101
|
Shi H, Shen Q, Qi Y, Yan H, Nie H, Chen Y, Zhao T, Katagiri F, Tang D. BR-SIGNALING KINASE1 physically associates with FLAGELLIN SENSING2 and regulates plant innate immunity in Arabidopsis. THE PLANT CELL 2013; 25:1143-57. [PMID: 23532072 PMCID: PMC3634682 DOI: 10.1105/tpc.112.107904] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 05/19/2023]
Abstract
Pathogen-associated molecular pattern (PAMP)-trigged immunity (PTI) is the first defensive line of plant innate immunity and is mediated by pattern recognition receptors. Here, we show that a mutation in BR-SIGNALING KINASE1 (BSK1), a substrate of the brassinosteroid (BR) receptor BRASSINOSTEROID INSENSITIVE1, suppressed the powdery mildew resistance caused by a mutation in ENHANCED DISEASE RESISTANCE2, which negatively regulates powdery mildew resistance and programmed cell death, in Arabidopsis thaliana. A loss-of-function bsk1 mutant displayed enhanced susceptibility to virulent and avirulent pathogens, including Golovinomyces cichoracearum, Pseudomonas syringae, and Hyaloperonospora arabidopsidis. The bsk1 mutant also accumulated lower levels of salicylic acid upon infection with G. cichoracearum and P. syringae. BSK1 belongs to a receptor-like cytoplasmic kinase family and displays kinase activity in vitro; this kinase activity is required for its function. BSK1 physically associates with the PAMP receptor FLAGELLIN SENSING2 and is required for a subset of flg22-induced responses, including the reactive oxygen burst, but not for mitogen-activated protein kinase activation. Our data demonstrate that BSK1 is involved in positive regulation of PTI. Together with previous findings, our work indicates that BSK1 represents a key component directly involved in both BR signaling and plant immunity.
Collapse
Affiliation(s)
- Hua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiujing Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiping Qi
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Haojie Yan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haozhen Nie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumiaki Katagiri
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
102
|
Riely BK, Larrainzar E, Haney CH, Mun JH, Gil-Quintana E, González EM, Yu HJ, Tricoli D, Ehrhardt DW, Long SR, Cook DR. Development of tools for the biochemical characterization of the symbiotic receptor-like kinase DMI2. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:216-26. [PMID: 23013436 DOI: 10.1094/mpmi-10-11-0276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Medicago truncatula DMI2 gene encodes a leucine-rich repeat receptor-like kinase that is essential for symbiosis with nitrogen-fixing rhizobia. While phenotypic analyses have provided a description for the host's responses mediated by DMI2, a lack of tools for in vivo biochemical analysis has hampered efforts to elucidate the mechanisms by which DMI2 mediates symbiotic signal transduction. Here, we report stably transformed M. truncatula lines that express a genomic DMI2 construct that is fused to a dual-affinity tag containing three copies of the hemagglutinin epitope and a single StrepII tag (gDMI2:HAST). gDMI2: HAST complements the dmi2-1 mutation, and transgenic plants expressing this construct behave similarly to wild-type plants. We show that the expression patterns of gDMI2:HAST recapitulate those of endogenous DMI2 and that we can detect and purify DMI2:HAST from microsomal root and nodule extracts. Using this line, we show that DMI2 resides in a high-molecular weight complex, which is consistent with our observation that DMI2:GFP localizes to plasma membrane-associated puncta and cytoplasmic vesicles. We further demonstrate that Nod factor (NF) perception increases the abundance of DMI2 vesicles. These tools should be a valuable resource for the Medicago community to dissect the biochemical function of DMI2.
Collapse
Affiliation(s)
- Brendan K Riely
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Zhao J, Wu C, Yuan S, Yin L, Sun W, Zhao Q, Zhao B, Li X. Kinase activity of OsBRI1 is essential for brassinosteroids to regulate rice growth and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:113-120. [PMID: 23265324 DOI: 10.1016/j.plantsci.2012.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/21/2012] [Accepted: 10/24/2012] [Indexed: 06/01/2023]
Abstract
Brassinosteroids (BRs) are steroid hormones that participate in multiple biological processes. In this paper, we characterized a classic rice mutant Fn189 (dwarf54, d54) showing semi-dwarf stature and erect leaves. The coleoptile elongation and root growth was less affected in Fn189 than wild-type plant by the exogenous application of eBL, the most active form of BRs. Lamina joint inclination assay and morphological analysis in darkness further showed that Fn189 mutant plant was insensitive to exogenous eBL. Through map-based cloning, Fn189 was found to be a novel allelic mutant of the DWARF 61 (D61) gene, which encodes the putative BRs receptor OsBRI1. A single base mutation caused the I834F substitution in the OsBRI1 kinase domain. Consequently, kinase activity of OsBRI1 was found to decrease dramatically. Taken together, the kinase activity of OsBRI1 is essential for brassinosteroids to regulate normal plant growth and development in rice.
Collapse
Affiliation(s)
- Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Braun P, Aubourg S, Van Leene J, De Jaeger G, Lurin C. Plant protein interactomes. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:161-87. [PMID: 23330791 DOI: 10.1146/annurev-arplant-050312-120140] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein-protein interactions are a critical element of biological systems, and the analysis of interaction partners can provide valuable hints about unknown functions of a protein. In recent years, several large-scale protein interaction studies have begun to unravel the complex networks through which plant proteins exert their functions. Two major classes of experimental approaches are used for protein interaction mapping: analysis of direct interactions using binary methods such as yeast two-hybrid or split ubiquitin, and analysis of protein complexes through affinity purification followed by mass spectrometry. In addition, bioinformatics predictions can suggest interactions that have evaded detection by other methods or those of proteins that have not been investigated. Here we review the major approaches to construct, analyze, use, and carry out quality control on plant protein interactome networks. We present experimental and computational approaches for large-scale mapping, methods for validation or smaller-scale functional studies, important bioinformatics resources, and findings from recently published large-scale plant interactome network maps.
Collapse
Affiliation(s)
- Pascal Braun
- Department of Plant Systems Biology, Center for Life and Food Sciences Weihenstephan, Technische Universität München (TUM), 85354 Freising-Weihenstephan, Germany.
| | | | | | | | | |
Collapse
|
105
|
Kim BH, Kim SY, Nam KH. Assessing the diverse functions of BAK1 and its homologs in arabidopsis, beyond BR signaling and PTI responses. Mol Cells 2013; 35:7-16. [PMID: 23269431 PMCID: PMC3887853 DOI: 10.1007/s10059-013-2255-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/09/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022] Open
Abstract
Plants possess a variety of extracellular leucine-rich repeats receptor-like kinases (LRR-RLKs) to coordinate developmental programs with responses to environmental changes. Out of sixteen families of LRR-RLKs in Arabidopsis, the LRR-RLKII family consists of fourteen individual members, including five Arabidopsis thaliana somatic embryogenesis receptor kinases (AtSERKs). BAK1/AtSERK3 was first identified as a dual co-receptor of BRI1 and FLS2, mediating BR signaling and pathogen-associated molecular pattern (PAMP) triggered immunity (PTI), respectively. Since its identification, many researchers have attempted to elucidate the phosphorylation mechanisms between receptor complexes and identify additional components that interact with receptor complexes to transduce the signaling downstream. Relatively detailed early events in complex formation, phosphorylation sites on the BRI1/BAK1 complex and BAK1-interacting proteins, such as BIK1 and PUB13, have been identified. Small receptor complexes consisting of BAK1 and BIR1 or BAK1 and AtSERK4 regulate cell death during steady state conditions. Moreover, the redundant and distinct functions of AtSERK proteins and other members of the LRR-RLKII family have been revealed. This review focuses on the integration of the information from the most recent studies concerning BAK1 and its homologs.
Collapse
Affiliation(s)
- Beg Hab Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Sun Young Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Kyoung Hee Nam
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
106
|
Sanseverino W, Ercolano MR. In silico approach to predict candidate R proteins and to define their domain architecture. BMC Res Notes 2012; 5:678. [PMID: 23216678 PMCID: PMC3532234 DOI: 10.1186/1756-0500-5-678] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/27/2012] [Indexed: 12/22/2022] Open
Abstract
Background Plant resistance genes, which encode R-proteins, constitute one of the most important and widely investigated gene families. Thanks to the use of both genetic and molecular approaches, more than 100 R genes have been cloned so far. Analysis of resistance proteins and investigation of domain properties may afford insights into their role and function. Moreover, genomic experiments and availability of high-throughput sequence data are very useful for discovering new R genes and establish hypotheses about R-genes architecture. Result We surveyed the PRGdb dataset to provide valuable information about hidden R-protein features. Through an in silico approach 4409 putative R-proteins belonging to 33 plant organisms were analysed for domain associations frequency. The proteins showed common domain associations as well as previously unknown classes. Interestingly, the number of proteins falling into each class was found inversely related to domain arrangement complexity. Out of 31 possible theoretical domain combinations, only 22 were found. Proteins retrieved were filtered to highlight, through the visualization of a Venn diagram, candidate classes able to exert resistance function. Detailed analyses performed on conserved profiles of those strong putative R proteins revealed interesting domain features. Finally, several atypical domain associations were identified. Conclusion The effort made in this study allowed us to approach the R-domains arrangement issue from a different point of view, sorting through the vast diversity of R proteins. Overall, many protein features were revealed and interesting new domain associations were found. In addition, insights on domain associations meaning and R domains modelling were provided.
Collapse
Affiliation(s)
- Walter Sanseverino
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Italy
| | | |
Collapse
|
107
|
Aan den Toorn M, Huijbers MME, de Vries SC, van Mierlo CPM. The Arabidopsis thaliana SERK1 kinase domain spontaneously refolds to an active state in vitro. PLoS One 2012; 7:e50907. [PMID: 23236403 PMCID: PMC3517577 DOI: 10.1371/journal.pone.0050907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
Auto-phosphorylating kinase activity of plant leucine-rich-repeat receptor-like kinases (LRR-RLK's) needs to be under tight negative control to avoid unscheduled activation. One way to achieve this would be to keep these kinase domains as intrinsically disordered protein (IDP) during synthesis and transport to its final location. Subsequent folding, which may depend on chaperone activity or presence of interaction partners, is then required for full activation of the kinase domain. Bacterially produced SERK1 kinase domain was previously shown to be an active Ser/Thr kinase. SERK1 is predicted to contain a disordered region in kinase domains X and XI. Here, we show that loss of structure of the SERK1 kinase domain during unfolding is intimately linked to loss of activity. Phosphorylation of the SERK1 kinase domain neither changes its structure nor its stability. Unfolded SERK1 kinase has no autophosphorylation activity and upon removal of denaturant about one half of the protein population spontaneously refolds to an active protein in vitro. Thus, neither chaperones nor interaction partners are required during folding of this protein to its catalytically active state.
Collapse
|
108
|
Liljegren SJ. Organ abscission: exit strategies require signals and moving traffic. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:670-6. [PMID: 23047135 DOI: 10.1016/j.pbi.2012.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 05/18/2023]
Abstract
Flowers are frequently programmed to release their outer organs after pollination. Managing the timing and extent of cell separation during abscission is crucial, as premature shedding could interfere with reproduction and the structural integrity of neighboring tissues would be affected by uninhibited loss of cellular adhesion. In Arabidopsis flowers, the framework of the cell signaling, membrane traffic and transcriptional networks responsible for organ abscission is now emerging. A proposed ligand-receptor system consisting of a secreted peptide and a pair of redundant receptor-like kinases switches on a mitogen-activated protein kinase cascade that leads to cell separation. A homeodomain transcription factor acting downstream of the ligand-receptor module may inhibit cell expansion and separation by restricting the expression of other closely related transcription factors. Three additional receptor-like kinases may inhibit abscission by reducing the pool of receptors at the cell surface available to be ligand-activated. A G-protein regulator is required to direct the movement of key molecules required for abscission. Expression of a polygalaturonase active during organ abscission is modulated by a zinc finger transcription factor.
Collapse
Affiliation(s)
- Sarah J Liljegren
- Department of Biology, University of Mississippi, Oxford, MS 38677-1848, USA.
| |
Collapse
|
109
|
Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat Protoc 2012. [PMID: 23196971 DOI: 10.1038/nprot.2012.129] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to the low abundance of signaling proteins and transcription factors, their protein complexes are not easily identified by classical proteomics. The isolation of these protein complexes from endogenous plant tissues (rather than plant cell cultures) is therefore an important technical challenge. Here, we describe a sensitive, quantitative proteomics-based procedure to determine the composition of plant protein complexes. The method makes use of fluorophore-tagged protein immunoprecipitation (IP) and label-free mass spectrometry (MS)-based quantification to correct for nonspecifically precipitated proteins. We provide procedures for the isolation of membrane-bound receptor complexes and transcriptional regulators from nuclei. The protocol consists of an IP step (~6 h) and sample preparation for liquid chromatography-tandem MS (LC-MS/MS; 2 d). We also provide a guide for data analysis. Our single-step affinity purification protocol is a good alternative to two-step tandem affinity purification (TAP), as it is shorter and relatively easy to perform. The data analysis by label-free quantification (LFQ) requires a cheaper and less challenging experimental setup compared with known labeling techniques in plants.
Collapse
|
110
|
Bassel GW, Gaudinier A, Brady SM, Hennig L, Rhee SY, De Smet I. Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks. THE PLANT CELL 2012; 24:3859-75. [PMID: 23110892 PMCID: PMC3517224 DOI: 10.1105/tpc.112.100776] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/21/2012] [Accepted: 10/11/2012] [Indexed: 05/19/2023]
Abstract
Physiological responses, developmental programs, and cellular functions rely on complex networks of interactions at different levels and scales. Systems biology brings together high-throughput biochemical, genetic, and molecular approaches to generate omics data that can be analyzed and used in mathematical and computational models toward uncovering these networks on a global scale. Various approaches, including transcriptomics, proteomics, interactomics, and metabolomics, have been employed to obtain these data on the cellular, tissue, organ, and whole-plant level. We summarize progress on gene regulatory, cofunction, protein interaction, and metabolic networks. We also illustrate the main approaches that have been used to obtain these networks, with specific examples from Arabidopsis thaliana, and describe the pros and cons of each approach.
Collapse
Affiliation(s)
- George W. Bassel
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Division of Plant and Crop Sciences, School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Siobhan M. Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Lars Hennig
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences and Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| |
Collapse
|
111
|
Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S. Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. THE PLANT CELL 2012; 24:4205-19. [PMID: 23085733 PMCID: PMC3516521 DOI: 10.1105/tpc.112.100263] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/17/2012] [Accepted: 09/25/2012] [Indexed: 05/18/2023]
Abstract
The activity of surface receptors is location specific, dependent upon the dynamic membrane trafficking network and receptor-mediated endocytosis (RME). Therefore, the spatio-temporal dynamics of RME are critical to receptor function. The plasma membrane receptor flagellin sensing2 (FLS2) confers immunity against bacterial infection through perception of flagellin (flg22). Following elicitation, FLS2 is internalized into vesicles. To resolve FLS2 trafficking, we exploited quantitative confocal imaging for colocalization studies and chemical interference. FLS2 localizes to bona fide endosomes via two distinct endocytic trafficking routes depending on its activation status. FLS2 receptors constitutively recycle in a Brefeldin A (BFA)-sensitive manner, while flg22-activated receptors traffic via ARA7/Rab F2b- and ARA6/Rab F1-positive endosomes insensitive to BFA. FLS2 endocytosis required a functional Rab5 GTPase pathway as revealed by dominant-negative ARA7/Rab F2b. Flg22-induced FLS2 endosomal numbers were increased by Concanamycin A treatment but reduced by Wortmannin, indicating that activated FLS2 receptors are targeted to late endosomes. RME inhibitors Tyrphostin A23 and Endosidin 1 altered but did not block induced FLS2 endocytosis. Additional inhibitor studies imply the involvement of the actin-myosin system in FLS2 internalization and trafficking. Altogether, we report a dynamic pattern of subcellular trafficking for FLS2 and reveal a defined framework for ligand-dependent endocytosis of this receptor.
Collapse
|
112
|
[Biological function of the Somatic embryogenesis receptor-like kinases in plant]. YI CHUAN = HEREDITAS 2012; 34:551-9. [PMID: 22659427 DOI: 10.3724/sp.j.1005.2012.00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Somatic Embryogenesis Receptor-Like Kinases (SERKs) belong to the LRR-RLK II subfamily, which contain three conserved domains: an extracellular domain, a transmembrane domain, and an intracellular catalytic kinase domain. Previous studies had found that SERKs play many roles during plant development. This review made a brief introduction about the character of the SERKs and described the biological function of these proteins in somatic embryogenesis, sporogenesis, hormone response and host defense response. The research value and the application prospects of the SERKs were discussed.
Collapse
|
113
|
Neelakandan AK, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. PLANT CELL REPORTS 2012; 31:597-620. [PMID: 22179259 DOI: 10.1007/s00299-011-1202-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 05/23/2023]
Abstract
In vitro cell and tissue-based systems have tremendous potential in fundamental research and for commercial applications such as clonal propagation, genetic engineering and production of valuable metabolites. Since the invention of plant cell and tissue culture techniques more than half a century ago, scientists have been trying to understand the morphological, physiological, biochemical and molecular changes associated with tissue culture responses. Establishment of de novo developmental cell fate in vitro is governed by factors such as genetic make-up, stress and plant growth regulators. In vitro culture is believed to destabilize the genetic and epigenetic program of intact plant tissue and can lead to chromosomal and DNA sequence variations, methylation changes, transposon activation, and generation of somaclonal variants. In this review, we discuss the current status of understanding the genomic and epigenomic changes that take place under in vitro conditions. It is hoped that a precise and comprehensive knowledge of the molecular basis of these variations and acquisition of developmental cell fate would help to devise strategies to improve the totipotency and embryogenic capability in recalcitrant species and genotypes, and to address bottlenecks associated with clonal propagation.
Collapse
|
114
|
Sun W, Cao Y, Jansen Labby K, Bittel P, Boller T, Bent AF. Probing the Arabidopsis flagellin receptor: FLS2-FLS2 association and the contributions of specific domains to signaling function. THE PLANT CELL 2012; 24:1096-113. [PMID: 22388452 PMCID: PMC3336135 DOI: 10.1105/tpc.112.095919] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 05/20/2023]
Abstract
Flagellin sensing2 (FLS2) is a transmembrane receptor kinase that activates antimicrobial defense responses upon binding of bacterial flagellin or the flagellin-derived peptide flg22. We find that some Arabidopsis thaliana FLS2 is present in FLS2-FLS2 complexes before and after plant exposure to flg22. flg22 binding capability is not required for FLS2-FLS2 association. Cys pairs flank the extracellular leucine rich repeat (LRR) domain in FLS2 and many other LRR receptors, and we find that the Cys pair N-terminal to the FLS2 LRR is required for normal processing, stability, and function, possibly due to undescribed endoplasmic reticulum quality control mechanisms. By contrast, disruption of the membrane-proximal Cys pair does not block FLS2 function, instead increasing responsiveness to flg22, as indicated by a stronger oxidative burst. There was no evidence for intermolecular FLS2-FLS2 disulfide bridges. Truncated FLS2 containing only the intracellular domain associates with full-length FLS2 and exerts a dominant-negative effect on wild-type FLS2 function that is dependent on expression level but independent of the protein kinase capacity of the truncated protein. FLS2 is insensitive to disruption of multiple N-glycosylation sites, in contrast with the related receptor EF-Tu receptor that can be rendered nonfunctional by disruption of single glycosylation sites. These and additional findings more precisely define the molecular mechanisms of FLS2 receptor function.
Collapse
Affiliation(s)
- Wenxian Sun
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yangrong Cao
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706
| | - Kristin Jansen Labby
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706
| | - Pascal Bittel
- Botanisches Institut der Universität Basel, CH-4056 Basel, Switzerland
| | - Thomas Boller
- Botanisches Institut der Universität Basel, CH-4056 Basel, Switzerland
| | - Andrew F. Bent
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
115
|
Huang CF, Yamaji N, Ono K, Ma JF. A leucine-rich repeat receptor-like kinase gene is involved in the specification of outer cell layers in rice roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:565-76. [PMID: 22014207 DOI: 10.1111/j.1365-313x.2011.04824.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root outer cell layers of Oryza sativa (rice), which comprise the epidermis, exodermis and sclerenchyma, play an important role in protecting the roots from various stresses in soil, but the molecular mechanisms for the specification of these cell layers are poorly understood. In this work, we report on defective in outer cell layer specification 1 (Docs1), which is involved in the specification of outer cell layers in rice roots. Docs1 was isolated by map-based cloning using a mutant (c68) defective in the outer cell layers of primary roots. It encodes a leucine-rich repeat receptor-like kinase (LRR RLK). Docs1 mRNA was expressed in all tissues including roots, leaf blades and sheaths, and flowers. Immunostaining with an anti-Docs1 antibody showed that Docs1 was localized at the epidermis and exodermis, depending on the root region. Furthermore, Docs1 showed polar localization at the distal side. Subcellular examination showed that Docs1 was localized to the plasma membrane. Comparison of genome-wide transcriptional profiles between the wild-type and the knock-out mutant roots using microarray analysis showed that 61 and 41 genes were up- and downregulated in the mutant, including genes encoding putative transcription factors and genes potentially involved in cell wall metabolism. These results suggest that Docs1 might directly or indirectly regulate multiple genes involved in the proper development of root outer cell layers in rice.
Collapse
Affiliation(s)
- Chao-Feng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | | | | | | |
Collapse
|
116
|
Gou X, Yin H, He K, Du J, Yi J, Xu S, Lin H, Clouse SD, Li J. Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genet 2012; 8:e1002452. [PMID: 22253607 PMCID: PMC3257278 DOI: 10.1371/journal.pgen.1002452] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/18/2011] [Indexed: 11/24/2022] Open
Abstract
The Arabidopsis thaliana Somatic Embryogenesis Receptor Kinases (SERKs) consist of five members, SERK1 to SERK5, of the leucine-rich repeat receptor-like kinase subfamily II (LRR-RLK II). SERK3 was named BRI1-Associated Receptor Kinase 1 (BAK1) due to its direct interaction with the brassinosteroid (BR) receptor BRI1 in vivo, while SERK4 has also been designated as BAK1-Like 1 (BKK1) for its functionally redundant role with BAK1. Here we provide genetic and biochemical evidence to demonstrate that SERKs are absolutely required for early steps in BR signaling. Overexpression of four of the five SERKs—SERK1, SERK2, SERK3/BAK1, and SERK4/BKK1—suppressed the phenotypes of an intermediate BRI1 mutant, bri1-5. Overexpression of the kinase-dead versions of these four genes in the bri1-5 background, on the other hand, resulted in typical dominant negative phenotypes, resembling those of null BRI1 mutants. We isolated and generated single, double, triple, and quadruple mutants and analyzed their phenotypes in detail. While the quadruple mutant is embryo-lethal, the serk1 bak1 bkk1 triple null mutant exhibits an extreme de-etiolated phenotype similar to a null bri1 mutant. While overexpression of BRI1 can drastically increase hypocotyl growth of wild-type plants, overexpression of BRI1 does not alter hypocotyl growth of the serk1 bak1 bkk1 triple mutant. Biochemical analysis indicated that the phosphorylation level of BRI1 in serk1 bak1 bkk1 is incapable of sensing exogenously applied BR. As a result, the unphosphorylated level of BES1 has lost its sensitivity to the BR treatment in the triple mutant, indicating that the BR signaling pathway has been completely abolished in the triple mutant. These data clearly demonstrate that SERKs are essential to the early events of BR signaling. Brassinosteroids (BRs) are a group of plant hormones critical for plant growth and development. BRs are perceived by a cell-surface receptor complex including two distinctive receptor kinases, BRI1 and BAK1. Whereas BRI1 is a true BR-binding receptor, BAK1 does not appear to have BR-binding activity. Therefore, BAK1 is likely a co-receptor in BR signal transduction. The genetic significance of BAK1 was not clearly demonstrated in previous studies largely due to functional redundancy of BAK1 and its closely related homologues. It was not clear whether BAK1 plays an essential role or only an enhancing role in BR signaling. In this study, we identified all possible BAK1 redundant genes in the Arabidopsis thaliana genome and generated single, double, triple, and quadruple mutants. Detailed analysis indicated that, without BAK1 and its functionally redundant proteins, BR signaling is completely disrupted, largely because BRI1 has lost its ability to activate downstream components. These studies provide the first piece of loss-of-functional genetic evidence that BAK1 is indispensable to the early events of the BR signaling pathway.
Collapse
Affiliation(s)
- Xiaoping Gou
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hongju Yin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kai He
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Junbo Du
- School of Life Sciences, Lanzhou University, Lanzhou, China
- School of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Yi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengbao Xu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Honghui Lin
- School of Life Sciences, Sichuan University, Chengdu, China
| | - Steven D. Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jia Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
117
|
Popescu SC. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface. FRONTIERS IN PLANT SCIENCE 2012; 3:71. [PMID: 22639660 PMCID: PMC3355576 DOI: 10.3389/fpls.2012.00071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/26/2012] [Indexed: 05/03/2023]
Abstract
Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane (PM) activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the PM.
Collapse
Affiliation(s)
- Sorina C. Popescu
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
- *Correspondence: Sorina C. Popescu, Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA. e-mail:
| |
Collapse
|
118
|
Receptor Kinase Interactions: Complexity of Signalling. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23044-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
119
|
Fluorescence Correlation Spectroscopy and Fluorescence Recovery After Photobleaching to study receptor kinase mobility in planta. Methods Mol Biol 2011; 779:225-42. [PMID: 21837570 DOI: 10.1007/978-1-61779-264-9_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Plasma-membrane-localized receptor kinases are essential for cell-cell communication and as sensors for the extracellular environment. Receptor function is dependent on their distribution in the membrane and interaction with other proteins that are either membrane-localized, present in the cytoplasm, or in the extracellular space. The organized distribution and mobility of receptor kinases is, therefore, thought to regulate the efficiency of downstream signaling. This chapter describes two methods to study receptor mobility in the plasma membrane. Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Recovery After Photobleaching (FRAP). Especially, the combination of FRAP and FCS provides a better insight into plasma membrane receptor mobility.
Collapse
|
120
|
Park HS, Ryu HY, Kim BH, Kim SY, Yoon IS, Nam KH. A subset of OsSERK genes, including OsBAK1, affects normal growth and leaf development of rice. Mol Cells 2011; 32:561-9. [PMID: 22058019 PMCID: PMC3887677 DOI: 10.1007/s10059-011-0178-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/03/2011] [Accepted: 10/11/2011] [Indexed: 10/15/2022] Open
Abstract
Since the identification of BRI1-Associated receptor Kinase 1 (BAK1), a member of the Somatic Embryogenesis Receptor Kinase (SERK) family, the dual functions of BAK1 in BR signaling and innate immunity in Arabidopsis have attracted considerable attention as clues for understanding developmental processes that must be balanced between growth and defense over the life of plants. Here, we extended our research to study cellular functions of OsSERKs in rice. As it was difficult to identify an authentic ortholog of AtBAK1 in rice, we generated transgenic rice in which the expression of multiple OsSERK genes, including OsBAK1, was reduced by OsBAK1 RNA interference. Resulting transgenic rice showed reduced levels of Os-BAK1 and decreased sensitivity to BL, leading to semidwarfism in overall growth. Moreover, they resulted in abnormal growth patterns, especially in leaf development. Most of the OsBAK1RNAi transgenic rice plants were defective in the development of bulliform cells in the leaf epidermal layer. They also showed increased expression level of pathogenesis-related gene and enhanced susceptibility to a rice blast-causing fungal pathogen, Magnaporthe oryzae. These results indicate that OsSERK genes, such as OsBAK1, play versatile roles in rice growth and development.
Collapse
Affiliation(s)
| | | | | | | | - In Sun Yoon
- Bio-Crops Development Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-857, Korea
| | | |
Collapse
|
121
|
Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A 2011; 109:303-8. [PMID: 22087006 DOI: 10.1073/pnas.1109921108] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants and animals use innate immunity as a first defense against pathogens, a costly yet necessary tradeoff between growth and immunity. In Arabidopsis, the regulatory leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1 combines with the LRR-RLKs FLS2 and EFR in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and the LRR-RLK BRI1 in brassinosteroid (BR)-mediated growth. Therefore, a potential tradeoff between these pathways mediated by BAK1 is often postulated. Here, we show a unidirectional inhibition of FLS2-mediated immune signaling by BR perception. Unexpectedly, this effect occurred downstream or independently of complex formation with BAK1 and associated downstream phosphorylation. Thus, BAK1 is not rate-limiting in these pathways. BRs also inhibited signaling triggered by the BAK1-independent recognition of the fungal PAMP chitin. Our results suggest a general mechanism operative in plants in which BR-mediated growth directly antagonizes innate immune signaling.
Collapse
|
122
|
Abstract
Brassinosteroids (BRs) are endogenous plant hormones essential for the proper regulation of multiple physiological processes required for normal plant growth and development. Since their discovery more than 30 years ago, extensive research on the mechanisms of BR action using biochemistry, mutant studies, proteomics and genome-wide transcriptome analyses, has helped refine the BR biosynthetic pathway, identify the basic molecular components required to relay the BR signal from perception to gene regulation, and expand the known physiological responses influenced by BRs. These mechanistic advances have helped answer the intriguing question of how BRs can have such dramatic pleiotropic effects on a broad range of diverse developmental pathways and have further pointed to BR interactions with other plant hormones and environmental cues. This chapter briefly reviews historical aspects of BR research and then summarizes the current state of knowledge on BR biosynthesis, metabolism and signal transduction. Recent studies uncovering novel phosphorelays and gene regulatory networks through which BR influences both vegetative and reproductive development are examined and placed in the context of known BR physiological responses including cell elongation and division, vascular differentiation, flowering, pollen development and photomorphogenesis.
Collapse
Affiliation(s)
- Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609 USA
| |
Collapse
|
123
|
Ntoukakis V, Schwessinger B, Segonzac C, Zipfel C. Cautionary notes on the use of C-terminal BAK1 fusion proteins for functional studies. THE PLANT CELL 2011; 23:3871-8. [PMID: 22129600 PMCID: PMC3246322 DOI: 10.1105/tpc.111.090779] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/11/2011] [Accepted: 11/16/2011] [Indexed: 05/20/2023]
Abstract
Detailed phenotypic characterization reveals that several BAK1 fusion proteins with C-terminal tags strongly impair complementation of bak1 null mutants with respect to responsiveness to the bacterial pathogen-associated molecular patterns flagellin and EF-Tu. This raises concerns about the widespread use of such protein variants of this important regulatory Leu-rich repeat receptor-like kinase (RLK) for functional analyses of RLK-based signaling.
Collapse
|
124
|
Burr CA, Leslie ME, Orlowski SK, Chen I, Wright CE, Daniels MJ, Liljegren SJ. CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1837-50. [PMID: 21628627 PMCID: PMC3149937 DOI: 10.1104/pp.111.175224] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Receptor-like kinase-mediated cell signaling pathways play fundamental roles in many aspects of plant growth and development. A pair of Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA (HAE) and HAESA-LIKE2 (HSL2), have been shown to activate the cell separation process that leads to organ abscission. Another pair of LRR-RLKs, EVERSHED (EVR) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1, act as inhibitors of abscission, potentially by modulating HAE/HSL2 activity. Cycling of these RLKs to and from the cell surface may be regulated by NEVERSHED (NEV), a membrane trafficking regulator that is essential for organ abscission. We report here the characterization of CAST AWAY (CST), a receptor-like cytoplasmic kinase that acts as a spatial inhibitor of cell separation. Disruption of CST suppresses the abscission defects of nev mutant flowers and restores the discrete identity of the trans-Golgi network in nev abscission zones. After organ shedding, enlarged abscission zones with obscured boundaries are found in nev cst flowers. We show that CST is a dual-specificity kinase in vitro and that myristoylation at its amino terminus promotes association with the plasma membrane. Using the bimolecular fluorescence complementation assay, we have detected interactions of CST with HAE and EVR at the plasma membrane of Arabidopsis protoplasts and hypothesize that CST negatively regulates cell separation signaling directly and indirectly. A model integrating the potential roles of receptor-like kinase signaling and membrane trafficking during organ separation is presented.
Collapse
|
125
|
Wilma van Esse G, Westphal AH, Surendran RP, Albrecht C, van Veen B, Borst JW, de Vries SC. Quantification of the brassinosteroid insensitive1 receptor in planta. PLANT PHYSIOLOGY 2011; 156:1691-700. [PMID: 21617031 PMCID: PMC3149942 DOI: 10.1104/pp.111.179309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/25/2011] [Indexed: 05/05/2023]
Abstract
In plants, green fluorescent protein (GFP) is routinely used to determine the subcellular location of fusion proteins. Here, we show that confocal imaging can be employed to approximate the number of GFP-labeled protein molecules present in living Arabidopsis (Arabidopsis thaliana) root cells. The technique involves calibration with soluble GFP to provide a usable protein concentration range within the confocal volume of the microscope. As a proof of principle, we quantified the Brassinosteroid Insensitive1 (BRI1) receptor fused to GFP, under control of its own promoter. The number of BRI1-GFP molecules per root epidermal cell ranges from 22,000 in the meristem and 130,000 in the elongation zone to 80,000 in the maturation zone, indicating that up to 6-fold differences in BRI1 receptor content exist. In contrast, when taking into account differences in cell size, BRI1-GFP receptor density in the plasma membrane is kept constant at 12 receptors μm⁻² in all cells throughout the meristem and elongation zone. Only the quiescent center and columella cells deviate from this pattern and have 5 to 6 receptors μm⁻². Remarkably, root cell sensitivity toward brassinosteroids appears to coincide with uniform meristem receptor density.
Collapse
Affiliation(s)
- G Wilma van Esse
- Department of Agrotechnology and Food Sciences, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
126
|
Mantelin S, Peng HC, Li B, Atamian HS, Takken FLW, Kaloshian I. The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:459-71. [PMID: 21481032 DOI: 10.1111/j.1365-313x.2011.04609.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plant receptor-like kinase somatic embryogenesis receptor kinase 3 (SERK3)/brassinosteroid insensitive 1-associated kinase 1 (BAK1) is required for pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Here we show that a distinct member of the SERK family, SERK1, is required for the full functioning of Mi-1, a nucleotide binding leucine-rich repeat (NB-LRR) resistance protein. Mi-1 confers resistance to Meloidogyne spp. (root-knot nematodes, RKNs) and three phloem-feeding insects, including Macrosiphum euphorbiae (potato aphid). SERK1 was identified in a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) screen in Nicotiana benthamiana. The screen was based on the suppression of a pest-independent hypersensitive response triggered by a constitutively active form of Mi-1, Mi-DS4. To assess the role of SERK1 in Mi-1-mediated resistance, Solanum lycopersicum (tomato) SlSERK genes were cloned. Three SlSERK members were identified with homologies to Arabidopsis AtSERK1 or AtSERK3/BAK1, and were named SlSERK1, SlSERK3A and SlSERK3B. SlSERK1 is ubiquitously expressed in tomato. Reducing SlSERK1 transcript levels in resistant plants, using gene-specific TRV-SERK1 VIGS, revealed a role for SlSERK1 in Mi-1-mediated resistance to potato aphids, but not to RKNs. In addition, Mi-1-dependent SlWRKY72 gene regulation was compromised in SlSERK1-silenced plants, placing SlSERK1 in the Mi-1 signaling pathway. Silencing SlSERK1 in a susceptible tomato background did not reduce the susceptibility to aphids, indicating that SlSERK1 is unlikely to be an essential virulence target. SlSERK1 is an active kinase, mainly localized at the plasma membrane. This work identifies a critical early component of Mi-1 signaling, and demonstrates a role for SlSERK1 in NB-LRR-mediated immunity.
Collapse
Affiliation(s)
- Sophie Mantelin
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
127
|
Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GC, Joosten MH, Thomma BP. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:2255-65. [PMID: 21617027 PMCID: PMC3149960 DOI: 10.1104/pp.111.180067] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/25/2011] [Indexed: 05/18/2023]
Abstract
Vascular wilts caused by soil-borne fungal species of the Verticillium genus are devastating plant diseases. The most common species, Verticillium dahliae and Verticillium albo-atrum, have broad host ranges and are notoriously difficult to control. Therefore, genetic resistance is the preferred method for disease control. Only from tomato (Solanum lycopersicum) has a Verticillium resistance locus been cloned, comprising the Ve1 gene that encodes a receptor-like protein-type cell surface receptor. Due to lack of a suitable model for receptor-like protein (RLP)-mediated resistance signaling in Arabidopsis (Arabidopsis thaliana), so far relatively little is known about RLP signaling in pathogen resistance. Here, we show that Ve1 remains fully functional after interfamily transfer to Arabidopsis and that Ve1-transgenic Arabidopsis is resistant to race 1 but not to race 2 strains of V. dahliae and V. albo-atrum, nor to the Brassicaceae-specific pathogen Verticillium longisporum. Furthermore, we show that signaling components utilized by Ve1 in Arabidopsis to establish Verticillium resistance overlap with those required in tomato and include SERK3/BAK1, EDS1, and NDR1, which strongly suggests that critical components for resistance signaling are conserved. We subsequently investigated the requirement of SERK family members for Ve1 resistance in Arabidopsis, revealing that SERK1 is required in addition to SERK3/BAK1. Using virus-induced gene silencing, the requirement of SERK1 for Ve1-mediated resistance was confirmed in tomato. Moreover, we show the requirement of SERK1 for resistance against the foliar fungal pathogen Cladosporium fulvum mediated by the RLP Cf-4. Our results demonstrate that Arabidopsis can be used as model to unravel the genetics of Ve1-mediated resistance.
Collapse
|
128
|
Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson IA, Chory J. Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 2011; 474:467-71. [PMID: 21666665 PMCID: PMC3280218 DOI: 10.1038/nature10153] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/26/2011] [Indexed: 11/08/2022]
Abstract
Polyhydroxylated steroids are regulators of body shape and size in higher organisms. In metazoans, intracellular receptors recognize these molecules. Plants, however, perceive steroids at membranes, using the membrane-integral receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1). Here we report the structure of the Arabidopsis thaliana BRI1 ligand-binding domain, determined by X-ray diffraction at 2.5 Å resolution. We find a superhelix of 25 twisted leucine-rich repeats (LRRs), an architecture that is strikingly different from the assembly of LRRs in animal Toll-like receptors. A 70-amino-acid island domain between LRRs 21 and 22 folds back into the interior of the superhelix to create a surface pocket for binding the plant hormone brassinolide. Known loss- and gain-of-function mutations map closely to the hormone-binding site. We propose that steroid binding to BRI1 generates a docking platform for a co-receptor that is required for receptor activation. Our findings provide insight into the activation mechanism of this highly expanded family of plant receptors that have essential roles in hormone, developmental and innate immunity signalling.
Collapse
Affiliation(s)
- Michael Hothorn
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Youssef Belkhadir
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute
| | - Marlene Dreux
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tsegaye Dabi
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute
| | - Joseph. P. Noel
- Howard Hughes Medical Institute
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute
| |
Collapse
|
129
|
Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tör M, de Vries S, Zipfel C. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. THE PLANT CELL 2011; 23:2440-55. [PMID: 21693696 PMCID: PMC3160018 DOI: 10.1105/tpc.111.084301] [Citation(s) in RCA: 507] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/24/2011] [Accepted: 06/08/2011] [Indexed: 05/18/2023]
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) constitutes an important layer of innate immunity in plants. The leucine-rich repeat (LRR) receptor kinases EF-TU RECEPTOR (EFR) and FLAGELLIN SENSING2 (FLS2) are the PRRs for the peptide PAMPs elf18 and flg22, which are derived from bacterial EF-Tu and flagellin, respectively. Using coimmunoprecipitation and mass spectrometry analyses, we demonstrated that EFR and FLS2 undergo ligand-induced heteromerization in planta with several LRR receptor-like kinases that belong to the SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family, including BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1/SERK3 (BAK1/SERK3) and BAK1-LIKE1/SERK4 (BKK1/SERK4). Using a novel bak1 allele that does not exhibit pleiotropic defects in brassinosteroid and cell death responses, we determined that BAK1 and BKK1 cooperate genetically to achieve full signaling capability in response to elf18 and flg22 and to the damage-associated molecular pattern AtPep1. Furthermore, we demonstrated that BAK1 and BKK1 contribute to disease resistance against the hemibiotrophic bacterium Pseudomonas syringae and the obligate biotrophic oomycete Hyaloperonospora arabidopsidis. Our work reveals that the establishment of PAMP-triggered immunity (PTI) relies on the rapid ligand-induced recruitment of multiple SERKs within PRR complexes and provides insight into the early PTI signaling events underlying this important layer of plant innate immunity.
Collapse
Affiliation(s)
- Milena Roux
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Catherine Albrecht
- Department of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Delphine Chinchilla
- Zurich-Basel Plant Science Center, Botanical Institute, University of Basel, 4056 Basel, Switzerland
| | - Alexandra Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Nick Holton
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | | | - Mahmut Tör
- School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Sacco de Vries
- Department of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom
- Address correspondence to
| |
Collapse
|
130
|
|
131
|
Clouse SD. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. THE PLANT CELL 2011; 23:1219-30. [PMID: 21505068 PMCID: PMC3101532 DOI: 10.1105/tpc.111.084475] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/25/2011] [Accepted: 04/04/2011] [Indexed: 05/17/2023]
Abstract
Brassinosteroid (BR) signal transduction research has progressed rapidly from the initial discovery of the BR receptor to a complete definition of the basic molecular components required to relay the BR signal from perception by receptor kinases at the cell surface to activation of a small family of transcription factors that regulate the expression of more than a thousand genes in a BR-dependent manner. These mechanistic advances have helped answer the intriguing question of how a single molecule, such as a hormone, can have dramatic pleiotropic effects on a broad range of diverse developmental pathways and have shed light on how BRs interact with other plant hormones and environmental cues to shape the growth of the whole plant. This review summarizes the current state of BR signal transduction research and then examines recent articles uncovering gene regulatory networks through which BR influences both vegetative and reproductive development.
Collapse
Affiliation(s)
- Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
132
|
Nolan KE, Kurdyukov S, Rose RJ. Characterisation of the legume SERK-NIK gene superfamily including splice variants: implications for development and defence. BMC PLANT BIOLOGY 2011; 11:44. [PMID: 21385462 PMCID: PMC3061892 DOI: 10.1186/1471-2229-11-44] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 03/09/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) genes are part of the regulation of diverse signalling events in plants. Current evidence shows SERK proteins function both in developmental and defence signalling pathways, which occur in response to both peptide and steroid ligands. SERKs are generally present as small gene families in plants, with five SERK genes in Arabidopsis. Knowledge gained primarily through work on Arabidopsis SERKs indicates that these proteins probably interact with a wide range of other receptor kinases and form a fundamental part of many essential signalling pathways. The SERK1 gene of the model legume, Medicago truncatula functions in somatic and zygotic embryogenesis, and during many phases of plant development, including nodule and lateral root formation. However, other SERK genes in M. truncatula and other legumes are largely unidentified and their functions unknown. RESULTS To aid the understanding of signalling pathways in M. truncatula, we have identified and annotated the SERK genes in this species. Using degenerate PCR and database mining, eight more SERK-like genes have been identified and these have been shown to be expressed. The amplification and sequencing of several different PCR products from one of these genes is consistent with the presence of splice variants. Four of the eight additional genes identified are upregulated in cultured leaf tissue grown on embryogenic medium. The sequence information obtained from M. truncatula was used to identify SERK family genes in the recently sequenced soybean (Glycine max) genome. CONCLUSIONS A total of nine SERK or SERK-like genes have been identified in M. truncatula and potentially 17 in soybean. Five M. truncatula SERK genes arose from duplication events not evident in soybean and Lotus. The presence of splice variants has not been previously reported in a SERK gene. Upregulation of four newly identified SERK genes (in addition to the previously described MtSERK1) in embryogenic tissue cultures suggests these genes also play a role in the process of somatic embryogenesis. The phylogenetic relationship of members of the SERK gene family to closely related genes, and to development and defence function is discussed.
Collapse
Affiliation(s)
- Kim E Nolan
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences. The University of Newcastle. University Dr. Callaghan, NSW, 2308, Australia
| | - Sergey Kurdyukov
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences. The University of Newcastle. University Dr. Callaghan, NSW, 2308, Australia
| | - Ray J Rose
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences. The University of Newcastle. University Dr. Callaghan, NSW, 2308, Australia
| |
Collapse
|
133
|
Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. THE PLANT CELL 2011; 23:923-41. [PMID: 21398570 PMCID: PMC3082273 DOI: 10.1105/tpc.110.081273] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/14/2011] [Accepted: 02/18/2011] [Indexed: 05/18/2023]
Abstract
Fruit ripening in tomato (Solanum lycopersicum) requires the coordination of both developmental cues as well as the plant hormone ethylene. Although the role of ethylene in mediating climacteric ripening has been established, knowledge regarding the developmental regulators that modulate the involvement of ethylene in tomato fruit ripening is still lacking. Here, we show that the tomato APETALA2a (AP2a) transcription factor regulates fruit ripening via regulation of ethylene biosynthesis and signaling. RNA interference (RNAi)-mediated repression of AP2a resulted in alterations in fruit shape, orange ripe fruits, and altered carotenoid accumulation. Microarray expression analyses of the ripe AP2 RNAi fruits showed altered expression of genes involved in various metabolic pathways, such as the phenylpropanoid and carotenoid pathways, as well as in hormone synthesis and perception. Genes involved in chromoplast differentiation and other ripening-associated processes were also differentially expressed, but softening and ethylene biosynthesis occurred in the transgenic plants. Ripening regulators RIPENING-INHIBITOR, NON-RIPENING, and COLORLESS NON-RIPENING (CNR) function upstream of AP2a and positively regulate its expression. In the pericarp of AP2 RNAi fruits, mRNA levels of CNR were elevated, indicating that AP2a and CNR are part of a negative feedback loop in the regulation of ripening. Moreover, we demonstrated that CNR binds to the promoter of AP2a in vitro.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Molecular Biology, Wageningen University, 6700 AP Wageningen, The Netherlands
| | - Faye M. Rosin
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
| | | | - Violeta Parapunova
- Laboratory of Molecular Biology, Wageningen University, 6700 AP Wageningen, The Netherlands
| | - Phuc T. Do
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Paul D. Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
| | - Charles Baxter
- Syngenta Seeds, Jealotts Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Gerco C. Angenent
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| | - Ruud A. de Maagd
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
134
|
Pérez-España VH, Sánchez-León N, Vielle-Calzada JP. CYP85A1 is required for the initiation of female gametogenesis in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:321-6. [PMID: 21364326 PMCID: PMC3142408 DOI: 10.4161/psb.6.3.13206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are steroid-like hormones essential for plant growth and development. The most active forms of brassinosteroids are Brassinolide (BL) and Castasterone (CS), which are catalyzed by members of the CYP85A family of cytochrome P450 monooxygenases. In Arabidopsis thaliana there are two CYP85A gene members: CYP85A1 and CYP85A2. Unlike CYP85A1, CYP85A2 mediates the conversion of CS to BL. In contrast to mutations in CYP85A2 that result in severe dwarfism, cyp85a1 mutants do not show any obvious morphological phenotype during vegetative or floral development. By analyzing large-scale transcriptional activity in the ovule of Arabidopsis thaliana (Arabidopsis), we determined that CYP85A1 is abundantly expressed in wild-type but not in sporocyteless (spl) ovules lacking a female gametophyte. Insertional T-DNA lines defective in the activity of CYP85A1 exhibit a semi-sterile phenotype, suggesting a role for the corresponding enzyme acting at the gametophytic level. The CYP85A1 mRNA is localized in the female gametophyte and its neighboring sporophytic cells; however, translational fusions of the CYP85A1 promoter to uidA (GUS) showed GUS expression restricted to the female gametophyte, suggesting that within the ovule the corresponding protein is mostly active in gametophytic cells. A cytological analysis of heterozygous cyp85a1/+ individuals showed that close to 50% of female gametophytes are arrested before the first nuclear mitotic division of the haploid functional megaspore. Our results indicate that BR biosynthesis is required for the initiation of megagametogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Victor Hugo Pérez-España
- Grupo de Desarrollo Reproductivo y Apomixis, Departamento de Ingeniería Genética y Laboratorio Nacional de Genómica para Biodiversidad, CINVESTAV Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, Mexico
| | | | | |
Collapse
|
135
|
Kaufmann K, Smaczniak C, de Vries S, Angenent GC, Karlova R. Proteomics insights into plant signaling and development. Proteomics 2011; 11:744-55. [DOI: 10.1002/pmic.201000418] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 12/11/2022]
|
136
|
Hink MA, de Vries SC, Visser AJWG. Fluorescence fluctuation analysis of receptor kinase dimerization. Methods Mol Biol 2011; 779:199-215. [PMID: 21837568 DOI: 10.1007/978-1-61779-264-9_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Receptor kinases are essential for the cellular perception of signals. The classical model for activation of the receptor kinase involves dimerization, induced by the binding of the ligand. The mechanisms by which plant receptors transduce signals across the cell surface are largely unknown but plant receptors seem to dimerize as well. In this chapter, we describe two fluorescence fluctuation techniques, fluorescence cross-correlation spectroscopy and photon counting histogram analysis, to study the oligomerization state of receptor kinases in living plant cells in a quantitative manner.
Collapse
Affiliation(s)
- Mark A Hink
- Department of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy (LCAM), University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
137
|
Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:317-43. [PMID: 21663438 DOI: 10.1146/annurev-phyto-073009-114447] [Citation(s) in RCA: 1083] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Until recently, most studies on the role of hormones in plant-pathogen interactions focused on salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). It is now clear that pathogen-induced modulation of signaling via other hormones contributes to virulence. A picture is emerging of complex crosstalk and induced hormonal changes that modulate disease and resistance, with outcomes dependent on pathogen lifestyles and the genetic constitution of the host. Recent progress has revealed intriguing similarities between hormone signaling mechanisms, with gene induction responses often achieved by derepression. Here, we report on recent advances, updating current knowledge on classical defense hormones SA, JA, and ET, and the roles of auxin, abscisic acid (ABA), cytokinins (CKs), and brassinosteroids in molding plant-pathogen interactions. We highlight an emerging theme that positive and negative regulators of these disparate hormone signaling pathways are crucial regulatory targets of hormonal crosstalk in disease and defense.
Collapse
|
138
|
Matsubayashi Y. Small post-translationally modified Peptide signals in Arabidopsis. THE ARABIDOPSIS BOOK 2011; 9:e0150. [PMID: 22303274 PMCID: PMC3268502 DOI: 10.1199/tab.0150] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent biochemical, genetic and bioinformatic studies have demonstrated that peptide signaling plays a greater than anticipated role in various aspects of plant growth and development. More than a dozen secreted peptides are now recognized as important signals that mediate cell-to-cell communication. Secreted peptide signals often undergo post-translational modification and proteolytic processing, which are important for their function. Such "small post-translationally modified peptide signals" constitute one of the largest groups of peptide signals in plants. In parallel with the discovery of peptide signals, specific receptors for such peptides were identified as being membrane-localized receptor kinases, the largest family of receptor-like molecules in plants. These findings illustrate the critical roles of small peptide ligand-receptor pairs in plant growth and development. This review outlines recent research into secreted peptide signals in plants by focusing on small post-translationally modified peptides.
Collapse
Affiliation(s)
- Yoshikatsu Matsubayashi
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585 Aichi, Japan
- Address correspondence to
| |
Collapse
|
139
|
Jaspert N, Throm C, Oecking C. Arabidopsis 14-3-3 proteins: fascinating and less fascinating aspects. FRONTIERS IN PLANT SCIENCE 2011; 2:96. [PMID: 22639620 PMCID: PMC3355631 DOI: 10.3389/fpls.2011.00096] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/24/2011] [Indexed: 05/18/2023]
Abstract
14-3-3 Dimers are well known to interact with diverse target proteins throughout eukaryotes. Most notably, association of 14-3-3s commonly requires phosphorylation of a serine or threonine residue within a specific sequence motif of the client protein. Studies with a focus on individual target proteins have unequivocally demonstrated 14-3-3s to be the crucial factors modifying the client's activity state upon phosphorylation and, thus, finishing the job initiated by a kinase. In this respect, a recent in-depth analysis of the rice transcription factor FLOWERING LOCUS D1 (OsFD1) revealed 14-3-3s to be essential players in floral induction. Such fascinating discoveries, however, can often be ascribed to the random identification of 14-3-3 as an interaction partner of the favorite protein. In contrast, our understanding of 14-3-3 function in higher organisms is frustratingly limited, mainly due to an overwhelming spectrum of putative targets in combination with the existence of a multigene 14-3-3 family. In this review we will discuss our current understanding of the function of plant 14-3-3 proteins, taking into account recent surveys of the Arabidopsis 14-3-3 interactome.
Collapse
Affiliation(s)
- Nina Jaspert
- Center for Plant Molecular Biology, University of TübingenTübingen, Germany
| | - Christian Throm
- Center for Plant Molecular Biology, University of TübingenTübingen, Germany
| | - Claudia Oecking
- Center for Plant Molecular Biology, University of TübingenTübingen, Germany
- *Correspondence: Claudia Oecking, Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany. e-mail:
| |
Collapse
|
140
|
Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl Acad Sci U S A 2010; 107:17827-32. [PMID: 20876109 DOI: 10.1073/pnas.0915064107] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BAK1 is a leucine-rich repeat receptor-like kinase that functions as a coreceptor with the brassinosteroid (BR) receptor BRI1 and the flagellin receptor FLS2, and as a negative regulator of programmed cell death. BAK1 has been shown to autophosphorylate on numerous serine/threonine sites in vitro as well as to transphosphorylate associated receptor kinases both in vitro and in planta. In the present study we identify Tyr-610 in the carboxyl-terminal domain of BAK1 as a major site of autophosphorylation that is brassinolide-induced in vivo and requires a kinase-active BAK1. Expression of BAK1(Y610F)-Flag in transgenic plants lacking the endogenous bak1 and its functional paralogue, bkk1, produced plants that were viable but extremely small and generally resembled BR signaling mutants, whereas an acidic substitution for Tyr-610 to mimic phosphorylation restored normal growth. Several lines of evidence support the notion that BR signaling is impaired in the BAK1(Y610F)-Flag plants, and are consistent with the recently proposed sequential transphosphorylation model for BRI1/BAK1 interaction and activation. In contrast, the FLS2-mediated inhibition of seedling growth by the flg22 elicitor occurred normally in the Y610F-directed mutant. However, expression of many defense genes was dramatically reduced in BAK1(Y610F) plants and the nonpathogenic hrpA mutant of Pseudomonas syringae was able to grow rapidly in the mutant. These results indicate that phosphorylation of Tyr-610 is required for some but not all functions of BAK1, and adds significantly to the emerging notion that tyrosine phosphorylation could play an important role in plant receptor kinase signaling.
Collapse
|
141
|
Santos AA, Lopes KVG, Apfata JAC, Fontes EPB. NSP-interacting kinase, NIK: a transducer of plant defence signalling. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3839-45. [PMID: 20624762 DOI: 10.1093/jxb/erq219] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The NSP-interacting kinase, NIK, belongs to the five leucine-rich repeats-containing receptor-like serine/threonine kinase subfamily that includes members involved in plant development and defence. NIK was first identified by its capacity to interact with the geminivirus nuclear shuttle protein (NSP) and has been strongly associated with plant defence against geminivirus. Recent studies corroborate its function in transducing a defence signal against virus infection and describe components of the NIK-mediated antiviral signalling pathway. This mini-review describes the role of NIK as a transducer of a novel layer of plant innate defence, presents new data on NIK function, and discusses its possible involvement in plant development.
Collapse
Affiliation(s)
- Anésia A Santos
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | | | | | | |
Collapse
|
142
|
Organogenic nodule formation in hop: a tool to study morphogenesis in plants with biotechnological and medicinal applications. J Biomed Biotechnol 2010; 2010. [PMID: 20811599 PMCID: PMC2929504 DOI: 10.1155/2010/583691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 06/14/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022] Open
Abstract
The usage of Humulus lupulus for brewing increased the demand for high-quality plant material. Simultaneously, hop has been used in traditional medicine and recently recognized with anticancer and anti-infective properties. Tissue culture techniques have been reported for a wide range of species, and open the prospect for propagation of disease-free, genetically uniform and massive amounts of plants in vitro. Moreover, the development of large-scale culture methods using bioreactors enables the industrial production of secondary metabolites.
Reliable and efficient tissue culture protocol for shoot regeneration through organogenic nodule formation was established for hop. The present review describes the histological, and biochemical changes occurring during this morphogenic process, together with an analysis of transcriptional and metabolic profiles. We also discuss the existence of common molecular factors among three different morphogenic processes: organogenic nodules and somatic embryogenesis, which strictly speaking depend exclusively on intrinsic developmental reprogramming, and legume nitrogen-fixing root nodules, which arises in response to symbiosis. The review of the key factors that participate in hop nodule organogenesis and the comparison with other morphogenic processes may have merit as a study presenting recent advances in complex molecular networks occurring during morphogenesis and together, these provide a rich framework for biotechnology applications.
Collapse
|
143
|
Lewis MW, Leslie ME, Fulcher EH, Darnielle L, Healy P, Youn JY, Liljegren SJ. The SERK1 receptor-like kinase regulates organ separation in Arabidopsis flowers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:817-28. [PMID: 20230490 PMCID: PMC2884084 DOI: 10.1111/j.1365-313x.2010.04194.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Through a sensitized screen for novel components of pathways regulating organ separation in Arabidopsis flowers, we have found that the leucine-rich repeat receptor-like kinase SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) acts as a negative regulator of abscission. Mutations in SERK1 dominantly rescue abscission in flowers without functional NEVERSHED (NEV), an ADP-ribosylation factor GTPase-activating protein required for floral organ shedding. We previously reported that the organization of the Golgi apparatus and location of the trans-Golgi network (TGN) are altered in nev mutant flowers. Disruption of SERK1 restores Golgi structure and the close association of the TGN in nev flowers, suggesting that defects in these organelles may be responsible for the block in abscission. We have also found that the abscission zones of nev serk1 flowers are enlarged compared to wild-type. A similar phenotype was previously observed in plants constitutively expressing a putative ligand required for organ separation, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), suggesting that signalling through IDA and its proposed receptors, HAESA and HAESA-LIKE2, may be deregulated in nev serk1 abscission zone cells. Our studies indicate that in addition to its previously characterized roles in stamen development and brassinosteroid perception, SERK1 plays a unique role in modulating the loss of cell adhesion that occurs during organ abscission.
Collapse
Affiliation(s)
- Michael W. Lewis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Michelle E. Leslie
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Emilee H. Fulcher
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Lalitree Darnielle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Patrick Healy
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Ji-Young Youn
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Sarah J. Liljegren
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
144
|
Leslie ME, Lewis MW, Youn JY, Daniels MJ, Liljegren SJ. The EVERSHED receptor-like kinase modulates floral organ shedding in Arabidopsis. Development 2010; 137:467-76. [PMID: 20081191 DOI: 10.1242/dev.041335] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plant cell signaling triggers the abscission of entire organs, such as fruit, leaves and flowers. Previously, we characterized an ADP-ribosylation factor GTPase-activating protein, NEVERSHED (NEV), that regulates membrane trafficking and is essential for floral organ shedding in Arabidopsis. Through a screen for mutations that restore organ separation in nev flowers, we have identified a leucine-rich repeat receptor-like kinase, EVERSHED (EVR), that functions as an inhibitor of abscission. Defects in the Golgi structure and location of the trans-Golgi network in nev abscission zone cells are rescued by a mutation in EVR, suggesting that EVR might regulate membrane trafficking during abscission. In addition to shedding their floral organs prematurely, nev evr flowers show enlarged abscission zones. A similar phenotype was reported for plants ectopically expressing INFLORESCENCE DEFICIENT IN ABSCISSION, a predicted signaling ligand for the HAESA/HAESA-LIKE2 receptor-like kinases, indicating that this signaling pathway may be constitutively active in nev evr flowers. We present a model in which EVR modulates the timing and region of abscission by promoting the internalization of other receptor-like kinases from the plasma membrane.
Collapse
Affiliation(s)
- Michelle E Leslie
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
145
|
Jeong YJ, Shang Y, Kim BH, Kim SY, Song JH, Lee JS, Lee MM, Li J, Nam KH. BAK7 displays unequal genetic redundancy with BAK1 in brassinosteroid signaling and early senescence in Arabidopsis. Mol Cells 2010; 29:259-66. [PMID: 20108170 DOI: 10.1007/s10059-010-0024-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/13/2009] [Accepted: 11/18/2009] [Indexed: 10/19/2022] Open
Abstract
BRI1-Associated kinase 1 (BAK1), a five leucine-rich-repeat containing receptor-like serine/threonine kinase, has been shown to have dual functions: mediating brassinosteroid (BR) signaling and acting in the BR-independent plant defense response. Sequence analysis has revealed that BAK1 has two homologs, BAK7 and BAK8. Because BAK8 deviates from the canonical RD kinase motif, we focused on the functional analysis of BAK7. The expression pattern and tissues in which BAK7 appeared partially overlapped with those observed for BAK1. Expression levels of BAK7 increased in the bak1 mutant. Overexpression of BAK7 rescued the bri1 mutant phenotype, indicating that BAK7 can compensate for BAK1 in BR-mediated processes, especially in the absence of BAK1. However, root and hypocotyl elongation patterns of transgenic plants overexpressing BAK1 or BAK7 appeared to be different from the patterns observed in a BRI1 overexpressor. Furthermore, the sensitivity of transgenic plants overexpressing BAK7 to brassinazole, a biosynthetic inhibitor of brassinolide (BL), did not change compared to that of wild-type plants. In addition, we generated transgenic plants expressing BAK7 RNA interference constructs and found severe growth retardation and early senescence in these lines. Taken together, these results suggest that BAK7 is a component of the BR signaling pathway, with varying degrees of genetic redundancy with BAK1, and that it affects plant growth via BL-independent pathways in vivo.
Collapse
Affiliation(s)
- Yu Jeong Jeong
- Division of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Immink RG, Kaufmann K, Angenent GC. The ‘ABC’ of MADS domain protein behaviour and interactions. Semin Cell Dev Biol 2010; 21:87-93. [DOI: 10.1016/j.semcdb.2009.10.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/23/2009] [Indexed: 02/05/2023]
|
147
|
Yang X, Zhang X. Regulation of Somatic Embryogenesis in Higher Plants. CRITICAL REVIEWS IN PLANT SCIENCES 2010; 29:36-57. [PMID: 0 DOI: 10.1080/07352680903436291] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Xiyan Yang
- a National Key Laboratory of Crop Genetic Improvement , Huazhong Agricultural University , Wuhan, Hubei, 430070, P. R. China
| | - Xianlong Zhang
- a National Key Laboratory of Crop Genetic Improvement , Huazhong Agricultural University , Wuhan, Hubei, 430070, P. R. China
| |
Collapse
|
148
|
Kim TW, Wang ZY. Brassinosteroid signal transduction from receptor kinases to transcription factors. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:681-704. [PMID: 20192752 DOI: 10.1146/annurev.arplant.043008.092057] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) are growth-promoting steroid hormones in plants. Genetic studies in Arabidopsis illustrated the essential roles of BRs in a wide range of developmental processes and helped identify many genes involved in BR biosynthesis and signal transduction. Recently, proteomic studies identified missing links. Together, these approaches established the BR signal transduction cascade, which includes BR perception by the BRI1 receptor kinase at the cell surface, activation of BRI1/BAK1 kinase complex by transphosphorylation, subsequent phosphorylation of the BSK kinases, activation of the BSU1 phosphatase, dephosphorylation and inactivation of the BIN2 kinase, and accumulation of unphosphorylated BZR transcription factors in the nucleus. Mass spectrometric analyses are providing detailed information on the phosphorylation events involved in each step of signal relay. Thus, the BR signaling pathway provides a paradigm for understanding receptor kinase-mediated signal transduction as well as tools for the genetic improvement of the productivity of crop plants.
Collapse
Affiliation(s)
- Tae-Wuk Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | | |
Collapse
|
149
|
Santos MO, Aragão FJL. Role of SERK genes in plant environmental response. PLANT SIGNALING & BEHAVIOR 2009; 4:1111-3. [PMID: 20514223 PMCID: PMC2819433 DOI: 10.4161/psb.4.12.9900] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 09/22/2009] [Indexed: 05/08/2023]
Abstract
In plants, cell signaling connects the environmental input to the intracellular responses in plants. Exogenous signals play an important role in cell metabolism leading to growth and defense responses. Some of these stimuli induce anatomical and physiological modifications that are generally modulated by gene expression. SERK belongs to a small family of genes that code for a transmembrane protein involved in signal transduction and that have been strongly associated with somatic embryogenesis and apomixis in a number of plant species. Recent studies corroborate its role in somatic embryogenesis and suggest a broader range of functions in plant response to biotic and abiotic stimuli. This mini-review aims to present new data on SERK and discuss its involvement in plant development as well as in response to environmental stress.
Collapse
Affiliation(s)
- Marcelo O Santos
- Departamento de Biologia, ICB, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | | |
Collapse
|
150
|
Karami O, Aghavaisi B, Mahmoudi Pour A. Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2009; 2:177-90. [PMID: 19763658 PMCID: PMC2763145 DOI: 10.1007/s12154-009-0028-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 08/18/2009] [Accepted: 08/25/2009] [Indexed: 11/30/2022] Open
Abstract
Somatic embryogenesis (SE) is a model system for understanding the physiological, biochemical, and molecular biological events occurring during plant embryo development. Plant somatic cells have the ability to undergo sustained divisions and give rise to an entire organism. This remarkable feature is called plant cell totipotency. SE is a notable illustration of plant totipotency and involves reprogramming of development in somatic cells toward the embryogenic pathway. Plant growth regularities, especially auxins, are key components as their exogenous application recapitulates the embryogenic potential of the mitotically quiescent somatic cells. It has been observed that there are genetic and also physiological factors that trigger in vitro embryogenesis in various types of plant somatic cells. Analysis of the proteome and transcriptome has led to the identification and characterization of certain genes involved in SE. Most of these genes, however, are upregulated only in the late developmental stages, suggesting that they do not play a direct role in the vegetative-to-embryogenic transition. However, the molecular bases of those triggering factors and the genetic and biochemical mechanisms leading to in vitro embryogenesis are still unknown. Here, we describe the plant factors that participate in the vegetative-to-embryogenic transition and discuss their possible roles in this process.
Collapse
Affiliation(s)
- Omid Karami
- Department of Biotechnology, Bu-Ali Sina University, Hamedan, Iran
| | | | | |
Collapse
|