101
|
Wei X, Liu F, Chen C, Ma F, Li M. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. FRONTIERS IN PLANT SCIENCE 2014; 5:569. [PMID: 25414708 PMCID: PMC4220645 DOI: 10.3389/fpls.2014.00569] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/03/2014] [Indexed: 05/21/2023]
Abstract
In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.
Collapse
Affiliation(s)
| | | | | | - Fengwang Ma
- *Correspondence: Mingjun Li and Fengwang Ma, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China e-mail: ;
| | - Mingjun Li
- *Correspondence: Mingjun Li and Fengwang Ma, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China e-mail: ;
| |
Collapse
|
102
|
Klemens PA, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus HE. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1338-52. [PMID: 24028846 PMCID: PMC3813654 DOI: 10.1104/pp.113.224972] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/11/2013] [Indexed: 05/18/2023]
Abstract
Here, we report that SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEET16) from Arabidopsis (Arabidopsis thaliana) is a vacuole-located carrier, transporting glucose (Glc), fructose (Fru), and sucrose (Suc) after heterologous expression in Xenopus laevis oocytes. The SWEET16 gene, similar to the homologs gene SWEET17, is mainly expressed in vascular parenchyma cells. Application of Glc, Fru, or Suc, as well as cold, osmotic stress, or low nitrogen, provoke the down-regulation of SWEET16 messenger RNA accumulation. SWEET16 overexpressors (35SPro:SWEET16) showed a number of peculiarities related to differences in sugar accumulation, such as less Glc, Fru, and Suc at the end of the night. Under cold stress, 35SPro:SWEET16 plants are unable to accumulate Fru, while under nitrogen starvation, both Glc and Fru, but not Suc, were less abundant. These changes of individual sugars indicate that the consequences of an increased SWEET16 activity are dependent upon the type of external stimulus. Remarkably, 35SPro:SWEET16 lines showed improved germination and increased freezing tolerance. The latter observation, in combination with the modified sugar levels, points to a superior function of Glc and Suc for frost tolerance. 35SPro:SWEET16 plants exhibited increased growth efficiency when cultivated on soil and showed improved nitrogen use efficiency when nitrate was sufficiently available, while under conditions of limiting nitrogen, wild-type biomasses were higher than those of 35SPro:SWEET16 plants. Our results identify SWEET16 as a vacuolar sugar facilitator, demonstrate the substantial impact of SWEET16 overexpression on various critical plant traits, and imply that SWEET16 activity must be tightly regulated to allow optimal Arabidopsis development under nonfavorable conditions.
Collapse
|
103
|
Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M. Source-to-sink transport of sugar and regulation by environmental factors. FRONTIERS IN PLANT SCIENCE 2013; 4:272. [PMID: 23898339 PMCID: PMC3721551 DOI: 10.3389/fpls.2013.00272] [Citation(s) in RCA: 561] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/02/2013] [Indexed: 05/18/2023]
Abstract
Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.
Collapse
Affiliation(s)
- Remi Lemoine
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Sylvain La Camera
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Rossitza Atanassova
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Fabienne Dédaldéchamp
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Thierry Allario
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Nathalie Pourtau
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jean-Louis Bonnemain
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Maryse Laloi
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Pierre Coutos-Thévenot
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Laurence Maurousset
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mireille Faucher
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Christine Girousse
- Diversité et Ecophysiologie des Céréales, Unités Mixtes de RechercheClermont Ferrand, France
| | - Pauline Lemonnier
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jonathan Parrilla
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mickael Durand
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| |
Collapse
|
104
|
Bihmidine S, Hunter CT, Johns CE, Koch KE, Braun DM. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. FRONTIERS IN PLANT SCIENCE 2013; 4:177. [PMID: 23761804 PMCID: PMC3671192 DOI: 10.3389/fpls.2013.00177] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/17/2013] [Indexed: 05/18/2023]
Abstract
Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An important advance has been the identification of new transporters and facilitators with major roles in the accumulation and equilibration of sugars at a cellular level. Exactly where each exerts its effect varies among systems. Sugarcane and sweet sorghum stems, for example, both accumulate high levels of sucrose, but may do so via different paths. The distinction is central to strategies for targeted manipulation of sink strength using transporter genes, and shows the importance of system-specific analyses. Another major advance has been the identification of deep hypoxia as a feature of normal grain development. This means that molecular drivers of sink strength in endosperm operate in very low oxygen levels, and under metabolic conditions quite different than previously assumed. Successful enhancement of sink strength has nonetheless been achieved in grains by up-regulating genes for starch biosynthesis. Additionally, our understanding of sink strength is enhanced by awareness of the dual roles played by invertases (INVs), not only in sucrose metabolism, but also in production of the hexose sugar signals that regulate cell cycle and cell division programs. These contributions of INV to cell expansion and division prove to be vital for establishment of young sinks ranging from flowers to fruit. Since INV genes are themselves sugar-responsive "feast genes," they can mediate a feed-forward enhancement of sink strength when assimilates are abundant. Greater overall productivity and yield have thus been attained in key instances, indicating that even broader enhancements may be achievable as we discover the detailed molecular mechanisms that drive sink strength in diverse systems.
Collapse
Affiliation(s)
- Saadia Bihmidine
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Missouri Maize Center, University of MissouriColumbia, MO, USA
| | - Charles T. Hunter
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Christine E. Johns
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Karen E. Koch
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - David M. Braun
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Missouri Maize Center, University of MissouriColumbia, MO, USA
| |
Collapse
|
105
|
Nägele T, Heyer AG. Approximating subcellular organisation of carbohydrate metabolism during cold acclimation in different natural accessions of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 198:777-787. [PMID: 23488986 DOI: 10.1111/nph.12201] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/27/2013] [Indexed: 05/18/2023]
Abstract
Accessions of Arabidopsis thaliana originating from climatically different habitats show different levels of cold acclimation when exposed to low temperatures. The central carbohydrate metabolism plays a crucial role during this acclimation. Subcellular distribution of carbohydrates over the compartments cytosol, vacuole and plastids, and putative interactions of the compartments, are analyzed in three differentially cold-tolerant accessions of Arabidopsis thaliana, originating from the Iberian Peninsula (C24), Russia (Rschew) and Scandinavia (Tenela), respectively. Subcellular carbohydrate concentrations were determined by applying the nonaqueous fractionation technique. Mathematical modeling and steady-state simulation was used to analyse the metabolic homeostasis during cold exposure. In all accessions, the initial response to cold exposure was a significant increase of plastidial and cytosolic sucrose concentrations. Raffinose accumulated in all cellular compartments of cold-tolerant accessions with a delay of 3 d, indicating that raffinose accumulation is a long-term component of cold acclimation. Minimal rates of metabolite transport permitting steady-state simulations of metabolite concentrations correlated with cold tolerance, indicating an important role of subcellular re-distribution of metabolites during cold acclimation. A highly regulated interplay of enzymatic reactions and intracellular transport processes appears to be a prerequisite for maintaining carbohydrate homeostasis during cold exposure and allowing cold acclimation in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Thomas Nägele
- Institute of Biology, Department of Plant Biotechnology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Arnd G Heyer
- Institute of Biology, Department of Plant Biotechnology, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
106
|
Vilaine F, Kerchev P, Clément G, Batailler B, Cayla T, Bill L, Gissot L, Dinant S. Increased expression of a phloem membrane protein encoded by NHL26 alters phloem export and sugar partitioning in Arabidopsis. THE PLANT CELL 2013; 25:1689-708. [PMID: 23715470 PMCID: PMC3694700 DOI: 10.1105/tpc.113.111849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/30/2013] [Accepted: 05/13/2013] [Indexed: 05/18/2023]
Abstract
The complex process of phloem sugar transport involves symplasmic and apoplasmic events. We characterized Arabidopsis thaliana lines ectopically expressing a phloem-specific gene encoding NDR1/HIN1-like26 (NHL26), a putative membrane protein. NHL26 overexpressor plants grew more slowly than wild-type plants, accumulated high levels of carbohydrates in mature leaves, and had a higher shoot biomass, contrasting with slower root growth and a lower seed yield. Similar effects were observed when NHL26 was overexpressed in companion cells, under the control of a companion cell-specific promoter. The soluble sugar content of the phloem sap and sink organs was lower than that in the wild type, providing evidence of a sugar export defect. This was confirmed in a phloem-export assay with the symplastic tracer carboxyfluorescein diacetate. Leaf sugar accumulation was accompanied by higher organic acid, amino acid, and protein contents, whereas analysis of the metabolite profile of phloem sap exudate revealed no change in amino acid or organic acid content, indicating a specific effect on sugar export. NHL26 was found to be located in the phloem plasmodesmata and the endoplasmic reticulum. These findings reveal that NHL26 accumulation affects either the permeability of plasmodesmata or sugar signaling in companion cells, with a specific effect on sugar export.
Collapse
Affiliation(s)
- Françoise Vilaine
- Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–AgroParisTech, F-78000 Versailles, France
| | - Pavel Kerchev
- Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–AgroParisTech, F-78000 Versailles, France
| | - Gilles Clément
- Unité Mixte de Recherche 1318, Plateforme de Chimie du Végétal, Institut National de la Recherche Agronomique, F-78000 Versailles, France
| | - Brigitte Batailler
- Unité Mixte de Recherche 1332, Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, F-33140 Villenave d’Ornon, France
- Université de Bordeaux, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Service 3420, Bordeaux Imaging Center, F-33000 Bordeaux, France
| | - Thibaud Cayla
- Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–AgroParisTech, F-78000 Versailles, France
| | - Laurence Bill
- Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–AgroParisTech, F-78000 Versailles, France
| | - Lionel Gissot
- Unité Mixte de Recherche 1318, Plateforme de Cytologie et Imagerie Végétale, Institut National de la Recherche Agronomique, F-78000 Versailles, France
| | - Sylvie Dinant
- Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique–AgroParisTech, F-78000 Versailles, France
- Address correspondence to
| |
Collapse
|
107
|
Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis. Curr Biol 2013; 23:697-702. [DOI: 10.1016/j.cub.2013.03.021] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/15/2013] [Accepted: 03/08/2013] [Indexed: 11/16/2022]
|
108
|
Patrick JW, Botha FC, Birch RG. Metabolic engineering of sugars and simple sugar derivatives in plants. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:142-56. [PMID: 23043616 DOI: 10.1111/pbi.12002] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/22/2012] [Accepted: 08/31/2012] [Indexed: 05/21/2023]
Abstract
Carbon captured through photosynthesis is transported, and sometimes stored in plants, as sugar. All organic compounds in plants trace to carbon from sugars, so sugar metabolism is highly regulated and integrated with development. Sugars stored by plants are important to humans as foods and as renewable feedstocks for industrial conversion to biofuels and biomaterials. For some purposes, sugars have advantages over polymers including starches, cellulose or storage lipids. This review considers progress and prospects in plant metabolic engineering for increased yield of endogenous sugars and for direct production of higher-value sugars and simple sugar derivatives. Opportunities are examined for enhancing export of sugars from leaves. Focus then turns to manipulation of sugar metabolism in sugar-storing sink organs such as fruits, sugarcane culms and sugarbeet tubers. Results from manipulation of suspected 'limiting' enzymes indicate a need for clearer understanding of flux control mechanisms, to achieve enhanced levels of endogenous sugars in crops that are highly selected for this trait. Outcomes from in planta conversion to novel sugars and derivatives range from severe interference with plant development to field demonstration of crops accumulating higher-value sugars at high yields. The differences depend on underlying biological factors including the effects of the novel products on endogenous metabolism, and on biotechnological fine-tuning including developmental expression and compartmentation patterns. Ultimately, osmotic activity may limit the accumulation of sugars to yields below those achievable using polymers; but results indicate the potential for increases above current commercial sugar yields, through metabolic engineering underpinned by improved understanding of plant sugar metabolism.
Collapse
Affiliation(s)
- John W Patrick
- The University of Newcastle, School of Environmental and Life Sciences, Callaghan, NSW, Australia
| | | | | |
Collapse
|
109
|
Shitan N, Yazaki K. New insights into the transport mechanisms in plant vacuoles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:383-433. [PMID: 23890387 DOI: 10.1016/b978-0-12-407695-2.00009-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vacuole is the largest compartment in plant cells, often occupying more than 80% of the total cell volume. This organelle accumulates a large variety of endogenous ions, metabolites, and xenobiotics. The compartmentation of divergent substances is relevant for a wide range of biological processes, such as the regulation of stomata movement, defense mechanisms against herbivores, flower coloration, etc. Progress in molecular and cellular biology has revealed that a large number of transporters and channels exist at the tonoplast. In recent years, various biochemical and physiological functions of these proteins have been characterized in detail. Some are involved in maintaining the homeostasis of ions and metabolites, whereas others are related to defense mechanisms against biotic and abiotic stresses. In this review, we provide an updated inventory of vacuolar transport mechanisms and a comprehensive summary of their physiological functions.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | | |
Collapse
|
110
|
Ludewig F, Flügge UI. Role of metabolite transporters in source-sink carbon allocation. FRONTIERS IN PLANT SCIENCE 2013; 4:231. [PMID: 23847636 PMCID: PMC3698459 DOI: 10.3389/fpls.2013.00231] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/13/2013] [Indexed: 05/18/2023]
Abstract
Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole. In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or - in combination with nitrogen - as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters.
Collapse
Affiliation(s)
- Frank Ludewig
- *Correspondence: Frank Ludewig, Botanical Institute II, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany e-mail:
| | | |
Collapse
|
111
|
Stitt M. Progress in understanding and engineering primary plant metabolism. Curr Opin Biotechnol 2012; 24:229-38. [PMID: 23219183 DOI: 10.1016/j.copbio.2012.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 01/07/2023]
Abstract
The maximum yield of crop plants depends on the efficiency of conversion of sunlight into biomass. This review summarises recent models that estimate energy conversion efficiency for successive steps in photosynthesis and metabolism. Photorespiration was identified as a major reason for energy loss during photosynthesis and strategies to modify or suppress photorespiration are presented. Energy loss during the conversion of photosynthate to biomass is also large but cannot be modelled as precisely due to incomplete knowledge about pathways and turnover and maintenance costs. Recent research on pathways involved in metabolite transport and interconversion in different organs, and recent insights into energy requirements linked to the production, maintenance and turnover of the apparatus for cellular growth and repair processes are discussed.
Collapse
Affiliation(s)
- Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14474 Potsdam-Golm, Germany.
| |
Collapse
|
112
|
Jonik C, Sonnewald U, Hajirezaei MR, Flügge UI, Ludewig F. Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1088-98. [PMID: 22931170 DOI: 10.1111/j.1467-7652.2012.00736.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 05/22/2023]
Abstract
An important goal in biotechnological research is to improve the yield of crop plants. Here, we genetically modified simultaneously source and sink capacities in potato (Solanum tuberosum cv. Desirée) plants to improve starch yield. Source capacity was increased by mesophyll-specific overexpression of a pyrophosphatase or, alternatively, by antisense expression of the ADP-glucose pyrophosphorylase in leaves. Both approaches make use of re-routing photoassimilates to sink organs at the expense of leaf starch accumulation. Simultaneous increase in sink capacity was accomplished by overexpression of two plastidic metabolite translocators, that is, a glucose 6-phosphate/phosphate translocator and an adenylate translocator in tubers. Employing such a 'pull' approach, we have previously shown that potato starch content and yield can be increased when sink strength is elevated. In the current biotechnological approach, we successfully enhanced source and sink capacities by a combination of 'pull' and 'push' approaches using two different attempts. A doubling in tuber starch yield was achieved. This successful approach might be transferable to other crop plants in the future.
Collapse
Affiliation(s)
- Claudia Jonik
- Cologne Biocenter, Botanical Institute II, University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
113
|
Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR. Molecular regulation of seed and fruit set. TRENDS IN PLANT SCIENCE 2012; 17:656-65. [PMID: 22776090 DOI: 10.1016/j.tplants.2012.06.005] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/03/2012] [Accepted: 06/12/2012] [Indexed: 05/18/2023]
Abstract
Seed and fruit set are established during and soon after fertilization and determine seed and fruit number, their final size and, hence, yield potential. These processes are highly sensitive to biotic and abiotic stresses, which often lead to seed and fruit abortion. Here, we review the regulation of assimilate partitioning, including the potential roles of recently identified sucrose efflux transporters in seed and fruit set and examine the similarities of sucrose import and hydrolysis for both pollen and ovary sinks, and similar causes of abortion. We also discuss the molecular origins of parthenocarpy and the central roles of auxins and gibberellins in fruit set. The recently completed strawberry (Fragaria vesca) and tomato (Solanum lycopersicum) genomes have added to the existing crop databases, and new models are starting to be used in fruit and seed set studies.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
114
|
Abstract
Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K+-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K+ channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
Collapse
Affiliation(s)
- Rainer Hedrich
- University of Wuerzburg, Institute for Molecular Plant Physiology and Biophysics, Wuerzburg, Germany; and King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
115
|
Frost CJ, Nyamdari B, Tsai CJ, Harding SA. The tonoplast-localized sucrose transporter in Populus (PtaSUT4) regulates whole-plant water relations, responses to water stress, and photosynthesis. PLoS One 2012; 7:e44467. [PMID: 22952983 PMCID: PMC3432113 DOI: 10.1371/journal.pone.0044467] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/02/2012] [Indexed: 12/24/2022] Open
Abstract
The Populus sucrose (Suc) transporter 4 (PtaSUT4), like its orthologs in other plant taxa, is tonoplast localized and thought to mediate Suc export from the vacuole into the cytosol. In source leaves of Populus, SUT4 is the predominantly expressed gene family member, with transcript levels several times higher than those of plasma membrane SUTs. A hypothesis is advanced that SUT4-mediated tonoplast sucrose fluxes contribute to the regulation of osmotic gradients between cellular compartments, with the potential to mediate both sink provisioning and drought tolerance in Populus. Here, we describe the effects of PtaSUT4-RNA interference (RNAi) on sucrose levels and raffinose family oligosaccharides (RFO) induction, photosynthesis, and water uptake, retention and loss during acute and chronic drought stresses. Under normal water-replete growing conditions, SUT4-RNAi plants had generally higher shoot water contents than wild-type plants. In response to soil drying during a short-term, acute drought, RNAi plants exhibited reduced rates of water uptake and delayed wilting relative to wild-type plants. SUT4-RNAi plants had larger leaf areas and lower photosynthesis rates than wild-type plants under well-watered, but not under chronic water-limiting conditions. Moreover, the magnitude of shoot water content, height growth, and photosynthesis responses to contrasting soil moisture regimes was greater in RNAi than wild-type plants. The concentrations of stress-responsive RFOs increased in wild-type plants but were unaffected in SUT4-RNAi plants under chronically dry conditions. We discuss a model in which the subcellular compartmentalization of sucrose mediated by PtaSUT4 is regulated in response to both sink demand and plant water status in Populus.
Collapse
Affiliation(s)
- Christopher J Frost
- Warnell School of Forestry and Natural Resources and Department of Genetics, University of Georgia, Athens, Georgia, USA
| | | | | | | |
Collapse
|
116
|
Slewinski TL. Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4647-70. [PMID: 22732107 DOI: 10.1093/jxb/ers124] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A dramatic change in agricultural crops is needed in order to keep pace with the demands of an increasing human population, exponential need for renewable fuels, and uncertain climatic changes. Grasses make up the vast majority of agricultural commodities. How these grasses capture, transport, and store carbohydrates underpins all aspects of crop productivity. Sink-source dynamics within the plant direct how much, where, and when carbohydrates are allocated, as well as determine the harvestable tissue. Carbohydrate partitioning can limit the yield capacity of these plants, thus offering a potential target for crop improvement. Grasses have the ability to buffer this sink-source interaction by transiently storing carbohydrates in stem tissue when production from the source is greater than whole-plant demand. These reserves improve yield stability in grain crops by providing an alternative source when photosynthetic capacity is reduced during the later phases of grain filling, or during periods of environmental and biotic stresses. Domesticated grasses such as sugarcane and sweet sorghum have undergone selection for high accumulation of stem carbohydrates, which serve as the primary sources of sugars for human and animal consumption, as well as ethanol production for fuel. With the enormous expectations placed on agricultural production in the near future, research into carbohydrate partitioning in grasses is essential for maintaining and increasing yields in grass crops. This review highlights the current knowledge of non-structural carbohydrate dynamics in grass stems and discusses the impacts of stem reserves in essential agronomic grasses.
Collapse
Affiliation(s)
- Thomas L Slewinski
- Department of Plant Biology, Cornell University, 262 Plant Science Building, Ithaca, NY 14853, USA.
| |
Collapse
|
117
|
Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D. Sugar transporters in plants and in their interactions with fungi. TRENDS IN PLANT SCIENCE 2012; 17:413-22. [PMID: 22513109 DOI: 10.1016/j.tplants.2012.03.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/06/2012] [Accepted: 03/17/2012] [Indexed: 05/18/2023]
Abstract
Sucrose and monosaccharide transporters mediate long distance transport of sugar from source to sink organs and constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Even if numerous families of plant sugar transporters are defined; efflux capacities, subcellular localization and association to membrane rafts have only been recently reported. On the fungal side, the investigation of sugar transport mechanisms in mutualistic and pathogenic interactions is now emerging. Here, we review the essential role of sugar transporters for distribution of carbohydrates inside plant cells, as well as for plant-fungal interaction functioning. Altogether these data highlight the need for a better comprehension of the mechanisms underlying sugar exchanges between fungi and their host plants.
Collapse
Affiliation(s)
- Joan Doidy
- UMR INRA 1347, Agrosup, Université de Bourgogne, Agroécologie, Pôle Interactions Plantes Microorganismes ERL CNRS 6300, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
118
|
Etxeberria E, Pozueta-Romero J, Gonzalez P. In and out of the plant storage vacuole. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:52-61. [PMID: 22608519 DOI: 10.1016/j.plantsci.2012.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 05/08/2023]
Abstract
The plant storage vacuole is involved in a wide variety of metabolic functions a great many of which necessitate the transport of substances across the tonoplast. Some solutes, depending on the origin, have to cross the plasma membrane as well. The cell is equipped with a complex web of transport systems, cellular routes, and unique intracellular environments that support their transport and accumulation against a concentration gradient. These are capable of processing a diverse nature of substances of distinct sizes, chemical properties, and origins. In this review we describe the various mechanism involved in solute transport into the vacuole of storage cells with special emphasis placed on solutes arriving through the apoplast. Transport of solutes from the cytosol to the vacuole is carried out by tonoplast-bound ABC transporters, solute/H(+) antiporters, and ion channels whereas transport from the apoplast requires additional plasma membrane-bound solute/H(+) symporters and fluid-phase endocytosis. In addition, and based on new evidence accumulated within the last decade, we re-evaluate the current notion of extracellular solute uptake as partially based on facilitated diffusion, and offer an alternative interpretation that involves membrane bound transporters and fluid-phase endocytosis. Finally, we make several assertions in regards to solute export from the vacuole as predicted by the limited available data suggesting that both membrane-bound carriers and vesicle mediated exocytosis are involved during solute mobilization.
Collapse
Affiliation(s)
- Ed Etxeberria
- University of Florida/IFAS, Department of Horticultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850, USA.
| | | | | |
Collapse
|
119
|
Egert A, Peters S, Guyot C, Stieger B, Keller F. An Arabidopsis T-DNA insertion mutant for galactokinase (AtGALK, At3g06580) hyperaccumulates free galactose and is insensitive to exogenous galactose. PLANT & CELL PHYSIOLOGY 2012; 53:921-9. [PMID: 22437845 DOI: 10.1093/pcp/pcs036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Galactokinase (GALK, EC 2.7.1.6) is a cytosolic enzyme with a wide occurrence across the taxonomic kingdoms. It catalyzes the phosphorylation of α-d-galactose (Gal) to α-d-Gal-1-P. The cytotoxicity of free (unphosphorylated) Gal is well documented in plants and causes marked defects. An Arabidopsis GALK (AtGALK, At3g06580) was previously identified, cloned and functionally characterized in Escherichia coli and was suggested to occur as a single copy gene in Arabidopsis. We identified an AtGALK T-DNA insertion mutant (atgalk) that (i) is AtGALK transcript deficient; (ii) displays no GALK activity in vegetative tissues; and (iii) accumulates Gal up to 6.8 mg g(-1) FW in vegetative tissues, in contrast to wild-type plants. By constitutively overexpressing the AtGALK cDNA, atgalk was functionally rescued. Three independent transformed lines showed restored AtGALK transcripts and GALK activity and had low leaf Gal concentrations comparable with those observed in wild-type plants. Surprisingly, in vitro grown atgalk plants were largely insensitive to the exogenous application of up to 100 mM free Gal, while wild-type plants exhibited sensitivity to low Gal concentrations (10 mM). Furthermore, atgalk seedlings retained the capacity for uptake of exogenously supplied Gal (100 mM), accumulating up to 57 mg g(-1) FW in leaves. Leaves from soil-grown atgalk plants that exhibited no growth or morphological defects were used to demonstrate that the accumulating Gal occurred exclusively in the vacuoles of mesophyll protoplasts. Collectively, these findings suggest a novel Gal detoxification pathway that targets free Gal to the vacuole and is active in the atgalk mutant background.
Collapse
Affiliation(s)
- Aurélie Egert
- Institute of Plant Biology, Molecular Plant Physiology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
120
|
Schneider S, Hulpke S, Schulz A, Yaron I, Höll J, Imlau A, Schmitt B, Batz S, Wolf S, Hedrich R, Sauer N. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:325-36. [PMID: 21972845 DOI: 10.1111/j.1438-8677.2011.00506.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Arabidopsis thaliana has seven genes for functionally active sucrose transporters. Together with sucrose transporters from other dicot and monocot plants, these proteins form four separate phylogenetic groups. Group-IV includes the Arabidopsis protein SUC4 (synonym SUT4) and related proteins from monocots and dicots. These Group-IV sucrose transporters were reported to be either tonoplast- or plasma membrane-localised, and in heterologous expression systems were shown to act as sucrose/H(+) symporters. Here, we present comparative analyses of the subcellular localisation of the Arabidopsis SUC4 protein and of several other Group-IV sucrose transporters, studies on tissue specificity of the Arabidopsis SUC4 promoter, phenotypic characterisations of Atsuc4.1 mutants and AtSUC4 overexpressing (AtSUC4-OX) plants, and functional comparisons of Atsuc4.1 and AtSUC4-OX vacuoles. Our data show that SUC4-type sucrose transporters from different plant families (Brassicaceae, Cucurbitaceae and Solanaceae) localise exclusively to the tonoplast, demonstrating that vacuolar sucrose transport is a common theme of all SUC4-type proteins. AtSUC4 expression is confined to the stele of Arabidopsis roots, developing anthers and meristematic tissues in all aerial parts. Analyses of the carbohydrate content of WT and mutant seedlings revealed reduced sucrose content in AtSUC4-OX seedlings. This is in line with patch-clamp analyses of AtSUC4-OX vacuoles that characterise AtSUC4 as a sucrose/H(+) symporter directly in the tonoplast membrane.
Collapse
Affiliation(s)
- S Schneider
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:529-41. [PMID: 21988472 DOI: 10.1111/j.1365-313x.2011.04812.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Because they are immotile organisms, higher plants have developed efficient strategies for adaptation to temperature changes. During cold acclimation, plants accumulate specific types of solutes to enhance freezing tolerance. The vacuole is a major solute storage organelle, but until now the role of tonoplast proteins in cold acclimation has not been investigated. In a comparative tonoplast proteome analysis, we identified several membrane proteins with altered abundance upon cold acclimation. We found an increased protein abundance of the tonoplast pyrophosphatase and subunits of the vacuolar V-ATPase and a significantly increased V-ATPase activity. This was accompanied by increased vacuolar concentrations of dicarbonic acids and soluble sugars. Consistently, the abundance of the tonoplast dicarbonic acid transporter was also higher in cold-acclimatized plants. However, no change in the protein abundance of tonoplast monosaccharide transporters was detectable. However, a generally higher cold-induced phosphorylation of members of this sugar transporter sub-group was observed. Our results indicate that cold-induced solute accumulation in the vacuole is mediated by increased acidification of this organelle. Thus solute transport activity is either modulated by increased protein amounts or by modification of proteins via phosphorylation.
Collapse
Affiliation(s)
- Waltraud X Schulze
- Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Golm, Germany
| | | | | | | | | |
Collapse
|
122
|
|
123
|
Martinoia E, Meyer S, De Angeli A, Nagy R. Vacuolar transporters in their physiological context. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:183-213. [PMID: 22404463 DOI: 10.1146/annurev-arplant-042811-105608] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vacuoles in vegetative tissues allow the plant surface to expand by accumulating energetically cheap inorganic osmolytes, and thereby optimize the plant for absorption of sunlight and production of energy by photosynthesis. Some specialized cells, such as guard cells and pulvini motor cells, exhibit rapid volume changes. These changes require the rapid release and uptake of ions and water by the vacuole and are a prerequisite for plant survival. Furthermore, seed vacuoles are important storage units for the nutrients required for early plant development. All of these fundamental processes rely on numerous vacuolar transporters. During the past 15 years, the transporters implicated in most aspects of vacuolar function have been identified and characterized. Vacuolar transporters appear to be integrated into a regulatory network that controls plant metabolism. However, little is known about the mode of action of these fundamental processes, and deciphering the underlying mechanisms remains a challenge for the future.
Collapse
Affiliation(s)
- Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
124
|
Poschet G, Hannich B, Raab S, Jungkunz I, Klemens PA, Krueger S, Wic S, Neuhaus HE, Büttner M. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. PLANT PHYSIOLOGY 2011; 157:1664-76. [PMID: 21984725 PMCID: PMC3327193 DOI: 10.1104/pp.111.186825] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/06/2011] [Indexed: 05/18/2023]
Abstract
Subcellular sugar partitioning in plants is strongly regulated in response to developmental cues and changes in external conditions. Besides transitory starch, the vacuolar sugars represent a highly dynamic pool of instantly accessible metabolites that serve as energy source and osmoprotectant. Here, we present the molecular identification and functional characterization of the vacuolar glucose (Glc) exporter Arabidopsis (Arabidopsis thaliana) Early Responsive to Dehydration-Like6 (AtERDL6). We demonstrate tonoplast localization of AtERDL6 in plants. In Arabidopsis, AtERDL6 expression is induced in response to factors that activate vacuolar Glc pools, like darkness, heat stress, and wounding. On the other hand, AtERDL6 transcript levels drop during conditions that trigger Glc accumulation in the vacuole, like cold stress and external sugar supply. Accordingly, sugar analyses revealed that Aterdl6 mutants have elevated vacuolar Glc levels and that Glc flux across the tonoplast is impaired under stress conditions. Interestingly, overexpressor lines indicated a very similar function for the ERDL6 ortholog Integral Membrane Protein from sugar beet (Beta vulgaris). Aterdl6 mutant plants display increased sensitivity against external Glc, and mutant seeds exhibit a 10% increase in seed weight due to enhanced levels of seed sugars, proteins, and lipids. Our findings underline the importance of vacuolar Glc export during the regulation of cellular Glc homeostasis and the composition of seed reserves.
Collapse
|
125
|
Wingenter K, Trentmann O, Winschuh I, Hörmiller II, Heyer AG, Reinders J, Schulz A, Geiger D, Hedrich R, Neuhaus HE. A member of the mitogen-activated protein 3-kinase family is involved in the regulation of plant vacuolar glucose uptake. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:890-900. [PMID: 21838775 DOI: 10.1111/j.1365-313x.2011.04739.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vacuolar solute accumulation is an important process during plant development, growth and stress responses. Although several vacuolar carriers have been identified recently, knowledge regarding the regulation of transport is still limited. Solute accumulation may be controlled by various factors, such as alterations in carrier abundance or activity. Phosphorylation via kinases is a well-known principle for activation or deactivation of proteins. Several phosphorylated proteins have been identified in the tonoplast proteome; however, kinases that catalyse the phosphorylation of tonoplast proteins are currently unknown. The tonoplast monosaccaride transporter from Arabidopsis (AtTMT1) and its homologue from barley have multiple phosphorylation sites in their extremely large loops. Here we demonstrate that the loop of AtTMT1 interacts with a mitogen-activated triple kinase-like protein kinase (VIK), that an aspartate-rich loop domain is required for effective interaction, and that the presence of VIK stimulates glucose import into isolated vacuoles. Furthermore, the phenotype of VIK loss-of-function plants strikingly resembles that of plants lacking AtTMT1/2. These data suggest that VIK-mediated phosphorylation of the AtTMT1 loop enhances carrier activity and consequently vacuolar sugar accumulation. As many phosphorylated proteins have been identified in the tonoplast, differential phosphorylation may be a general mechanism regulating vacuolar solute import.
Collapse
Affiliation(s)
- Karina Wingenter
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger Straße, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G, Büttner M, Schneider S, Sauer N, Hedrich R. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:129-36. [PMID: 21668536 DOI: 10.1111/j.1365-313x.2011.04672.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The vacuolar membrane is involved in solute uptake into and release from the vacuole, which is the largest plant organelle. In addition to inorganic ions and metabolites, large quantities of protons and sugars are shuttled across this membrane. Current models suggest that the proton gradient across the membrane drives the accumulation and/or release of sugars. Recent studies have associated AtSUC4 with the vacuolar membrane. Some members of the SUC family are plasma membrane proton/sucrose symporters. In addition, the sugar transporters TMT1 and TMT2, which are localized to the vacuolar membrane, have been suggested to function in proton-driven glucose antiport. Here we used the patch-clamp technique to monitor carrier-mediated sucrose transport by AtSUC4 and AtTMTs in intact Arabidopsis thaliana mesophyll vacuoles. In the whole-vacuole configuration with wild-type material, cytosolic sucrose-induced proton currents were associated with a proton/sucrose antiport mechanism. To identify the related transporter on one hand, and to enable the recording of symporter-mediated currents on the other hand, we electrophysiologically characterized vacuolar proteins recognized by Arabidopsis mutants of partially impaired sugar compartmentation. To our surprise, the intrinsic sucrose/proton antiporter activity was greatly reduced when vacuoles were isolated from plants lacking the monosaccharide transporter AtTMT1/TMT2. Transient expression of AtSUC4 in this mutant background resulted in proton/sucrose symport activity. From these studies, we conclude that, in the natural environment within the Arabidopsis cell, AtSUC4 most likely catalyses proton-coupled sucrose export from the vacuole. However, TMT1/2 probably represents a proton-coupled antiporter capable of high-capacity loading of glucose and sucrose into the vacuole.
Collapse
Affiliation(s)
- Alexander Schulz
- University of Wuerzburg, Institute for Molecular Plant Physiology and Biophysics, Julius von Sachs Platz 2, D-97082 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, Choi SB, Bang G, Park YI, Cho MH, Bhoo SH, An G, Hahn TR, Ward JM, Jeon JS. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. PLANT PHYSIOLOGY 2011; 157:109-19. [PMID: 21771914 PMCID: PMC3165862 DOI: 10.1104/pp.111.176982] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 07/18/2011] [Indexed: 05/18/2023]
Abstract
Physiological functions of sucrose (Suc) transporters (SUTs) localized to the tonoplast in higher plants are poorly understood. We here report the isolation and characterization of a mutation in the rice (Oryza sativa) OsSUT2 gene. Expression of OsSUT2-green fluorescent protein in rice revealed that OsSUT2 localizes to the tonoplast. Analysis of the OsSUT2 promoter::β-glucuronidase transgenic rice indicated that this gene is highly expressed in leaf mesophyll cells, emerging lateral roots, pedicels of fertilized spikelets, and cross cell layers of seed coats. Results of Suc transport assays in yeast were consistent with a H(+)-Suc symport mechanism, suggesting that OsSUT2 functions in Suc uptake from the vacuole. The ossut2 mutant exhibited a growth retardation phenotype with a significant reduction in tiller number, plant height, 1,000-grain weight, and root dry weight compared with the controls, the wild type, and complemented transgenic lines. Analysis of primary carbon metabolites revealed that ossut2 accumulated more Suc, glucose, and fructose in the leaves than the controls. Further sugar export analysis of detached leaves indicated that ossut2 had a significantly decreased sugar export ability compared with the controls. These results suggest that OsSUT2 is involved in Suc transport across the tonoplast from the vacuole lumen to the cytosol in rice, playing an essential role in sugar export from the source leaves to sink organs.
Collapse
|
128
|
Slewinski TL. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. MOLECULAR PLANT 2011; 4:641-62. [PMID: 21746702 DOI: 10.1093/mp/ssr051] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently identified SWEET transporter family is smaller and, thus far, only found to transport glucose. These transporters play essential roles at many levels, ranging from organelles to the whole plant. Many family members are essential for cellular homeostasis and reproductive success. Although most transporters do not directly participate in long-distance transport, their indirect roles greatly impact carbon allocation and transport flux to the heterotrophic tissues of the plant. Functional characterization of some members from both gene families has revealed their diverse roles in carbohydrate partitioning, phloem function, resource allocation, plant defense, and sugar signaling. This review highlights the broad impacts and implications of monosaccharide transport by describing some of the functional roles of the monosaccharide transporter(-like) superfamily and the SWEET transporter family.
Collapse
Affiliation(s)
- Thomas L Slewinski
- Department of Plant Biology, Cornell University, 262 Plant Science Building, Ithaca, NY 14853, USA.
| |
Collapse
|
129
|
Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. MOLECULAR PLANT 2011; 4:377-94. [PMID: 21502663 DOI: 10.1093/mp/ssr014] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sucrose is the principal product of photosynthesis used for the distribution of assimilated carbon in plants. Transport mechanisms and efficiency influence photosynthetic productivity by relieving product inhibition and contribute to plant vigor by controlling source/sink relationships and biomass partitioning. Sucrose is synthesized in the cytoplasm and may move cell to cell through plasmodesmata or may cross membranes to be compartmentalized or exported to the apoplasm for uptake into adjacent cells. As a relatively large polar compound, sucrose requires proteins to facilitate efficient membrane transport. Transport across the tonoplast by facilitated diffusion, antiport with protons, and symport with protons have been proposed; for transport across plasma membranes, symport with protons and a mechanism resembling facilitated diffusion are evident. Despite decades of research, only symport with protons is well established at the molecular level. This review aims to integrate recent and older studies on sucrose flux across membranes with principles of whole-plant carbon partitioning.
Collapse
Affiliation(s)
- Brian G Ayre
- University of North Texas, Department of Biological Sciences, Denton, Texas, USA.
| |
Collapse
|
130
|
Abstract
The most prominent ion channel localized in plant vacuoles is the slow activating SV type. Slow vacuolar (SV) channels were discovered by patch clamp studies as early as 1986. In the following two decades, numerous studies revealed that these calcium- and voltage-activated, nonselective cation channels are expressed in the vacuoles of all plants and every plant tissue. The voltage-dependent properties of the SV channel are susceptible to modulation by calcium, pH, redox state, as well as regulatory proteins. In Arabidopsis, the SV channel is encoded by the AtTPC1 gene, and even though its gene product represents the by far largest conductance of the vacuolar membrane, tpc1-loss-of-function mutants appeared not to be impaired in major physiological functions such as growth, development, and reproduction. In contrast, the fou2 gain-of-function point mutation D454N within TPC1 leads to a pronounced growth phenotype and increased synthesis of the stress hormone jasmonate. Since the TPC1 gene is present in all land plants, it likely encodes a very general function. In this review, we will discuss major SV channel properties and their impact on plant cell physiology.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University Wuerzburg, Julius-von-Sachs Platz 2, D-97082 Wuerzburg, Germany
| | | |
Collapse
|
131
|
Rieder B, Neuhaus HE. Identification of an Arabidopsis plasma membrane-located ATP transporter important for anther development. THE PLANT CELL 2011; 23:1932-44. [PMID: 21540435 PMCID: PMC3123944 DOI: 10.1105/tpc.111.084574] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ATP acts as an extracellular signal molecule in plants. However, the nature of the mechanisms that export this compound into the apoplast are under debate. We identified the protein PM-ANT1 as a candidate transporter able to mediate ATP export. PM-ANT1 joins the mitochondrial carrier family, lacks an N-terminal amino acid extension required for organelle localization, and locates to the plasma membrane. Recombinant PM-ANT1 transports ATP, and the gene is substantially expressed in mature pollen grains. Artificial microRNA (amiRNA) mutants show reduced silique length and less seeds per silique but increased seed weight associated with unchanged pollen viability. Anthers from amiRNA mutants exhibited a normal early development, but stomium breakage is inhibited, leading to impaired anther dehiscence. This results in reduced self-pollination and thus decreased fertilization efficiency. amiRNA pollen grains showed increased intracellular ATP levels but decreased extracellular ATP levels. The latter effects are in line with transport properties of recombinant PM-ANT1, supporting in planta that functional PM-ANT1 resides in the plasma membrane and concur with the PM-ANT1 expression pattern. We assume that PM-ANT1 contributes to ATP export during pollen maturation. ATP export may serve as an extracellular signal required for anther dehiscence and is a novel factor critical for pollination and autogamy.
Collapse
|