101
|
Sorieul M, Santoni V, Maurel C, Luu DT. Mechanisms and Effects of Retention of Over-Expressed Aquaporin AtPIP2;1 in the Endoplasmic Reticulum. Traffic 2011; 12:473-82. [DOI: 10.1111/j.1600-0854.2010.01154.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
102
|
|
103
|
Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:355-65. [PMID: 20735773 DOI: 10.1111/j.1365-313x.2010.04322.x] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorescent tagging of proteins and confocal imaging techniques have become methods of choice in analysing the distributions and dynamic characteristics of proteins at the subcellular level. In common use are a number of strategies for transient expression that greatly reduce the preparation time in advance of imaging, but their applications are limited in success outside a few tractable species and tissues. We previously developed a simple method to transiently express fluorescently-tagged proteins in Arabidopsis root epidermis and root hairs. We describe here a set of Gateway-compatable vectors with fluorescent tags incorporating the ubiqutin-10 gene promoter (P(UBQ10) ) of Arabidopsis that gives prolonged expression of the fluorescently-tagged proteins, both in tobacco and Arabidopsis tissues, after transient transformation, and is equally useful in generating stably transformed lines. As a proof of principle, we carried out transformations with fluorescent markers for the integral plasma membrane protein SYP121, a member of the SNARE family of vesicle-trafficking proteins, and for DHAR1, a cytosolic protein that facilitates the scavenging of reactive oxygen species. We also carried out transformations with SYP121 and its interacting partner, the KC1 K(+) channel, to demonstrate the utility of the methods in bimolecular fluorescence complementation (BiFC). Transient transformations of Arabidopsis using Agrobacterium co-cultivation methods yielded expression in all epidermal cells, including root hairs and guard cells. Comparative studies showed that the P(UBQ10) promoter gives similar levels of expression to that driven by the native SYP121 promoter, faithfully reproducing the characteristics of protein distributions at the subcellular level. Unlike the 35S-driven construct, expression under the P(UBQ10) promoter remained elevated for periods in excess of 2 weeks after transient transformation. This toolbox of vectors and fluorescent tags promises significant advantages for the study of membrane dynamics and cellular development, as well as events associated with environmental stimuli in guard cells and nutrient acquisition in roots.
Collapse
Affiliation(s)
- Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, FBLS - Plant Sciences, Bower Building, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
104
|
Gutierrez R, Grossmann G, Frommer WB, Ehrhardt DW. Opportunities to explore plant membrane organization with super-resolution microscopy. PLANT PHYSIOLOGY 2010; 154:463-6. [PMID: 20921164 PMCID: PMC2949006 DOI: 10.1104/pp.110.161703] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 07/02/2010] [Indexed: 05/18/2023]
|
105
|
Grefen C, Chen Z, Honsbein A, Donald N, Hills A, Blatt MR. A novel motif essential for SNARE interaction with the K(+) channel KC1 and channel gating in Arabidopsis. THE PLANT CELL 2010; 22:3076-92. [PMID: 20884800 PMCID: PMC2965544 DOI: 10.1105/tpc.110.077768] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 09/02/2010] [Accepted: 09/13/2010] [Indexed: 05/02/2023]
Abstract
The SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) protein SYP121 (=SYR1/PEN1) of Arabidopsis thaliana facilitates vesicle traffic, delivering ion channels and other cargo to the plasma membrane, and contributing to plant cell expansion and defense. Recently, we reported that SYP121 also interacts directly with the K(+) channel subunit KC1 and forms a tripartite complex with a second K(+) channel subunit, AKT1, to control channel gating and K(+) transport. Here, we report isolating a minimal sequence motif of SYP121 prerequisite for its interaction with KC1. We made use of yeast mating-based split-ubiquitin and in vivo bimolecular fluorescence complementation assays for protein-protein interaction and of expression and electrophysiological analysis. The results show that interaction of SYP121 with KC1 is associated with a novel FxRF motif uniquely situated within the first 12 residues of the SNARE sequence, that this motif is the minimal requirement for SNARE-dependent alterations in K(+) channel gating when heterologously expressed, and that rescue of KC1-associated K(+) current of the root epidermis in syp121 mutant Arabidopsis plants depends on expression of SNARE constructs incorporating this motif. These results establish the FxRF sequence as a previously unidentified motif required for SNARE-ion channel interactions and lead us to suggest a mechanistic framework for understanding the coordination of vesicle traffic with transmembrane ion transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cellular and Systems Biology-Plant Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
106
|
Opekarová M, Malinsky J, Tanner W. Plants and fungi in the era of heterogeneous plasma membranes. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:94-98. [PMID: 20712624 DOI: 10.1111/j.1438-8677.2010.00356.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Examples from yeast and plant cells are described that show that their plasma membrane is laterally compartmented. Distinct lateral domains encompassing both specific lipids and integral proteins coexist within the plane of the plasma membrane. The compartments are either spatially stable and include distinct sets of proteins, or they are transiently formed to accomplish diverse functions. They are not related to lipid rafts or their clusters, as defined for mammalian cells. This review summarises only well-documented compartments of plasma membranes from plants and fungi, which have been recognised using microscopic approaches. In several cases, physiological functions of the membrane compartmentation are revealed.
Collapse
Affiliation(s)
- M Opekarová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
107
|
Reuff M, Mikosch M, Homann U. Trafficking, lateral mobility and segregation of the plant K channel KAT1. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:99-104. [PMID: 20712625 DOI: 10.1111/j.1438-8677.2010.00355.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Functioning of ion channels depends not only on the control of their activity but also on their density and lateral organisation in the membrane. The two latter aspects have recently attracted increasing attention. Here, we summarize studies on trafficking and plasma membrane distribution of the plant K(+) channel KAT1 from Arabidopsis thaliana. In guard cells, KAT1 was found to be subject to constitutive and pressure-driven turnover and ABA-stimulated endocytosis. These results point to a role of exo- and endocytosis in regulating KAT1 density and thus ion transport during guard cell functioning. Recent studies indicate that KAT1 density can also be adjusted at the site of ER export. Efficient ER export of KAT1 was shown to depend on an acidic motif that interacts with Sec24, a component of ER-derived vesicles. Surface expression of ER export mutants of KAT1 can be rescued through heterotetrameric assembly with wild-type KAT1, implying that not all subunits of the channel tetramer need to carry an ER export motif. Analysis of the distribution of KAT1 in the plasma membrane revealed segregation of the channel into microdomains, and low lateral mobility in both plant and mammalian cells. In plant cells, SNAREs have been shown to be involved in anchoring KAT1 in the plasma membrane. Studies on guard cells imply a role for the cell wall in organisation of KAT1 microdomains. Together, these findings underline the importance of investigating mechanisms of KAT1 trafficking and lateral organisation in order to fully understand channel functioning.
Collapse
Affiliation(s)
- M Reuff
- Institut für Botanik, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | |
Collapse
|
108
|
CAMBIUM, a process-based model of daily xylem development in Eucalyptus. J Theor Biol 2010; 264:395-406. [DOI: 10.1016/j.jtbi.2010.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 01/02/2023]
|
109
|
Abstract
Potassium (K(+)) is one of the essential macronutrients for plant growth and development. However, K(+) content in soils is usually limited so that the crop yields are restricted. Plants may adapt to K(+)-deficient environment by adjusting their physiological and morphological status, indicating that plants may have evolved their sensing and signaling mechanisms in response to K(+)-deficiency. This short review particularly discusses some components as possible sensors or signal transducers involved in plant sensing and signaling in response to K(+)-deficiency, such as K(+) channels and transporters, H(+)-ATPase, some cytoplasmic enzymes, etc. Possible involvement of Ca²(+) and ROS signals in plant responses to K(+)-deficiency is also discussed.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), National Plant Gene Research Centre (Beijing), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
110
|
Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:561-91. [PMID: 20192751 PMCID: PMC3056615 DOI: 10.1146/annurev-arplant-042809-112226] [Citation(s) in RCA: 853] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO(2) influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO(2) activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO(2) and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO(2)-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Honghong Hu
- University of California, San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, La Jolla, California 92093-0116
| | - Noriyuki Nishimura
- University of California, San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, La Jolla, California 92093-0116
| | - Julian I. Schroeder
- University of California, San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, La Jolla, California 92093-0116
| |
Collapse
|
111
|
Lebaudy A, Pascaud F, Véry AA, Alcon C, Dreyer I, Thibaud JB, Lacombe B. Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells. J Biol Chem 2009; 285:6265-74. [PMID: 20040603 DOI: 10.1074/jbc.m109.068445] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guard cells adjust their volume by changing their ion content due to intense fluxes that, for K(+), are believed to flow through inward or outward Shaker channels. Because Shaker channels can be homo- or heterotetramers and Arabidopsis guard cells express at least five genes encoding inward Shaker subunits, including the two major ones, KAT1 and KAT2, the molecular identity of inward Shaker channels operating therein is not yet completely elucidated. Here, we first addressed the properties of KAT1-KAT2 heteromers by expressing KAT1-KAT2 tandems in Xenopus oocytes. Then, computer analyses of the data suggested that coexpression of free KAT1 and KAT2 subunits resulted mainly in heteromeric channels made of two subunits of each type due to some preferential association of KAT1-KAT2 heterodimers at the first step of channel assembly. This was further supported by the analysis of KAT2 effect on KAT1 targeting in tobacco cells. Finally, patch-clamp recordings of native inward channels in wild-type and mutant genotypes strongly suggested that this preferential heteromerization occurs in planta and that Arabidopsis guard cell inward Shaker channels are mainly heteromers of KAT1 and KAT2 subunits.
Collapse
Affiliation(s)
- Anne Lebaudy
- Biochimie et Physiologie Moléculaire des Plantes, CNRS UMR 5004, Institut National de la Recherche Agronomique U386, Montpellier SupAgro, Université Montpellier II, Place Viala, 34060 Montpellier Cedex, France
| | | | | | | | | | | | | |
Collapse
|
112
|
Schapire AL, Valpuesta V, Botella MA. Plasma membrane repair in plants. TRENDS IN PLANT SCIENCE 2009; 14:645-652. [PMID: 19819752 DOI: 10.1016/j.tplants.2009.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/01/2009] [Accepted: 09/09/2009] [Indexed: 05/28/2023]
Abstract
Resealing is the membrane-repair process that enables cells to survive disruption, preventing the loss of irreplaceable cell types and eliminating the cost of replacing injured cells. Given that failure in the resealing process in animal cells causes diverse types of muscular dystrophy, plasma membrane repair has been extensively studied in these systems. Animal proteins with Ca(2+)-binding domains such as synaptotagmins and dysferlin mediate Ca(2+)-dependent exocytosis to repair plasma membranes after mechanical damage. Until recently, no components or proof for membrane repair mechanisms have been discovered in plants. However, Arabidopsis SYT1 is now the first plant synaptotagmin demonstrated to participate in Ca(2+)-dependent repair of membranes. This suggests a conservation of membrane repair mechanisms between animal and plant cells.
Collapse
Affiliation(s)
- Arnaldo L Schapire
- Laboratorio de Bioquímica y Biotecnología Vegetal, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, Spain
| | | | | |
Collapse
|
113
|
Honsbein A, Sokolovski S, Grefen C, Campanoni P, Pratelli R, Paneque M, Chen Z, Johansson I, Blatt MR. A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. THE PLANT CELL 2009; 21:2859-77. [PMID: 19794113 PMCID: PMC2768940 DOI: 10.1105/tpc.109.066118] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 07/28/2009] [Accepted: 09/03/2009] [Indexed: 05/17/2023]
Abstract
A few membrane vesicle trafficking (SNARE) proteins in plants are associated with signaling and transmembrane ion transport, including control of plasma membrane ion channels. Vesicle traffic contributes to the population of ion channels at the plasma membrane. Nonetheless, it is unclear whether these SNAREs also interact directly to affect channel gating and, if so, what functional impact this might have on the plant. Here, we report that the Arabidopsis thaliana SNARE SYP121 binds to KC1, a regulatory K(+) channel subunit that assembles with different inward-rectifying K(+) channels to affect their activities. We demonstrate that SYP121 interacts preferentially with KC1 over other Kv-like K(+) channel subunits and that KC1 interacts specifically with SYP121 but not with its closest structural and functional homolog SYP122 nor with another related SNARE SYP111. SYP121 promoted gating of the inward-rectifying K(+) channel AKT1 but only when heterologously coexpressed with KC1. Mutation in any one of the three genes, SYP121, KC1, and AKT1, selectively suppressed the inward-rectifying K(+) current in Arabidopsis root epidermal protoplasts as well as K(+) acquisition and growth in seedlings when channel-mediated K(+) uptake was limiting. That SYP121 should be important for gating of a K(+) channel and its role in inorganic mineral nutrition demonstrates an unexpected role for SNARE-ion channel interactions, apparently divorced from signaling and vesicle traffic. Instead, it suggests a role in regulating K(+) uptake coordinately with membrane expansion for cell growth.
Collapse
|
114
|
Naso A, Dreyer I, Pedemonte L, Testa I, Gomez-Porras JL, Usai C, Mueller-Rueber B, Diaspro A, Gambale F, Picco C. The role of the C-terminus for functional heteromerization of the plant channel KDC1. Biophys J 2009; 96:4063-74. [PMID: 19450478 DOI: 10.1016/j.bpj.2009.02.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/06/2009] [Accepted: 02/17/2009] [Indexed: 12/25/2022] Open
Abstract
Voltage-gated potassium channels are formed by the assembly of four identical (homotetramer) or different (heterotetramer) subunits. Tetramerization of plant potassium channels involves the C-terminus of the protein. We investigated the role of the C-terminus of KDC1, a Shaker-like inward-rectifying K(+) channel that does not form functional homomeric channels, but participates in the formation of heteromeric complexes with other potassium alpha-subunits when expressed in Xenopus oocytes. The interaction of KDC1 with KAT1 was investigated using the yeast two-hybrid system, fluorescence and electrophysiological studies. We found that the KDC1-EGFP fusion protein is not targeted to the plasma membrane of Xenopus oocytes unless it is coexpressed with KAT1. Deletion mutants revealed that the KDC1 C-terminus is involved in heteromerization. Two domains of the C-terminus, the region downstream the putative cyclic nucleotide binding domain and the distal part of the C-terminus called K(HA) domain, contributed to a different extent to channel assembly. Whereas the first interacting region of the C-terminus was necessary for channel heteromerization, the removal of the distal K(HA) domain decreased but did not abolish the formation of heteromeric complexes. Similar results were obtained when coexpressing KDC1 with the KAT1-homolog KDC2 from carrots, thus indicating the physiological significance of the KAT1/KDC1 characterization. Electrophysiological experiments showed furthermore that the heteromerization capacity of KDC1 was negatively influenced by the presence of the enhanced green fluorescence protein fusion.
Collapse
Affiliation(s)
- Alessia Naso
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Zhao J, Dixon RA. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. THE PLANT CELL 2009; 21:2323-40. [PMID: 19684242 PMCID: PMC2751950 DOI: 10.1105/tpc.109.067819] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Expression of the Arabidopsis thaliana MYB transcription factor TRANSPARENT TESTA 2 (TT2) in Medicago trunculata hairy roots induces both proanthocyanidin accumulation and the ATP-dependent vacuolar/vesicular uptake of epicatechin 3'-O-glucoside; neither process is active in control roots that do, however, possess anthocyanidin 3-O-glucoside vacuolar uptake activity. A vacuolar membrane-localized multidrug and toxic compound extrusion (MATE) transporter, Medicago MATE1, was identified at the molecular level and shown to preferentially transport epicatechin 3'-O-glucoside. Genetic evidence has implicated TT12, a tonoplastic MATE transporter from Arabidopsis, in the transport of precursors for proanthocyanidin biosynthesis in the seed coat. However, although Arabidopsis TT12 facilitates the transport of cyanidin 3-O-glucoside into membrane vesicles when expressed in yeast, there is no evidence that cyanidin 3-O-glucoside is converted to proanthocyanidins after transport into the vacuole. Here, we show that Arabidopsis TT12, like Medicago MATE1, functions to transport epicatechin 3'-O-glucoside as a precursor for proanthocyanidin biosynthesis, and Medicago MATE1 complements the seed proanthocyanidin phenotype of the Arabidopsis tt12 mutant both quantitatively and qualitatively. On the basis of biochemical properties, tissue-specific expression pattern, and genetic loss-of-function analysis, we conclude that MATE1 is an essential membrane transporter for proanthocyanidin biosynthesis in the Medicago seed coat. Implications of these findings for the assembly of oligomeric proanthocyanidins are discussed.
Collapse
Affiliation(s)
- Jian Zhao
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | |
Collapse
|
116
|
[Plant SNAREs and their biological functions]. YI CHUAN = HEREDITAS 2009; 31:471-8. [PMID: 19586840 DOI: 10.3724/sp.j.1005.2009.00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The signal communication between various organelles is essential for cells of eukaryotic organisms. Vesicle trafficking is an important pathway for this kind of communication. Most of the membrane fusion is mediated by SNAREs (Soluble N-ethyl-maleimide-sensitive fusion protein attachment protein receptors), which are highly conserved from various species. Compared with genomes of other eukaryotes, plant genome encodes an even higher number of SNAREs. Accumulating evidences support that plant SNAREs is a multifunctional protein family, which is involved in variety of biological processes. We review the recent advances on molecular mechanism and biological functions of plant SNAREs.
Collapse
|
117
|
Enami K, Ichikawa M, Uemura T, Kutsuna N, Hasezawa S, Nakagawa T, Nakano A, Sato MH. Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2009; 50:280-9. [PMID: 19098073 DOI: 10.1093/pcp/pcn197] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Membrane trafficking to the plasma membrane (PM) is a highly organized process which enables plant cells to build up their bodies. SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) genes, which encode the proteins involved in membrane trafficking, are much more abundant in the Arabidopsis genome than in that of any other eukaryote. We have previously shown that a large number of SNARE molecules in the Arabidopsis cell are localized predominantly on the PM. In the present study, in order to elucidate the physiological function of each PM-localized SNARE, we analyzed the spatiotemporal expression profiling of nine SYP1s that are resident in the PM of Arabidopsis, and used the information thus acquired to generate transgenic Arabidopsis plants expressing green fluorescent protein-fused Qa-SNAREs under control of their authentic promoters. Among the nine SYP1s, only SYP132 is expressed ubiquitously in all tissues throughout plant development. The expression patterns of the other SYP1s, in contrast, are tissue specific, and all different from one another. A particularly noteworthy example is SYP123, which is predominantly expressed in root hair cells during root development, and shows a focal accumulation pattern at the tip region of root hairs. These results suggest that SYP132 is involved in constitutive membrane trafficking to the PM throughout plant development, while the other SYP1s are involved in membrane trafficking events such as root formation or tip growth of root hair, with some redundancy.
Collapse
|
118
|
Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1439-63. [PMID: 19181866 DOI: 10.1093/jxb/ern340] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stomatal guard cells are functionally specialized epidermal cells usually arranged in pairs surrounding a pore. Changes in ion fluxes, and more specifically osmolytes, within the guard cells drive opening/closing of the pore, allowing gas exchange while limiting water loss through evapo-transpiration. Adjustments of the pore aperture to optimize these conflicting needs are thus centrally important for land plants to survive, especially with the rise in CO(2) associated with global warming and increasing water scarcity this century. The basic biophysical events in modulating membrane transport have been gradually delineated over two decades. Genetics and molecular approaches in recent years have complemented and extended these earlier studies to identify major regulatory nodes. In Arabidopsis, the reference for guard cell genetics, stomatal opening driven by K(+) entry is mainly through KAT1 and KAT2, two voltage-gated K(+) inward-rectifying channels that are activated on hyperpolarization of the plasma membrane principally by the OST2 H(+)-ATPase (proton pump coupled to ATP hydrolysis). By contrast, stomatal closing is caused by K(+) efflux mainly through GORK, the outward-rectifying channel activated by membrane depolarization. The depolarization is most likely initiated by SLAC1, an anion channel distantly related to the dicarboxylate/malic acid transport protein found in fungi and bacteria. Beyond this established framework, there is also burgeoning evidence for the involvement of additional transporters, such as homologues to the multi-drug resistance proteins (or ABC transporters) as intimated by several pharmacological and reverse genetics studies. General inhibitors of protein kinases and protein phosphatases have been shown to profoundly affect guard cell membrane transport properties. Indeed, the first regulatory enzymes underpinning these transport processes revealed genetically were several protein phosphatases of the 2C class and the OST1 kinase, a member of the SnRK2 family. Taken together, these results are providing the first glimpses of an emerging signalling complex critical for modulating the stomatal aperture in response to environmental stimuli.
Collapse
Affiliation(s)
- Caroline Sirichandra
- Institut des Sciences du Végetal, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
119
|
Abstract
In addition to light, water and CO(2), plants require a number of mineral nutrients, in particular the macronutrients nitrogen, sulphur, phosphorus, magnesium, calcium and potassium. After uptake from the soil by the root system they are either immediately assimilated into organic compounds or distributed within the plant for usage in different tissues. A good understanding of how the transport of macronutrients into and between plant cells is adjusted to different environmental conditions is essential to achieve an increase of nutrient usage efficiency and nutritional value in crops. Here, we review the current state of knowledge regarding the regulation of macronutrient transport, taking both a physiological and a mechanistic approach. We first describe how nutrient transport is linked to environmental and internal cues such as nutrient, carbon and water availability via hormonal, metabolic and physical signals. We then present information on the molecular mechanisms for regulation of transport proteins, including voltage gating, auto-inhibition, interaction with other proteins, oligomerization and trafficking. Combining of evidence for different nutrients, signals and regulatory levels creates an opportunity for making new connections within a large body of data, and thus contributes to an integrative understanding of nutrient transport.
Collapse
Affiliation(s)
- Anna Amtmann
- Plant Sciences Group, Faculty of Biomedical and Life Science, University of Glasgow, Glasgow G128QQ, UK
| | - Michael R Blatt
- Plant Sciences Group, Faculty of Biomedical and Life Science, University of Glasgow, Glasgow G128QQ, UK
| |
Collapse
|
120
|
Grossmann G, Malinsky J, Stahlschmidt W, Loibl M, Weig-Meckl I, Frommer WB, Opekarová M, Tanner W. Plasma membrane microdomains regulate turnover of transport proteins in yeast. ACTA ACUST UNITED AC 2008; 183:1075-88. [PMID: 19064668 PMCID: PMC2600745 DOI: 10.1083/jcb.200806035] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins.
Collapse
Affiliation(s)
- Guido Grossmann
- Institute of Cell Biology and Plant Physiology, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Grefen C, Blatt MR. SNAREs--molecular governors in signalling and development. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:600-9. [PMID: 18945636 DOI: 10.1016/j.pbi.2008.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/19/2008] [Accepted: 08/25/2008] [Indexed: 05/24/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) proteins drive membrane fusion and contribute to membrane and protein targeting and delivery in all eukaryotic cells. SNAREs are essential to the mechanics of cell growth and development, and they facilitate a number of homeostatic and evoked responses in plants, from hormone signalling to pathogen defence. Additionally, there is now unambiguous evidence that SNAREs play roles in anchoring other membrane proteins and in facilitating ion channel gating through direct, physical interaction with channel proteins. What is the physiological significance of these additional features of plant SNAREs? We explore possible interpretations and suggest functions as scaffolds for effective signal transmission between proteins and, by analogy with a mechanical device invented by James Watt, as molecular governors to coordinate solute transport with cell expansion and growth.
Collapse
Affiliation(s)
- Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, IBLS-Plant Sciences, University of Glasgow, Glasgow G12 8QQ UK
| | | |
Collapse
|
122
|
Zappel NF, Panstruga R. Heterogeneity and lateral compartmentalization of plant plasma membranes. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:632-40. [PMID: 18774330 DOI: 10.1016/j.pbi.2008.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 05/24/2023]
Abstract
Membrane specialization through lateral compartmentalization is pivotal to the development of organisms and their response to environmental signals. The membrane raft hypothesis is lively discussed as a concept for domain formation. In recent years plant scientists have begun to critically assess the membrane raft hypothesis, and this provided the first insights into the mechanisms underlying microdomain formation in plant plasma membranes. Several groups have now shown that phytosterols can induce phase separation, a prerequisite for the formation of membrane rafts. Furthermore, the protein repertoire of detergent-resistant membranes (DRMs) has been extensively characterized and the degree of fatty acid desaturation has been identified as an important factor in DRM formation. Recent studies comprising sterol-deficient mutants demonstrated the importance of correct sterol composition and endocytosis for proper membrane compartmentalization.
Collapse
Affiliation(s)
- Nana Friderike Zappel
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | |
Collapse
|
123
|
Kwak JM, Mäser P, Schroeder JI. The Clickable Guard Cell, Version II: Interactive Model of Guard Cell Signal Transduction Mechanisms and Pathways. THE ARABIDOPSIS BOOK 2008; 6:e0114. [PMID: 22303239 PMCID: PMC3243356 DOI: 10.1199/tab.0114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Guard cells are located in the leaf epidermis and pairs of guard cells surround and form stomatal pores, which regulate CO(2) influx from the atmosphere into leaves for photosynthetic carbon fixation. Stomatal guard cells also regulate water loss of plants via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate a multitude of different stimuli to modulate stomatal apertures. Stomata open in response to light. Stomata close in response to drought stress, elevated CO(2), ozone and low humidity. In response to drought, plants synthesize the hormone abscisic acid (ABA) that triggers closing of stomatal pores. Guard cells have become a highly developed model system for dissecting signal transduction mechanisms in plants and for elucidating how individual signaling mechanisms can interact within a network in a single cell. Many new findings have been made in the last few years. This chapter is an update of an electronic interactive chapter in the previous edition of The Arabidopsis Book (Mäser et al. 2003). Here we focus on mechanisms for which genes and mutations have been characterized, including signaling components for which there is substantial signaling, biochemical and genetic evidence. Ion channels have been shown to represent targets of early signal transduction mechanisms and provide functional signaling and quantitative analysis points to determine where and how mutations affect branches within the guard cell signaling network. Although a substantial number of genes and proteins that function in guard cell signaling have been identified in recent years, there are many more left to be identified and the protein-protein interactions within this network will be an important subject of future research. A fully interactive clickable electronic version of this publication can be accessed at the following web site: http://www-biology.ucsd.edu/labs/schroeder/clickablegc2/. The interactive clickable version includes the following features: Figure 1. Model for the roles of ion channels in ABA signaling.Figure 2. Blue light signaling pathways in guard cells.Figure 3. ABA signaling pathways in guard cells.Figure 1 is linked to explanations that appear upon mouse-over. Figure 2 and Figure 3 are clickable and linked to info boxes, which in turn are linked to TAIR, to relevant abstracts in PubMed, and to updated background explanations from Schroeder et al (2001), used with permission of Annual Reviews of Plant Biology.
Collapse
Affiliation(s)
- June M. Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Pascal Mäser
- Institute of Cell Biology, University of Berne, CH-3012 Bern, Switzerland
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0116
| |
Collapse
|
124
|
Bassham DC, Blatt MR. SNAREs: cogs and coordinators in signaling and development. PLANT PHYSIOLOGY 2008; 147:1504-15. [PMID: 18678742 PMCID: PMC2492632 DOI: 10.1104/pp.108.121129] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 05/14/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Diane C Bassham
- Department of Genetics, Development, and Cell Biology and Plant Sciences Institute, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
125
|
Held MA, Boulaflous A, Brandizzi F. Advances in fluorescent protein-based imaging for the analysis of plant endomembranes. PLANT PHYSIOLOGY 2008; 147:1469-81. [PMID: 18678739 PMCID: PMC2492624 DOI: 10.1104/pp.108.120147] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Michael A Held
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824-1312, USA
| | | | | |
Collapse
|
126
|
Sottocornola B, Gazzarrini S, Olivari C, Romani G, Valbuzzi P, Thiel G, Moroni A. 14-3-3 proteins regulate the potassium channel KAT1 by dual modes. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:231-6. [PMID: 18304197 DOI: 10.1111/j.1438-8677.2007.00028.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
KAT1 is a cloned plant potassium channel belonging to the superfamily of Shaker-like Kv channels. Previous studies have shown that 14-3-3 proteins significantly increase KAT1 current by modifying the channel open probability. Employing a 14-3-3 scavenger construct to lower the long-term availability of endogenous 14-3-3 proteins, we found that 14-3-3 proteins not only control the voltage dependency of the channel but also the number of channels in the plasma membrane.
Collapse
Affiliation(s)
- B Sottocornola
- Dipartimento di Biologia and IBF-CNR, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
127
|
Sokolovski S, Hills A, Gay RA, Blatt MR. Functional interaction of the SNARE protein NtSyp121 in Ca2+ channel gating, Ca2+ transients and ABA signalling of stomatal guard cells. MOLECULAR PLANT 2008; 1:347-58. [PMID: 19825544 DOI: 10.1093/mp/ssm029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There is now growing evidence that membrane vesicle trafficking proteins, especially of the superfamily of SNAREs, are critical for cellular signalling in plants. Work from this laboratory first demonstrated that a soluble, inhibitory (dominant-negative) fragment of the SNARE NtSyp121 blocked K+ and Cl- channel responses to the stress-related hormone abscisic acid (ABA), but left open a question about functional impacts on signal intermediates, especially on Ca2+-mediated signalling events. Here, we report one mode of action for the SNARE mediated directly through alterations in Ca2+ channel gating and its consequent effects on cytosolic-free [Ca2+] ([Ca2+]i) elevation. We find that expressing the same inhibitory fragment of NtSyp121 blocks ABA-evoked stomatal closure, but only partially suppresses stomatal closure in the presence of the NO donor, SNAP, which promotes [Ca2+]i elevation independently of the plasma membrane Ca2+ channels. Consistent with these observations, Ca2+ channel gating at the plasma membrane is altered by the SNARE fragment in a manner effective in reducing the potential for triggering a rise in [Ca2+]i, and we show directly that its expression in vivo leads to a pronounced suppression of evoked [Ca2+]i transients. These observations offer primary evidence for the functional coupling of the SNARE with Ca2+ channels at the plant cell plasma membrane and, because [Ca2+]i plays a key role in the control of K+ and Cl- channel currents in guard cells, they underscore an important mechanism for SNARE integration with ion channel regulation during stomatal closure.
Collapse
Affiliation(s)
- Sergei Sokolovski
- Laboratory of Plant Physiology and Biophysics, IBLS-Plant Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
128
|
Lüthje S. Plasma Membrane Redox Systems: Lipid Rafts and Protein Assemblies. PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-72954-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
129
|
Bregante M, Yang Y, Formentin E, Carpaneto A, Schroeder JI, Gambale F, Lo Schiavo F, Costa A. KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells. PLANT MOLECULAR BIOLOGY 2008; 66:61-72. [PMID: 17955184 DOI: 10.1007/s11103-007-9252-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 10/06/2007] [Indexed: 05/13/2023]
Abstract
The Shaker potassium channels are tetrameric proteins formed by the assembly of four alpha-subunits. The oligomerization can occur among both homo- and hetero-alpha-subunits. KDC1 is a carrot Shaker-like potassium channel expressed in the epidermis of plantlet roots and the protoderm of somatic embryos. KDC1 was previously characterised electrophysiologically in CHO and Xenopus oocytes cells, but the experiments performed in these systems did not provide conclusive evidence that KDC1 forms a functional homomeric channel in plant cells. In this report, we show that KDC1 localizes to the plasma membrane of root cells in transgenic tobacco plants transformed with a KDC1::GFP fusion construct. In tobacco mesophyll protoplasts, transiently transformed with KDC1::GFP, KDC1 was present on the endomembrane and the protoplasts did not show any inward potassium current, as demonstrated by patch-clamp experiments. The co-expression of KDC1::GFP with the Arabidopsis thaliana potassium channel AKT1 in tobacco mesophyll protoplasts has the effect of shifting KDC1 localization from endomembranes to the plasma membrane. Patch-clamp experiments performed on tobacco mesophyll protoplasts expressing AKT1 alone or in combination with KDC1::GFP showed voltage-activated inward potassium currents with different properties. In particular, the addition of Zn2+ to the bath solution induced a clear decrease of the potassium currents in protoplasts transformed with AKT1 alone, whereas a current potentiation (indicative of KDC1 presence) was observed in protoplasts co-transformed with AKT1 + KDC1::GFP. Split-Ubiquitin assay experiments performed in yeast cells confirmed the interaction between AKT1 and KDC1.
Collapse
Affiliation(s)
- Monica Bregante
- Istituto di Biofisica-CNR, Via De Marini 6, Genova 16149, Italy
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Hovav R, Udall JA, Hovav E, Rapp R, Flagel L, Wendel JF. A majority of cotton genes are expressed in single-celled fiber. PLANTA 2008; 227:319-29. [PMID: 17849148 DOI: 10.1007/s00425-007-0619-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/24/2007] [Indexed: 05/11/2023]
Abstract
Multicellular eukaryotes contain a diversity of cell types, presumably differing from one another in the suite of genes expressed during development. At present, little is known about the proportion of the genome transcribed in most cell types, nor the degree to which global patterns of expression change during cellular differentiation. To address these questions in a model plant system, we studied the unique and highly exaggerated single-celled, epidermal seed trichomes ("cotton") of cultivated cotton (Gossypium hirsutum). By taking advantage of advances in expression profiling and microarray technology, we evaluated the transcriptome of cotton fibers across a developmental time-course, from a few days post-anthesis through primary and secondary wall synthesis stages. Comparisons of gene expression in populations of developing cotton fiber cells to genetically complex reference samples derived from 6 different cotton organs demonstrated that a remarkably high proportion of the cotton genome is transcribed, with 75-94% of the total genome transcribed at each stage. Compared to the reference samples, more than half of all genes were up-regulated during at least one stage of fiber development. These genes were clustered into seven groups of expression profiles that provided new insight into biological processes governing fiber development. Genes implicated in vesicle coating and trafficking were found to be overexpressed throughout all stages of fiber development studied, indicating their important role in maintaining rapid growth of this unique plant cell.
Collapse
Affiliation(s)
- Ran Hovav
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
131
|
Hückelhoven R. Transport and secretion in plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:573-9. [PMID: 17875397 DOI: 10.1016/j.pbi.2007.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 05/17/2023]
Abstract
Microbial elicitors and effectors, as well as plant receptors and defence compounds, traffic at the interface of plants and microbes in pathogenic or mutualistic interactions. Net exocytosis appears to be required for surface enlargement of plasma membrane during accommodation of microbes in intact plant cells. By contrast, ligand-induced endocytosis of surface receptors operates in basal defence. The first layer of plant defence appears to depend on polarized transport of small molecules and on local secretion of defence proteins. In return, pathogen effectors target plasma membrane bound and intracellular proteins to inhibit extracellular host defences.
Collapse
Affiliation(s)
- Ralph Hückelhoven
- Technical University of Munich, Centre of Life and Food Sciences Weihenstephan, Am Hochanger 2, 85350 Freising-Weihenstephan, Germany.
| |
Collapse
|
132
|
Abstract
In yeast and animal cells, members of the superfamily of N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE)-domain-containing proteins are key players in vesicle-associated membrane fusion events during transport processes between individual compartments of the endomembrane system, including exocytosis and endocytosis. Compared with genomes of other eukaryotes, genomes of monocotyledonous and dicotyledonous plants encode a surprisingly high number of SNARE proteins, suggesting vital roles for this protein class in higher plant species. Although to date it remains elusive whether plant SNARE proteins function like their yeast and animal counterparts, genetic screens have recently begun to unravel the variety of biological tasks in which plant SNAREs are involved. These duties involve fundamental processes such as cytokinesis, shoot gravitropism, pathogen defense, symbiosis, and abiotic stress responses, suggesting that SNAREs contribute essentially to many facets of plant biology.
Collapse
Affiliation(s)
- Volker Lipka
- The Sainsbury Laboratory, John Innes Center, Norwich, United Kingdom
| | | | | |
Collapse
|
133
|
Furt F, Lefebvre B, Cullimore J, Bessoule JJ, Mongrand S. Plant lipid rafts: fluctuat nec mergitur. PLANT SIGNALING & BEHAVIOR 2007; 2:508-11. [PMID: 19704542 PMCID: PMC2634352 DOI: 10.4161/psb.2.6.4636] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 06/27/2007] [Indexed: 05/20/2023]
Abstract
Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b(561) not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions.
Collapse
Affiliation(s)
- Fabienne Furt
- Laboratoire de Biogenèse Membranaire; Université Victor Segalen; Bordeaux, France
| | - Benoit Lefebvre
- Laboratoire des Interactions Plantes Micro-organismes; Castanet-Tolosan, France
| | - Julie Cullimore
- Laboratoire des Interactions Plantes Micro-organismes; Castanet-Tolosan, France
| | | | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire; Université Victor Segalen; Bordeaux, France
| |
Collapse
|
134
|
Tyrrell M, Campanoni P, Sutter JU, Pratelli R, Paneque M, Sokolovski S, Blatt MR. Selective targeting of plasma membrane and tonoplast traffic by inhibitory (dominant-negative) SNARE fragments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:1099-115. [PMID: 17662029 DOI: 10.1111/j.1365-313x.2007.03206.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vesicle traffic underpins cell homeostasis, growth and development in plants, and is facilitated by a superfamily of proteins known as SNAREs [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors] that interact to draw vesicle and target membrane surfaces together for fusion. Structural homologies, biochemical and genetic analyses have yielded information about the localization and possible roles of these proteins. However, remarkably little evidence is yet available that speaks directly to the functional specificities of these proteins in selected trafficking pathways in vivo. Previously, we found that expressing a cytosolic (so-called Sp2) fragment of one plasma membrane SNARE from tobacco and Arabidopsis had severe effects on growth, tissue development and secretory traffic to the plasma membrane. We have explored this dominant-negative approach further to examine the specificity and overlaps in Sp2 activity by generating a toolbox of truncated SNARE constructs and antibodies for transient expression and analysis. Using a quantitative ratiometric approach with secreted green fluorescent protein (secGFP), we report here that traffic to the plasma membrane is suppressed selectively by Sp2 fragments of plasma membrane SNAREs AtSYP121 and AtSYP122, but not of the closely related SNARE AtSYP111 nor of the SNARE AtSYP21 that resides at the pre-vacuolar compartment (PVC). By contrast, traffic of the YFP-tagged aquaporin fusion protein TIP1;1-YFP to the tonoplast was blocked (leading to its accumulation in the PVC) when co-expressed with the Sp2 fragment of AtSYP21, but not when co-expressed with that of AtSYP121. Export of secGFP was also sensitive to the Sp2 fragment of the novel, plant-specific SNARE AtSYP71 that was recently found to be present in detergent-resistant, plasma membrane fractions. Co-incubation analyses of the plasma membrane SNAREs with the regulatory subdomain included within the Sp2 fragments showed activity in destabilizing protein complexes, but only with the complementary SNAREs. We conclude that the Sp2 fragment action accurately reflects the known specificity and targeting of these SNAREs, implies functional overlaps that are of potential physiological interest, and underscores the use of a dominant-negative strategy in functional studies of a major subfamily of SNAREs in plants.
Collapse
Affiliation(s)
- Matthew Tyrrell
- Laboratory of Plant Physiology and Biophysics, IBLS, Plant Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
135
|
Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR. Abscisic Acid Triggers the Endocytosis of the Arabidopsis KAT1 K+ Channel and Its Recycling to the Plasma Membrane. Curr Biol 2007; 17:1396-402. [PMID: 17683934 DOI: 10.1016/j.cub.2007.07.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 07/11/2007] [Accepted: 07/12/2007] [Indexed: 11/20/2022]
Abstract
Membrane vesicle traffic to and from the plasma membrane is essential for cellular homeostasis in all eukaryotes. In plants, constitutive traffic to and from the plasma membrane has been implicated in maintaining the population of integral plasma-membrane proteins and its adjustment to a variety of hormonal and environmental stimuli. However, direct evidence for evoked and selective traffic has been lacking. Here, we report that the hormone abscisic acid (ABA), which controls ion transport and transpiration in plants under water stress, triggers the selective endocytosis of the KAT1 K+ channel protein in epidermal and guard cells. Endocytosis of the K+ channel from the plasma membrane initiates in concert with changes in K+ channel activities evoked by ABA and leads to sequestration of the K+ channel within an endosomal membrane pool that recycles back to the plasma membrane over a period of hours. Selective K+ channel endocytosis, sequestration, and recycling demonstrates a tight and dynamic control of the population of K+ channels at the plasma membrane as part of a key plant signaling and response mechanism, and the observations point to a role for channel traffic in adaptive changes in the capacity for osmotic solute flux of stomatal guard cells.
Collapse
Affiliation(s)
- Jens-Uwe Sutter
- Laboratory of Plant Physiology and Biophysics, IBLS - Plant Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
136
|
Campanoni P, Sutter JU, Davis CS, Littlejohn GR, Blatt MR. A generalized method for transfecting root epidermis uncovers endosomal dynamics in Arabidopsis root hairs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:322-30. [PMID: 17610544 DOI: 10.1111/j.1365-313x.2007.03139.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Progress in analysing the cellular functions of many structural proteins has accelerated through the use of confocal microscopy together with transient gene expression. Several methods for transient expression have been developed in the past few years, but their application has seen limited success beyond a few tractable species and tissues. We have developed a simple and efficient method to visualize fluorescent proteins in Arabidopsis root epidermis using co-cultivation of seedlings with Agrobacterium rhizogenes. The method is equally suitable for transient gene expression in other species, including Thellungiella, and can be combined with supporting molecular and biochemical analyses. The method promises significant advantages for study of membrane dynamics, cellular development and polar growth in root hairs without interference in the development of the plant. Since the method targets specifically the root epidermis, it also offers a powerful tool to approach issues of root-rhizosphere interactions, such as ion transport and nutrient acquisition. As a proof of principle, we carried out transfections with fluorescent markers for the plasma membrane (NpPMA2-GFP, Nicotiana plumbaginifolia L. Plasma Membrane H(+)-ATPase 2), the endoplasmic reticulum (YFP-HDEL), and the Golgi apparatus (sialyl transferase-GFP) to trace their distribution in growing Arabidopsis root hairs and epidermis. The results demonstrate that, in Arabidopsis root hairs, movement of the Golgi is faster than previously reported for tobacco leaf epidermal cells, consistent with the high secretory dynamics of the tip growing cell; they show a pattern to the endoplasmic reticulum within the cytoplasm that is more diffuse than found in tobacco leaf epidermis, and they confirm previous findings of a polarized distribution of the endoplasmic reticulum at the tip of growing root hairs.
Collapse
Affiliation(s)
- Prisca Campanoni
- Laboratory of Plant Physiology and Biophysics, IBLS - Plant Sciences, Bower Building, University of Glasgow , Scotland, UK.
| | | | | | | | | |
Collapse
|
137
|
Homann U, Meckel T, Hewing J, Hütt MT, Hurst AC. Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of Vicia faba guard cells. Eur J Cell Biol 2007; 86:489-500. [PMID: 17602785 DOI: 10.1016/j.ejcb.2007.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 11/19/2022] Open
Abstract
The organisation of membrane proteins into certain domains of the plasma membrane (PM) has been proposed to be important for signalling in yeast and animal cells. Here we describe the formation of a very distinct pattern of the K(+) channel KAT1 fused to the green fluorescent protein (KAT1::GFP) when transiently expressed in guard cells of Vicia faba. Using confocal laser scanning microscopy we observed a radially striped pattern of KAT1::GFP fluorescence in the PM in about 70% of all transfected guard cells. This characteristic pattern was found to be cell type and protein specific and independent of the stomatal aperture and the cytoskeleton. Staining of the cell wall of guard cells with Calcofluor White revealed a great similarity between the arrangement of cellulose microfibrils and the KAT1::GFP pattern. Furthermore, the radial pattern of KAT1::GFP immediately disappeared when turgor pressure was strongly decreased by changing from hypotonic to hypertonic conditions. The pattern reappeared within 15 min upon reestablishment of high turgor pressure in hypotonic solution. Evaluation of the staining pattern by a mathematical algorithm further confirmed this reversible abolishment of the radial pattern during hypertonic treatment. We therefore conclude that the radial organisation of KAT1::GFP depends on the close contact between the PM and cell wall in turgid guard cells. These results offer the first indication for a role of the cell wall in the localisation of ion channels. We propose a model in which KAT1 is located in the cellulose fibrils intermediate areas of the PM and discuss the physiological role of this phenomenon.
Collapse
Affiliation(s)
- Ulrike Homann
- Institute of Botany, University of Technology Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
138
|
Leshem Y, Levine A. Intracellular ROS: What Does it Do There? PLANT SIGNALING & BEHAVIOR 2007; 2:155-6. [PMID: 19704741 PMCID: PMC2634042 DOI: 10.4161/psb.2.3.3685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 12/07/2006] [Indexed: 05/08/2023]
Abstract
Intracellular localization of stress induced reactive oxygen species (ROS) has emerged as an important aspect towards understanding of cellular responses to environmental stimuli. Our recent study published in the PNAS (103:18008-13)1 shows that NaCl-induced ROS appear within endosomes on the way to tonoplast as part of the vacuolar vesicle trafficking. In addition to showing ROS damage to the tonoplast, this finding may shed light upon recently reported aspects of root water relations during salt stress, suggesting a new signaling role for intracellular ROS in Arabidopsis root cells, during salt stress: ROS that are compartmentalized in endosomes are delivered by the vacuolar vesicle trafficking pathway to the tonoplast, resulting in oxidative gating of TIPs water channels. The closure of the tonoplast aquaporins contributes to the observed reduction in root hydraulic conductivity during salt stress.
Collapse
Affiliation(s)
- Yehoram Leshem
- Department of Plant and Environmental Sciences; The Hebrew University of Jerusalem; Jerusalem, Israel
| | | |
Collapse
|
139
|
Pandey S, Zhang W, Assmann SM. Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 2007; 581:2325-36. [PMID: 17462636 DOI: 10.1016/j.febslet.2007.04.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 12/16/2022]
Abstract
Stomatal complexes consist of pairs of guard cells and the pore they enclose. Reversible changes in guard cell volume alter the aperture of the pore and provide the major regulatory mechanism for control of gas exchange between the plant and the environment. Stomatal movement is facilitated by the activity of ion channels and ion transporters found in the plasma membrane and vacuolar membrane of guard cells. Progress in recent years has elucidated the molecular identities of many guard cell transport proteins, and described their modulation by various cellular signal transduction components during stomatal opening and closure prompted by environmental and endogenous stimuli.
Collapse
Affiliation(s)
- Sona Pandey
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, United States
| | | | | |
Collapse
|
140
|
Lebaudy A, Véry AA, Sentenac H. K+ channel activity in plants: genes, regulations and functions. FEBS Lett 2007; 581:2357-66. [PMID: 17418142 DOI: 10.1016/j.febslet.2007.03.058] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 11/20/2022]
Abstract
Potassium (K(+)) is the most abundant cation in the cytosol, and plant growth requires that large amounts of K(+) are transported from the soil to the growing organs. K(+) uptake and fluxes within the plant are mediated by several families of transporters and channels. Here, we describe the different families of K(+)-selective channels that have been identified in plants, the so-called Shaker, TPK and Kir-like channels, and what is known so far on their regulations and physiological functions in the plant.
Collapse
Affiliation(s)
- Anne Lebaudy
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004, CNRS/INRA/Monptellier SupAgro/UM2, 1 Place Viala, 34060 Montpellier Cedex 1, France.
| | | | | |
Collapse
|
141
|
|
142
|
Zhang Z, Feechan A, Pedersen C, Newman MA, Qiu JL, Olesen KL, Thordal-Christensen H. A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:302-12. [PMID: 17241452 DOI: 10.1111/j.1365-313x.2006.02961.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Penetration resistance is often the first line of defence against fungal pathogens. Subsequently induced defences are mediated by the programmed cell death (PCD) reaction pathway and the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signalling pathways. We previously demonstrated that full penetration resistance in Arabidopsis against the non-host barley powdery mildew fungus (Blumeria graminis f.sp. hordei) requires the syntaxin SYP121 (PEN1). Here we report that SYP121, together with SYP122, functions as a negative regulator of subsequently induced defence pathways. The SA level in the syntaxin double mutant syp121-1 syp122-1 is dramatically elevated, resulting in necrosis and dwarfism. This phenotype is partially rescued by introducing the SA-signalling mutations eds1-2, eds5-3, sid2-1 and npr1-1 as well as the NahG transgene. These partially rescued triple mutants have an unknown defence to Pseudomonas syringae pv. tomato, and have increased HR-like responses to non-host and host powdery mildew fungi. The HR-like responses cause efficient resistance to the latter. These defence pathways are SA-independent. Furthermore, the JA/ET signalling marker, PDF1.2, is highly upregulated in the triple mutants. Thus SYP121 and SYP122 are negative regulators of PCD, SA, JA and ET pathways through a molecular function distinct from that of SYP121 in penetration resistance. Our data suggest that individual cells preferentially express either penetration resistance or the subsequently induced defences.
Collapse
Affiliation(s)
- Ziguo Zhang
- Department of Agricultural Sciences, Plant and Soil Science Laboratory, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
143
|
Lake JA, Gray JE. A diversity of scales. THE NEW PHYTOLOGIST 2007; 173:670-673. [PMID: 17286816 DOI: 10.1111/j.1469-8137.2007.02012.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Janice A Lake
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
144
|
Israelsson M, Siegel RS, Young J, Hashimoto M, Iba K, Schroeder JI. Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:654-63. [PMID: 17010657 DOI: 10.1016/j.pbi.2006.09.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
Stomatal pores in the epidermis of plants enable gas exchange between plants and the atmosphere, a process vital to plant life. Pairs of specialized guard cells surround and control stomatal apertures. Stomatal closing is induced by abscisic acid (ABA) and elevated CO(2) concentrations. Recent advances have been made in understanding ABA signaling and in characterizing CO(2) transduction mechanisms and CO(2) signaling mutants. In addition, models of Ca(2+)-dependent and Ca(2+)-independent signaling in guard cells have been developed and a new hypothesis has been formed in which physiological stimuli are proposed to prime Ca(2+) sensors, thus enabling specificity in Ca(2+)-dependent signal transduction.
Collapse
Affiliation(s)
- Maria Israelsson
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics 0116, University of California, San Diego, La Jolla, California 92093-0116, USA
| | | | | | | | | | | |
Collapse
|
145
|
Meckel T, Gall L, Semrau S, Homann U, Thiel G. Guard cells elongate: relationship of volume and surface area during stomatal movement. Biophys J 2006; 92:1072-80. [PMID: 17098796 PMCID: PMC1779957 DOI: 10.1529/biophysj.106.092734] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.
Collapse
Affiliation(s)
- Tobias Meckel
- Leiden Institute of Physics, University of Leiden, 2333 CA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
146
|
Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Van Volkenburgh E. Plant neurobiology: an integrated view of plant signaling. TRENDS IN PLANT SCIENCE 2006; 11:413-9. [PMID: 16843034 DOI: 10.1016/j.tplants.2006.06.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/07/2006] [Accepted: 06/28/2006] [Indexed: 05/10/2023]
Abstract
Plant neurobiology is a newly focused field of plant biology research that aims to understand how plants process the information they obtain from their environment to develop, prosper and reproduce optimally. The behavior plants exhibit is coordinated across the whole organism by some form of integrated signaling, communication and response system. This system includes long-distance electrical signals, vesicle-mediated transport of auxin in specialized vascular tissues, and production of chemicals known to be neuronal in animals. Here we review how plant neurobiology is being directed toward discovering the mechanisms of signaling in whole plants, as well as among plants and their neighbors.
Collapse
|