101
|
Lapin D, Kovacova V, Sun X, Dongus JA, Bhandari D, von Born P, Bautor J, Guarneri N, Rzemieniewski J, Stuttmann J, Beyer A, Parker JE. A Coevolved EDS1-SAG101-NRG1 Module Mediates Cell Death Signaling by TIR-Domain Immune Receptors. THE PLANT CELL 2019; 31:2430-2455. [PMID: 31311833 PMCID: PMC6790079 DOI: 10.1105/tpc.19.00118] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 05/04/2023]
Abstract
Plant nucleotide binding/leucine-rich repeat (NLR) immune receptors are activated by pathogen effectors to trigger host defenses and cell death. Toll-interleukin 1 receptor domain NLRs (TNLs) converge on the ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) family of lipase-like proteins for all resistance outputs. In Arabidopsis (Arabidopsis thaliana) TNL-mediated immunity, AtEDS1 heterodimers with PHYTOALEXIN DEFICIENT4 (AtPAD4) transcriptionally induced basal defenses. AtEDS1 uses the same surface to interact with PAD4-related SENESCENCE-ASSOCIATED GENE101 (AtSAG101), but the role of AtEDS1-AtSAG101 heterodimers remains unclear. We show that AtEDS1-AtSAG101 functions together with N REQUIRED GENE1 (AtNRG1) coiled-coil domain helper NLRs as a coevolved TNL cell death-signaling module. AtEDS1-AtSAG101-AtNRG1 cell death activity is transferable to the Solanaceous species Nicotiana benthamiana and cannot be substituted by AtEDS1-AtPAD4 with AtNRG1 or AtEDS1-AtSAG101 with endogenous NbNRG1. Analysis of EDS1-family evolutionary rate variation and heterodimer structure-guided phenotyping of AtEDS1 variants and AtPAD4-AtSAG101 chimeras identify closely aligned ɑ-helical coil surfaces in the AtEDS1-AtSAG101 partner C-terminal domains that are necessary for reconstituted TNL cell death signaling. Our data suggest that TNL-triggered cell death and pathogen growth restriction are determined by distinctive features of EDS1-SAG101 and EDS1-PAD4 complexes and that these signaling machineries coevolved with other components within plant species or clades to regulate downstream pathways in TNL immunity.
Collapse
Affiliation(s)
- Dmitry Lapin
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Viera Kovacova
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne 50931, Germany
- Faculty of Statistical Physics of Biological Systems, Predictive Models of Evolution, Institute for Biological Physics, University of Cologne, Cologne 50937, Germany
| | - Xinhua Sun
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Joram A Dongus
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Deepak Bhandari
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Patrick von Born
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nina Guarneri
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Jakub Rzemieniewski
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Johannes Stuttmann
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne 50931, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence in Plant Sciences (CEPLAS) D-40225 Düsseldorf, Germany
| |
Collapse
|
102
|
Wilkinson SW, Magerøy MH, López Sánchez A, Smith LM, Furci L, Cotton TEA, Krokene P, Ton J. Surviving in a Hostile World: Plant Strategies to Resist Pests and Diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:505-529. [PMID: 31470772 DOI: 10.1146/annurev-phyto-082718-095959] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As primary producers, plants are under constant pressure to defend themselves against potentially deadly pathogens and herbivores. In this review, we describe short- and long-term strategies that enable plants to cope with these stresses. Apart from internal immunological strategies that involve physiological and (epi)genetic modifications at the cellular level, plants also employ external strategies that rely on recruitment of beneficial organisms. We discuss these strategies along a gradient of increasing timescales, ranging from rapid immune responses that are initiated within seconds to (epi)genetic adaptations that occur over multiple plant generations. We cover the latest insights into the mechanistic and evolutionary underpinnings of these strategies and present explanatory models. Finally, we discuss how knowledge from short-lived model species can be translated to economically and ecologically important perennials to exploit adaptive plant strategies and mitigate future impacts of pests and diseases in an increasingly interconnected and changing world.
Collapse
Affiliation(s)
- Samuel W Wilkinson
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Melissa H Magerøy
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Ana López Sánchez
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lisa M Smith
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Leonardo Furci
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - T E Anne Cotton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Paal Krokene
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
103
|
Venkatesh J, Kang BC. Current views on temperature-modulated R gene-mediated plant defense responses and tradeoffs between plant growth and immunity. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:9-17. [PMID: 30877945 DOI: 10.1016/j.pbi.2019.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 05/12/2023]
Abstract
Elevated ambient temperatures will likely be a key consequence of climate change over the next few decades. Adverse climatic changes could make crop plants more vulnerable to a number of biotic and abiotic stresses, which would have a major impact on worldwide food production in the future. Recent studies have indicated that elevated temperatures directly and/or indirectly affect plant-pathogen interactions. Elevated temperatures alter multiple signal transduction pathways related to stress responses in the host plant. High temperatures can also influence plant pathogenesis, but little is known about the molecular mechanisms associated with such effects. An improved understanding of the molecular genetic mechanisms involved in plant immune responses under elevated temperatures will be essential to mitigate the adverse effects of climate change to ensure future food security. In this review, we discuss recent advances in our understanding of the effects of temperature on resistance (R) gene and/or regulators of R genes in plant defense responses and summarize current evidence for tradeoffs between plant growth and immunity.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
104
|
Balint‐Kurti P. The plant hypersensitive response: concepts, control and consequences. MOLECULAR PLANT PATHOLOGY 2019; 20:1163-1178. [PMID: 31305008 PMCID: PMC6640183 DOI: 10.1111/mpp.12821] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The hypersensitive defence response is found in all higher plants and is characterized by a rapid cell death at the point of pathogen ingress. It is usually associated with pathogen resistance, though, in specific situations, it may have other consequences such as pathogen susceptibility, growth retardation and, over evolutionary timescales, speciation. Due to the potentially severe costs of inappropriate activation, plants employ multiple mechanisms to suppress inappropriate activation of HR and to constrain it after activation. The ubiquity of this response among higher plants despite its costs suggests that it is an extremely effective component of the plant immune system.
Collapse
Affiliation(s)
- Peter Balint‐Kurti
- Plant Science Research UnitUSDA‐ARSRaleighNCUSA
- Department of Entomology and Plant PathologyNC State UniversityRaleighNC27695‐7613USA
| |
Collapse
|
105
|
Anderson A, St Aubin B, Abraham-Juárez MJ, Leiboff S, Shen Z, Briggs S, Brunkard JO, Hake S. The Second Site Modifier, Sympathy for the ligule, Encodes a Homolog of Arabidopsis ENHANCED DISEASE RESISTANCE4 and Rescues the Liguleless narrow Maize Mutant. THE PLANT CELL 2019; 31:1829-1844. [PMID: 31217219 PMCID: PMC6713312 DOI: 10.1105/tpc.18.00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/14/2019] [Accepted: 06/13/2019] [Indexed: 05/19/2023]
Abstract
Liguleless narrow1 encodes a plasma membrane-localized receptor-like kinase required for normal development of maize (Zea mays) leaves, internodes, and inflorescences. The semidominant Lgn-R mutation lacks kinase activity, and phenotypic severity is dependent on inbred background. We created near isogenic lines and assayed the phenotype in multiple environments. Lgn-R plants that carry the B73 version of Sympathy for the ligule (Sol-B) fail to grow under hot conditions, but those that carry the Mo17 version (Sol-M) survive at hot temperatures and are significantly taller at cool temperatures. To identify Sol, we used recombinant mapping and analyzed the Lgn-R phenotype in additional inbred backgrounds. We identified amino acid sequence variations in GRMZM2G075262 that segregate with severity of the Lgn-R phenotypes. This gene is expressed at high levels in Lgn-R B73, but expression drops to nonmutant levels with one copy of Sol-M An EMS mutation solidified the identity of SOL as a maize homolog of Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE4 (EDR4). SOL, like EDR4, is induced in response to pathogen-associated molecular patterns such as flg22. Integrated transcriptomic and phosphoproteomic analyses suggest that Lgn-R plants constitutively activate an immune signaling cascade that induces temperature-sensitive responses in addition to defects in leaf development. We propose that aspects of the severe Lgn-R developmental phenotype result from constitutive defense induction and that SOL potentially functions in repressing this response in Mo17 but not B73. Identification of LGN and its interaction with SOL provides insight into the integration of developmental control and immune responses.
Collapse
Affiliation(s)
- Alyssa Anderson
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Brian St Aubin
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - María Jazmín Abraham-Juárez
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Samuel Leiboff
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Zhouxin Shen
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Steve Briggs
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Jacob O Brunkard
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California Berkeley, Albany, California 94710
| |
Collapse
|
106
|
Janda M, Lamparová L, Zubíková A, Burketová L, Martinec J, Krčková Z. Temporary heat stress suppresses PAMP-triggered immunity and resistance to bacteria in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2019; 20:1005-1012. [PMID: 30924595 PMCID: PMC6589723 DOI: 10.1111/mpp.12799] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) is crucial for plant defence against pathogen attack. The best characterized PAMP is flg22, a 22 amino acid conserved peptide from flagellin protein. In Arabidopsis thaliana, flg22 is recognized by the flagellin sensing 2 (FLS2) receptor. In this study, we focused on biotic stress responses triggered by flg22 after exposure to temporary heat stress (HS). It is important to study the reactions of plants to multiple stress conditions because plants are often exposed simultaneously to a combination of both abiotic and biotic stresses. Transient early production of reactive oxygen species (ROS) is a well-characterized response to PAMP recognition. We demonstrate the strong reduction of flg22-induced ROS production in A. thaliana after HS treatment. In addition, a decrease in FLS2 transcription and a decrease of the FLS2 presence at the plasma membrane are shown after HS. In summary, our data show the strong inhibitory effect of HS on flg22-triggered events in A. thaliana. Subsequently, temporary HS strongly decreases the resistance of A. thaliana to Pseudomonas syringae. We propose that short exposure to high temperature is a crucial abiotic stress factor that suppresses PAMP-triggered immunity, which subsequently leads to the higher susceptibility of plants to pathogens.
Collapse
Affiliation(s)
- Martin Janda
- University of Chemistry and Technology PragueTechnická 5, Prague 6 – Dejvice166 282Czech Republic
| | - Lucie Lamparová
- University of Chemistry and Technology PragueTechnická 5, Prague 6 – Dejvice166 282Czech Republic
- The Czech Academy of SciencesInstitute of Experimental BotanyRozvojová 263, Prague 6 – Lysolaje165 00Czech Republic
| | - Alžběta Zubíková
- The Czech Academy of SciencesInstitute of Experimental BotanyRozvojová 263, Prague 6 – Lysolaje165 00Czech Republic
| | - Lenka Burketová
- The Czech Academy of SciencesInstitute of Experimental BotanyRozvojová 263, Prague 6 – Lysolaje165 00Czech Republic
| | - Jan Martinec
- The Czech Academy of SciencesInstitute of Experimental BotanyRozvojová 263, Prague 6 – Lysolaje165 00Czech Republic
| | - Zuzana Krčková
- The Czech Academy of SciencesInstitute of Experimental BotanyRozvojová 263, Prague 6 – Lysolaje165 00Czech Republic
| |
Collapse
|
107
|
Huang J, Sun Y, Orduna AR, Jetter R, Li X. The Mediator kinase module serves as a positive regulator of salicylic acid accumulation and systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:842-852. [PMID: 30739357 DOI: 10.1111/tpj.14278] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 05/20/2023]
Abstract
In plants, the calmodulin-binding transcription activators (CAMTAs) are required for transcriptional regulation of abiotic and biotic stress responses. Among them, CAMTA3 in Arabidopsis has been intensively studied and shown to function redundantly with CAMTA1 and CAMTA2 to negatively regulate plant immunity. The camta1/2/3 triple mutant accordingly exhibits severe dwarfism due to autoimmunity. Here, through a suppressor screen using camta1/2/3 triple mutant, we found that a mutation in Cyclin-Dependent Kinase 8 (CDK8) partially suppresses the dwarfism and constitutive resistance phenotypes of camta1/2/3. CDK8 positively regulates steady-state salicylic acid (SA) levels and systemic required resistance (SAR). The expression of SA biosynthesis genes such as ICS1 and EDS5 is down-regulated in cdk8 mutants under uninfected conditions, suggesting that CDK8 contributes to the transcriptional regulation of these SA pathway genes. Knocking out another Mediator kinase module member MED12 yielded similar defects including decreased steady-state SA level and compromised SAR, suggesting that the whole Mediator kinase module contributes to the transcriptional regulation of SA levels and SAR.
Collapse
Affiliation(s)
- Jianhua Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Alberto R Orduna
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
108
|
Chen C, Feng S, Zhou M, Ji C, Que L, Wang W. Development of a structure-switching aptamer-based nanosensor for salicylic acid detection. Biosens Bioelectron 2019; 140:111342. [PMID: 31153018 DOI: 10.1016/j.bios.2019.111342] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/26/2022]
Abstract
Salicylic acid (SA) is a phytohormone regulating immune responses against pathogens. SA and its derivatives can be found in diverse food products, medicines, cosmetics and preservatives. While salicylates have potential disease-preventative activity, they can also cause health problems to people who are hypersensitive. The current SA detection methods are costly, labor-intensive and require bulky instruments. In this study, a structure-switching aptamer-based nanopore thin film sensor was developed for cost-effective, rapid, sensitive and simple detection of SA in both buffer and plant extracts. SA is a challenging target for aptamer selection using conventional systemic evolution of ligands by exponential enrichment (SELEX) due to its small size and scarcity of reactive groups for immobilization. By immobilizing the SELEX library instead of SA and screening the library using a structure-switching SELEX approach, a high affinity SA aptamer was identified. The nanopore thin film sensor platform can detect as low as 0.1 μM SA. This is much better than the sensitivity of antibody-based detection method. This nanosensor also exhibited good selectivity among SA and its common metabolites and can detect SA in Arabidopsis and rice using only about 1 μl plant extracts within less than 30 min. The integration of SA aptamer and nanopore thin film sensor provides a promising solution for low-cost, rapid, sensitive on-site detection of SA.
Collapse
Affiliation(s)
- Changtian Chen
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Silu Feng
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
| | - Mian Zhou
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Chonghui Ji
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Long Que
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA.
| | - Wei Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Peking University - Tsinghua University Joint Center for Life Sciences, Beijing, China; Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
109
|
Ma C, Li B, Wang L, Xu ML, Lizhu E, Jin H, Wang Z, Ye JR. Characterization of phytohormone and transcriptome reprogramming profiles during maize early kernel development. BMC PLANT BIOLOGY 2019; 19:197. [PMID: 31088353 PMCID: PMC6515667 DOI: 10.1186/s12870-019-1808-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/26/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND During maize early kernel development, the dramatic transcriptional reprogramming determines the rate of developmental progression, and phytohormone plays critical role in these important processes. To investigate the phytohormone levels and transcriptome reprogramming profiles during maize early kernel development, two maize inbreds with similar genetic background but different mature kernel sizes (ILa and ILb) were used. RESULTS The levels of indole-3-acetic acid (IAA) were increased continuously in maize kernels from 5 days after pollination (DAP) to 10 DAP. ILa had smaller mature kernels than ILb, and ILa kernels had significantly lower IAA levels and significantly higher SA levels than ILb at 10 DAP. The different phytohormone profiles correlated with different transcriptional reprogramming in the two kernels. The global transcriptomes in ILa and ILb kernels were strikingly different at 5 DAP, and their differences peaked at 8 DAP. Functional analysis showed that the biggest transcriptome difference between the two kernels is those response to biotic and abiotic stresses. Further analyses indicated that the start of dramatic transcriptional reprogramming and the onset of significantly enriched functional categories, especially the "plant hormone signal transduction" and "starch and sucrose metabolism", was earlier in ILa than in ILb, whereas more significant enrichment of those functional categories occurred at later stage of kernel development in ILb. CONCLUSIONS These results indicate that later onset of the significantly enriched functional categories, coincide with their stronger activities at a later developmental stage and higher IAA level, are necessary for young kernels to undergo longer mitotic activity and finally develop a larger kernel size. The different onset times and complex interactions of the important functional categories, especially phytohormone signal, and carbohydrate metabolism, form the most important molecular regulators mediating maize early kernel development.
Collapse
Affiliation(s)
- Chuanyu Ma
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Bo Li
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Lina Wang
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Ming-liang Xu
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - E. Lizhu
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Hongyu Jin
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Zhicheng Wang
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| | - Jian-rong Ye
- National Maize Improvement Center, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193 People’s Republic of China
| |
Collapse
|
110
|
Newman TE, Lee J, Williams SJ, Choi S, Halane MK, Zhou J, Solomon P, Kobe B, Jones JDG, Segonzac C, Sohn KH. Autoimmunity and effector recognition in Arabidopsis thaliana can be uncoupled by mutations in the RRS1-R immune receptor. THE NEW PHYTOLOGIST 2019; 222:954-965. [PMID: 30500990 DOI: 10.1111/nph.15617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/23/2018] [Indexed: 05/13/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) disease resistance proteins recognize specific pathogen effectors and activate a cellular defense program. In Arabidopsis thaliana (Arabidopsis), Resistance to Ralstonia solanacearum 1 (RRS1-R) and Resistance to Pseudomonas syringae 4 (RPS4) function together to recognize the unrelated bacterial effectors PopP2 and AvrRps4. In the plant cell nucleus, the RRS1-R/RPS4 complex binds to and signals the presence of AvrRps4 or PopP2. The exact mechanism underlying NLR signaling and immunity activation remains to be elucidated. Using genetic and biochemical approaches, we characterized the intragenic suppressors of sensitive to low humidity 1 (slh1), a temperature-sensitive autoimmune allele of RRS1-R. Our analyses identified five amino acid residues that contribute to RRS1-RSLH1 autoactivity. We investigated the role of these residues in the RRS1-R allele by genetic complementation, and found that C15 in the Toll/interleukin-1 receptor (TIR) domain and L816 in the LRR domain were also important for effector recognition. Further characterization of the intragenic suppressive mutations located in the RRS1-R TIR domain revealed differing requirements for RRS1-R/RPS4-dependent autoimmunity and effector-triggered immunity. Our results provide novel information about the mechanisms which, in turn, hold an NLR protein complex inactive and allow adequate activation in the presence of pathogens.
Collapse
Affiliation(s)
- Toby E Newman
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Bioprotection Centre of Research Excellence, Institute of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand
| | - Jungmin Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Simon J Williams
- Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Morgan K Halane
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jun Zhou
- Bioprotection Centre of Research Excellence, Institute of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand
| | - Peter Solomon
- Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | | | - Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
111
|
Wu Z, Li M, Dong OX, Xia S, Liang W, Bao Y, Wasteneys G, Li X. Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. THE NEW PHYTOLOGIST 2019; 222:938-953. [PMID: 30585636 DOI: 10.1111/nph.15665] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/23/2018] [Indexed: 05/09/2023]
Abstract
Higher plants utilize nucleotide-binding leucine-rich repeat domain proteins (NLRs) as intracellular immune receptors to recognize pathogen-derived effectors and trigger a robust defense. The Activated Disease Resistance 1 (ADR1) family of coiled-coil NLRs (CNLs) have evolved as helper NLRs that function downstream of many TIR-type sensor NLRs (TNLs). Close homologs of ADR1s form the N REQUIREMENT GENE 1 (NRG1) family in Arabidopsis, the function of which is unclear. Through CRISPR/Cas9 gene editing methods, we discovered that the tandemly repeated NRG1A and NRG1B are functionally redundant and operate downstream of TNLs with differential strengths. Interestingly, ADR1s and NRG1s function in two distinct parallel pathways contributing to TNL-specific immunity. Synergistic effects on basal and TNL-mediated defense were detected among ADR1s and NRG1s. An intact P-loop of NRG1s is not required for mediating signals from sensor TNLs, whereas auto-active NRG1A exhibits autoimmunity. Importantly, NRG1s localize to the cytosol and endomembrane network regardless of the presence of effectors, suggesting a cytosolic activation mechanism. Taken together, different sensor TNLs differentially use two groups of helper NLRs, ADR1s and NRG1s, to transduce downstream defense signals.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Meng Li
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Oliver Xiaoou Dong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, 410128, China
| | - Wanwan Liang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yongkang Bao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Geoffrey Wasteneys
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
112
|
Seo E, Kim T, Park JH, Yeom SI, Kim S, Seo MK, Shin C, Choi D. Genome-wide comparative analysis in Solanaceous species reveals evolution of microRNAs targeting defense genes in Capsicum spp. DNA Res 2019; 25:561-575. [PMID: 30060137 PMCID: PMC6289781 DOI: 10.1093/dnares/dsy025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) play roles in various biological processes in plants including growth, development, and disease resistance. Previous studies revealed that some plant miRNAs produce secondary small interfering RNAs (siRNAs) such as phased, secondary siRNAs (phasiRNAs), and they regulate a cascade of gene expression. We performed a genome-wide comparative analysis of miRNAs in Solanaceous species (pepper, tomato, and potato), from an evolutionary perspective. Microsynteny of miRNAs was analysed based on the genomic loci and their flanking genes and most of the well-conserved miRNA genes maintained microsynteny in Solanaceae. We identified target genes of the miRNAs via degradome analysis and found that several miRNAs target many genes encoding nucleotide-binding leucine-rich repeat (NLR) or receptor-like proteins (RLPs), which are known to be major players in defense responses. In addition, disease-resistance-associated miRNAs trigger phasiRNA production in pepper, indicating amplification of the regulation of disease-resistance gene families. Among these, miR-n033a-3p, whose target NLRs have been duplicated in pepper, targets more NLRs belonging to specific subgroup in pepper than those in potato. miRNAs targeting resistance genes might have evolved to regulate numerous targets in Solanaceae, following expansion of target resistance genes. This study provides an insight into evolutionary relationship between miRNAs and their target defense genes in plants.
Collapse
Affiliation(s)
- Eunyoung Seo
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Taewook Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seon-In Yeom
- Division of Applied Life Science (BK21 Plus Program), Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seungill Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Min-Ki Seo
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Chanseok Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
113
|
Liang W, van Wersch S, Tong M, Li X. TIR-NB-LRR immune receptor SOC3 pairs with truncated TIR-NB protein CHS1 or TN2 to monitor the homeostasis of E3 ligase SAUL1. THE NEW PHYTOLOGIST 2019; 221:2054-2066. [PMID: 30317650 DOI: 10.1111/nph.15534] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/28/2018] [Indexed: 05/22/2023]
Abstract
Intracellular nucleotide binding (NB) and leucine-rich repeat (NLR) proteins function as immune receptors to recognize effectors from pathogens. They often guard host proteins that are the direct targets of those effectors. Recent findings have revealed that a typical NLR sometimes cooperates with another atypical NLR for effector recognition. Here, by using the CRISPR/Cas9 gene editing method, knockout analysis and biochemical assays, we uncovered differential pairings of typical Toll Interleukin1 receptor (TIR) type NLR (TNL) receptor SOC3 with atypical truncated TIR-NB (TN) proteins CHS1 or TN2 to guard the homeostasis of the E3 ligase SAUL1. Overaccumulation of SAUL1 is monitored by the SOC3-TN2 pair, while SAUL1's disappearance is guarded by the SOC3-CHS1 pair. SOC3 forms a head-to-head genomic arrangement with CHS1 and TN2, indicative of transcriptional co-regulation. Such intricate cooperative interactions can probably enlarge the recognition spectrum and increase the functional flexibility of NLRs, which can partly explain the overwhelming occurrence of NLR gene clustering in higher plants.
Collapse
Affiliation(s)
- Wanwan Liang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Solveig van Wersch
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Meixuezi Tong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
114
|
Niu D, Lin XL, Kong X, Qu GP, Cai B, Lee J, Jin JB. SIZ1-Mediated SUMOylation of TPR1 Suppresses Plant Immunity in Arabidopsis. MOLECULAR PLANT 2019; 12:215-228. [PMID: 30543996 DOI: 10.1016/j.molp.2018.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 05/11/2023]
Abstract
Plant immune responses are tightly regulated to ensure their appropriate deployment. Overexpression of TOPLESS-RELATED 1 (TPR1), a SUPPRESSOR OF npr1-1, CONSTITUTIVE 1 (SNC1)-interacting protein, results in autoimmunity that reduces plant growth and development. However, how TPR1 activity is regulated remains unknown. Loss of function of SIZ1, a (SUMO) E3 ligase, induces an autoimmune response, partially due to elevated SNC1 levels. Here we show that SNC1 expression is upregulated in Arabidopsis thaliana siz1-2 due to positive-feedback regulation by salicylic acid. SIZ1 physically interacts with TPR1 and facilitates its SUMO modification. The K282 and K721 residues in TPR1 serve as critical SUMO attachment sites. Simultaneous introduction of K282R and K721R substitutions in TPR1 blocked its SUMOylation, enhanced its transcriptional co-repressor activity, and increased its association with HISTONE DEACETYLASE 19 (HDA19), suggesting that SUMOylation of TPR1 represses its transcriptional co-repressor activity and inhibits its interaction with HDA19. In agreement with this finding, the simultaneous introduction of K282R and K721R substitutions enhanced TPR1-mediated immunity, and the tpr1 mutation partially suppressed autoimmunity in siz1-2. These results demonstrate that SIZ1-mediated SUMOylation of TPR1 represses plant immunity, which at least partly contributes to the suppression of autoimmunity under non-pathogenic conditions to ensure proper plant development.
Collapse
Affiliation(s)
- De Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Li Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiangxiong Kong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gao-Ping Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Cai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jiyoung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, South Korea
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
115
|
Zhu Y, Shao J, Zhou Z, Davis RE. Genotype-specific suppression of multiple defense pathways in apple root during infection by Pythium ultimum. HORTICULTURE RESEARCH 2019; 6:10. [PMID: 30603095 PMCID: PMC6312547 DOI: 10.1038/s41438-018-0087-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 05/21/2023]
Abstract
The genotype-specific defense activation in the roots of perennial tree crops to soilborne necrotrophic pathogens remains largely unknown. A recent phenotyping study indicated that the apple rootstock genotypes B.9 and G.935 have contrasting resistance responses to infection by Pythium ultimum. In the current study, a comparative transcriptome analysis by Illumina Solexa HiSeq 3000 platform was carried out to identify the global transcriptional regulation networks between the susceptible B.9 and the resistant G.935 to P. ultimum infection. Thirty-six libraries were sequenced to cover three timepoints after pathogen inoculation, with three biological replicates for each sample. The transcriptomes in the roots of the susceptible genotype B.9 were reflected by overrepresented differentially expressed genes (DEGs) with downregulated patterns and systematic suppression of cellular processes at 48 h post inoculation (hpi). In contrast, DEGs with annotated functions, such as kinase receptors, MAPK signaling, JA biosynthesis enzymes, transcription factors, and transporters, were readily induced at 24 hpi and continued up-regulation at 48 hpi in G.935 roots. The earlier and stronger defense activation is likely associated with an effective inhibition of necrosis progression in G.935 roots. Lack of effector-triggered immunity or existence of a susceptibility gene could contribute to the severely disturbed transcriptome and susceptibility in B.9 roots. The identified DEGs constitute a valuable resource for hypothesis-driven studies to elucidate the resistance/tolerance mechanisms in apple roots and validating their potential association with resistance traits.
Collapse
Affiliation(s)
- Yanmin Zhu
- USDA-ARS, Tree Fruit Research Laboratory, Wenatchee, WA 98801 USA
| | - Jonathan Shao
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD 20705 USA
| | - Zhe Zhou
- Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng, Liaoning 125100 P. R. China
| | - Robert E. Davis
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD 20705 USA
| |
Collapse
|
116
|
Wang L, Wen R, Wang J, Xiang D, Wang Q, Zang Y, Wang Z, Huang S, Li X, Datla R, Fobert PR, Wang H, Wei Y, Xiao W. Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low-temperature stress. THE NEW PHYTOLOGIST 2019; 221:919-934. [PMID: 30218535 DOI: 10.1111/nph.15435] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/02/2018] [Indexed: 05/17/2023]
Abstract
UBC13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity remain to be defined. Here we used genetic and pathological methods to evaluate roles of Arabidopsis UBC13 in response to pathogens and environmental stresses. Loss of UBC13 failed to activate the expression of numerous cold-responsive genes and resulted in hypersensitivity to low-temperature stress, indicating that UBC13 is involved in plant response to low-temperature stress. Furthermore, the ubc13 mutant displayed low-temperature-induced and salicylic acid-dependent lesion mimic phenotypes. Unlike typical lesion mimic mutants, ubc13 did not enhance disease resistance against virulent bacterial and fungal pathogens, but diminished hypersensitive response and compromised effector-triggered immunity against avirulent bacterial pathogens. UBC13 differently regulates two types of programmed cell death in response to low temperature and pathogen. The lesion mimic phenotype in the ubc13 mutant is partially dependent on SNC1. UBC13 interacts with an F-box protein CPR1 that regulates the homeostasis of SNC1. However, the SNC1 protein level was not altered in the ubc13 mutant, implying that UBC13 is not involved in CPR1-regulated SNC1 protein degradation. Taken together, our results revealed that UBC13 is a key regulator in plant response to low temperature and pathogens.
Collapse
Affiliation(s)
- Lipu Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Rui Wen
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Jinghe Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zheng Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Shuai Huang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Pierre R Fobert
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| |
Collapse
|
117
|
Muchero W, Sondreli KL, Chen JG, Urbanowicz BR, Zhang J, Singan V, Yang Y, Brueggeman RS, Franco-Coronado J, Abraham N, Yang JY, Moremen KW, Weisberg AJ, Chang JH, Lindquist E, Barry K, Ranjan P, Jawdy S, Schmutz J, Tuskan GA, LeBoldus JM. Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant-pathogen interactions in a tree. Proc Natl Acad Sci U S A 2018; 115:11573-11578. [PMID: 30337484 PMCID: PMC6233113 DOI: 10.1073/pnas.1804428115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Invasive microbes causing diseases such as sudden oak death negatively affect ecosystems and economies around the world. The deployment of resistant genotypes for combating introduced diseases typically relies on breeding programs that can take decades to complete. To demonstrate how this process can be accelerated, we employed a genome-wide association mapping of ca 1,000 resequenced Populus trichocarpa trees individually challenged with Sphaerulina musiva, an invasive fungal pathogen. Among significant associations, three loci associated with resistance were identified and predicted to encode one putative membrane-bound L-type receptor-like kinase and two receptor-like proteins. A susceptibility-associated locus was predicted to encode a putative G-type D-mannose-binding receptor-like kinase. Multiple lines of evidence, including allele analysis, transcriptomics, binding assays, and overexpression, support the hypothesized function of these candidate genes in the P. trichocarpa response to S. musiva.
Collapse
Affiliation(s)
- Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Kelsey L Sondreli
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | | | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Vasanth Singan
- Joint Genome Institute, US Department of Energy, Walnut Creek, CA 94598
| | - Yongil Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | | | - Nivi Abraham
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Erika Lindquist
- Joint Genome Institute, US Department of Energy, Walnut Creek, CA 94598
| | - Kerrie Barry
- Joint Genome Institute, US Department of Energy, Walnut Creek, CA 94598
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Jeremy Schmutz
- Joint Genome Institute, US Department of Energy, Walnut Creek, CA 94598
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Joint Genome Institute, US Department of Energy, Walnut Creek, CA 94598
| | - Jared M LeBoldus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331;
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102
- Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
118
|
Richard MMS, Gratias A, Meyers BC, Geffroy V. Molecular mechanisms that limit the costs of NLR-mediated resistance in plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2516-2523. [PMID: 30011120 PMCID: PMC6638094 DOI: 10.1111/mpp.12723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 05/25/2023]
Abstract
Crop diseases cause significant yield losses, and the use of resistant cultivars can effectively mitigate these losses and control many plant diseases. Most plant resistance (R) genes encode immune receptors composed of nucleotide-binding and leucine-rich repeat (NLR) domains. These proteins mediate the specific recognition of pathogen avirulence effectors to induce defence responses. However, NLR-triggered immunity can be associated with a reduction in growth and yield, so-called 'fitness costs'. Recent data have shown that plants use an elaborate interplay of different mechanisms to control NLR gene transcript levels, as well as NLR protein abundance and activity, to avoid the associated cost of resistance in the absence of a pathogen. In this review, we discuss the different levels of NLR regulation (transcriptional, post-transcriptional and at the protein level). We address the apparent need for plants to maintain diverse modes of regulation. A recent model suggesting an equilibrium 'ON/OFF state' of NLR proteins, in the absence of a pathogen, provides the context for our discussion.
Collapse
Affiliation(s)
- Manon M. S. Richard
- Molecular Plant PathologySILS, University of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Ariane Gratias
- Institute of Plant Sciences Paris‐Saclay IPS2, CNRS, INRA, Université Paris‐Saclay, Université Paris‐Sud, Université Evry, Université Paris‐Diderot, Sorbonne Paris‐CitéBâtiment 63091405OrsayFrance
| | - Blake C. Meyers
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
- Division of Plant Sciences52 Agriculture LabUniversity of MissouriColumbiaMO65211USA
| | - Valérie Geffroy
- Institute of Plant Sciences Paris‐Saclay IPS2, CNRS, INRA, Université Paris‐Saclay, Université Paris‐Sud, Université Evry, Université Paris‐Diderot, Sorbonne Paris‐CitéBâtiment 63091405OrsayFrance
| |
Collapse
|
119
|
Sun T, Liang W, Zhang Y, Li X. Negative regulation of resistance protein-mediated immunity by master transcription factors SARD1 and CBP60g. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1023-1027. [PMID: 30007010 DOI: 10.1111/jipb.12698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Salicylic acid (SA) is an essential defence hormone in plants. Upon pathogen infection, induced biosynthesis of SA is mediated by Isochorismate synthase 1 (ICS1), whose gene transcription is controlled mainly through two redundant transcription factors, SAR Deficient 1 (SARD1) and Calmodulin-binding protein 60-like g (CBP60g). Although these master transcription factors regulate not only positive, but also negative regulators of immunity, how they control signaling events downstream of different immune receptors is unclear. Using autoimmune mutants activating immunity mediated by different receptors we show that, although the sard1 cbp60g double mutant almost fully suppresses the activation of defence mediated by suppressor of npr1-1, constitutive 2 (snc2), it strikingly enhances snc1, which carries a gain-of-function mutation in an intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptor. This negative regulation of immunity is achieved through the transcriptional regulation of negative regulators, such as Nudix hydrolase homolog 6 (NUDT6). Our study highlights the diverse roles, especially the negative ones, in the regulation of plant immunity by the two master immune transcription factors SARD1 and CBP60g.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Wanwan Liang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
120
|
Chakraborty J, Ghosh P, Das S. Autoimmunity in plants. PLANTA 2018; 248:751-767. [PMID: 30046903 DOI: 10.1007/s00425-018-2956-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/15/2018] [Indexed: 05/22/2023]
Abstract
Attenuation in the activity of the negative regulators or the hyperactivity of plant innate immune receptors often causes ectopic defense activation manifested in severe growth retardation and spontaneous lesion formations, referred to as autoimmunity. In this review, we have described the cellular and molecular basis of the development of autoimmune responses for their useful applications in plant defense. Plants are exposed to diverse disease-causing pathogens, which bring infections by taking over the control on host immune machineries. To counter the challenges of evolving pathogenic races, plants recruit specific types of intracellular immune receptors that mostly belong to the family of polymorphic nucleotide-binding oligomerization domain-containing leucine-rich repeat (NLR) proteins. Upon recognition of effector molecules, NLR triggers hyperimmune signaling, which culminates in the form of a typical programmed cell death, designated hypersensitive response. Besides, few plant NLRs also guard certain host proteins known as 'guardee' that are modified by effector proteins. However, this fine-tuned innate immune system can be lopsided upon knock-out of the alleles that correspond to the host guardees, which mimick the presence of pathogen. The absence of pathogens causes inappropriate activation of the respective NLRs and results in the constitutive activation of plant defense and exhibiting autoimmunity. In plants, autoimmune mutants are readily scorable due to their dwarf phenotype and development of characteristic macroscopic disease lesions. Here, we summarize recent reports on autoimmune response in plants, how it is triggered, and phenotypic consequences associated with this phenomenon.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Prithwi Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
121
|
Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R, Unger F, Beha MJ, Demar M, Weigel D. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genet 2018; 14:e1007628. [PMID: 30235212 PMCID: PMC6168153 DOI: 10.1371/journal.pgen.1007628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/02/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system. Plants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rafal M. Gutaker
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Frederik Unger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcel Janis Beha
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
122
|
Dong OX, Ao K, Xu F, Johnson KCM, Wu Y, Li L, Xia S, Liu Y, Huang Y, Rodriguez E, Chen X, Chen S, Zhang Y, Petersen M, Li X. Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. NATURE PLANTS 2018; 4:699-710. [PMID: 30082764 DOI: 10.1038/s41477-018-0216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/06/2018] [Indexed: 05/25/2023]
Abstract
In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins serve as intracellular immune receptors. Defence signalling by NLRs often requires the formation of NLR heteropairs. Our knowledge of the molecular mechanism regulating this process is limited. In a reverse genetic screen to identify the partner of the Arabidopsis typical NLR, SUPRESSOR OF NPR1, CONSTITUTIVE 1 (SNC1), we discovered three NLRs that are redundantly required for SNC1-mediated defence, which were named SIDEKICK SNC1 1 (SIKIC1), SIKIC2 and SIKIC3. Immunoprecipitation-mass spectrometry analyses revealed that SIKIC2 physically associates with SNC1. We also uncovered that the protein level of SIKIC2 is under the control of two previously uncharacterized redundant E3 ubiquitin ligases MUSE1 and MUSE2. As SNC1 accumulation has previously been shown to be regulated by the E3 ubiquitin ligase SCFCPR1, this report provides evidence that the homeostasis of individual components of partnered typical NLRs is subjected to differential regulation via ubiquitin-mediated protein degradation.
Collapse
Affiliation(s)
- Oliver Xiaoou Dong
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Kaeli C M Johnson
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuxiang Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- College of Agriculture, Shanxi Agriculture University, Jinzhong, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Shitou Xia
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Yanan Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yan Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Eleazar Rodriguez
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xuejin Chen
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - She Chen
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
123
|
Joglekar S, Suliman M, Bartsch M, Halder V, Maintz J, Bautor J, Zeier J, Parker JE, Kombrink E. Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:1592-1607. [PMID: 29931201 DOI: 10.1093/pcp/pcy106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Indexed: 05/20/2023]
Abstract
In a chemical screen we identified thaxtomin A (TXA), a phytotoxin from plant pathogenic Streptomyces scabies, as a selective and potent activator of FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) expression in Arabidopsis (Arabidopsis thaliana). TXA induction of FMO1 was unrelated to the production of reactive oxygen species (ROS), plant cell death or its known inhibition of cellulose synthesis. TXA-stimulated FMO1 expression was strictly dependent on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) but independent of salicylic acid (SA) synthesis via ISOCHORISMATE SYNTHASE1 (ICS1). TXA induced the expression of several EDS1/PAD4-regulated genes, including EDS1, PAD4, SENESCENCE ASSOCIATED GENE101 (SAG101), ICS1, AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and PATHOGENESIS-RELATED PROTEIN1 (PR1), and accumulation of SA. Notably, enhanced ALD1 expression did not result in accumulation of the product pipecolic acid (PIP), which promotes FMO1 expression during biologically induced systemic acquired resistance. TXA treatment preferentially stimulated expression of PAD4 compared with EDS1, which was mirrored by PAD4 protein accumulation, suggesting that TXA leads to increased PAD4 availability to form EDS1-PAD4 signaling complexes. Also, TXA treatment of Arabidopsis plants led to enhanced disease resistance to bacterial and oomycete infection, which was dependent on EDS1 and PAD4, as well as on FMO1 and ICS1. Collectively, the data identify TXA as a potentially useful chemical tool to conditionally activate and interrogate EDS1- and PAD4-controlled pathways in plant immunity.
Collapse
Affiliation(s)
- Shachi Joglekar
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Mohamed Suliman
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Michael Bartsch
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Vivek Halder
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jens Maintz
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
124
|
Huang J, Zhu C, Li X. SCF SNIPER4 controls the turnover of two redundant TRAF proteins in plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:504-515. [PMID: 29770510 DOI: 10.1111/tpj.13965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
In mammals, tumor necrosis factor receptor associated factors (TRAFs) are signaling adaptors that regulate diverse physiological processes, including immunity and stress responses. In Arabidopsis, MUSE13 and MUSE14 are redundant TRAF proteins serving as adaptors in the SCFCRP1 complex to facilitate the turnover of nucleotide-binding domain and leucine-rich repeats (NLR) immune receptors. Degradation of MUSE13 is inhibited by proteasome inhibitor, suggesting that the MUSE13 stability is controlled by the 26S proteasome. However, the E3 ligase that regulates MUSE13 level is unknown. Here we report the identification of an F-box protein, SNIPER4 that regulates the turnover of MUSE13 and MUSE14. Protein levels of MUSE13 and MUSE14 are reduced by SNIPER4 overexpression, while higher accumulation of MUSE13 and MUSE14 is observed when dominant-negative SNIPER4 is expressed. Furthermore, SNIPER4 associates with MUSE13 or MUSE14. Taken together, the SCFSNIPER4 complex controls the turnover of TRAF proteins for an optimum immune output.
Collapse
Affiliation(s)
- Jianhua Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Chipan Zhu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
125
|
Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM. Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. Int J Mol Sci 2018; 19:E1662. [PMID: 29867062 PMCID: PMC6032283 DOI: 10.3390/ijms19061662] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Cristina Crosatti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Vania Michelotti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Anna M Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy.
| |
Collapse
|
126
|
Karapetyan S, Dong X. Redox and the circadian clock in plant immunity: A balancing act. Free Radic Biol Med 2018; 119:56-61. [PMID: 29274381 PMCID: PMC5986284 DOI: 10.1016/j.freeradbiomed.2017.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
Abstract
Plants' reliance on sunlight for energy makes their light-driven circadian clock a critical regulator in balancing the energy needs for vital activities such as growth and defense. Recent studies show that the circadian clock acts as a strategic planner to prime active defense responses towards the morning or daytime when conditions, such as the opening of stomata required for photosynthesis, are favorable for attackers. Execution of the defense response, on the other hand, is determined according to the cellular redox state and is regulated in part by the production of reactive oxygen and nitrogen species upon pathogen challenge. The interplay between redox and the circadian clock further gates the onset of defense response to a specific time of the day to avoid conflict with growth-related activities. In this review, we focus on discussing the roles of the circadian clock as a robust overseer and the cellular redox as a dynamic executor of plant defense.
Collapse
Affiliation(s)
- Sargis Karapetyan
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA.
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA
| |
Collapse
|
127
|
Peng Y, van Wersch R, Zhang Y. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:403-409. [PMID: 29135338 DOI: 10.1094/mpmi-06-17-0145-cr] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants use diverse immune receptors to sense pathogen attacks. Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors localized on the plasma membrane leads to PAMP-triggered immunity (PTI). Detection of pathogen effectors by intracellular or plasma membrane-localized immune receptors results in effector-triggered immunity (ETI). Despite the large variations in the magnitude and duration of immune responses triggered by different PAMPs or pathogen effectors during PTI and ETI, plasma membrane-localized immune receptors activate similar downstream molecular events such as mitogen-activated protein kinase activation, oxidative burst, ion influx, and increased biosynthesis of plant defense hormones, indicating that defense signals initiated at the plasma membrane converge at later points. On the other hand, activation of ETI by immune receptors localized to the nucleus appears to be more directly associated with transcriptional regulation of defense gene expression. Here, we review recent progress in signal transductions downstream of different groups of plant immune receptors, highlighting the converging and diverging molecular events.
Collapse
Affiliation(s)
- Yujun Peng
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rowan van Wersch
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
128
|
Zhang J, Yin K, Sun J, Gao J, Du Q, Li H, Qiu J. Direct and tunable modulation of protein levels in rice and wheat with a synthetic small molecule. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:472-481. [PMID: 28682500 PMCID: PMC5787845 DOI: 10.1111/pbi.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Direct control of protein level enables rapid and efficient analyses of gene functions in crops. Previously, we developed the RDDK-Shield1 (Shld1) system in the model plant Arabidopsis thaliana for direct modulation of protein stabilization using a synthetic small molecule. However, it was unclear whether this system is applicable to economically important crops. In this study, we show that the RDDK-Shld1 system enables rapid and tunable control of protein levels in rice and wheat. Accumulation of RDDK fusion proteins can be reversibly and spatio-temporally controlled by the synthetic small-molecule Shld1. Moreover, RDDK-Bar and RDDK-Pid3 fusions confer herbicide and rice blast resistance, respectively, in a Shld1-dependent manner. Therefore, the RDDK-Shld1 system provides a reversible and tunable technique for controlling protein functions and conditional expression of transgenes in crops.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kangquan Yin
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Juan Sun
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jinlan Gao
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Qiuli Du
- Department of Life Science and EngineeringJining UniversityQufuChina
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Huali Li
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jin‐Long Qiu
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
129
|
Hammoudi V, Fokkens L, Beerens B, Vlachakis G, Chatterjee S, Arroyo-Mateos M, Wackers PFK, Jonker MJ, van den Burg HA. The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth. PLoS Genet 2018; 14:e1007157. [PMID: 29357355 PMCID: PMC5794169 DOI: 10.1371/journal.pgen.1007157] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/01/2018] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
Increased ambient temperature is inhibitory to plant immunity including auto-immunity. SNC1-dependent auto-immunity is, for example, fully suppressed at 28°C. We found that the Arabidopsis sumoylation mutant siz1 displays SNC1-dependent auto-immunity at 22°C but also at 28°C, which was EDS1 dependent at both temperatures. This siz1 auto-immune phenotype provided enhanced resistance to Pseudomonas at both temperatures. Moreover, the rosette size of siz1 recovered only weakly at 28°C, while this temperature fully rescues the growth defects of other SNC1-dependent auto-immune mutants. This thermo-insensitivity of siz1 correlated with a compromised thermosensory growth response, which was independent of the immune regulators PAD4 or SNC1. Our data reveal that this high temperature induced growth response strongly depends on COP1, while SIZ1 controls the amplitude of this growth response. This latter notion is supported by transcriptomics data, i.e. SIZ1 controls the amplitude and timing of high temperature transcriptional changes including a subset of the PIF4/BZR1 gene targets. Combined our data signify that SIZ1 suppresses an SNC1-dependent resistance response at both normal and high temperatures. At the same time, SIZ1 amplifies the dark and high temperature growth response, likely via COP1 and upstream of gene regulation by PIF4 and BRZ1.
Collapse
Affiliation(s)
- Valentin Hammoudi
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas Beerens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Georgios Vlachakis
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Paul F K Wackers
- RNA Biology and Applied Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology and Applied Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
130
|
Functional Analogues of Salicylic Acid and Their Use in Crop Protection. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8010005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
131
|
microRNA-mediated R gene regulation: molecular scabbards for double-edged swords. SCIENCE CHINA-LIFE SCIENCES 2018; 61:138-147. [DOI: 10.1007/s11427-017-9237-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/04/2017] [Indexed: 11/27/2022]
|
132
|
Ramirez-Prado JS, Piquerez SJM, Bendahmane A, Hirt H, Raynaud C, Benhamed M. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:355. [PMID: 29616066 PMCID: PMC5868138 DOI: 10.3389/fpls.2018.00355] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/02/2018] [Indexed: 05/02/2023]
Abstract
Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.
Collapse
Affiliation(s)
- Juan S. Ramirez-Prado
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Sophie J. M. Piquerez
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Abdelhafid Bendahmane
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Heribert Hirt
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Cécile Raynaud
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Moussa Benhamed
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
- *Correspondence: Moussa Benhamed,
| |
Collapse
|
133
|
Zou B, Sun Q, Zhang W, Ding Y, Yang DL, Shi Z, Hua J. The Arabidopsis Chromatin-Remodeling Factor CHR5 Regulates Plant Immune Responses and Nucleosome Occupancy. PLANT & CELL PHYSIOLOGY 2017; 58:2202-2216. [PMID: 29048607 DOI: 10.1093/pcp/pcx155] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/03/2017] [Indexed: 05/17/2023]
Abstract
ATP-dependent chromatin-remodeling factors use the energy of ATP hydrolysis to alter the structure of chromatin and are important regulators of eukaryotic gene expression. One such factor encoded by CHR5 (Chromatin-Remodeling Factor 5) in Arabidopsis (Arabidopsis thaliana) was previously found to be involved in regulation of growth and development. Here we show that CHR5 is required for the up-regulation of the intracellular immune receptor gene SNC1 (SUPPRESSOR OF npr1-1, CONSTITUTIVE1) and consequently the autoimmunity induced by SNC1 up-regulation. CHR5 functions antagonistically with another chromatin-remodeling gene DDM1 (DECREASED DNA METHYLATION 1) and independently with a histone mono-ubiquitinase HUB1 (HISTONE MONOUBIQUITINATION 1) in SNC1 regulation. In addition, CHR5 is a positive regulator of SNC1-independent plant immunity against the bacterial pathogen Pseudomonas syringae. Furthermore, the chr5 mutant has increased nucleosome occupancy in the promoter region relative to the gene body region at the whole-genome level, suggesting a global role for CHR5 in remodeling nucleosome occupancy. Our study thus establishes CHR5 as a positive regulator of plant immune responses including the expression of SNC1 and reveals a role for CHR5 in nucleosome occupancy which probably impacts gene expression genome wide.
Collapse
Affiliation(s)
- Baohong Zou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Qi Sun
- Cornell Biocomputing Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China
| | - Yuan Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Zhenying Shi
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Shanghai Institute of Plant Physiology and Ecology, Shanghai, 20032, China
| | - Jian Hua
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
134
|
Roth C, Lüdke D, Klenke M, Quathamer A, Valerius O, Braus GH, Wiermer M. The truncated NLR protein TIR-NBS13 is a MOS6/IMPORTIN-α3 interaction partner required for plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:808-821. [PMID: 28901644 DOI: 10.1111/tpj.13717] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 05/28/2023]
Abstract
Importin-α proteins mediate the translocation of nuclear localization signal (NLS)-containing proteins from the cytoplasm into the nucleus through nuclear pore complexes (NPCs). Genetically, Arabidopsis IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is required for basal plant immunity and constitutive disease resistance activated in autoimmune mutant snc1 (suppressor of npr1-1, constitutive 1), suggesting that MOS6 plays a role in the nuclear import of proteins involved in plant defense signaling. Here, we sought to identify and characterize defense-regulatory cargo proteins and interaction partners of MOS6. We conducted both in silico database analyses and affinity purification of functional epitope-tagged MOS6 from pathogen-challenged stable transgenic plants coupled with mass spectrometry. We show that among the 13 candidate MOS6 interactors we selected for further functional characterization, the TIR-NBS-type protein TN13 is required for resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the type-III effector proteins AvrPto and AvrPtoB. When expressed transiently in N. benthamiana leaves, TN13 co-immunoprecipitates with MOS6, but not with its closest homolog IMPORTIN-α6, and localizes to the endoplasmic reticulum (ER), consistent with a predicted N-terminal transmembrane domain in TN13. Our work uncovered the truncated NLR protein TN13 as a component of plant innate immunity that selectively binds to MOS6/IMPORTIN-α3 in planta. We speculate that the release of TN13 from the ER membrane in response to pathogen stimulus, and its subsequent nuclear translocation, is important for plant defense signal transduction.
Collapse
Affiliation(s)
- Charlotte Roth
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Daniel Lüdke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Melanie Klenke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Annalena Quathamer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Marcel Wiermer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| |
Collapse
|
135
|
Tran PT, Widyasari K, Park JY, Kim KH. Engineering an auto-activated R protein that is in vivo activated by a viral protease. Virology 2017; 510:242-247. [PMID: 28753465 DOI: 10.1016/j.virol.2017.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 01/09/2023]
Abstract
Autonomous hypersensitive responses (self-HRs) are caused by constitutively active R proteins. In this study, we identified an auto-activated form of the R gene Pvr9 (autoPvr9); the auto-activation results from an amino acid substitution between its NBS and LRR domains. Self-HR was strongly reduced or completely inhibited by fusion of an extra peptide to the autoPvr9 N-terminal or C-terminal, respectively. When an NIa recognition site was placed between autoPvr9 and the extra peptide, the fusion construct could trigger an NIa-dependent HR. Several C-terminal fusions were tested, but only those that maintained detectable protein expression were capable of an NIa-dependent HR. Our results suggest the potential for transforming malfunctioning and auto-activated R proteins into a new construct targeting potyviral NIa proteases.
Collapse
Affiliation(s)
- Phu-Tri Tran
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kristin Widyasari
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee Yoon Park
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
136
|
Tong M, Kotur T, Liang W, Vogelmann K, Kleine T, Leister D, Brieske C, Yang S, Lüdke D, Wiermer M, Zhang Y, Li X, Hoth S. E3 ligase SAUL1 serves as a positive regulator of PAMP-triggered immunity and its homeostasis is monitored by immune receptor SOC3. THE NEW PHYTOLOGIST 2017; 215:1516-1532. [PMID: 28691210 DOI: 10.1111/nph.14678] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/26/2017] [Indexed: 05/08/2023]
Abstract
In both plants and animals, intracellular nucleotide-binding leucine-rich repeat proteins (NLRs; or Nod-like receptors) serve as immune receptors to recognize pathogen-derived molecules and mount effective immune responses against microbial infections. Plant NLRs often guard the presence or activity of other host proteins, which are the direct virulence targets of pathogen effectors. These guardees are sometimes immune-promoting components such as those in a mitogen-activated protein kinase cascade. Plant E3 ligases serve many roles in immune regulation, but it is unclear whether they can also be guarded by NLRs. Here, we report on an immune-regulating E3 ligase SAUL1, whose homeostasis is monitored by a Toll interleukin 1 receptor (TIR)-type NLR (TNL), SOC3. SOC3 can associate with SAUL1, and either loss or overexpression of SAUL1 triggers autoimmunity mediated by SOC3. By contrast, SAUL1 functions redundantly with its close homolog PUB43 to promote PAMP-triggered immunity (PTI). Taken together, the E3 ligase SAUL1 serves as a positive regulator of PTI and its homeostasis is monitored by the TNL SOC3.
Collapse
Affiliation(s)
- Meixuezi Tong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tanja Kotur
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, 22609, Hamburg, Germany
| | - Wanwan Liang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Katja Vogelmann
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, 22609, Hamburg, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Catharina Brieske
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, 22609, Hamburg, Germany
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Daniel Lüdke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Marcel Wiermer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, 22609, Hamburg, Germany
| |
Collapse
|
137
|
Gupta A, Senthil-Kumar M. Transcriptome changes in Arabidopsis thaliana infected with Pseudomonas syringae during drought recovery. Sci Rep 2017; 7:9124. [PMID: 28831155 PMCID: PMC5567376 DOI: 10.1038/s41598-017-09135-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/24/2017] [Indexed: 11/24/2022] Open
Abstract
Field-grown plants experience cycles of drought stress and recovery due to variation in soil moisture status. Physiological, biochemical and transcriptome responses instigated by recovery are expected to be different from drought stress and non-stressed state. Such responses can further aid or antagonize the plant's interaction with the pathogen. However, at molecular level, not much is known about plant-pathogen interaction during drought recovery. In the present study, we performed a microarray-based global transcriptome profiling and demonstrated the existence of unique transcriptional changes in Arabidopsis thaliana inoculated with Pseudomonas syringae pv. tomato DC3000 at the time of drought recovery (drought recovery pathogen, DRP) when compared to the individual drought (D) or pathogen (P) or drought recovery (DR). Furthermore, the comparison of DRP with D or DR and P transcriptome revealed the presence of a few common genes among three treatments. Notably, a gene encoding proline dehydrogenase (AtProDH1) was found to be commonly up-regulated under drought recovery (DR), DRP and P stresses. We also report an up-regulation of pyrroline-5-carboxylate biosynthesis pathway during recovery. We propose that AtProDH1 influences the defense pathways during DRP. Altogether, this study provides insight into the understanding of defense responses that operate in pathogen-infected plants during drought recovery.
Collapse
Affiliation(s)
- Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
138
|
Wang Z, Cui D, Liu J, Zhao J, Liu C, Xin W, Li Y, Liu N, Ren D, Tang D, Hu Y. Arabidopsis ZED1-related kinases mediate the temperature-sensitive intersection of immune response and growth homeostasis. THE NEW PHYTOLOGIST 2017; 215:711-724. [PMID: 28499073 DOI: 10.1111/nph.14585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/23/2017] [Indexed: 05/09/2023]
Abstract
Activation of the immune response in plants antagonizes growth and development in the absence of pathogens, and such an autoimmune phenotype is often suppressed by the elevation of ambient temperature. However, molecular regulation of the ambient temperature-sensitive intersection of immune response and growth is largely elusive. A genetic screen identified an Arabidopsis mutant, zed1-D, by its high temperature-dependent growth retardation. A combination of molecular, cytological and genetic approaches was used to investigate the molecular basis behind the temperature-sensitive growth and immune response in zed1-D. A dominant mutation in HOPZ-ETI-DEFICIENT 1 (ZED1) is responsible for a high temperature-dependent autoimmunity and growth retardation in zed1-D. The autoimmune phenotype in zed1-D is dependent on the HOPZ-ACTIVATED RESISTANCE 1 (ZAR1). ZED1 and some ZED1-related kinases (ZRKs) are induced by elevated temperature and function cooperatively to suppress the immune response by modulating the transcription of SUPPRESSOR OF NPR1-1 CONSTITUTIVE 1 (SNC1) in the absence of pathogens. Our data reveal a previously unidentified role of ZRKs in the ambient temperature-sensitive immune response in the absence of pathogens, and thus reveals a possible molecular mechanism underlying the temperature-mediated intersection of immune response and growth in plants.
Collapse
Affiliation(s)
- Zhicai Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dayong Cui
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Jing Liu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingbo Zhao
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cheng Liu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Xin
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agriculture University, Beijing, 100193, China
| | - Na Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agriculture University, Beijing, 100193, China
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- National Center for Plant Gene Research, Beijing, 100093, China
| |
Collapse
|
139
|
Ariga H, Katori T, Tsuchimatsu T, Hirase T, Tajima Y, Parker JE, Alcázar R, Koornneef M, Hoekenga O, Lipka AE, Gore MA, Sakakibara H, Kojima M, Kobayashi Y, Iuchi S, Kobayashi M, Shinozaki K, Sakata Y, Hayashi T, Saijo Y, Taji T. NLR locus-mediated trade-off between abiotic and biotic stress adaptation in Arabidopsis. NATURE PLANTS 2017; 3:17072. [PMID: 28548656 DOI: 10.1038/nplants.2017.72] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/24/2017] [Indexed: 05/23/2023]
Abstract
Osmotic stress caused by drought, salt or cold decreases plant fitness. Acquired stress tolerance defines the ability of plants to withstand stress following an initial exposure1. We found previously that acquired osmotolerance after salt stress is widespread among Arabidopsis thaliana accessions2. Here, we identify ACQOS as the locus responsible for ACQUIRED OSMOTOLERANCE. Of its five haplotypes, only plants carrying group 1 ACQOS are impaired in acquired osmotolerance. ACQOS is identical to VICTR, encoding a nucleotide-binding leucine-rich repeat (NLR) protein3. In the absence of osmotic stress, group 1 ACQOS contributes to bacterial resistance. In its presence, ACQOS causes detrimental autoimmunity, thereby reducing osmotolerance. Analysis of natural variation at the ACQOS locus suggests that functional and non-functional ACQOS alleles are being maintained due to a trade-off between biotic and abiotic stress adaptation. Thus, polymorphism in certain plant NLR genes might be influenced by competing environmental stresses.
Collapse
Affiliation(s)
- Hirotaka Ariga
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Taku Katori
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | - Taishi Hirase
- Graduate School of Biological Sciences, Nara Institute for Science and Technology, Ikoma 630-0192, Japan
| | - Yuri Tajima
- Graduate School of Biological Sciences, Nara Institute for Science and Technology, Ikoma 630-0192, Japan
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Rubén Alcázar
- Department of Plant Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Maarten Koornneef
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research D-50829 Cologne, Germany
| | - Owen Hoekenga
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, 14853 New York, USA
| | - Alexander E Lipka
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, 14853 New York, USA
| | - Michael A Gore
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Maricopa, Arizona 85138, USA
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Centre for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Mikiko Kojima
- Plant Productivity Systems Research Group, RIKEN Centre for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | | | | | | | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Takahisa Hayashi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute for Science and Technology, Ikoma 630-0192, Japan
- JST PRESTO, Ikoma 630-0192, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
140
|
Genenncher B, Lipka V, Petutschnig EK, Wiermer M. Nucleoporin NUP88/MOS7 is required for manifestation of phenotypes associated with the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 mutant cerk1-4. PLANT SIGNALING & BEHAVIOR 2017; 12:e1313378. [PMID: 28387602 PMCID: PMC5501227 DOI: 10.1080/15592324.2017.1313378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Arabidopsis nucleoporin MOS7/NUP88 was identified in a forward-genetic screen for components that contribute to auto-immunity of the deregulated Resistance (R) gene mutant snc1, and is required for immunity to biotrophic and hemi-biotrophic pathogens. In a recent study, we showed that MOS7 is also essential to mount a full defense response against the necrotrophic fungal pathogen Botrytis cinerea, suggesting that MOS7 modulates plant defense responses to different types of pathogenic microbes. Here, we extend our analyses of MOS7-dependent plant immune responses and report the genetic requirement of MOS7 for manifestation of phenotypes associated with the CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) mutant cerk1-4.
Collapse
Affiliation(s)
- Bianca Genenncher
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Elena K. Petutschnig
- Department of Plant Cell Biology, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Marcel Wiermer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
141
|
Yang Y, Wang W, Chu Z, Zhu JK, Zhang H. Roles of Nuclear Pores and Nucleo-cytoplasmic Trafficking in Plant Stress Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:574. [PMID: 28446921 PMCID: PMC5388774 DOI: 10.3389/fpls.2017.00574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/30/2017] [Indexed: 05/29/2023]
Abstract
The nuclear pore complex (NPC) is a large protein complex that controls the exchange of components between the nucleus and the cytoplasm. In plants, the NPC family components play critical roles not only in essential growth and developmental processes, but also in plant responses to various environmental stress conditions. The involvement of NPC components in plant stress responses is mainly attributed to different mechanisms including control of mRNA/protein nucleo-cytoplasmic trafficking and transcriptional gene regulation. This mini review summarizes current knowledge of the NPC-mediated plant stress responses and provides an overview of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yu Yang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Wei Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical GardenShanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of SciencesShanghai, China
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical GardenShanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of SciencesShanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West LafayetteIN, USA
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
142
|
Lolle S, Greeff C, Petersen K, Roux M, Jensen MK, Bressendorff S, Rodriguez E, Sømark K, Mundy J, Petersen M. Matching NLR Immune Receptors to Autoimmunity in camta3 Mutants Using Antimorphic NLR Alleles. Cell Host Microbe 2017; 21:518-529.e4. [DOI: 10.1016/j.chom.2017.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/16/2016] [Accepted: 03/09/2017] [Indexed: 11/29/2022]
|
143
|
Gou M, Huang Q, Qian W, Zhang Z, Jia Z, Hua J. Sumoylation E3 Ligase SIZ1 Modulates Plant Immunity Partly through the Immune Receptor Gene SNC1 in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:334-342. [PMID: 28409535 DOI: 10.1094/mpmi-02-17-0041-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The small ubiqutin-like modifier E3 ligase SIZ1 regulates multiple processes in Arabidopsis, including salicylic-acid-dependent immune responses. However, the targets of SIZ1 in plant immunity are not known. Here, we provide evidence that the plant immune receptor nucleotide-binding leucine-rich repeat gene SNC1 partially mediates the regulation of plant immunity by SIZ1. The siz1 loss-of-function mutant has an autoimmune phenotype that is dependent on SNC1 and temperature. Overexpression of SIZ1 partially rescues autoimmune mutant phenotypes induced by activation or overaccumulation of SNC1, and the SNC1 protein amount is attenuated by SIZ1 overexpression. In addition, overexpression of the F-box protein CPR1 that degrades the SNC1 protein inhibits the growth defects and disease resistance of the siz1 mutant. Furthermore, we found that the SNC1 protein is sumoylated in planta. Although it remains to be determined whether SIZ1 primarily modulates the SNC1 protein via sumoylation or affects SNC1 transcript level, our data indicate that SNC1 is a major mediator of defense response modulated by SIZ1 and that SNC1 is a crucial target for fine-tuning plant defense responses.
Collapse
Affiliation(s)
- Mingyue Gou
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Quansheng Huang
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 2 Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumuqi 830091, China
| | - Weiqiang Qian
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Zemin Zhang
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 3 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; and
| | - Zhenhua Jia
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 4 Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei, 050081, China
| | - Jian Hua
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
144
|
Wu Z, Huang S, Zhang X, Wu D, Xia S, Li X. Regulation of plant immune receptor accumulation through translational repression by a glycine-tyrosine-phenylalanine (GYF) domain protein. eLife 2017; 6:e23684. [PMID: 28362261 PMCID: PMC5403212 DOI: 10.7554/elife.23684] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/14/2017] [Indexed: 01/12/2023] Open
Abstract
Plant immunity is tightly regulated to ensure proper defense against surrounding microbial pathogens without triggering autoimmunity, which negatively impacts plant growth and development. Immune receptor levels are intricately controlled by RNA processing and post-translational modification events, such as ubiquitination. It remains unknown whether, and if yes, how, plant immune receptor homeostasis is regulated at the translational level. From a mutant, snc1-enhancing (muse) forward genetic screen, we identified MUSE11/EXA1, which negatively regulates nucleotide-binding leucine-rich repeat (NLR) receptor mediated defence. EXA1 contains an evolutionarily conserved glycine-tyrosine-phenylalanine (GYF) domain that binds proline-rich sequences. Genetic and biochemical analysis revealed that loss of EXA1 leads to heightened NLR accumulation and enhanced resistance against virulent pathogens. EXA1 also associates with eIF4E initiation factors and the ribosome complex, likely contributing to the proper translation of target proteins. In summary, our study reveals a previously unknown mechanism of regulating NLR homeostasis through translational repression by a GYF protein.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Xiaobo Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, China
| | - Di Wu
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
145
|
The Role of Specialized Photoreceptors in the Protection of Energy‐Rich Tissues. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
146
|
Zhang X, Bernoux M, Bentham AR, Newman TE, Ve T, Casey LW, Raaymakers TM, Hu J, Croll TI, Schreiber KJ, Staskawicz BJ, Anderson PA, Sohn KH, Williams SJ, Dodds PN, Kobe B. Multiple functional self-association interfaces in plant TIR domains. Proc Natl Acad Sci U S A 2017; 114:E2046-E2052. [PMID: 28159890 PMCID: PMC5347627 DOI: 10.1073/pnas.1621248114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIR-domain dimerization interfaces required for signaling of the plant nucleotide-binding oligomerization domain-like receptors (NLRs) L6 from flax and disease resistance protein RPS4 from Arabidopsis Here we show that the crystal structure of the TIR domain from the Arabidopsis NLR suppressor of npr1-1, constitutive 1 (SNC1) contains both an L6-like interface involving helices αD and αE (DE interface) and an RPS4-like interface involving helices αA and αE (AE interface). Mutations in either the AE- or DE-interface region disrupt cell-death signaling activity of SNC1, L6, and RPS4 TIR domains and full-length L6 and RPS4. Self-association of L6 and RPS4 TIR domains is affected by mutations in either region, whereas only AE-interface mutations affect SNC1 TIR-domain self-association. We further show two similar interfaces in the crystal structure of the TIR domain from the Arabidopsis NLR recognition of Peronospora parasitica 1 (RPP1). These data demonstrate that both the AE and DE self-association interfaces are simultaneously required for self-association and cell-death signaling in diverse plant NLRs.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Maud Bernoux
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia;
| | - Adam R Bentham
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Toby E Newman
- Department of Life Sciences, and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Lachlan W Casey
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Tom M Raaymakers
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
- Department of Biology, Plant-Microbe Interactions, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jian Hu
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
- College of Biological Sciences, China Agricultural University, Beijing 100094, People's Republic of China
| | - Tristan I Croll
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Karl J Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
| | - Peter A Anderson
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Kee Hoon Sohn
- Department of Life Sciences, and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Simon J Williams
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia;
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, ACT 0200, Australia
| | - Peter N Dodds
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia;
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
147
|
Johnson KCM, Zhao J, Wu Z, Roth C, Lipka V, Wiermer M, Li X. The putative kinase substrate MUSE7 negatively impacts the accumulation of NLR proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1174-1183. [PMID: 28004865 DOI: 10.1111/tpj.13454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Stringent modulation of immune signaling in plants is necessary to enable a rapid response to pathogen attack without spurious defense activation. To identify genes involved in plant immunity, a forward genetic screen for enhancers of the autoimmune snc1 (suppressor of npr1, constitutive 1) mutant was conducted. The snc1 mutant contains a gain-of-function mutation in a gene encoding a NOD-like receptor (NLR) protein. The isolated muse7 (mutant, snc1-enhancing, 7) mutant was shown to confer a reversion to autoimmune phenotypes in the wild-type-like mos4 (modifier of snc1, 4) snc1 background. Positional cloning revealed that MUSE7 encodes an evolutionarily conserved putative kinase substrate of unknown function. The muse7 single mutants display enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. While transcription of SNC1 is not enhanced, elevated SNC1 protein accumulation is associated with mutations in muse7. Accumulation of two additional NLR proteins, RPS2 (RESISTANCE TO PSEUDOMONAS SYRINGAE 2) and RPM1 (RESISTANCE TO PSEUDOMONAS SYRINGAE pv. MACULICOLA 1), was also observed in muse7 plants. Although proteasome-mediated degradation of NLR proteins is a well studied event in plant immunity, no interactions were detected between MUSE7 and selected components of this pathway. This study has demonstrated a role for MUSE7 in modulating plant immune responses through negatively affecting NLR accumulation, and will benefit future studies of MUSE7 homologs in other species.
Collapse
Affiliation(s)
- Kaeli C M Johnson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jin Zhao
- College of Life Science, Agricultural University of Hebei, 071000 Baoding, China
| | - Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Charlotte Roth
- Department of Plant Cell Biology, Georg-August-University, 37077, Goettingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Georg-August-University, 37077, Goettingen, Germany
| | - Marcel Wiermer
- Department of Plant Cell Biology, Georg-August-University, 37077, Goettingen, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
148
|
Cui H, Gobbato E, Kracher B, Qiu J, Bautor J, Parker JE. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. THE NEW PHYTOLOGIST 2017; 213:1802-1817. [PMID: 27861989 DOI: 10.1111/nph.14302] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/23/2016] [Indexed: 05/19/2023]
Abstract
Plant defenses induced by salicylic acid (SA) are vital for resistance against biotrophic pathogens. In basal and receptor-triggered immunity, SA accumulation is promoted by Enhanced Disease Susceptibility1 with its co-regulator Phytoalexin Deficient4 (EDS1/PAD4). Current models position EDS1/PAD4 upstream of SA but their functional relationship remains unclear. In a genetic and transcriptomic analysis of Arabidopsis autoimmunity caused by constitutive or conditional EDS1/PAD4 overexpression, intrinsic EDS1/PAD4 signaling properties and their relation to SA were uncovered. A core EDS1/PAD4 pathway works in parallel with SA in basal and effector-triggered bacterial immunity. It protects against disabled SA-regulated gene expression and pathogen resistance, and is distinct from a known SA-compensatory route involving MAPK signaling. Results help to explain previously identified EDS1/PAD4 regulated SA-dependent and SA-independent gene expression sectors. Plants have evolved an alternative route for preserving SA-regulated defenses against pathogen or genetic perturbations. In a proposed signaling framework, EDS1 with PAD4, besides promoting SA biosynthesis, maintains important SA-related resistance programs, thereby increasing robustness of the innate immune system.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Enrico Gobbato
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Barbara Kracher
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Jingde Qiu
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| |
Collapse
|
149
|
Transcriptome analysis reveals a complex interplay between resistance and effector genes during the compatible lentil-Colletotrichum lentis interaction. Sci Rep 2017; 7:42338. [PMID: 28186158 PMCID: PMC5301223 DOI: 10.1038/srep42338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022] Open
Abstract
Colletotrichum lentis is a hemibiotrophic pathogen and causes anthracnose on lentil. To understand the molecular mechanism underlying the symptomatic phase of infection, a cDNA plasmid library was developed from the susceptible lentil cultivar Eston infected with an isolate of the virulent race 0 of C. lentis. The library was sequenced on the Sanger sequencing platform, generating a total of 11,094 expressed sequence tags (ESTs) representing 3,488 unigenes. Mapping of unigenes onto the C. lentis and the L. culinaris genomes resulted in the identification of 2,418 unigenes of fungal origin and 1,070 unigenes of plant origin. Gene ontology term analysis of unigenes revealed that the transcriptome contained 22 candidate effectors, such as in planta induced ToxB and CyanoVirin-N, and 26 resistance genes, including suppressor of npr1-1 constitutive 1 and dirigent. Comparative genomics analyses revealed that three of the candidate effectors are likely located in the subtelomeric regions, and two of them show no synteny with the closely related species C. higginsianum, suggesting genomic rearrangements, such as translocation during speciation to colonize different niches. The data suggest a complex molecular interplay between disease resistance proteins and effectors during compatible interaction in which the pathogen exploits defense responses mounted by the host.
Collapse
|
150
|
Zhang Y, Wang Y, Liu J, Ding Y, Wang S, Zhang X, Liu Y, Yang S. Temperature-dependent autoimmunity mediated by chs1 requires its neighboring TNL gene SOC3. THE NEW PHYTOLOGIST 2017; 213:1330-1345. [PMID: 27699788 DOI: 10.1111/nph.14216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/23/2016] [Indexed: 05/03/2023]
Abstract
Toll/interleukin receptor (TIR)-nucleotide binding site (NB)-type (TN) proteins are encoded by a family of 21 genes in the Arabidopsis genome. Previous studies have shown that a mutation in the TN gene CHS1 activates the activation of defense responses at low temperatures. However, the underlying molecular mechanism remains unknown. To genetically dissect chs1-mediated signaling, we isolated genetic suppressors of chs1-2 (soc). Several independent soc mutants carried mutations in the same TIR-NB-leucine-rich repeat (LRR) (TNL)-encoding gene SOC3, which is adjacent to CHS1 on chromosome 1. Expression of SOC3 was upregulated in the chs1-2 mutant. Mutations in six soc3 alleles and downregulation of SOC3 by an artificial microRNA construct fully rescued the chilling sensitivity and defense defects of chs1-2. Biochemical studies showed that CHS1 interacted with the NB and LRR domains of SOC3; however, mutated chs1 interacted with the TIR, NB and LRR domains of SOC3 in vitro and in vivo. This study reveals that the TN protein CHS1 interacts with the TNL protein SOC3 to modulate temperature-dependent autoimmunity.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuancong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shanshan Wang
- Center for Plant Biology and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yule Liu
- Center for Plant Biology and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|