordingly, synergistic infection induced a severe oxidative stress in N. benthamiana leaves, as judged by increases in lipid peroxidation and by the generation of superoxide radicals in chloroplasts, which correlated with the misregulation of antioxidative genes in microarray data. Interestingly, expression of genes encoding oxylipin biosynthesis was uniquely upregulated by the synergistic infection. Virus-induced gene silencing of alpha-dioxygenase1 delayed cell death during PVX-PVY infection.
Collapse
Affiliation(s)
- Alberto García-Marcos
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
124
|
Bari R, Jones JDG. Role of plant hormones in plant defence responses. PLANT MOLECULAR BIOLOGY 2009; 69:473-88. [PMID: 19083153 DOI: 10.1007/s11103-008-9435-0] [Citation(s) in RCA: 1364] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 11/12/2008] [Indexed: 05/17/2023]
Abstract
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.
Collapse
Affiliation(s)
- Rajendra Bari
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
| | | |
Collapse
|
125
|
|
126
|
Chen D, Zhao J. Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. PHYSIOLOGIA PLANTARUM 2008; 134:202-15. [PMID: 18485059 DOI: 10.1111/j.1399-3054.2008.01125.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although many studies have emphasized the importance of auxin in plant growth and development, the thorough understanding of its effect on pollen-pistil interactions is largely unknown. In this study, we investigated the role of free IAA in pollen-pistil interactions during pollen germination and tube growth in Nicotiana tabacum L. through using histo and subcellular immunolocalization with auxin monoclonal antibodies, quantification by HPLC and ELISA together with GUS staining in DR5::GUS-transformed plants. The results showed that free IAA in unpollinated styles was higher in the apical part and basal part than in the middle part, and it was more abundant in the transmitting tissue (TT). At the stage of pollen germination, IAA reached its highest content in the stigma and was mainly distributed in TT. After the pollen tubes entered the styles, the signal increased in the part where pollen tubes would enter and then rapidly declined in the part where pollen tubes had penetrated. Subcellular localization confirmed the presence of IAA in TT cells of stigmas and styles. Accordingly, a schematic diagram summarizes the changing pattern of free IAA level during flowering, pollination and pollen tube growth. Furthermore, we presented evidence that low concentration of exogenous IAA could, to a certain extent, facilitate in vitro pollen tube growth. These results suggest that IAA may be directly or indirectly involved in the pollen-pistil interactions. Additionally, some improvements of the IAA immunolocalization technique were made.
Collapse
Affiliation(s)
- Dan Chen
- Department of Plant Development Biology, Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|
127
|
López MA, Bannenberg G, Castresana C. Controlling hormone signaling is a plant and pathogen challenge for growth and survival. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:420-7. [PMID: 18585953 DOI: 10.1016/j.pbi.2008.05.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/05/2008] [Accepted: 05/16/2008] [Indexed: 05/21/2023]
Abstract
Plants and pathogens have continuously confronted each other during evolution in a battle for growth and survival. New advances in the field have provided fascinating insights into the mechanisms that have co-evolved to gain a competitive advantage in this battle. When plants encounter an invading pathogen, not only responses signaled by defense hormones are activated to restrict pathogen invasion, but also the modulation of additional hormone pathways is required to serve other purposes, which are equally important for plant survival, such as re-allocation of resources, control of cell death, regulation of water stress, and modification of plant architecture. Notably, pathogens can counteract both types of responses as a strategy to enhance virulence. Pathogens regulate production and signaling responses of plant hormones during infection, and also produce phytohormones themselves to modulate plant responses. These results indicate that hormone signaling is a relevant component in plant-pathogen interactions, and that the ability to dictate hormonal directionality is critical to the outcome of an interaction.
Collapse
Affiliation(s)
- Miguel Angel López
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
128
|
Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics 2008; 9:325. [PMID: 18613973 PMCID: PMC2478689 DOI: 10.1186/1471-2164-9-325] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
Background Virus infection induces the activation and suppression of global gene expression in the host. Profiling gene expression changes in the host may provide insights into the molecular mechanisms that underlie host physiological and phenotypic responses to virus infection. In this study, the Arabidopsis Affymetrix ATH1 array was used to assess global gene expression changes in Arabidopsis thaliana plants infected with Plum pox virus (PPV). To identify early genes in response to PPV infection, an Arabidopsis synchronized single-cell transformation system was developed. Arabidopsis protoplasts were transfected with a PPV infectious clone and global gene expression changes in the transfected protoplasts were profiled. Results Microarray analysis of PPV-infected Arabidopsis leaf tissues identified 2013 and 1457 genes that were significantly (Q ≤ 0.05) up- (≥ 2.5 fold) and downregulated (≤ -2.5 fold), respectively. Genes associated with soluble sugar, starch and amino acid, intracellular membrane/membrane-bound organelles, chloroplast, and protein fate were upregulated, while genes related to development/storage proteins, protein synthesis and translation, and cell wall-associated components were downregulated. These gene expression changes were associated with PPV infection and symptom development. Further transcriptional profiling of protoplasts transfected with a PPV infectious clone revealed the upregulation of defence and cellular signalling genes as early as 6 hours post transfection. A cross sequence comparison analysis of genes differentially regulated by PPV-infected Arabidopsis leaves against uniEST sequences derived from PPV-infected leaves of Prunus persica, a natural host of PPV, identified orthologs related to defence, metabolism and protein synthesis. The cross comparison of genes differentially regulated by PPV infection and by the infections of other positive sense RNA viruses revealed a common set of 416 genes. These identified genes, particularly the early responsive genes, may be critical in virus infection. Conclusion Gene expression changes in PPV-infected Arabidopsis are the molecular basis of stress and defence-like responses, PPV pathogenesis and symptom development. The differentially regulated genes, particularly the early responsive genes, and a common set of genes regulated by infections of PPV and other positive sense RNA viruses identified in this study are candidates suitable for further functional characterization to shed lights on molecular virus-host interactions.
Collapse
|
129
|
Yang DL, Li Q, Deng YW, Lou YG, Wang MY, Zhou GX, Zhang YY, He ZH. Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. MOLECULAR PLANT 2008; 1:528-37. [PMID: 19825558 DOI: 10.1093/mp/ssn021] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gibberellins (GAs) form a group of important plant tetracyclic diterpenoid hormones that are involved in many aspects of plant growth and development. Emerging evidence implicates that GAs also play roles in stress responses. However, the role of GAs in biotic stress is largely unknown. Here, we report that knockout or overexpression of the Elongated uppermost internode (Eui) gene encoding a GA deactivating enzyme compromises or increases, respectively, disease resistance to bacterial blight (Xanthomonas oryzae pv. oyrzae) and rice blast (Magnaporthe oryzae). Exogenous application of GA(3) and the inhibitor of GA synthesis (uniconazol) could increase disease susceptibility and resistance, respectively, to bacterial blight. Similarly, uniconazol restored disease resistance of the eui mutant and GA(3) decreased disease resistance of the Eui overexpressors to bacterial blight. Therefore, the change of resistance attributes to GA levels. In consistency with this, the GA metabolism genes OsGA20ox2 and OsGA2ox1 were down-regulated during pathogen challenge. We also found that PR1a induction was enhanced but the SA level was decreased in the Eui overexpressor, while the JA level was reduced in the eui mutant. Together, our current study indicates that GAs play a negative role in rice basal disease resistance, with EUI as a positive modulator through regulating the level of bioactive GAs.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Babu M, Gagarinova AG, Brandle JE, Wang A. Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection. J Gen Virol 2008; 89:1069-1080. [PMID: 18343851 DOI: 10.1099/vir.0.83531-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Compatible virus infection induces and suppresses host gene expression at the global level. These gene-expression changes are the molecular basis of symptom development and general stress and defence-like responses of the host. To assess transcriptional changes in soybean plants infected with soybean mosaic virus (SMV), the first soybean trifoliate leaf, immediately above the SMV-inoculated unifoliate leaf, was sampled at 7, 14 and 21 days post-inoculation (p.i.) and subjected to microarray analysis. The identified changes in gene expression in soybean leaves with SMV infection at different time points were associated with the observed symptom development. By using stringent selection criteria (>or=2- or
Collapse
Affiliation(s)
- Mohan Babu
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada (AAFC), 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Alla G Gagarinova
- Department of Biology, The University of Western Ontario, Biological and Geological Building, 1151 Richmond St, London, ON N6A 5B7, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada (AAFC), 1391 Sandford St, London, ON N5V 4T3, Canada
| | - James E Brandle
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada (AAFC), 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Aiming Wang
- Department of Biology, The University of Western Ontario, Biological and Geological Building, 1151 Richmond St, London, ON N6A 5B7, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada (AAFC), 1391 Sandford St, London, ON N5V 4T3, Canada
| |
Collapse
|
131
|
The P2 capsid protein of the nonenveloped rice dwarf phytoreovirus induces membrane fusion in insect host cells. Proc Natl Acad Sci U S A 2007; 104:19547-52. [PMID: 18042708 DOI: 10.1073/pnas.0708946104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insect transmission is an essential process of infection for numerous plant and animal viruses. How an insect-transmissible plant virus enters an insect cell to initiate the infection cycle is poorly understood, especially for nonenveloped plant and animal viruses. The capsid protein P2 of rice dwarf virus (RDV), which is nonenveloped, is necessary for insect transmission. Here, we present evidence that P2 shares structural features with membrane-fusogenic proteins encoded by enveloped animal viruses. When RDV P2 was ectopically expressed and displayed on the surface of insect Spodoptera frugiperda cells, it induced membrane fusion characterized by syncytium formation at low pH. Mutational analyses identified the N-terminal and a heptad repeat as being critical for the membrane fusion-inducing activity. These results are corroborated with results from RDV-infected cells of the insect vector leafhopper. We propose that the RDV P2-induced membrane fusion plays a critical role in viral entry into insect cells. Our report that a plant viral protein can induce membrane fusion has broad significance in studying the mechanisms of virus entry into insect cells and insect transmission of nonenveloped plant and animal viruses.
Collapse
|
132
|
Picton A, Potgieter C, Rey MEC. Molecular analysis of six segments of tobacco leaf enation virus, a novel phytoreovirus from tobacco. Virus Genes 2007; 35:387-93. [PMID: 17356907 DOI: 10.1007/s11262-007-0088-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 02/19/2007] [Indexed: 11/29/2022]
Abstract
Tobacco leaf enation virus (TLEV) is a putative member of the genus Phytoreovirus within the family Reoviridae. Previous western blot analysis of structural viral proteins (apparent molecular weights of 93 kDa; 58 kDa; 48 kDa; 39 kDa and 36 kDa) associated with TLEV, isolated from infected tobacco in South Africa, suggested that these proteins may correspond to structural Wound tumor virus (WTV) proteins. To further establish the nature of this novel virus disease phenotype in tobacco, molecular characterization of six dsRNA components was undertaken. Full-length cDNA clones were obtained by an optimized modified single-primer amplification sequence-independent dsRNA cloning method. Results of this study revealed the conserved terminal sequence: 5'GG(U/C)...UGAU 3' of segments S6-S12, while adjacent to these conserved terminal sequences are imperfect inverted repeats (7-15 bp in length), both features being common to reoviruses. The complete nucleotide sequences of segments S5 (2,610 bp), S7 (1,740 bp), S8 (1,439 bp), S10 (1,252 bp), S11 (1,187 bp) and S12 (836 bp) were determined. Comparison of full-length nucleotide sequences with corresponding segments of other phytoreoviruses, Rice gall dwarf virus (RGDV), Rice dwarf virus (RDV) and WTV has shown nucleotide and predicted amino acid identities within the range of 30-60%. TLEV consistently shows a higher identity to WTV than to other phytoreovirus species where sequence data is available. Each segment had a single predicted open reading frame encoding proteins with calculated molecular weights of S5 (90.6 kDa); S7 (58.1 kDa); S8 (47.7 kDa); S10 (39.8 kDa); S11 (35 kDa) and S12 (19.5 kDa). The relatively low nucleotide and amino acid identity to other members of the genus demonstrates that TLEV is a novel phytoreovirus, distinct from the only other reported dicotyledenous-infecting WTV and is the first phytoreovirus reported to emerge in Africa.
Collapse
Affiliation(s)
- Anabela Picton
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg PO Wits 2050, South Africa
| | | | | |
Collapse
|
133
|
Zhang HM, Yang J, Xin X, Chen JP, Adams MJ. Molecular characterization of the largest and smallest genome segments, S1 and S12, of Rice gall dwarf virus. Virus Genes 2007; 35:815-23. [PMID: 17674177 DOI: 10.1007/s11262-007-0142-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
The nucleotide sequences of segments S1 and S12 of a Chinese isolate of Rice gall dwarf virus (RGDV) were determined. This provides the first complete sequences of these segments. The complete sequence of S1, the largest genome segment of RGDV, was 4,505 nucleotides in length and was predicted to encode a large protein of 1,458 amino acids with a calculated molecular mass of nearly 166.2 kDa. The protein was related to that encoded by S1 of Rice dwarf virus (RDV; 50% identity and 67% similarity) and (to a lesser extent) to some large proteins of other reoviruses. It appears to be an RNA-dependent RNA polymerase (RdRp) and is probably present in particles as a minor core protein. S12, the smallest genome segment of RGDV, was 853 nucleotides in length, encoding a single major protein of 206 amino acids with a calculated molecular mass of nearly 23.6 kDa. This protein, though a little larger than those of RDV S11 and Wound tumor virus (WTV) S12 in size, showed some similarity to them, especially in the conserved N-terminal region and may have RNA-binding properties. Despite having a common host plant, RDV and RGDV were not more closely related to one another than either of them was to WTV. Phylogenetic analysis of the RdRp showed that members of the genus Phytoreovirus were more closely related to those of the genus Rotavirus than to any other genus within the family Reoviridae.
Collapse
Affiliation(s)
- Heng-Mu Zhang
- Zhejiang Provincial Key Laboratory of Plant Virology, Ministry of Agriculture, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | | | | | | | | |
Collapse
|
134
|
Dardick C. Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1004-17. [PMID: 17722703 DOI: 10.1094/mpmi-20-8-1004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Plant viruses cause a wide array of disease symptoms and cytopathic effects. Although some of these changes are virus specific, many appear to be common even among diverse viruses. Currently, little is known about the underlying molecular determinants. To identify gene expression changes that are concomitant with virus symptoms, we performed comparative expression profiling experiments on Nicotiana benthamiana leaves infected with one of three different fruit tree viruses that produce distinct symptoms: Plum pox potyvirus (PPV; leaf distortion and mosaic), Tomato ringspot nepovirus (ToRSV; tissue necrosis and general chlorosis), and Prunus necrotic ringspot ilarvirus (PNRSV; subtle chlorotic mottling). The numbers of statistically significant genes identified were consistent with the severity of the observed symptoms: 1,082 (ToRSV), 744 (PPV), and 89 (PNRSV). In all, 56% of the gene expression changes found in PPV-infected leaves also were altered by ToRSV, 87% of which changed in the same direction. Both PPV- and ToRSV-infected leaves showed widespread repression of genes associated with plastid functions. PPV uniquely induced the expression of large numbers of cytosolic ribosomal genes whereas ToRSV repressed the expression of plastidic ribosomal genes. How these and other observed expression changes might be associated with symptom development are discussed.
Collapse
Affiliation(s)
- Christopher Dardick
- United States Department of Agriculture-Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA.
| |
Collapse
|
135
|
Liu H, Wei C, Zhong Y, Li Y. Rice black-streaked dwarf virus minor core protein P8 is a nuclear dimeric protein and represses transcription in tobacco protoplasts. FEBS Lett 2007; 581:2534-40. [PMID: 17499245 DOI: 10.1016/j.febslet.2007.04.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 04/20/2007] [Accepted: 04/25/2007] [Indexed: 11/24/2022]
Abstract
Virus-encoding nuclear transcriptional regulators play important roles in the viral life cycle. Most of these proteins exhibit intrinsic transcriptional activation or repression activity, and are involved in the regulation of the expression of virus genome itself or important cellular genes to facilitate viral replication and inhibit antiviral responses. Here, we report that the minor core protein P8 of Rice black-streaked dwarf virus, a dsRNA virus infecting host plants and insects, is targeted to the nucleus of insect and plant cells via its N-terminal 1-40 amino acids and possesses potent active transcriptional repression activity in Bright Yellow-2 tobacco suspension cells. Moreover, P8, like many transcriptional regulatory proteins, is capable of forming homo-dimers within insect cells and in vitro. All these data suggest that P8 is likely to enter the nucleus of host cell and play an important role as a negative transcriptional regulator of host gene expression during the process of virus-host interaction.
Collapse
Affiliation(s)
- Huijun Liu
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
136
|
Liu H, Wei C, Zhong Y, Li Y. Rice black-streaked dwarf virus outer capsid protein P10 has self-interactions and forms oligomeric complexes in solution. Virus Res 2007; 127:34-42. [PMID: 17442443 DOI: 10.1016/j.virusres.2007.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 03/17/2007] [Indexed: 11/28/2022]
Abstract
The P10 protein encoded by S10 ORF of Rice black-streaked dwarf virus (RBSDV) was thought to be the component of outer shell of viral particle. In the present study, P10 has an ability for self-interaction as shown by a GAL4 transcription activator-based yeast two-hybrid assay system and further confirmed by in vitro far-Western blot analysis. The domain responsible for P10-P10 self-interaction was mapped to the first 230 amino acids at the N-terminal region of the protein. The oligomerization property of P10 was further investigated using chemical cross-linking with purified recombinant P10 proteins expressed in a baculovirus expression system and glutaraldehyde. Intact P10 recombinants existed predominantly as trimers in solution in the absence of other viral proteins and displayed the oligomeric nature common to all known second-layer protein units of the Reoviridae. A truncated P10 mutant encoding the first 230 N-terminal amino acids lost its ability to form trimers even though dimeric forms were detected during the cross-linking assay. Polyacrylamide gel electrophoresis under reducing or non-reducing conditions suggested that P10 subunits were oligomerized not through intermolecular disulfide bonds, but perhaps through some other type of association, such as hydrophobic or charge interactions.
Collapse
Affiliation(s)
- Huijun Liu
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
137
|
Yang C, Guo R, Jie F, Nettleton D, Peng J, Carr T, Yeakley JM, Fan JB, Whitham SA. Spatial analysis of arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:358-70. [PMID: 17427806 DOI: 10.1094/mpmi-20-4-0358] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Virus-infected leaf tissues comprise a heterogeneous mixture of cells at different stages of infection. The spatial and temporal relationships between sites of virus accumulation and the accompanying host responses, such as altered host gene expression, are not well defined. To address this issue, we utilized Turnip mosaic virus (TuMV) tagged with the green fluorescent protein to guide the dissection of infection foci into four distinct zones. The abundance of Arabidopsis thaliana mRNA transcripts in each of the four zones then was assayed using the Arabidopsis ATH1 GeneChip oligonucleotide microarray (Affymetrix). mRNA transcripts with significantly altered expression profiles were determined across gradients of virus accumulation spanning groups of cells in and around foci at different stages of infection. The extent to which TuMV-responsive genes were up- or downregulated primarily correlated with the amount of virus accumulation regardless of gene function. The spatial analysis also allowed new suites of coordinately regulated genes to be identified that are associated with chloroplast functions (decreased), sulfate assimilation (decreased), cell wall extensibility (decreased), and protein synthesis and turnover (induced). The functions of these downregulated genes are consistent with viral symptoms, such as chlorosis and stunted growth, providing new insight into mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Chunling Yang
- Department of Plant Pathology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Shimizu T, Satoh K, Kikuchi S, Omura T. The repression of cell wall- and plastid-related genes and the induction of defense-related genes in rice plants infected with Rice dwarf virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:247-54. [PMID: 17378427 DOI: 10.1094/mpmi-20-3-0247] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An analysis, using microarrays, of gene expression in rice plants infected with Rice dwarf virus revealed significant decreases in levels of expression of genes that are involved in the formation of cell walls, reflecting the stunted growth of diseased plants. The expression of plastid-related genes also was suppressed, as anticipated from the white chlorotic appearance of infected leaves. By contrast, the expression of defense- and stress-related genes was enhanced after viral infection. These results suggest that virus-infected rice plants attempt to survive viral infection and replication by raising the levels of expression of defense- and stress-related genes while suppressing the expression of genes required for the elongation of cells and photosynthesis.
Collapse
Affiliation(s)
- Takumi Shimizu
- Research Team for Vectorborne Diseases, National Agricultural Research Center, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666, Japan
| | | | | | | |
Collapse
|
139
|
Tyack SG, Studdert MJ, Johnson MA. Sequence and function of canine herpesvirus alpha-transinducing factor and its interaction with an immediate early promoter. Virus Genes 2007; 33:299-307. [PMID: 16991001 DOI: 10.1007/s11262-006-0069-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/16/2006] [Indexed: 11/26/2022]
Abstract
The sequence of the alpha-transinducing factor (alpha-TIF) of canine herpesvirus (CHV-l) was determined. Alignment of the predicted CHV-1 alpha-TIF amino acid sequence with other alpha-TIF homologues reveals a core region of similarity with divergent amino and carboxyl termini. Analysis of the CHV-1 infected cell protein 4 promoter region identified a region containing nine copies of a 52 bp repeat that showed significant up-regulation of transcription by alpha-TIF. This region contained an imperfect 'TAATGARAT' motif, the binding site for herpes simplex virus 1 alpha-TIF, with an imperfect Oct-1 binding site immediately following. The infectious laryngotracheitis virus alpha-TIF was also shown to up-regulate transcription through this region of the promoter. Transfection of CHV-1 genomic DNA failed to yield infectious virus in canine kidney cell lines. Co-transfection of genomic DNA and an alpha-TIF expression plasmid resulted in virus plaques, indicating a potential essential role for alpha-TIF in CHV-1 infection.
Collapse
Affiliation(s)
- Scott G Tyack
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Private Bag No. 24, Geelong, VIC., 3220, Australia.
| | | | | |
Collapse
|
140
|
Culver JN, Padmanabhan MS. Virus-induced disease: altering host physiology one interaction at a time. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:221-43. [PMID: 17417941 DOI: 10.1146/annurev.phyto.45.062806.094422] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Virus infections are the cause of numerous plant disease syndromes that are generally characterized by the induction of disease symptoms such as developmental abnormalities, chlorosis, and necrosis. How viruses induce these disease symptoms represents a long-standing question in plant pathology. Recent studies indicate that symptoms are derived from specific interactions between virus and host components. Many of these interactions have been found to contribute to the successful completion of the virus life-cycle, although the role of other interactions in the infection process is not yet known. However, all share the potential to disrupt host physiology. From this information we are beginning to decipher the progression of events that lead from specific virus-host interactions to the establishment of disease symptoms. This review highlights our progress in understanding the mechanisms through which virus-host interactions affect host physiology. The emerging picture is one of complexity involving the individual effects of multiple virus-host interactions.
Collapse
Affiliation(s)
- James N Culver
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
141
|
Zhou F, Wu G, Deng W, Pu Y, Wei C, Li Y. Interaction of rice dwarf virus outer capsid P8 protein with rice glycolate oxidase mediates relocalization of P8. FEBS Lett 2006; 581:34-40. [PMID: 17174956 DOI: 10.1016/j.febslet.2006.11.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/23/2006] [Accepted: 11/28/2006] [Indexed: 11/18/2022]
Abstract
Yeast two-hybrid and coimmunoprecipitation assays indicated that P8, an outer capsid protein of Rice dwarf phytoreovirus (RDV), interacts with rice glycolate oxidase (GOX), a typical enzyme of peroxisomes. Confocal immunofluorescence microscopy revealed that P8 was colocalized with GOX in peroxisomes. Time course analysis demonstrated that the localization of P8 in Spodoptera frugiperda cells changed from diffuse to discrete, punctuate inclusions during expression from 24 to 48 h post inoculation. Coexpression of GOX with P8 may target P8 into peroxisomes, which serve as replication sites for a number of viruses. Therefore, we conclude that the interaction of P8 with the GOX of host cells leads to translocation of P8 into peroxisomes and we further propose that the interaction between P8 and GOX may play important roles in RDV targeting into the replication site of host cells. Our findings have broad significance in studying the mechanisms whereby viruses target appropriate replication sites and begin their replication.
Collapse
Affiliation(s)
- Feng Zhou
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
142
|
Whitham SA, Yang C, Goodin MM. Global impact: elucidating plant responses to viral infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1207-15. [PMID: 17073303 DOI: 10.1094/mpmi-19-1207] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viruses induce a variety of responses in host cells that are mediated by perturbation of different signaling pathways. Advances in our understanding of the functions of viral proteins, plant biology in general, as well as technologies for profiling gene expression have converged in recent years to provide new insight into the events occurring inside susceptible and resistant host cells in response to virus infection. These effects range from nonspecific changes in gene expression due to the general accumulation of viral proteins to those responses that are initiated by the specific interactions between virus and host proteins. Here, we discuss a variety of expression profiling methods and approaches that have been used to study the effects of viruses on host transcriptomes. These studies have identified distinct sets of genes that have altered expression profiles in response to viruses, including stress- and defense-related genes. The activities of viral RNA silencing suppressors and interference with hormone signaling or biogenesis also influence plant gene expression and lead to developmental abnormalities.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology, Iowa State University, Ames, IA 50011-1020, USA.
| | | | | |
Collapse
|
143
|
Padmanabhan MS, Shiferaw H, Culver JN. The Tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/IAA proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:864-73. [PMID: 16903352 DOI: 10.1094/mpmi-19-0864] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Previously, we identified a correlation between the interaction of the Tobacco mosaic virus (TMV) 126/183-kDa replicase with the auxin response regulator indole acetic acid (IAA)26/PAP1 and the development of disease symptoms. In this study, the TMV replicase protein is shown to colocalize with IAA26 in the cytoplasm and prevent its accumulation within the nucleus. Furthermore, two additional auxin (Aux)/IAA family members, IAA27 and IAA18, were found to interact with the TMV replicase and displayed alterations in their cellular localization or accumulation that corresponded with their ability to interact with the TMV replicase. In contrast, the localization and accumulation of noninteracting Aux/IAA proteins were unaffected by the presence of the viral replicase. To investigate the effects of the replicase interaction on Aux/IAA function, transgenic plants expressing a proteolysis-resistant IAA26-P108L-green fluorescent protein (GFP) protein were created. Transgenic plants accumulating IAA26-P108L-GFP displayed an abnormal developmental phenotype that included severe stunting and leaf epinasty. However, TMV infection blocked the nuclear localization of IAA26-P108L-GFP and attenuated the developmental phenotype displayed by the transgenic plants. Combined, these findings suggest that TMV-induced disease symptoms can be attributed, in part, to the ability of the viral replicase protein to disrupt the localization and subsequent function of interacting Aux/IAA proteins.
Collapse
Affiliation(s)
- Meenu S Padmanabhan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
144
|
Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2006; 172:92-103. [PMID: 16945092 DOI: 10.1111/j.1469-8137.2006.01818.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leaves of Arabidopsis thaliana grown under elevated or ambient CO2 (700 or 370 micromol mol(-1), respectively) were examined for physiological, biochemical and structural changes. Stomatal characters, carbohydrate and mineral nutrient concentrations, leaf ultrastructure and plant hormone content were investigated using atomic absorption spectrophotometry, transmission electron microscopy and enzyme-linked immunosorbent assay (ELISA). Elevated CO2 reduced the stomatal density and stomatal index of leaves, and also reduced stomatal conductance and transpiration rate. Elevated CO2 increased chloroplast number, width and profile area, and starch grain size and number, but reduced the number of grana thylakoid membranes. Under elevated CO2, the concentrations of carbohydrates and plant hormones, with the exception of abscisic acid, increased whereas mineral nutrient concentrations declined. These results suggest that the changes in chloroplast ultrastructure may primarily be a consequence of increased starch accumulation. Accelerated A. thaliana growth and development in elevated CO2 could in part be attributed to increased foliar concentrations of plant hormones. The reductions in mineral nutrient concentrations may be a result of dilution by increased concentrations of carbohydrates and also of decreases in stomatal conductance and transpiration rate.
Collapse
Affiliation(s)
- Nianjun Teng
- Key laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|