101
|
Desnoyer N, Howard G, Jong E, Palanivelu R. AtPIG-S, a predicted Glycosylphosphatidylinositol Transamidase subunit, is critical for pollen tube growth in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:380. [PMID: 32811442 PMCID: PMC7437025 DOI: 10.1186/s12870-020-02587-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) addition is one of the several post-translational modifications to proteins that increase their affinity for membranes. In eukaryotes, the GPI transamidase complex (GPI-T) catalyzes the attachment of pre-assembled GPI anchors to GPI-anchored proteins (GAPs) through a transamidation reaction. A mutation in AtGPI8 (gpi8-2), the putative catalytic subunit of GPI-T in Arabidopsis, is transmitted normally through the female gametophyte (FG), indicating the FG tolerates loss of GPI transamidation. In contrast, gpi8-2 almost completely abolishes male gametophyte (MG) function. Still, the unexpected finding that gpi8-2 FGs function normally requires further investigation. Additionally, specific developmental defects in the MG caused by loss of GPI transamidation remain poorly characterized. RESULTS Here we investigated the effect of loss of AtPIG-S, another GPI-T subunit, in both gametophytes. Like gpi8-2, we showed that a mutation in AtPIG-S (pigs-1) disrupted synergid localization of LORELEI (LRE), a putative GAP critical for pollen tube reception by the FG. Still, pigs-1 is transmitted normally through the FG. Conversely, pigs-1 severely impaired male gametophyte (MG) function during pollen tube emergence and growth in the pistil. A pPIGS:GFP-PIGS transgene complemented these MG defects and enabled generation of pigs-1/pigs-1 seedlings. However, the pPIGS:GFP-PIGS transgene seemingly failed to rescue the function of AtPIG-S in the sporophyte, as pigs-1/pigs-1, pPIGS:GFP-PIGS seedlings died soon after germination. CONCLUSIONS Characterization of pigs-1 provided further evidence that the FG tolerates loss of GPI transamidation more than the MG and that the MG compared to the FG may be a better haploid system to study the role of GPI-anchoring. Pigs-1 pollen develops normally and thus represent a tool in which GPI anchor biosynthesis and transamidation of GAPs have been uncoupled, offering a potential way to study free GPI in plant development. While previously reported male fertility defects of GPI biosynthesis mutants could have been due either to loss of GPI or GAPs lacking the GPI anchor, our results clarified that the loss of mature GAPs underlie male fertility defects of GPI-deficient pollen grains, as pigs-1 is defective only in the downstream transamidation step.
Collapse
Affiliation(s)
- Nicholas Desnoyer
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Present Address: Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Gregory Howard
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Emma Jong
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | |
Collapse
|
102
|
Weiller F, Gerber L, Trygg J, Fangel JU, Willats WG, Driouich A, Vivier MA, Moore JP. Overexpression of VviPGIP1 and NtCAD14 in Tobacco Screened Using Glycan Microarrays Reveals Cell Wall Reorganisation in the Absence of Fungal Infection. Vaccines (Basel) 2020; 8:E388. [PMID: 32679889 PMCID: PMC7565493 DOI: 10.3390/vaccines8030388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/07/2023] Open
Abstract
The expression of Vitis vinifera polygalacturonase inhibiting protein 1 (VviPGIP1) in Nicotiana tabacum has been linked to modifications at the cell wall level. Previous investigations have shown an upregulation of the lignin biosynthesis pathway and reorganisation of arabinoxyloglucan composition. This suggests cell wall tightening occurs, which may be linked to defence priming responses. The present study used a screening approach to test four VviPGIP1 and four NtCAD14 overexpressing transgenic lines for cell wall alterations. Overexpressing the tobacco-derived cinnamyl alcohol dehydrogenase (NtCAD14) gene is known to increase lignin biosynthesis and deposition. These lines, particularly PGIP1 expressing plants, have been shown to lead to a decrease in susceptibility towards grey rot fungus Botrytis cinerea. In this study the aim was to investigate the cell wall modulations that occurred prior to infection, which should highlight potential priming phenomena and phenotypes. Leaf lignin composition and relative concentration of constituent monolignols were evaluated using pyrolysis gas chromatography. Significant concentrations of lignin were deposited in the stems but not the leaves of NtCAD14 overexpressing plants. Furthermore, no significant changes in monolignol composition were found between transgenic and wild type plants. The polysaccharide modifications were quantified using gas chromatography (GC-MS) of constituent monosaccharides. The major leaf polysaccharide and cell wall protein components were evaluated using comprehensive microarray polymer profiling (CoMPP). The most significant changes appeared at the polysaccharide and protein level. The pectin fraction of the transgenic lines had subtle variations in patterning for methylesterification epitopes for both VviPGIP1 and NtCAD14 transgenic lines versus wild type. Pectin esterification levels have been linked to pathogen defence in the past. The most marked changes occurred in glycoprotein abundance for both the VviPGIP1 and NtCAD14 lines. Epitopes for arabinogalactan proteins (AGPs) and extensins were notably altered in transgenic NtCAD14 tobacco.
Collapse
Affiliation(s)
- Florent Weiller
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7602, South Africa; (F.W.); (M.A.V.)
| | - Lorenz Gerber
- Department of Plant Sciences, Swedish Agricultural University, 75007 Uppsala, Sweden;
| | - Johan Trygg
- Computational Life Science Cluster, Department of Chemistry, University of Umeå, 901 87 Umea, Sweden;
| | - Jonatan U. Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, 1165 Copenhagen, Denmark;
| | - William G.T. Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK;
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV), University of Rouen, 76821 Mont Saint Aignan, France;
| | - Melané A. Vivier
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7602, South Africa; (F.W.); (M.A.V.)
| | - John P. Moore
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7602, South Africa; (F.W.); (M.A.V.)
| |
Collapse
|
103
|
Liu S, Tang Y, Ruan N, Dang Z, Huang Y, Miao W, Xu Z, Li F. The Rice BZ1 Locus Is Required for Glycosylation of Arabinogalactan Proteins and Galactolipid and Plays a Role in both Mechanical Strength and Leaf Color. RICE (NEW YORK, N.Y.) 2020; 13:41. [PMID: 32556633 PMCID: PMC7300173 DOI: 10.1186/s12284-020-00400-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/11/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND The cell wall and chloroplast are two fundamental structures determining plant mechanical strength and grain yield. Therefore, understanding mechanisms that improve plants' ability to develop a robust cell wall and well-developed chloroplast is of utmost importance for agricultural activities. RESULTS In this study, we report the functional characterization of a novel rice mutant, brittle stem and zebra leaf (bz1), which displays altered cell wall composition and collapsed chloroplast membrane. Molecular and biochemical analysis revealed that BZ1 encodes a functional UDP-galactose/glucose epimerase (UGE) and is ubiquitously expressed with higher expression in stem and leaf tissues. Multiple techniques analyses, including immunoblots, immuno-gold, and cryogenic scanning electron microscopy, demonstrated a significantly impaired glycosylation of arabinogalactan proteins (AGPs) and disordered cellulose microfibril deposition in bz1. Lipid profiling assay showed that the amount of monogalactosyldiacylglycerols (MGDG), a major chloroplast membrane glycolipid, was significantly decreased in bz1. Taken together, these results strongly demonstrate that BZ1 participates in UDP-galactose supply for the sugar chains biosynthesis of AGPs and MGDG, which thereby, respectively, results in altered cell wall and abnormal chloroplast development. Due to inferior mechanical strength and reduced photosynthesis, bz1 plants displayed detrimental agronomic traits, whereas BZ1 overexpressing lines showed enhanced plant growth. Transcriptome analysis of stems and leaves further showed that numerous key genes involved in AGPs biosynthesis and photosynthesis metabolism were substantially suppressed in bz1. CONCLUSIONS Our finding identifies BZ1 as a dual-targeting UGE protein for glycosylation of AGPs and MGDG and suggests a strategy for breeding robust elite crops.
Collapse
Affiliation(s)
- Sitong Liu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Yijun Tang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Nan Ruan
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Zhengjun Dang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Yuwei Huang
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Wei Miao
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Zhengjin Xu
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China
| | - Fengcheng Li
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Agriculture, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
104
|
Nibbering P, Petersen BL, Motawia MS, Jørgensen B, Ulvskov P, Niittylä T. Golgi-localized exo-β1,3-galactosidases involved in cell expansion and root growth in Arabidopsis. J Biol Chem 2020; 295:10581-10592. [PMID: 32493777 DOI: 10.1074/jbc.ra120.013878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Plant arabinogalactan proteins (AGPs) are a diverse group of cell surface- and wall-associated glycoproteins. Functionally important AGP glycans are synthesized in the Golgi apparatus, but the relationships among their glycosylation levels, processing, and functionalities are poorly understood. Here, we report the identification and functional characterization of two Golgi-localized exo-β-1,3-galactosidases from the glycosyl hydrolase 43 (GH43) family in Arabidopsis thaliana GH43 loss-of-function mutants exhibited root cell expansion defects in sugar-containing growth media. This root phenotype was associated with an increase in the extent of AGP cell wall association, as demonstrated by Yariv phenylglycoside dye quantification and comprehensive microarray polymer profiling of sequentially extracted cell walls. Characterization of recombinant GH43 variants revealed that the exo-β-1,3-galactosidase activity of GH43 enzymes is hindered by β-1,6 branches on β-1,3-galactans. In line with this steric hindrance, the recombinant GH43 variants did not release galactose from cell wall-extracted glycoproteins or AGP-rich gum arabic. These results indicate that the lack of exo-β-1,3-galactosidase activity alters cell wall extensibility in roots, a phenotype that could be explained by the involvement of galactosidases in AGP glycan biosynthesis.
Collapse
Affiliation(s)
- Pieter Nibbering
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bent L Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mohammed Saddik Motawia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
105
|
Meng J, Hu B, Yi G, Li X, Chen H, Wang Y, Yuan W, Xing Y, Sheng Q, Su Z, Xu C. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. PLANT CELL REPORTS 2020; 39:693-708. [PMID: 32128627 DOI: 10.1007/s00299-020-02524-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Thirty MaFLAs vary in their molecular features. MaFLA14/18/27/29 are likely to be involved in banana chilling tolerance by facilitating the cold signaling pathway and enhancing the cell wall biosynthesis. Although several studies have identified the molecular functions of individual fasciclin-like arabinogalactan protein (FLA) genes in plant growth and development, little information is available on their involvement in plant tolerance to low-temperature (LT) stress, and the related underlying mechanism is far from clear. In this study, the different expression of FLAs of banana (Musa acuminata) (MaFLAs) in the chilling-sensitive (CS) and chilling-tolerant (CT) banana cultivars under natural LT was investigated. Based on the latest banana genome database, a genome-wide identification of this gene family was done and the molecular features were analyzed. Thirty MaFLAs were distributed in 10 out of 11 chromosomes and these clustered into four major phylogenetic groups based on shared gene structure. Twenty-four MaFLAs contained N-terminal signal, 19 possessed predicted glycosylphosphatidylinositol (GPI), while 16 had both. Most MaFLAs were downregulated by LT stress. However, MaFLA14/18/29 were upregulated by LT in both cultivars with higher expression level recorded in the CT cultivar. Interestingly, MaFLA27 was significantly upregulated in the CT cultivar, but the opposite occurred for the CS cultivar. MaFLA27 possessed only N-terminal signal, MaFLA18 contained only GPI anchor, MaFLA29 possessed both, while MaFLA14 had neither. Thus, it was suggested that the accumulation of these FLAs in banana under LT could improve banana chilling tolerance through facilitating cold signal pathway and thereafter enhancing biosynthesis of plant cell wall components. The results provide background information of MaFLAs, suggest their involvement in plant chilling tolerance and their potential as candidate genes to be targeted when breeding CT banana.
Collapse
Affiliation(s)
- Jian Meng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Bei Hu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Houbin Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yingying Wang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Weina Yuan
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqing Xing
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiming Sheng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zuxiang Su
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chunxiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
106
|
Sujkowska-Rybkowska M, Muszyńska E, Labudda M. Structural Adaptation and Physiological Mechanisms in the Leaves of Anthyllis vulneraria L. from Metallicolous and Non-Metallicolous Populations. PLANTS (BASEL, SWITZERLAND) 2020; 9:E662. [PMID: 32456189 PMCID: PMC7284905 DOI: 10.3390/plants9050662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
Calamine wastes highly contaminated with trace metals (TMs) are spontaneously inhabited by a legume plant Anthyllis vulneraria L. This study determined an adaptation strategy of metallicolous (M) A. vulneraria and compared it with that of the non-metallicolous (NM) ecotype. We hypothesized that TMs may lead to (i) leaf apoplast modifications and (ii) changes in the antioxidant machinery efficiency that facilitate plant growth under severe contamination. To verify our hypothesis, we implemented immunolabelling, transmission electron microscopy and biochemical measurements. NM leaves were larger and thicker compared to the M ecotype. Microscopic analysis of M leaves showed a lack of dysfunctions in mesophyll cells exposed to TMs. However, changes in apoplast composition and thickening of the mesophyll and epidermal cell walls in these plants were observed. Thick walls were abundant in xyloglucan, pectins, arabinan, arabinogalactan protein and extensin. The tested ecotypes differed also in their physiological responses. The metallicolous ecotype featured greater accumulation of photosynthetic pigments, enhanced activity of superoxide dismutase and increased content of specific phenol groups in comparison with the NM one. Despite this, radical scavenging activity at the level of 20% was similar in M and NM ecotypes, which may implicate effective reduction of oxidative stress in M plants. In summary, our results confirmed hypotheses and suggest that TMs induced cell wall modifications of leaves, which may play a role in metal stress avoidance in Anthyllis species. However, when TMs reach the protoplast, activation of antioxidant machinery may significantly strengthen the status of plants naturally growing in TM-polluted environment.
Collapse
Affiliation(s)
- Marzena Sujkowska-Rybkowska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| |
Collapse
|
107
|
Pfeifer L, Shafee T, Johnson KL, Bacic A, Classen B. Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments. Sci Rep 2020; 10:8232. [PMID: 32427862 PMCID: PMC7237498 DOI: 10.1038/s41598-020-65135-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Seagrasses evolved from monocotyledonous land plants that returned to the marine habitat. This transition was accomplished by substantial changes in cell wall composition, revealing habitat-driven adaption to the new environment. Whether arabinogalactan-proteins (AGPs), important signalling molecules of land plants, are present in seagrass cell walls is of evolutionary and plant development interest. AGPs of Zostera marina L. were isolated and structurally characterised by analytical and bioinformatics methods as well as by ELISA with different anti-AGP antibodies. Calcium-binding capacity of AGPs was studied by isothermal titration calorimetry (ITC) and microscopy. Bioinformatic searches of the Z. marina proteome identified 9 classical AGPs and a large number of chimeric AGPs. The glycan structures exhibit unique features, including a high degree of branching and an unusually high content of terminating 4-O-methyl-glucuronic acid (4-OMe GlcA) residues. Although the common backbone structure of land plant AGPs is conserved in Z. marina, the terminating residues are distinct with high amounts of uronic acids. These differences likely result from the glycan-active enzymes (glycosyltransferases and methyltransferases) and are essential for calcium-binding properties. The role of this polyanionic surface is discussed with regard to adaption to the marine environment.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany
| | - Thomas Shafee
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kim L Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118, Kiel, Germany.
| |
Collapse
|
108
|
Zhang Y, Held MA, Showalter AM. Elucidating the roles of three β-glucuronosyltransferases (GLCATs) acting on arabinogalactan-proteins using a CRISPR-Cas9 multiplexing approach in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:221. [PMID: 32423474 PMCID: PMC7236193 DOI: 10.1186/s12870-020-02420-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/29/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are one of the most complex protein families in the plant kingdom and are present in the cell walls of all land plants. AGPs are implicated in diverse biological processes such as plant growth, development, reproduction, and stress responses. AGPs are extensively glycosylated by the addition of type II arabinogalactan (AG) polysaccharides to hydroxyproline residues in their protein cores. Glucuronic acid (GlcA) is the only negatively charged sugar added to AGPs and the functions of GlcA residues on AGPs remain to be elucidated. RESULTS Three members of the CAZy GT14 family (GLCAT14A-At5g39990, GLCAT14B-At5g15050, and GLCAT14C-At2g37585), which are responsible for transferring glucuronic acid (GlcA) to AGPs, were functionally characterized using a CRISPR/Cas9 gene editing approach in Arabidopsis. RNA seq and qRT-PCR data showed all three GLCAT genes were broadly expressed in different plant tissues, with GLCAT14A and GLCAT14B showing particularly high expression in the micropylar endosperm. Biochemical analysis of the AGPs from knock-out mutants of various glcat single, double, and triple mutants revealed that double and triple mutants generally had small increases of Ara and Gal and concomitant reductions of GlcA, particularly in the glcat14a glcat14b and glcat14a glcat14b glcat14c mutants. Moreover, AGPs isolated from all the glcat mutants displayed significant reductions in calcium binding compared to WT. Further phenotypic analyses found that the glcat14a glcat14b and glcat14a glcat14b glcat14c mutants exhibited significant delays in seed germination, reductions in root hair length, reductions in trichome branching, and accumulation of defective pollen grains. Additionally, both glcat14b glcat14c and glcat14a glcat14b glcat14c displayed significantly shorter siliques and reduced seed set. Finally, all higher-order mutants exhibited significant reductions in adherent seed coat mucilage. CONCLUSIONS This research provides genetic evidence that GLCAT14A-C function in the transfer of GlcA to AGPs, which in turn play a role in a variety of biochemical and physiological phenotypes including calcium binding by AGPs, seed germination, root hair growth, trichome branching, pollen development, silique development, seed set, and adherent seed coat mucilage accumulation.
Collapse
Affiliation(s)
- Yuan Zhang
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701–2979 USA
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701–2979 USA
- Department of Environmental & Plant Biology, Ohio University, Athens, OH 45701–2979 USA
| |
Collapse
|
109
|
Xiong SX, Zeng QY, Hou JQ, Hou LL, Zhu J, Yang M, Yang ZN, Lou Y. The temporal regulation of TEK contributes to pollen wall exine patterning. PLoS Genet 2020; 16:e1008807. [PMID: 32407354 PMCID: PMC7252695 DOI: 10.1371/journal.pgen.1008807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/27/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Pollen wall consists of several complex layers which form elaborate species-specific patterns. In Arabidopsis, the transcription factor ABORTED MICROSPORE (AMS) is a master regulator of exine formation, and another transcription factor, TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK), specifies formation of the nexine layer. However, knowledge regarding the temporal regulatory roles of TEK in pollen wall development is limited. Here, TEK-GFP driven by the AMS promoter was prematurely expressed in the tapetal nuclei, leading to complete male sterility in the pAMS:TEK-GFP (pat) transgenic lines with the wild-type background. Cytological observations in the pat anthers showed impaired callose synthesis and aberrant exine patterning. CALLOSE SYNTHASE5 (CalS5) is required for callose synthesis, and expression of CalS5 in pat plants was significantly reduced. We demonstrated that TEK negatively regulates CalS5 expression after the tetrad stage in wild-type anthers and further discovered that premature TEK-GFP in pat directly represses CalS5 expression through histone modification. Our findings show that TEK flexibly mediates its different functions via different temporal regulation, revealing that the temporal regulation of TEK is essential for exine patterning. Moreover, the result that the repression of CalS5 by TEK after the tetrad stage coincides with the timing of callose wall dissolution suggests that tapetum utilizes temporal regulation of genes to stop callose wall synthesis, which, together with the activation of callase activity, achieves microspore release and pollen wall patterning. To develop into mature pollen grains, microspores require formation of the pollen wall. To date, pollen wall developmental events, including production and transportation of pollen wall components, synthesis and degradation of the callose wall, and deposition and demixing of primexine, have been studied in Arabidopsis, and a number of anther- or tapetum-specific genes involved in pollen wall formation have been uncovered. However, whether the specific expression patterns of these genes contribute to pollen wall development or patterning remains unclear. Here, we show that TEK, a transcription factor that specifies formation of nexine (the inner layer of the pollen wall exine), represses the expression of the callose synthase CalS5 after the tetrad stage, which accurately fits with the timing of callose wall dissolution causing microspore release. Moreover, we show that premature expression of TEK in the wild-type anthers disturbs callose wall synthesis and pollen wall patterning. This work reveals that a pollen wall regulator must be kept under a strict temporal control to perform its functions, and that these temporal controls are coordinated with other pollen wall developmental events to determine pollen wall formation and patterning.
Collapse
Affiliation(s)
- Shuang-Xi Xiong
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China
| | - Qiu-Ye Zeng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jian-Qiao Hou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ling-Li Hou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Min Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yue Lou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
110
|
Parra R, Paredes MA, Labrador J, Nunes C, Coimbra MA, Fernandez-Garcia N, Olmos E, Gallardo M, Gomez-Jimenez MC. Cell Wall Composition and Ultrastructural Immunolocalization of Pectin and Arabinogalactan Protein during Olea europaea L. Fruit Abscission. PLANT & CELL PHYSIOLOGY 2020; 61:814-825. [PMID: 32016408 DOI: 10.1093/pcp/pcaa009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Cell wall modification is integral to many plant developmental processes where cells need to separate, such as abscission. However, changes in cell wall composition during natural fruit abscission are poorly understood. In olive (Olea europaea L.), some cultivars such as 'Picual' undergo massive natural fruit abscission after fruit ripening. This study investigates the differences in cell wall polysaccharide composition and the localization of pectins and arabinogalactan protein (AGP) in the abscission zone (AZ) during cell separation to understand fruit abscission control in 'Picual' olive. To this end, immunogold labeling employing a suite of monoclonal antibodies to cell wall components (JIM13, LM5, LM6, LM19 and LM20) was investigated in olive fruit AZ. Cell wall polysaccharide extraction revealed that the AZ cell separation is related to the de-esterification and degradation of pectic polysaccharides. Moreover, ultrastructural localization showed that both esterified and unesterified homogalacturonans (HGs) localize mainly in the AZ cell walls, including the middle lamella and tricellular junction zones. Our results indicate that unesterified HGs are likely to contribute to cell separation in the olive fruit AZ. Similarly, immunogold labeling demonstrated a decrease in both galactose-rich and arabinose-rich pectins in AZ cell walls during ripe fruit abscission. In addition, AGPs were localized in the cell wall, plasma membrane and cytoplasm of AZ cells with lower levels of AGPs during ripe fruit abscission. This detailed temporal profile of the cell wall polysaccharide composition, and the pectins and AGP immunolocalization in the olive fruit AZ, offers new insights into cell wall remodeling during ripe fruit abscission.
Collapse
Affiliation(s)
- Ruben Parra
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Miguel A Paredes
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Cláudia Nunes
- Department of Chemistry, University of Aveiro, Aveiro P-3810-193, Portugal
| | - Manuel A Coimbra
- Department of Chemistry, University of Aveiro, Aveiro P-3810-193, Portugal
| | - Nieves Fernandez-Garcia
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Murcia, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Murcia, Spain
| | - Mercedes Gallardo
- Department of Plant Physiology, University of Vigo, Campus Lagoas-Marcosende, s/n, Vigo 36310, Spain
| | - Maria C Gomez-Jimenez
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
111
|
Wang BT, Hu S, Yu XY, Jin L, Zhu YJ, Jin FJ. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers (Basel) 2020; 12:polym12030530. [PMID: 32121667 PMCID: PMC7182937 DOI: 10.3390/polym12030530] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Polysaccharides are biopolymers made up of a large number of monosaccharides joined together by glycosidic bonds. Polysaccharides are widely distributed in nature: Some, such as peptidoglycan and cellulose, are the components that make up the cell walls of bacteria and plants, and some, such as starch and glycogen, are used as carbohydrate storage in plants and animals. Fungi exist in a variety of natural environments and can exploit a wide range of carbon sources. They play a crucial role in the global carbon cycle because of their ability to break down plant biomass, which is composed primarily of cell wall polysaccharides, including cellulose, hemicellulose, and pectin. Fungi produce a variety of enzymes that in combination degrade cell wall polysaccharides into different monosaccharides. Starch, the main component of grain, is also a polysaccharide that can be broken down into monosaccharides by fungi. These monosaccharides can be used for energy or as precursors for the biosynthesis of biomolecules through a series of enzymatic reactions. Industrial fermentation by microbes has been widely used to produce traditional foods, beverages, and biofuels from starch and to a lesser extent plant biomass. This review focuses on the degradation and utilization of plant homopolysaccharides, cellulose and starch; summarizes the activities of the enzymes involved and the regulation of the induction of the enzymes in well-studied filamentous fungi.
Collapse
|
112
|
Lamport DTA, Tan L, Held M, Kieliszewski MJ. Phyllotaxis Turns Over a New Leaf-A New Hypothesis. Int J Mol Sci 2020; 21:E1145. [PMID: 32050457 PMCID: PMC7037126 DOI: 10.3390/ijms21031145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Phyllotaxis describes the periodic arrangement of plant organs most conspicuously floral. Oscillators generally underlie periodic phenomena. A hypothetical algorithm generates phyllotaxis regulated by the Hechtian growth oscillator of the stem apical meristem (SAM) protoderm. The oscillator integrates biochemical and mechanical force that regulate morphogenetic gradients of three ionic species, auxin, protons and Ca2+. Hechtian adhesion between cell wall and plasma membrane transduces wall stress that opens Ca2+ channels and reorients auxin efflux "PIN" proteins; they control the auxin-activated proton pump that dissociates Ca2+ bound by periplasmic arabinogalactan proteins (AGP-Ca2+) hence the source of cytosolic Ca2+ waves that activate exocytosis of wall precursors, AGPs and PIN proteins essential for morphogenesis. This novel approach identifies the critical determinants of an algorithm that generates phyllotaxis spiral and Fibonaccian symmetry: these determinants in order of their relative contribution are: (1) size of the apical meristem and the AGP-Ca2+ capacitor; (2) proton pump activity; (3) auxin efflux proteins; (4) Ca2+ channel activity; (5) Hechtian adhesion that mediates the cell wall stress vector. Arguably, AGPs and the AGP-Ca2+ capacitor plays a decisive role in phyllotaxis periodicity and its evolutionary origins.
Collapse
Affiliation(s)
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Michael Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; (M.H.); (M.J.K.)
| | - Marcia J. Kieliszewski
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA; (M.H.); (M.J.K.)
| |
Collapse
|
113
|
Ezquer I, Salameh I, Colombo L, Kalaitzis P. Plant Cell Walls Tackling Climate Change: Insights into Plant Cell Wall Remodeling, Its Regulation, and Biotechnological Strategies to Improve Crop Adaptations and Photosynthesis in Response to Global Warming. PLANTS (BASEL, SWITZERLAND) 2020; 9:E212. [PMID: 32041306 PMCID: PMC7076711 DOI: 10.3390/plants9020212] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
Plant cell wall (CW) is a complex and intricate structure that performs several functions throughout the plant life cycle. The CW of plants is critical to the maintenance of cells' structural integrity by resisting internal hydrostatic pressures, providing flexibility to support cell division and expansion during tissue differentiation, and acting as an environmental barrier that protects the cells in response to abiotic stress. Plant CW, comprised primarily of polysaccharides, represents the largest sink for photosynthetically fixed carbon, both in plants and in the biosphere. The CW structure is highly varied, not only between plant species but also among different organs, tissues, and cell types in the same organism. During the developmental processes, the main CW components, i.e., cellulose, pectins, hemicelluloses, and different types of CW-glycoproteins, interact constantly with each other and with the environment to maintain cell homeostasis. Differentiation processes are altered by positional effect and are also tightly linked to environmental changes, affecting CW both at the molecular and biochemical levels. The negative effect of climate change on the environment is multifaceted, from high temperatures, altered concentrations of greenhouse gases such as increasing CO2 in the atmosphere, soil salinity, and drought, to increasing frequency of extreme weather events taking place concomitantly, therefore, climate change affects crop productivity in multiple ways. Rising CO2 concentration in the atmosphere is expected to increase photosynthetic rates, especially at high temperatures and under water-limited conditions. This review aims to synthesize current knowledge regarding the effects of climate change on CW biogenesis and modification. We discuss specific cases in crops of interest carrying cell wall modifications that enhance tolerance to climate change-related stresses; from cereals such as rice, wheat, barley, or maize to dicots of interest such as brassica oilseed, cotton, soybean, tomato, or potato. This information could be used for the rational design of genetic engineering traits that aim to increase the stress tolerance in key crops. Future growing conditions expose plants to variable and extreme climate change factors, which negatively impact global agriculture, and therefore further research in this area is critical.
Collapse
Affiliation(s)
- Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Ilige Salameh
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania (MAICh), P.O. Box 85, 73100 Chania, Greece; (I.S.); (P.K.)
| |
Collapse
|
114
|
Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. THE NEW PHYTOLOGIST 2020; 225:1428-1439. [PMID: 31486535 DOI: 10.1111/nph.16166] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
The structural and functional integrity of the cell wall needs to be constantly monitored and fine-tuned to allow for growth while preventing mechanical failure. Many studies have advanced our understanding of the pathways that contribute to cell wall biosynthesis and how these pathways are regulated by external and internal cues. Recent evidence also supports a model in which certain aspects of the wall itself may act as growth-regulating signals. Molecular components of the signaling pathways that sense and maintain cell wall integrity have begun to be revealed, including signals arising in the wall, sensors that detect changes at the cell surface, and downstream signal transduction modules. Abiotic and biotic stress conditions provide new contexts for the study of cell wall integrity, but the nature and consequences of wall disruptions due to various stressors require further investigation. A deeper understanding of cell wall signaling will provide insights into the growth regulatory mechanisms that allow plants to survive in changing environments.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
115
|
Dossa GS, Quibod I, Atienza-Grande G, Oliva R, Maiss E, Vera Cruz C, Wydra K. Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight. Sci Rep 2020; 10:683. [PMID: 31959799 PMCID: PMC6971257 DOI: 10.1038/s41598-020-57499-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/21/2019] [Indexed: 01/03/2023] Open
Abstract
Rice bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) implies substantial yield loss to rice. In times of climate change, increasing temperatures are observed and further acceleration is expected worldwide. Increasing temperature often turns into inhibition of host plant defense to pathogens. Recently, a reduced resistance in rice IRBB4 carrying Xa4, but an increase in resistance in IRBB7 carrying Xa7 resistance by increasing temperature has been reported. Influence of high temperature on both R genes (Xa4+Xa7) combined in IRBB67 was analyzed under growth chamber conditions and transcriptomic analysis performed. The pyramided line IRBB67 showed no differences in lesion length between both temperature regimes, demonstrating that non-effectiveness of Xa4 at high temperature did not affect IRBB67 resistance. Moreover, Xa4 complements Xa7 resistance with no Xoo spread in planta beyond the symptomatic area under both temperature regimes in IRBB67. Time course transcriptomic analysis revealed that temperature enhanced IRBB67 resistance to combined heat and Xoo. Our findings highlight altered cellular compartments and point at a role of the cell wall involved in Xoo resistance and heat stress tolerance in both susceptible (IR24) and the resistant (IRBB67) NILs. Interestingly, up-regulation of trehalose-6-phosphatase gene and low affinity cation transporter in IRBB67 suggest that IRBB67 maintained a certain homeostasis under high temperature which may have enhanced its resistance. The interplay of both heat stress and Xoo responses as determined by up-regulated and down-regulated genes demonstrates how resistant plants cope with combined biotic and abiotic stresses.
Collapse
Affiliation(s)
- Gerbert Sylvestre Dossa
- International Rice Research Institute, Los Baños, Philippines.
- Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany.
- Food and Agriculture Organization, Sub Regional Office for Central Africa, PO. Box 2643, Libreville, Gabon.
| | - Ian Quibod
- International Rice Research Institute, Los Baños, Philippines
| | - Genelou Atienza-Grande
- International Rice Research Institute, Los Baños, Philippines
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Philippines
| | - Ricardo Oliva
- International Rice Research Institute, Los Baños, Philippines
| | - Edgar Maiss
- Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany
| | | | - Kerstin Wydra
- Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany
- Plant Production and Climate Change, Erfurt University of Applied Sciences, Erfurt, Germany
| |
Collapse
|
116
|
Moreira D, Pereira AM, Lopes AL, Coimbra S. The best CRISPR/Cas9 versus RNA interference approaches for Arabinogalactan proteins' study. Mol Biol Rep 2020; 47:2315-2325. [PMID: 31950325 DOI: 10.1007/s11033-020-05258-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Arabinogalactan Proteins (AGPs) are hydroxyproline-rich proteins containing a high proportion of carbohydrates, widely spread in the plant kingdom. AGPs have been suggested to play important roles in plant development processes, especially in sexual plant reproduction. Nevertheless, the functions of a large number of these molecules, remains to be discovered. In this review, we discuss two revolutionary genetic techniques that are able to decode the roles of these glycoproteins in an easy and efficient way. The RNA interference is a frequently technique used in plant biology that promotes genes silencing. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (CRISPR/Cas9), emerged a few years ago as a revolutionary genome-editing technique that has allowed null mutants to be obtained in a wide variety of organisms, including plants. The two techniques have some differences between them and depending on the research objective, these may work as advantage or disadvantage. In the present work, we propose the use of the two techniques to obtain AGP mutants easily and quickly, helping to unravel the role of AGPs, surely a great asset for the future.
Collapse
Affiliation(s)
- Diana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Laboratório Associado para a Química Verde - Requimte, Porto, Portugal
| | - Ana Marta Pereira
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milano, Italy
| | - Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute - BioISI, Porto, Portugal
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
- Laboratório Associado para a Química Verde - Requimte, Porto, Portugal.
| |
Collapse
|
117
|
Wiater A, Paduch R, Trojnar S, Choma A, Pleszczyńska M, Adamczyk P, Pięt M, Próchniak K, Szczodrak J, Strawa J, Tomczyk M. The Effect of Water-Soluble Polysaccharide from Jackfruit ( Artocarpus heterophyllus Lam.) on Human Colon Carcinoma Cells Cultured In Vitro. PLANTS 2020; 9:plants9010103. [PMID: 31947694 PMCID: PMC7020216 DOI: 10.3390/plants9010103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Various phytochemical studies have revealed that jackfruit (Artocarpus heterophyllus Lam.) is rich in bioactive compounds, including carotenoids, flavonoids, volatile acids, tannins, and lectins. The aim of the study was to analyze the biological activity of water-soluble polysaccharide (WSP) isolated from jackfruit and to assess its immunomodulatory, cytotoxic, and anti-oxidative effects on human colon carcinoma cells in vitro. The neutral red (NR) uptake assay revealed no toxic influence of the polymer on the viability of tumor cells (HT29 and SW620). After 24 h and 48 h of incubation, the cellular viability was not lower than 94%. The metabolic activity of the cells (MTT) at the compound concentration of 250 µg/mL was higher than 92% in comparison to the control. WSP (250 µg/mL) exerted no significant effect on the morphology of the cells was determined by May-Grünwald-Giemsa staining. WSP changed nitric oxide (NOx) production by the tumor cells depending on the time of incubation and prior 2-h stimulation of the cells with E. coli 0111:B4 LPS. It significantly stimulated IL-1β production by the tumor cells. The IL-6 level increased but that of IL-10 decreased by a WSP concentration-dependent manner. No such effect was detected in SW620. The WSP had antioxidant properties. In conclusion, water-soluble polysaccharide isolated from A. heterophyllus exhibits significant biological activity towards many types of both normal and cancerous cells. Therefore, it may be considered as a useful agent in the protection of human health or in functional and dietary nutrition.
Collapse
Affiliation(s)
- Adrian Wiater
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland; (A.W.); (M.P.); (P.A.); (K.P.); (J.S.)
| | - Roman Paduch
- Department of Virology and Immunology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland; (S.T.); (M.P.)
- Department of General Ophthalmology, Medical University, ul. Chmielna 1, 20-079 Lublin, Poland
- Correspondence: ; Tel.: +48-81-537-5944
| | - Sylwia Trojnar
- Department of Virology and Immunology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland; (S.T.); (M.P.)
| | - Adam Choma
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland;
| | - Małgorzata Pleszczyńska
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland; (A.W.); (M.P.); (P.A.); (K.P.); (J.S.)
| | - Paulina Adamczyk
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland; (A.W.); (M.P.); (P.A.); (K.P.); (J.S.)
| | - Mateusz Pięt
- Department of Virology and Immunology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland; (S.T.); (M.P.)
| | - Katarzyna Próchniak
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland; (A.W.); (M.P.); (P.A.); (K.P.); (J.S.)
| | - Janusz Szczodrak
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland; (A.W.); (M.P.); (P.A.); (K.P.); (J.S.)
| | - Jakub Strawa
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.S.); (M.T.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland; (J.S.); (M.T.)
| |
Collapse
|
118
|
Castilleux R, Ropitaux M, Manasfi Y, Bernard S, Vicré-Gibouin M, Driouich A. Contributions to Arabinogalactan Protein Analysis. Methods Mol Biol 2020; 2149:383-402. [PMID: 32617947 DOI: 10.1007/978-1-0716-0621-6_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Arabinogalactan proteins (AGPs) are important plant proteoglycans involved in many development processes. In roots, AGPs occur in the cell wall of root cells and root cap-derived cells as well as in the secreted mucilage. Detection, localization , and quantification techniques are therefore essential to unravel the AGP diversity of structures and functions. This chapter details root-adapted immunocytochemical methods using monoclonal antibodies, and a collection of biochemical analysis protocols using β-D-glucosyl Yariv reagent for comprehensive AGP characterization.
Collapse
Affiliation(s)
- Romain Castilleux
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France
| | - Marc Ropitaux
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France
| | - Youssef Manasfi
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France
| | - Sophie Bernard
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France
- UNIROUEN, PRIMACEN, Normandie Université, Rouen, France
| | - Maïté Vicré-Gibouin
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France
- Structure Fédérative de Recherche (Normandie-Végétale) FED 4277 - Université de Rouen Normandie, Mont Saint Aignan Cedex, France
| | - Azeddine Driouich
- UNIROUEN, Laboratoire Glyco-MEV, Normandie Université, Rouen, France.
- UNIROUEN, PRIMACEN, Normandie Université, Rouen, France.
- Structure Fédérative de Recherche (Normandie-Végétale) FED 4277 - Université de Rouen Normandie, Mont Saint Aignan Cedex, France.
| |
Collapse
|
119
|
Happ K, Classen B. Arabinogalactan-Proteins from the Liverwort Marchantia polymorpha L., a Member of a Basal Land Plant Lineage, Are Structurally Different to Those of Angiosperms. PLANTS (BASEL, SWITZERLAND) 2019; 8:E460. [PMID: 31671872 PMCID: PMC6918356 DOI: 10.3390/plants8110460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023]
Abstract
The thalloid liverwort Marchantia polymorpha as a member of a basal land plant lineage has to cope with the challenge of terrestrial life. Obviously, the plant cell wall has been strongly involved in the outstanding evolutionary process of water-to-land-transition. AGPs are signaling glycoproteins of the cell wall, which seem to be ubiquitous in seed plants and might play a role in adaption to abiotic and biotic stress situations. Therefore, we investigated the cell wall composition of Marchantia polymorpha with special focus on structural characterization of arabinogalactan-proteins. The Marchantia AGP shows typical features known from seed plant AGPs like precipitation with β-glucosyl-Yariv's reagent, a protein moiety with hydroxyproline and a carbohydrate part with 1,3,6-linked galactose and terminal arabinose residues. On the other hand, striking differences to AGPs of angiosperms are the occurrence of terminal 3-O-methyl-rhamnose and a highly branched galactan lacking appreciable amounts of 1,6-linked galactose. Binding of different AGP-antibodies (JIM13, KM1, LM2, LM6, LM14, LM26, and MAC207) to Marchantia AGP was investigated and confirmed structural differences between liverwort and angiosperm AGP, possibly due to deviating functions of these signaling molecules in the different taxonomic groups.
Collapse
Affiliation(s)
- Kathrin Happ
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany.
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany.
| |
Collapse
|
120
|
Zhao C, Zayed O, Zeng F, Liu C, Zhang L, Zhu P, Hsu CC, Tuncil YE, Tao WA, Carpita NC, Zhu JK. Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:274-290. [PMID: 31009077 DOI: 10.1111/nph.15867] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/16/2019] [Indexed: 05/21/2023]
Abstract
The capability to maintain cell wall integrity is critical for plants to adapt to unfavourable conditions. l-Arabinose (Ara) is a constituent of several cell wall polysaccharides and many cell wall-localised glycoproteins, but so far the contribution of Ara metabolism to abiotic stress tolerance is still poorly understood. Here, we report that mutations in the MUR4 (also known as HSR8) gene, which is required for the biosynthesis of UDP-Arap in Arabidopsis, led to reduced root elongation under high concentrations of NaCl, KCl, NaNO3 , or KNO3 . The short root phenotype of the mur4/hsr8 mutants under high salinity is rescued by exogenous Ara or gum arabic, a commercial product of arabinogalactan proteins (AGPs) from Acacia senegal. Mutation of the MUR4 gene led to abnormal cell-cell adhesion under salt stress. MUR4 forms either a homodimer or heterodimers with its isoforms. Analysis of the higher order mutants of MUR4 with its three paralogues, MURL, DUR, MEE25, reveals that the paralogues of MUR4 also contribute to the biosynthesis of UDP-Ara and are critical for root elongation. Taken together, our work revealed the importance of the Ara metabolism in salt stress tolerance and also provides new insights into the enzymes involved in the UDP-Ara biosynthesis in plants.
Collapse
Affiliation(s)
- Chunzhao Zhao
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Omar Zayed
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chaoxian Liu
- Maize Research Institute, Southwest University, Chongqing, 400715, China
| | - Ling Zhang
- Jilin Provincial Key laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, 130033, China
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yunus E Tuncil
- Food Engineering Department, Ordu University, Ordu, 52200, Turkey
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jian-Kang Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
121
|
Wang C, Chen L, Yang H, Yang S, Wang J. Genome-wide identification, expression and functional analysis of Populus xylogen-like genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110191. [PMID: 31481222 DOI: 10.1016/j.plantsci.2019.110191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 05/26/2023]
Abstract
As an extracellular arabinogalactan protein (AGP) containing a non-specific lipid transfer protein (nsLTP) domain, xylogen mediates the local intercellular communication required for tracheary element (TE) differentiation in Zinnia cell culture. Although XYLP (xylogen-like protein) gene families have been reported in Arabidopsis and rice, no comprehensive analysis has been performed in woody plants. In this work, 31 XYLP genes in five phylogenetic groups were identified from Populus trichocarpa genome and a comprehensive bioinformatic analysis including gene and protein structures, chromosomal locations and duplication events were conducted. In-silico data and qRT-PCR results indicated that PtXYLP1 is predominantly expressed in poplar apex, young leaves and roots, while PtXYLP2 is uniformly expressed across a variety of tissues with a low abundance. Analysis on PtXYLP1pro:GUS and PtXYLP2pro:GUS in Arabidopsis revealed their differential expression patterns during seed germination and specific inductions by exogenously applied phytohormones including auxin, cytokinin and GA. When overexpressed in Arabidopsis, PtXYLP1 but not PtXYLP2 resulted in cotyledons with defective venation patterns and interrupted secondary (2°) vein loops, which phenotype was underpinned by the down-regulation of genes indispensably required by embryonic venation development at procambium and/or vessel level.
Collapse
Affiliation(s)
- Caili Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lincai Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
122
|
Tsumuraya Y, Ozeki E, Ooki Y, Yoshimi Y, Hashizume K, Kotake T. Properties of arabinogalactan-proteins in European pear (Pyrus communis L.) fruits. Carbohydr Res 2019; 485:107816. [PMID: 31546145 DOI: 10.1016/j.carres.2019.107816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Arabinogalactans (AGs) and arabinogalactan-proteins (AGPs) were partially purified from an extract of fruits of the European pear (Pyrus communis L.) by DEAE-cellulose ion-exchange and Sepharose 6B gel-filtration chromatography. Among 7 AG(P)-containing fractions, a neutral AGP (SE-1) was confirmed to be highly purified (Mr 67,000) and rich in L-Ara and Gal; this fraction included a small amount (2.6%, w/w) of protein and showed the highest reactivity forming precipitate with β-Glc Yariv reagent among the 7 fractions, the intensity of which was comparable to that of gum arabic, a standard AGP. Another accompanying minor low-Mr neutral AGP (SE-2; Mr approx. 7200) still contained other polysaccharide (starch fragments) and did not show Yariv reactivity. The carbohydrate moieties of SE-1 consisted of consecutive (1 → 3)-linked β-galactosyl backbone chains substituted with side chains of (1 → 6)-linked β-galactosyl residues at O-6, to which mainly single α-l-arabinofuranosyl residues were attached through O-3. This structural feature was also observed for SE-2. Successive digestion of SE-1 with α-l-arabinofuranosidase and exo-β-(1 → 3)-galactanase with the aid of endo-β-(1 → 3)-galactanase released most (more than 98%, w/w) of the carbohydrate moieties as low-Mr fragments. These consisted of free L-Ara and Gal, and a series of β-(1 → 6)-galactooligosaccharides with degree of polymerization (dp) up to at least 17, indicative of attachment of (1 → 6)-linked β-galactosyl side chains of varying length along the (1 → 3)-linked β-galactosyl backbone chains.
Collapse
Affiliation(s)
- Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Eri Ozeki
- R&D-Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Yoriko Ooki
- R&D-Health Care Food Research, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501, Japan
| | - Yoshihisa Yoshimi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kohjiro Hashizume
- R&D-Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| |
Collapse
|
123
|
Dragićević MB, Paunović DM, Bogdanović MD, Todorović SI, Simonović AD. ragp: Pipeline for mining of plant hydroxyproline-rich glycoproteins with implementation in R. Glycobiology 2019; 30:cwz072. [PMID: 31508799 DOI: 10.1093/glycob/cwz072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 06/19/2019] [Accepted: 08/29/2019] [Indexed: 11/12/2022] Open
Abstract
Hydroxyproline-rich glycoproteins (HRGPs) are one of the most complex families of macromolecules found in plants, due to the diversity of glycans decorating the protein backbone, as well as the heterogeneity of the protein backbones. While this diversity is responsible for a wide array of physiological functions associated with HRGPs, it hinders attempts for homology based identification. Current approaches, based on identifying sequences with characteristic motifs and biased amino acid composition, are limited to prototypical sequences. Ragp is an R package for mining and analysis of HRGPs, with emphasis on arabinogalactan proteins. The ragp filtering pipeline exploits one of the HRGPs key features, the presence of hydroxyprolines which represent glycosylation sites. Main package features include prediction of proline hydroxylation sites, amino acid motif and bias analyses, efficient communication with web servers for prediction of N-terminal signal peptides, glycosylphosphatidylinositol modification sites and disordered regions and the ability to annotate sequences through hmmscan and subsequent GO enrichment, based on predicted Pfam domains. As such, ragp extends R's rich ecosystem for high-throughput sequence data analyses. The ragp R package is available under the MIT Open Source license and is freely available to download from GitHub at: https://github.com/missuse/ragp.
Collapse
Affiliation(s)
- Milan B Dragićević
- Institute for Biological Research"Siniša Stanković", Department of Plant Physiology, Bul. Despota Stefana 142, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela M Paunović
- Institute for Biological Research"Siniša Stanković", Department of Plant Physiology, Bul. Despota Stefana 142, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica D Bogdanović
- Institute for Biological Research"Siniša Stanković", Department of Plant Physiology, Bul. Despota Stefana 142, University of Belgrade, 11000 Belgrade, Serbia
| | - Slađana I Todorović
- Institute for Biological Research"Siniša Stanković", Department of Plant Physiology, Bul. Despota Stefana 142, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana D Simonović
- Institute for Biological Research"Siniša Stanković", Department of Plant Physiology, Bul. Despota Stefana 142, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
124
|
Fujita K, Sasaki Y, Kitahara K. Degradation of plant arabinogalactan proteins by intestinal bacteria: characteristics and functions of the enzymes involved. Appl Microbiol Biotechnol 2019; 103:7451-7457. [PMID: 31384991 DOI: 10.1007/s00253-019-10049-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
Arabinogalactan proteins (AGPs) are complex plant proteoglycans that function as dietary fiber utilized by human intestinal bacteria such as Bifidobacterium and Bacteroides species. However, the degradative mechanism is unknown because of the complexity of sugar chains of AGPs as well as variation among plant species and organs. Recently, AGP degradative enzymes have been characterized in Bifidobacterium and Bacteroides species. In this review, we summarize the characteristics and functions of AGP degradative enzymes in human intestinal bacteria.
Collapse
Affiliation(s)
- Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan. .,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.
| | - Yuki Sasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| |
Collapse
|
125
|
Singh RP. Glycan utilisation system in Bacteroides and Bifidobacteria and their roles in gut stability and health. Appl Microbiol Biotechnol 2019; 103:7287-7315. [PMID: 31332487 DOI: 10.1007/s00253-019-10012-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Gut residential hundred trillion microbial cells are indispensable for maintaining gut homeostasis and impact on host physiology, development and immune systems. Many of them have displayed excellence in utilising dietary- and host-derived complex glycans and are producing useful postbiotics including short-chain fatty acids to primarily fuel different organs of the host. Therefore, employing individual microbiota is nowadays becoming a propitious target in biomedical for improving gut dysbiosis conditions of the host. Among other gut microbial communities, Bacteroides and Bifidobacteria are coevolved to utilise diverse ranges of diet- and host-derived glycans through harmonising distinct glycan utilisation systems. These gut symbionts frequently share digested oligosaccharides, carbohydrate-active enzymes and fermentable intermediate molecules for sustaining gut microbial symbiosis and improving fitness of own or other communities. Genomics approaches have provided unprecedented insights into these functions, but their precise mechanisms of action have poorly known. Sympathetic glycan-utilising strategy of each gut commensal will provide overview of mechanistic dynamic nature of the gut environment and will then assist in applying aptly personalised nutritional therapy. Thus, the review critically summarises cutting edge understanding of major plant- and host-derived glycan-utilising systems of Bacteroides and Bifidobacteria. Their evolutionary adaptation to gut environment and roles of postbiotics in human health are also highlighted.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS, Nagar, Punjab, 140306, India.
| |
Collapse
|
126
|
Tsyganova AV, Seliverstova EV, Brewin NJ, Tsyganov VE. Comparative analysis of remodelling of the plant-microbe interface in Pisum sativum and Medicago truncatula symbiotic nodules. PROTOPLASMA 2019; 256:983-996. [PMID: 30793221 DOI: 10.1007/s00709-019-01355-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/07/2019] [Indexed: 05/21/2023]
Abstract
Infection of host cells by nitrogen-fixing soil bacteria, known as rhizobia, involves the progressive remodelling of the plant-microbe interface. This process was examined by using monoclonal antibodies to study the subcellular localisation of pectins and arabinogalactan proteins (AGPs) in wild-type and ineffective nodules of Pisum sativum and Medicago truncatula. The highly methylesterified homogalacturonan (HG), detected by monoclonal antibody JIM7, showed a uniform localisation in the cell wall, regardless of the cell type in nodules of P. sativum and M. truncatula. Low methylesterified HG, recognised by JIM5, was detected mainly in the walls of infection threads in nodules of both species. The galactan side chain of rhamnogalacturonan I (RG-I), recognised by LM5, was present in the nodule meristem in both species and in the infection thread walls in P. sativum, but not in M. truncatula. The membrane-anchored AGP recognised by JIM1 was observed on the plasma membrane in nodules of P. sativum and M. truncatula. In P. sativum, the AGP epitope recognised by JIM1 was present on mature symbiosome membranes of wild-type nodules, but JIM1 labelling was absent from symbiosome membranes in the mutant Sprint-2Fix- (sym31) with undifferentiated bacteroids, suggesting a possible involvement of AGP in the maturation of symbiosomes. Thus, the common and species-specific traits of cell wall remodelling during nodule differentiation were demonstrated.
Collapse
Affiliation(s)
- Anna V Tsyganova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, St.-Petersburg, Russia, 196608
| | - Elena V Seliverstova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, St.-Petersburg, Russia, 196608
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, pr. Torez 44, St.-Petersburg, Russia, 194223
| | | | - Viktor E Tsyganov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, St.-Petersburg, Russia, 196608.
| |
Collapse
|
127
|
Skolik P, Morais CLM, Martin FL, McAinsh MR. Determination of developmental and ripening stages of whole tomato fruit using portable infrared spectroscopy and Chemometrics. BMC PLANT BIOLOGY 2019; 19:236. [PMID: 31164091 PMCID: PMC6549295 DOI: 10.1186/s12870-019-1852-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Development and ripening of tomato (Solanum lycopersicum) fruit are important processes for the study of crop biology related to industrial horticulture. Versatile uses of tomato fruit lead to its harvest at various points of development from early maturity through to red ripe, traditionally indicated by parameters such as size, weight, colour, and internal composition, according to defined visual 'grading' schemes. Visual grading schemes however are subjective and thus objective classification of tomato fruit development and ripening are needed for 'high-tech' horticulture. To characterize the development and ripening processes in whole tomato fruit (cv. Moneymaker), a biospectroscopy approach is employed using compact portable ATR-FTIR spectroscopy coupled with chemometrics. RESULTS The developmental and ripening processes showed unique spectral profiles, which were acquired from the cuticle-cell wall complex of tomato fruit epidermis in vivo. Various components of the cuticle including Cutin, waxes, and phenolic compounds, among others, as well as from the underlying cell wall such as celluloses, pectin and lignin like compounds among others. Epidermal surface structures including cuticle and cell wall were significantly altered during the developmental process from immature green to mature green, as well as during the ripening process. Changes in the spectral fingerprint region (1800-900 cm- 1) were sufficient to identify nine developmental and six ripening stages with high accuracy using support vector machine (SVM) chemometrics. CONCLUSIONS The non-destructive spectroscopic approach may therefore be especially useful for investigating in vivo biochemical changes occurring in fruit epidermis related to grades of tomato during development and ripening, for autonomous food production/supply chain applications.
Collapse
Affiliation(s)
- Paul Skolik
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ UK
| | - Camilo L. M. Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE UK
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE UK
| | - Martin R. McAinsh
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ UK
| |
Collapse
|
128
|
Lora J, Yang X, Tucker MR. Establishing a framework for female germline initiation in the plant ovule. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2937-2949. [PMID: 31063548 DOI: 10.1093/jxb/erz212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/02/2019] [Indexed: 05/21/2023]
Abstract
Female gametogenesis in flowering plants initiates in the ovule, where a single germline progenitor differentiates from a pool of somatic cells. Germline initiation is a fundamental prerequisite for seed development but is poorly understood at the molecular level due to the location of the cells deep within the flower. Studies in Arabidopsis have shown that regulators of germline development include transcription factors such as NOZZLE/SPOROCYTELESS and WUSCHEL, components of the RNA-dependent DNA methylation pathway such as ARGONAUTE9 and RNA-DEPENDENT RNA POLYMERASE 6, and phytohormones such as auxin and cytokinin. These factors accumulate in a range of cell types from where they establish an environment to support germline differentiation. Recent studies provide fresh insight into the transition from somatic to germline identity, linking chromatin regulators, cell cycle genes, and novel mobile signals, capitalizing on cell type-specific methodologies in both dicot and monocot models. These findings are providing unique molecular and compositional insight into the mechanistic basis and evolutionary conservation of female germline development in plants.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruits, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| | - Mathew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
129
|
Pinski A, Betekhtin A, Sala K, Godel-Jedrychowska K, Kurczynska E, Hasterok R. Hydroxyproline-Rich Glycoproteins as Markers of Temperature Stress in the Leaves of Brachypodium distachyon. Int J Mol Sci 2019; 20:ijms20102571. [PMID: 31130622 PMCID: PMC6567261 DOI: 10.3390/ijms20102571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/28/2023] Open
Abstract
Plants frequently encounter diverse abiotic stresses, one of which is environmental thermal stress. To cope with these stresses, plants have developed a range of mechanisms, including altering the cell wall architecture, which is facilitated by the arabinogalactan proteins (AGP) and extensins (EXT). In order to characterise the localisation of the epitopes of the AGP and EXT, which are induced by the stress connected with a low (4 °C) or a high (40 °C) temperature, in the leaves of Brachypodium distachyon, we performed immunohistochemical analyses using the antibodies that bind to selected AGP (JIM8, JIM13, JIM16, LM2 and MAC207), pectin/AGP (LM6) as well as EXT (JIM11, JIM12 and JIM20). The analyses of the epitopes of the AGP indicated their presence in the phloem and in the inner bundle sheath (JIM8, JIM13, JIM16 and LM2). The JIM16 epitope was less abundant in the leaves from the low or high temperature compared to the control leaves. The LM2 epitope was more abundant in the leaves that had been subjected to the high temperatures. In the case of JIM13 and MAC207, no changes were observed at the different temperatures. The epitopes of the EXT were primarily observed in the mesophyll and xylem cells of the major vascular bundle (JIM11, JIM12 and JIM20) and no correlation was observed between the presence of the epitopes and the temperature stress. We also analysed changes in the level of transcript accumulation of some of the genes encoding EXT, EXT-like receptor kinases and AGP in the response to the temperature stress. In both cases, although we observed the upregulation of the genes encoding AGP in stressed plants, the changes were more pronounced at the high temperature. Similar changes were observed in the expression profiles of the EXT and EXT-like receptor kinase genes. Our findings may be relevant for genetic engineering of plants with increased resistance to the temperature stress.
Collapse
Affiliation(s)
- Artur Pinski
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Katarzyna Sala
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Kamila Godel-Jedrychowska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland.
| |
Collapse
|
130
|
Millar AH, Heazlewood JL, Giglione C, Holdsworth MJ, Bachmair A, Schulze WX. The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:119-151. [PMID: 30786234 DOI: 10.1146/annurev-arplant-050718-100211] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Assessing posttranslational modification (PTM) patterns within protein molecules and reading their functional implications present grand challenges for plant biology. We combine four perspectives on PTMs and their roles by considering five classes of PTMs as examples of the broader context of PTMs. These include modifications of the N terminus, glycosylation, phosphorylation, oxidation, and N-terminal and protein modifiers linked to protein degradation. We consider the spatial distribution of PTMs, the subcellular distribution of modifying enzymes, and their targets throughout the cell, and we outline the complexity of compartmentation in understanding of PTM function. We also consider PTMs temporally in the context of the lifetime of a protein molecule and the need for different PTMs for assembly, localization, function, and degradation. Finally, we consider the combined action of PTMs on the same proteins, their interactions, and the challenge ahead of integrating PTMs into an understanding of protein function in plants.
Collapse
Affiliation(s)
- A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia;
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia;
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell, CNRS UMR9198, F-91198 Gif-sur-Yvette Cedex, France;
| | - Michael J Holdsworth
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria;
| | - Waltraud X Schulze
- Systembiologie der Pflanze, Universität Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
131
|
He J, Zhao H, Cheng Z, Ke Y, Liu J, Ma H. Evolution Analysis of the Fasciclin-Like Arabinogalactan Proteins in Plants Shows Variable Fasciclin-AGP Domain Constitutions. Int J Mol Sci 2019; 20:E1945. [PMID: 31010036 PMCID: PMC6514703 DOI: 10.3390/ijms20081945] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023] Open
Abstract
The fasciclin-like arabinogalactan proteins (FLAs) play important roles in plant development and adaptation to the environment. FLAs contain both fasciclin domains and arabinogalactan protein (AGP) regions, which have been identified in several plants. The evolutionary history of this gene family in plants is still undiscovered. In this study, we identified the FLA gene family in 13 plant species covering major lineages of plants using bioinformatics methods. A total of 246 FLA genes are identified with gene copy numbers ranging from one (Chondrus crispus) to 49 (Populus trichocarpa). These FLAs are classified into seven groups, mainly based on the phylogenetic analysis of plant FLAs. All FLAs in land plants contain one or two fasciclin domains, while in algae, several FLAs contain four or six fasciclin domains. It has been proposed that there was a divergence event, represented by the reduced number of fasciclin domains from algae to land plants in evolutionary history. Furthermore, introns in FLA genes are lost during plant evolution, especially from green algae to land plants. Moreover, it is found that gene duplication events, including segmental and tandem duplications are essential for the expansion of FLA gene families. The duplicated gene pairs in FLA gene family mainly evolve under purifying selection. Our findings give insight into the origin and expansion of the FLA gene family and help us understand their functions during the process of evolution.
Collapse
Affiliation(s)
- Jiadai He
- College of Agronomy, Northwest A&F University, Xianyang 712100, Shaanxi, China.
| | - Hua Zhao
- College of Agronomy, Northwest A&F University, Xianyang 712100, Shaanxi, China.
| | - Zhilu Cheng
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, Shaanxi, China.
| | - Yuwei Ke
- College of Life Sciences, Northwest A&F University, Xianyang 712100, Shaanxi, China.
| | - Jiaxi Liu
- College of Agronomy, Northwest A&F University, Xianyang 712100, Shaanxi, China.
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Xianyang 712100, Shaanxi, China.
| |
Collapse
|
132
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Claude Mollet
- Normandie Univ, UNIROUEN, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Rouen, France
| |
Collapse
|
133
|
Palacio-López K, Tinaz B, Holzinger A, Domozych DS. Arabinogalactan Proteins and the Extracellular Matrix of Charophytes: A Sticky Business. FRONTIERS IN PLANT SCIENCE 2019; 10:447. [PMID: 31031785 PMCID: PMC6474363 DOI: 10.3389/fpls.2019.00447] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
Charophytes represent the group of green algae whose ancestors invaded land and ultimately gave rise to land plants 450 million years ago. While Zygnematophyceae are believed to be the direct sister lineage to embryophytes, different members of this group (Penium, Spirogyra, Zygnema) and the advanced thallus forming Coleochaete as well as the sarcinoid basal streptophyte Chlorokybus were investigated concerning their vegetative extracellular matrix (ECM) properties. Many taxa exhibit adhesion phenomena that are critical for affixing to a substrate or keeping cells together in a thallus, however, there is a great variety in possible reactions to e.g., wounding. In this study an analysis of adhesion mechanisms revealed that arabinogalactan proteins (AGPs) are most likely key adhesion molecules. Through use of monoclonal antibodies (JIM13) or the Yariv reagent, AGPs were located in cell surface sheaths and cell walls that were parts of the adhesion focal zones on substrates including wound induced rhizoid formation. JIM5, detecting highly methyl-esterfied homoglacturonan and JIM8, an antibody detecting AGP glycan and LM6 detecting arabinans were also tested and a colocalization was found in several examples (e.g., Zygnema) suggesting an interplay between these components. AGPs have been described in this study to perform both, cell to cell adhesion in algae forming thalli and cell to surface adhesion in the filamentous forms. These findings enable a broader evolutionary understanding of the function of AGPs in charophyte green algae.
Collapse
Affiliation(s)
| | - Berke Tinaz
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| | | | - David S. Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, United States
| |
Collapse
|
134
|
Isolation, structure elucidation, and immunostimulatory activity of polysaccharide fractions from Boswellia carterii frankincense resin. Int J Biol Macromol 2019; 133:76-85. [PMID: 30981779 DOI: 10.1016/j.ijbiomac.2019.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 11/21/2022]
Abstract
Frankincense has a long history in religious, cultural, and medicinal use. In this study polysaccharides were extracted from frankincense from Boswellia carterii. The polysaccharides were purified by anion exchange chromatography on a DEAE-Sepharose Fast Flow 16/10 FPLC column. Six fractions were obtained and the three most active immunomodulatory fractions were further purified by size exclusion chromatography on a Superdex-200 column. The composition showed the monosaccharides present were predominantly galactose, arabinose, and glucuronic acid along with small amounts of rhamnose and glucose. The monosaccharide composition and glycosyl linkage analysis revealed the polysaccharides belong to the type II arabinogalactans. Fourier-transform infrared spectroscopy and bicinchoninic acid assay showed that the amount of protein in the samples was <1 wt%. One-dimensional 1H NMR were consistent with high molecular weight compounds. The monosaccharides were primarily in the β conformation. The three fractions exhibited an immunostimulatory effect on RAW 264.7 murine macrophage cells. The most active immunostimulatory fraction FA2, stimulated a range of pro-inflammatory mediators including iNOS, NO, TNF-α, and IL-6 in RAW 264.7 cells. The fractions were effective in proliferating primary murine splenocytes. The results indicate that the polysaccharides isolated from frankincense have the potential to be used as an immunological stimulant or nutraceutical.
Collapse
|
135
|
Classen B, Baumann A, Utermoehlen J. Arabinogalactan-proteins in spore-producing land plants. Carbohydr Polym 2019; 210:215-224. [DOI: 10.1016/j.carbpol.2019.01.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
136
|
Leszczuk A, Kozioł A, Szczuka E, Zdunek A. Analysis of AGP contribution to the dynamic assembly and mechanical properties of cell wall during pollen tube growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:9-18. [PMID: 30824065 DOI: 10.1016/j.plantsci.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 05/22/2023]
Abstract
Arabinogalactan proteins as cell wall structural proteins are involved in fundamental processes during plant development and growth. The aim of this study was to evaluate AGP function in the distribution of pectin, cellulose and callose along Fragaria x ananassa pollen tube and to associate the cell wall structure with local mechanical properties. We used Yariv reagent which interacts with AGPs and allows the observation of the assembly of cell walls without AGPs performing their function. Cytochemical, immunofluorescence labelling and atomic force microscope have been used to characterize the changes in cell wall structure and stiffness. It was shown that disordering of the structure of AGP present in cell walls affects the localization of cellulose, pectins and the secretion of callose. Changes in cell wall assembly are relevant to pollen tube mechanical properties. The stiffness gradient lengthwise through the axis of the pollen tube has demonstrated a significantly higher Young's modulus of the shank region than the growth zone. It has been revealed that the apex of the pollen tube cultured in the presence of Yariv reagent is stiffer (1.68 MPa) than the corresponding region of the pollen tube grown under control conditions (0.13-0.27 MPa). AGP affects the structure of the cell wall by changing the distribution of other components and the modification of their localization, and hence it plays a significant role in the mechanical properties of the cell wall.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Arkadiusz Kozioł
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Ewa Szczuka
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
137
|
Yang Q, Wang L, He J, Wei H, Yang Z, Huang X. Arabinogalactan Proteins Are the Possible Extracellular Molecules for Binding Exogenous Cerium(III) in the Acidic Environment Outside Plant Cells. FRONTIERS IN PLANT SCIENCE 2019; 10:153. [PMID: 30842782 PMCID: PMC6391350 DOI: 10.3389/fpls.2019.00153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 01/29/2019] [Indexed: 05/29/2023]
Abstract
Rare earth elements [REE(III)] increasingly accumulate in the atmosphere and can be absorbed by plant leaves. Our previous study showed that after treatment of REE(III) on plant, REE(III) is first bound by some extracellular molecules of plant cells, and then the endocytosis of leaf cells will be initiated, which terminates the endocytic inertia of leaf cells. Identifying the extracellular molecules for binding REE(III) is the crucial first step to elucidate the mechanism of REE(III) initiating the endocytosis in leaf cells. Unfortunately, the molecules are unknown. Here, cerium(III) [Ce(III)] and Arabidopsis served as a representative of REE(III) and plants, respectively. By using interdisciplinary methods such as confocal laser scanning microscopy, immune-Au and fluorescent labeling, transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy, circular dichroism spectroscopy, fluorescent spectrometry and molecular dynamics simulation, we obtained two important discoveries: first, the arabinogalactan proteins (AGP) inside leaf cells were sensitively increased in protein expression and recruited onto the plasma membrane; second, to verify whether AGP can bind to Ce(III) in the acidic environment outside leaf cells, by choosing fasciclin-like AGP11 (AtFLA11) as a representative of AGP, we found that Ce(III) can form stable [Ce(H2O)7](III)-AtFLA11 complexes with an apparent binding constant of 1.44 × 10-6 in simulated acidic environment outside leaf cells, in which the secondary and tertiary structure of AtFLA11 was changed. The structural change in AtFLA11 and the interaction between AtFLA11 and Ce(III) were enhanced with increasing the concentration of Ce(III). Therefore, AtFLA11 can serve as Lewis bases to coordinately bind to Ce(III), which broke traditional chemical principle. The results confirmed that AGP can be the possible extracellular molecules for binding to exogenous Ce(III) outside leaf cells, and provided references for elucidating the mechanism of REE(III) initiating the endocytosis in leaf cells.
Collapse
Affiliation(s)
- Qing Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jingfang He
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Haiyan Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
138
|
Leszczuk A, Szczuka E, Zdunek A. Arabinogalactan proteins: Distribution during the development of male and female gametophytes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:9-18. [PMID: 30496891 DOI: 10.1016/j.plaphy.2018.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
Arabinogalactan proteins (AGPs), i.e. a subfamily of hydroxyproline-rich proteins (HRGPs), are widely distributed in the plant kingdom. For many years, AGPs have been connected with the multiple phases of plant reproduction and developmental processes. Currently, extensive knowledge is available about their various functions, i.e. involvement in pollen grain formation, initiation of pollen grain germination, pollen tube guidance in the transmission tissue of pistil and ovule nucellus, and function as a signaling molecule during cell-cell communication. Although many studies have been performed, the mechanism of action, the heterogeneous molecule structure, and the connection with other extracellular matrix components have not been sufficiently explained. The aim of this work was to gather and describe the most important information on the distribution of AGPs in gametophyte development. The present review provides a summary of the first reports about AGPs and the most recent knowledge about their functions during male and female gametophyte formation.
Collapse
Affiliation(s)
- A Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - E Szczuka
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - A Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| |
Collapse
|
139
|
Seyfi R, Kasaai MR, Chaichi MJ. Isolation and structural characterization of a polysaccharide derived from a local gum: Zedo (Amygdalus scoparia Spach). Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
140
|
Pérez-Pérez Y, Carneros E, Berenguer E, Solís MT, Bárány I, Pintos B, Gómez-Garay A, Risueño MC, Testillano PS. Pectin De-methylesterification and AGP Increase Promote Cell Wall Remodeling and Are Required During Somatic Embryogenesis of Quercus suber. FRONTIERS IN PLANT SCIENCE 2019; 9:1915. [PMID: 30671070 PMCID: PMC6331538 DOI: 10.3389/fpls.2018.01915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/10/2018] [Indexed: 05/18/2023]
Abstract
Somatic embryogenesis is a reliable system for in vitro plant regeneration, with biotechnological applications in trees, but the regulating mechanisms are largely unknown. Changes in cell wall mechanics controlled by methylesterification of pectins, mediated by pectin methylesterases (PMEs) and pectin methyl esterase inhibitors (PMEIs) underlie many developmental processes. Arabinogalactan proteins (AGPs) are highly glycosylated proteins located at the surface of plasma membranes, in cell walls, and in extracellular secretions, with key roles in a range of different processes. In this study, we have investigated changes in two cell wall components, pectins and AGPs, during somatic embryogenesis in Quercus suber, a forest tree of high economic and ecologic value. At early embryogenesis stages, cells of proembryogenic masses showed high levels of esterified pectins and expression of QsPME and QsPMEI genes encoding a PME and a putative PMEI, respectively. At advanced stages, differentiating cells of heart, torpedo and cotyledonary embryos exhibited walls rich in de-esterified pectins, while QsPME gene expression and PME activity progressively increased. AGPs were detected in cell walls of proembryogenic masses and somatic embryos. QsLys-rich-AGP18, QsLys-rich-AGP17, and QsAGP16L1 gene expression increased with embryogenesis progression, as did the level of total AGPs, detected by dot blot with β-glucosyl Yariv reagent. Immuno dot blot, immunofluorescence assays and confocal analysis using monoclonal antibodies to high- (JIM7, LM20) and low- (JIM5, LM19) methylesterified pectins, and to certain AGP epitopes (LM6, LM2) showed changes in the amount and distribution pattern of esterified/de-esterified pectins and AGP epitopes, that were associated with proliferation and differentiation and correlated with expression of the PME and AGP genes analyzed. Pharmacological treatments with catechin, an inhibitor of PME activity, and Yariv reagent, which blocks AGPs, impaired the progression of embryogenesis, with pectin de-esterification and an increase in AGP levels being necessary for embryo development. Findings indicate a role for pectins and AGPs during somatic embryogenesis of cork oak, promoting the cell wall remodeling during the process. They also provide new insights into the regulating mechanisms of somatic embryogenesis in woody species, for which information is still scarce, opening up new possibilities to improve in vitro embryo production in tree breeding.
Collapse
Affiliation(s)
- Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Elena Carneros
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Eduardo Berenguer
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - María-Teresa Solís
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, Madrid, Spain
| | - Ivett Bárány
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Beatriz Pintos
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, Madrid, Spain
| | - Aránzazu Gómez-Garay
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, Madrid, Spain
| | - María C. Risueño
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| |
Collapse
|
141
|
Lora J, Laux T, Hormaza JI. The role of the integuments in pollen tube guidance in flowering plants. THE NEW PHYTOLOGIST 2019; 221:1074-1089. [PMID: 30169910 DOI: 10.1111/nph.15420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/27/2018] [Indexed: 05/22/2023]
Abstract
In angiosperms, pollen tube entry into the ovule generally takes place through the micropyle, but the exact role of the micropyle in pollen tube guidance remains unclear. A limited number of studies have examined eudicots with bitegmic micropyles, but information is lacking in ovules of basal/early-divergent angiosperms with unitegmic micropyles. We have evaluated the role of the micropyle in pollen tube guidance in an early-divergent angiosperm (Annona cherimola) and the evolutionarily derived Arabidopsis thaliana by studying γ-aminobutyric acid (GABA) and arabinogalactan proteins (AGPs) in wild-type plants and integument-defective mutants. A conserved inhibitory role of GABA in pollen tube growth was shown in A. cherimola, in which AGPs surround the egg apparatus. In Arabidopsis, the micropyle formed only by the outer integument in wuschel-7 mutants caused a partial defect in pollen tube guidance. Moreover, pollen tubes were not observed in the micropyle of an inner no outer (ino) mutant in Arabidopsis, but were observed in homologous ino mutants in Annona. The similar distribution of GABA and AGPs observed in the micropyle of Arabidopsis and Annona, together with the anomalies from specific integument mutants, support the role of the inner integument in preventing multiple tube entrance (polytubey) in these two phylogenetically distant genera.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), 29750, Algarrobo-Costa, Málaga, Spain
| | - Thomas Laux
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - José I Hormaza
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), 29750, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
142
|
Zhou K. Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Transduction. FRONTIERS IN PLANT SCIENCE 2019; 10:1022. [PMID: 31555307 PMCID: PMC6726743 DOI: 10.3389/fpls.2019.01022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Diverse proteins are found modified with glycosylphosphatidylinositol (GPI) at their carboxyl terminus in eukaryotes, which allows them to associate with membrane lipid bilayers and anchor on the external surface of the plasma membrane. GPI-anchored proteins (GPI-APs) play crucial roles in various processes, and more and more GPI-APs have been identified and studied. In this review, previous genomic and proteomic predictions of GPI-APs in Arabidopsis have been updated, which reveal their high abundance and complexity. From studies of individual GPI-APs in Arabidopsis, certain GPI-APs have been found associated with partner receptor-like kinases (RLKs), targeting RLKs to their subcellular localization and helping to recognize extracellular signaling polypeptide ligands. Interestingly, the association might also be involved in ligand selection. The analyses suggest that GPI-APs are essential and widely involved in signal transduction through association with RLKs.
Collapse
|
143
|
Amos RA, Mohnen D. Critical Review of Plant Cell Wall Matrix Polysaccharide Glycosyltransferase Activities Verified by Heterologous Protein Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:915. [PMID: 31379900 PMCID: PMC6646851 DOI: 10.3389/fpls.2019.00915] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 05/02/2023]
Abstract
The life cycle and development of plants requires the biosynthesis, deposition, and degradation of cell wall matrix polysaccharides. The structures of the diverse cell wall matrix polysaccharides influence commercially important properties of plant cells, including growth, biomass recalcitrance, organ abscission, and the shelf life of fruits. This review is a comprehensive summary of the matrix polysaccharide glycosyltransferase (GT) activities that have been verified using in vitro assays following heterologous GT protein expression. Plant cell wall (PCW) biosynthetic GTs are primarily integral transmembrane proteins localized to the endoplasmic reticulum and Golgi of the plant secretory system. The low abundance of these enzymes in plant tissues makes them particularly difficult to purify from native plant membranes in quantities sufficient for enzymatic characterization, which is essential to study the functions of the different GTs. Numerous activities in the synthesis of the major cell wall matrix glycans, including pectins, xylans, xyloglucan, mannans, mixed-linkage glucans (MLGs), and arabinogalactan components of AGP proteoglycans have been mapped to specific genes and multi-gene families. Cell wall GTs include those that synthesize the polymer backbones, those that elongate side branches with extended glycosyl chains, and those that add single monosaccharide linkages onto polysaccharide backbones and/or side branches. Three main strategies have been used to identify genes encoding GTs that synthesize cell wall linkages: analysis of membrane fractions enriched for cell wall biosynthetic activities, mutational genetics approaches investigating cell wall compositional phenotypes, and omics-directed identification of putative GTs from sequenced plant genomes. Here we compare the heterologous expression systems used to produce, purify, and study the enzyme activities of PCW GTs, with an emphasis on the eukaryotic systems Nicotiana benthamiana, Pichia pastoris, and human embryonic kidney (HEK293) cells. We discuss the enzymatic properties of GTs including kinetic rates, the chain lengths of polysaccharide products, acceptor oligosaccharide preferences, elongation mechanisms for the synthesis of long-chain polymers, and the formation of GT complexes. Future directions in the study of matrix polysaccharide biosynthesis are proposed.
Collapse
Affiliation(s)
- Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Debra Mohnen
| |
Collapse
|
144
|
Kalomoiri P, Holck J, Coulomb L, Boos I, Enemark-Rasmussen K, Spodsberg N, Monrad RN, Clausen MH. Substrate specificity of novel GH16 endo-β-(1→3)-galactanases acting on linear and branched β-(1→3)-galactooligosaccharides. J Biotechnol 2018; 290:44-52. [PMID: 30576682 DOI: 10.1016/j.jbiotec.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Arabinogalactan proteins are proteoglycans located in the plant cell wall. Most arabinogalactan proteins are composed of carbohydrate moieties of β-(1→3)-galactan main chains with β-(1→6)-galactan side chains terminated by other glycans. In this study, three novel endo-β-(1→3)-galactanases were identified and the substrate specificity was further studied using well-defined galactan oligomers. Linear and branched β-(1→3)-linked galactans, which resemble the carbohydrate core of the arabinogalactan protein, were used for the characterization of endo-β-(1→3)-galactanases. The identified enzymes required at least three consecutive galactose residues for activity. Non-substituted regions were preferred, but substituents in the -2 and +2 and in some cases also -1 and +1 subsites were tolerated to some extent, depending on the branching pattern, however at a significantly lower rate/frequency.
Collapse
Affiliation(s)
- Panagiota Kalomoiri
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Holck
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark; Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Laure Coulomb
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Irene Boos
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| | - Kasper Enemark-Rasmussen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| | | | | | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
145
|
Bozbuga R, Lilley CJ, Knox JP, Urwin PE. Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Sci Rep 2018; 8:17302. [PMID: 30470775 PMCID: PMC6251906 DOI: 10.1038/s41598-018-35529-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/29/2018] [Indexed: 11/10/2022] Open
Abstract
Root-knot nematodes (Meloidogyne spp.) are an important group of plant parasitic nematodes that induce within host plant roots unique feeding site structures, termed giant cells, which supply nutrient flow to the nematode. A comparative in situ analysis of cell wall polysaccharides in the giant cells of three host species (Arabidopsis, maize and aduki bean) infected with Meloidogyne incognita has been carried out. Features common to giant cell walls of all three species include the presence of high-esterified pectic homogalacturonan, xyloglucan and pectic arabinan. The species-specific presence of xylan and mixed-linkage glucan (MLG) epitopes in giant cell walls of maize reflected that host’s taxonomic group. The LM5 galactan and LM21 mannan epitopes were not detected in the giant cell walls of aduki bean but were detected in Arabidopsis and maize giant cell walls. The LM2 arabinogalactan-protein epitope was notable for its apparent global variations in root cell walls as a response to infection across the three host species. Additionally, a set of Arabidopsis cell wall mutants were used to determine any impacts of altered cell wall structures on M. incognita infection. Disruption of the arabinogalactan-protein 8 gene had the greatest impact and resulted in an increased infection rate.
Collapse
Affiliation(s)
- Refik Bozbuga
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Catherine J Lilley
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Peter E Urwin
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| |
Collapse
|
146
|
Purification, structural characterization of an arabinogalactan from green gram (Vigna radiata) and its role in macrophage activation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
147
|
Kumar KRR, Blomberg J, Björklund S. The MED7 subunit paralogs of Mediator function redundantly in development of etiolated seedlings in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:578-594. [PMID: 30058106 DOI: 10.1111/tpj.14052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
MED7 is a subunit of the Mediator middle module and is encoded by two paralogs in Arabidopsis. We generated MED7 silenced lines using RNAi to study its impact on Arabidopsis growth and development. Compared with wild type, etiolated seedlings of the MED7 silenced lines exhibited reduced hypocotyl length caused by reduced cell elongation when grown in the dark. The hypocotyl length phenotype was rescued by exogenously supplied brassinosteroid. In addition, MED7 silenced seedlings exhibited defective hook opening in the dark as well as defective cotyledon expansion in the presence of the brassinosteroid inhibitor brassinazole. Whole transcriptome analysis on etiolated seedlings using RNA sequencing revealed several genes known to be regulated by auxin and brassinosteroids, and a broad range of cell wall-related genes that were differentially expressed in the MED7 silenced lines. This was especially evident for genes involved in cell wall extension and remodeling, such as EXPANSINs and XTHs. Conditional complementation with each MED7 paralog individually restored the hypocotyl phenotype as well as the gene expression defects. Additionally, conditional expression of MED7 had no effects that were independent of the Mediator complex on the observed phenotypes. We concluded that the MED7 paralogs function redundantly in regulating genes required for the normal development of etiolated Arabidopsis seedlings.
Collapse
Affiliation(s)
- Koppolu Raja Rajesh Kumar
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
- Department of Biotechnology, Indira Gandhi National Tribal University (IGNTU), Amarkantak-484887, Madhya Pradesh, India
| | - Jeanette Blomberg
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| |
Collapse
|
148
|
Structure of acid-extractable polysaccharides of tree greenery of Picea abies. Carbohydr Polym 2018; 199:320-330. [DOI: 10.1016/j.carbpol.2018.07.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/17/2022]
|
149
|
Kruglova NN, Titova GE, Seldimirova OA. Callusogenesis as an in vitro Morphogenesis Pathway in Cereals. Russ J Dev Biol 2018. [DOI: 10.1134/s106236041805003x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
150
|
Structural studies of water-extractable pectic polysaccharides and arabinogalactan proteins from Picea abies greenery. Carbohydr Polym 2018; 195:207-217. [DOI: 10.1016/j.carbpol.2018.04.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022]
|