101
|
Krenz B, Jeske H, Kleinow T. The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route. FRONTIERS IN PLANT SCIENCE 2012; 3:291. [PMID: 23293643 PMCID: PMC3530832 DOI: 10.3389/fpls.2012.00291] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/06/2012] [Indexed: 05/20/2023]
Abstract
Stromules are dynamic thin protrusions of membrane envelope from plant cell plastids. Despite considerable progress in understanding the importance of certain cytoskeleton elements and motor proteins for stromule maintenance, their function within the cell has yet to be unraveled. Several viruses cause a remodulation of plastid structures and stromule biogenesis within their host plants. For RNA-viruses these interactions were demonstrated to be relevant to the infection process. An involvement of plastids and stromules is assumed in the DNA-virus life cycle as well, but their functional role needs to be determined. Recent findings support a participation of heat shock cognate 70 kDa protein (cpHSC70-1)-containing stromules induced by a DNA-virus infection (Abutilon mosaic virus, AbMV, Geminiviridae) in intra- and intercellular molecule exchange. The chaperone cpHSC70-1 was shown to interact with the AbMV movement protein (MP). Bimolecular fluorescence complementation confirmed the interaction of cpHSC70-1 and MP, and showed a homo-oligomerization of either protein in planta. The complexes were detected at the cellular margin and co-localized with plastids. In healthy plant tissues cpHSC70-1-oligomers occurred in distinct spots at chloroplasts and in small filaments extending from plastids to the cell periphery. AbMV-infection induced a cpHSC70-1-containing stromule network that exhibits elliptical dilations and transverses whole cells. Silencing of the cpHSC70 gene revealed an impact of cpHSC70 on chloroplast stability and restricted AbMV movement, but not viral DNA accumulation. Based on these data, a model is suggested in which these stromules function in molecule exchange between plastids and other organelles and perhaps other cells. AbMV may utilize cpHSC70-1 for trafficking along plastids and stromules into a neighboring cell or from plastids into the nucleus. Experimental approaches to investigate this hypothesis are discussed.
Collapse
Affiliation(s)
- Björn Krenz
- Plant Pathology and Plant-Microbe Biology, Cornell UniversityIthaca, NY, USA
| | - Holger Jeske
- Molecular Biology and Plant Virology, Institute of Biology, Universität StuttgartStuttgart, Germany
| | - Tatjana Kleinow
- Molecular Biology and Plant Virology, Institute of Biology, Universität StuttgartStuttgart, Germany
| |
Collapse
|
102
|
Ye CM, Kelly V, Payton M, Dickman MB, Verchot J. SGT1 is induced by the potato virus X TGBp3 and enhances virus accumulation in Nicotiana benthamiana. MOLECULAR PLANT 2012; 5:1151-3. [PMID: 22461666 DOI: 10.1093/mp/sss026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
103
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
104
|
Fabro G, Alvarez ME. Loss of compatibility might explain resistance of the Arabidopsis thaliana accession Te-0 to Golovinomyces cichoracearum. BMC PLANT BIOLOGY 2012; 12:143. [PMID: 22883024 PMCID: PMC3546952 DOI: 10.1186/1471-2229-12-143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/03/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND The establishment of compatibility between plants and pathogens requires compliance with various conditions, such as recognition of the right host, suppression of defence mechanisms, and maintenance of an environment allowing pathogen reproduction. To date, most of the plant factors required to sustain compatibility remain unknown, with the few best characterized being those interfering with defence responses. A suitable system to study host compatibility factors is the interaction between Arabidopsis thaliana and the powdery mildew (PM) Golovinomyces cichoracearum. As an obligate biotrophic pathogen, this fungus must establish compatibility in order to perpetuate. In turn, A. thaliana displays natural variation for susceptibility to this invader, with some accessions showing full susceptibility (Col-0), and others monogenic dominant resistance (Kas-1). Interestingly, Te-0, among other accessions, displays recessive partial resistance to this PM. RESULTS In this study, we characterized the interaction of G. cichoracearum with Te-0 plants to investigate the basis of this plant resistance. We found that Te-0's incompatibility was not associated with hyper-activation of host inducible defences. Te-0 plants allowed germination of conidia and development of functional haustoria, but could not support the formation of mature conidiophores. Using a suppressive subtractive hybridization technique, we identified plant genes showing differential expression between resistant Te-0 and susceptible Col-0 plants at the fungal pre-conidiation stage. CONCLUSIONS Te-0 resistance is likely caused by loss of host compatibility and not by stimulation of inducible defences. Conidiophores formation is the main constraint for completion of fungal life cycle in Te-0 plants. The system here described allowed the identification of genes proposed as markers for susceptibility to this PM.
Collapse
Affiliation(s)
- Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba CIQUIBIC, UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba CIQUIBIC, UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
105
|
Wang Y, Zhan Y, Wu C, Gong S, Zhu N, Chen S, Li H. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:93-9. [PMID: 22682568 DOI: 10.1016/j.plantsci.2012.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 05/08/2023]
Abstract
An open reading frame encoding a cysteine protease inhibitor, cystatin was isolated from the buds of sugar beet monosomic addition line M14 (BvM14) using 5'-/3'-RACE method. It encoded a polypeptide of 104 amino acids with conserved G and PW motifs, the consensus phytocystatin sequence LARFAV and the active site QVVAG. The protein showed significant homology to other plant cystatins. BvM14-cystatin was expressed ubiquitously in roots, stems, leaves and flower tissues with relatively high abundance in developing stems and roots. It was found to be localized in the nucleus, cytoplasm and plasma membrane. Recombinant BvM14-cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Salt-stress treatment induced BvM14-cystatin transcript levels in the M14 seedlings. Homozygous Arabidopsis plants over-expressing BvM14-cystatin showed enhanced salt tolerance. Taken together, these data improved understanding of the functions of BvM14-cystatin and highlighted the possibility of employing the cystatin in engineering plants for enhanced salt tolerance.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Amino Acid Sequence
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/physiology
- Base Sequence
- Beta vulgaris/drug effects
- Beta vulgaris/genetics
- Beta vulgaris/physiology
- Cloning, Molecular
- Cystatins/chemistry
- Cystatins/genetics
- Cystatins/metabolism
- Cysteine Proteinase Inhibitors/pharmacology
- DNA, Complementary/genetics
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Molecular Sequence Data
- Organ Specificity/drug effects
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Recombinant Proteins/metabolism
- Salt Tolerance/drug effects
- Salt Tolerance/genetics
- Sequence Analysis, DNA
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Subcellular Fractions/drug effects
- Subcellular Fractions/metabolism
Collapse
Affiliation(s)
- Yuguang Wang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | | | | | | | | | | | | |
Collapse
|
106
|
Lee JH, Yun HS, Kwon C. Molecular communications between plant heat shock responses and disease resistance. Mol Cells 2012; 34:109-16. [PMID: 22710621 PMCID: PMC3887810 DOI: 10.1007/s10059-012-0121-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
As sessile, plants are continuously exposed to potential dangers including various abiotic stresses and pathogen attack. Although most studies focus on plant responses under an ideal condition to a specific stimulus, plants in nature must cope with a variety of stimuli at the same time. This indicates that it is critical for plants to fine-control distinct signaling pathways temporally and spatially for simultaneous and effective responses to various stresses. Global warming is currently a big issue threatening the future of humans. Reponses to high temperature affect many physiological processes in plants including growth and disease resistance, resulting in decrease of crop yield. Although plant heat stress and defense responses share important mediators such as calcium ions and heat shock proteins, it is thought that high temperature generally suppresses plant immunity. We therefore specifically discuss on interactions between plant heat and defense responses in this review hopefully for an integrated understanding of these responses in plants.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan 609-735,
Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 143-701,
Korea
| | - Chian Kwon
- Department of Molecular Biology, Brain Korea 21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701,
Korea
| |
Collapse
|
107
|
Anand A, Rojas CM, Tang Y, Mysore KS. Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation. THE NEW PHYTOLOGIST 2012; 195:203-16. [PMID: 22486382 DOI: 10.1111/j.1469-8137.2012.04133.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
• Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex. • We evaluated the involvement of the host SKP1/culin/F-box (SCF)-E3 ligase complex and its role in plant transformation. Gene silencing, mutant screening and gene expression studies suggested that the Arabidopsis homologs of yeast SKP1 (suppressor of kinetochore protein 1) protein, ASK1 and ASK2, are required for Agrobacterium-mediated plant transformation. • We identified the role for SGT1b (suppressor of the G2 allele of SKP1), an accessory protein that associates with SCF-complex, in plant transformation. We also report the differential expression of many genes that encode F-box motif containing SKP1-interacting proteins (SKIP) upon Agrobacterium infection. • We speculate that these SKIP genes could encode the plant specific F-box proteins that target the T-complex associated proteins for polyubiquitination and subsequent degradation by the 26S proteasome.
Collapse
Affiliation(s)
- Ajith Anand
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA
| | | | | | | |
Collapse
|
108
|
Cleavage and nuclear localization of the rice XA21 immune receptor. Nat Commun 2012; 3:920. [PMID: 22735448 PMCID: PMC3621455 DOI: 10.1038/ncomms1932] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/28/2012] [Indexed: 01/18/2023] Open
Abstract
Plants and animals carry specific receptors that recognize invading pathogens and respond by activating an immune response. The rice XA21 receptor confers broad-spectrum immunity to the Gram-negative bacterial pathogen, Xanthomonas oryzae pv. oryzae upon recognition of a small protein, Ax21, that is conserved in all Xanthomonas species and related genera. Here we demonstrate that XA21 is cleaved to release the intracellular kinase domain and that this intracellular domain carries a functional nuclear localization sequence. Bimolecular fluorescence complementation assays indicate that the XA21 intracellular domain interacts with the OsWRKY62 transcriptional regulator exclusively in the nucleus of rice protoplasts. In vivo cleavage of XA21 and translocalization of the intracellular kinase domain to the nucleus is required for the XA21-mediated immune response. These results suggest a new model for immune receptor function: on receptor recognition of conserved microbial signatures, the associated kinase translocates to the nucleus where it directly interacts with transcriptional regulators. The rice pattern recognition receptor—XA21—confers immunity against the Gram-negative bacterial pathogen, Xanthomonas oryzae pv. oryzae. This study shows that the intracellular kinase domain of XA21 translocates to the nucleus and that this translocation is essential for the XA21-mediated immune response.
Collapse
|
109
|
Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, Inzé D, Peer WA, Murphy AS, Overvoorde PJ, Gray WM. The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:978-90. [PMID: 22348445 PMCID: PMC3481998 DOI: 10.1111/j.1365-313x.2012.04946.x] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plant hormone auxin controls numerous aspects of plant growth and development by regulating the expression of hundreds of genes. SMALL AUXIN UP RNA (SAUR) genes comprise the largest family of auxin-responsive genes, but their function is unknown. Although prior studies have correlated the expression of some SAUR genes with auxin-mediated cell expansion, genetic evidence implicating SAURs in cell expansion has not been reported. The Arabidopsis SAUR19, SAUR20, SAUR21, SAUR22, SAUR23, and SAUR24 (SAUR19-24) genes encode a subgroup of closely related SAUR proteins. We demonstrate that these SAUR proteins are highly unstable in Arabidopsis. However, the addition of an N-terminal GFP or epitope tag dramatically increases the stability of SAUR proteins. Expression of these stabilized SAUR fusion proteins in Arabidopsis confers numerous auxin-related phenotypes indicative of increased and/or unregulated cell expansion, including increased hypocotyl and leaf size, defective apical hook maintenance, and altered tropic responses. Furthermore, seedlings expressing an artificial microRNA targeting multiple members of the SAUR19-24 subfamily exhibit short hypocotyls and reduced leaf size. Together, these findings demonstrate that SAUR19-24 function as positive effectors of cell expansion. This regulation may be achieved through the modulation of auxin transport, as SAUR gain-of-function and loss-of-function seedlings exhibit increased and reduced basipetal indole-3-acetic acid transport, respectively. Consistent with this possibility, SAUR19-24 proteins predominantly localize to the plasma membrane.
Collapse
Affiliation(s)
- Angela K. Spartz
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Sang H. Lee
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Jonathan P. Wenger
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Hironori Itoh
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium
| | - Wendy A. Peer
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Angus S. Murphy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | | | - William M. Gray
- Department of Plant Biology, University of Minnesota, St Paul, MN 55108, USA
- For correspondence ()
| |
Collapse
|
110
|
Yan JJ, Zhang YB, Ding Y. Binding mechanism between Hsp90 and Sgt1 explored by homology modeling and molecular dynamics simulations in rice. J Mol Model 2012; 18:4665-73. [PMID: 22653607 DOI: 10.1007/s00894-012-1464-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 05/11/2012] [Indexed: 01/03/2023]
Abstract
The Hsp90 (for heat shock protein90) and the Sgt1 (for suppressor of the G2 allele of skp1) are widely distributed in animals, yeast, and plants. The former functions as molecular chaperon activating a series of client proteins, the latter functions as an adaptor protein participating in multiple biological processes such as immunity response through interactions with different protein complexes. In the present study, we have constructed a homology model of Hsp90-Sgt1 complex in rice based on a recently resolved structure from barley and Arabidopsis to explore its binding mechanisms and to understand the detailed interaction profile. A total of 20 ns explicit solvent molecular dynamics simulations combined with MM-GBSA computations and virtual alanine scanning were performed for the modeled complex. In the final structure, three strong salt bridges were found between OsHsp90 and OsSgt1, D217(OsHsp90)-K186(OsSgt1), D218(OsHsp90)-K237(OsSgt1) and K161(OsHsp90)-E239(OsSgt1). Besides, residue Y173 of OsSgt1 played a vital role in the interactions with OsHsp90, the detailed interactions were discussed. These results would help us understand the critical features determining the Hsp90-Sgt1 binding process.
Collapse
Affiliation(s)
- Jun-jie Yan
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | |
Collapse
|
111
|
Wiermer M, Cheng YT, Imkampe J, Li M, Wang D, Lipka V, Li X. Putative members of the Arabidopsis Nup107-160 nuclear pore sub-complex contribute to pathogen defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:796-808. [PMID: 22288649 DOI: 10.1111/j.1365-313x.2012.04928.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In eukaryotic cells, transduction of external stimuli into the nucleus to induce transcription and export of mRNAs for translation in the cytoplasm is mediated by nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups). We previously reported that Arabidopsis MOS3, encoding the homolog of vertebrate Nup96, is required for plant immunity and constitutive resistance mediated by the de-regulated Toll interleukin 1 receptor/nucleotide-binding/leucine-rich repeat (TNL)-type R gene snc1. In vertebrates, Nup96 is a component of the conserved Nup107-160 nuclear pore sub-complex, and implicated in immunity-related mRNA export. Here, we used a reverse genetics approach to examine the requirement for additional subunits of the predicted Arabidopsis Nup107-160 complex in plant immunity. We show that, among eight putative complex members, beside MOS3, only plants with defects in Nup160 or Seh1 are impaired in basal resistance. Constitutive resistance in the snc1 mutant and immunity mediated by TNL-type R genes also depend on functional Nup160 and have a partial requirement for Seh1. Conversely, resistance conferred by coiled coil-type immune receptors operates largely independently of both genes, demonstrating specific contributions to plant defense signaling. Our functional analysis further revealed that defects in nup160 and seh1 result in nuclear accumulation of poly(A) mRNA, and, in the case of nup160, considerable depletion of EDS1, a key positive regulator of basal and TNL-triggered resistance. These findings suggest that Nup160 is required for nuclear mRNA export and full expression of EDS1-conditioned resistance pathways in Arabidopsis.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Arabidopsis/genetics
- Arabidopsis/immunology
- Arabidopsis/microbiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cytoplasm/genetics
- Cytoplasm/metabolism
- DNA, Plant/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Resistance
- Gene Expression Regulation, Plant
- Genes, Plant
- Nuclear Pore/genetics
- Nuclear Pore/metabolism
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/metabolism
- Oomycetes/immunology
- Oomycetes/pathogenicity
- Plant Diseases/immunology
- Plant Diseases/microbiology
- Plant Immunity
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Poly A/genetics
- Poly A/metabolism
- RNA Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Reverse Genetics/methods
- Signal Transduction
Collapse
Affiliation(s)
- Marcel Wiermer
- Michael Smith Laboratories, Room 301, 2185 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | | | | | | | | | | | | |
Collapse
|
112
|
Sturbois B, Dubrana-Ourabah MP, Gombert J, Lasseur B, Macquet A, Faure C, Bendahmane A, Baurès I, Candresse T. Identification and characterization of tomato mutants affected in the Rx-mediated resistance to PVX isolates. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:341-54. [PMID: 22088194 DOI: 10.1094/mpmi-07-11-0181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Five tomato mutants affected in the Rx-mediated resistance against Potato virus X (PVX) were identified by screening a mutagenized population derived from a transgenic, Rx1-expressing 'Micro-Tom' line. Contrary to their parental line, they failed to develop lethal systemic necrosis upon infection with the virulent PVX-KH2 isolate. Sequence analysis and quantitative reverse-transcription polymerase chain reaction experiments indicated that the mutants are not affected in the Rx1 transgene or in the Hsp90, RanGap1 and RanGap2, Rar1 and Sgt1 genes. Inoculation with the PVX-CP4 avirulent isolate demonstrated that the Rx1 resistance was still effective in the mutants. In contrast, the virulent PVX-KH2 isolate accumulation was readily detectable in all mutants, which could further be separated in two groups depending on their ability to restrict the accumulation of PVX-RR, a mutant affected at two key positions for Rx1 elicitor activity. Finally, transient expression of the viral capsid protein elicitor indicated that the various mutants have retained the ability to mount an Rx1-mediated hypersensitive response. Taken together, the results obtained are consistent with a modification of the specificity or intensity of the Rx1-mediated response. The five Micro-Tom mutants should provide very valuable resources for the identification of novel tomato genes affecting the functioning of the Rx gene.
Collapse
Affiliation(s)
- Bénédicte Sturbois
- URGV, Unité de Recherche en Génomique Végétale, Université d'Evry d'Essonne, INRA, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
An C, Mou Z. Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. PLoS One 2012; 7:e31130. [PMID: 22299054 PMCID: PMC3267768 DOI: 10.1371/journal.pone.0031130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
114
|
Prus W, Zabka M, Bieganowski P, Filipek A. Nuclear translocation of Sgt1 depends on its phosphorylation state. Int J Biochem Cell Biol 2011; 43:1747-53. [DOI: 10.1016/j.biocel.2011.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/26/2011] [Accepted: 08/09/2011] [Indexed: 11/27/2022]
|
115
|
Fellerer C, Schweiger R, Schöngruber K, Soll J, Schwenkert S. Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized chloroplast preproteins of Arabidopsis. MOLECULAR PLANT 2011; 4:1133-45. [PMID: 21596689 DOI: 10.1093/mp/ssr037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Most chloroplast and mitochondrial proteins are synthesized in the cytosol of the plant cell and have to be imported into the organelles post-translationally. Molecular chaperones play an important role in preventing protein aggregation of freshly translated preproteins and assist in maintaining the preproteins in an import competent state. Preproteins can associate with HSP70, HSP90, and 14-3-3 proteins in the cytosol. In this study, we analyzed a large set of wheat germ-translated chloroplast preproteins with respect to their chaperone binding. Our results demonstrate that the formation of distinct 14-3-3 or HSP90 containing preprotein complexes is a common feature in post-translational protein transport in addition to preproteins that seem to interact solely with HSP70. We were able to identify a diverse and extensive class of preproteins as HSP90 substrates, thus providing a tool for the investigation of HSP90 client protein association. The analyses of chimeric HSP90 and 14-3-3 binding preproteins with exchanged transit peptides indicate an involvement of both the transit peptide and the mature part of the proteins, in HSP90 binding. We identified two partner components of the HSP90 cycle, which were present in the preprotein containing high-molecular-weight complexes, the HSP70/HSP90 organizing protein HOP, as well as the immunophilin FKBP73. The results establish chloroplast preproteins as a general class of HSP90 client proteins in plants using HOP and FKBP as novel cochaperones.
Collapse
Affiliation(s)
- Christine Fellerer
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
116
|
Kadota Y, Shirasu K. The HSP90 complex of plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:689-97. [PMID: 22001401 DOI: 10.1016/j.bbamcr.2011.09.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 01/07/2023]
Abstract
Heat shock protein 90 (HSP90) is a highly conserved and essential molecular chaperone involved in maturation and activation of signaling proteins in eukaryotes. HSP90 operates as a dimer in a conformational cycle driven by ATP binding and hydrolysis. HSP90 often functions together with co-chaperones that regulate the conformational cycle and/or load a substrate "client" protein onto HSP90. In plants, immune sensing NLR (nucleotide-binding domain and leucine-rich repeat containing) proteins are among the few known client proteins of HSP90. In the process of chaperoning NLR proteins, co-chaperones, RAR1 and SGT1 function together with HSP90. Recent structural and functional analyses indicate that RAR1 dynamically controls conformational changes of the HSP90 dimer, allowing SGT1 to bridge the interaction between NLR proteins and HSP90. Here, we discuss the regulation of NLR proteins by HSP90 upon interaction with RAR1 and SGT1, emphasizing the recent progress in our understanding of the structure and function of the complex. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
117
|
Meldau S, Baldwin IT, Wu J. For security and stability: SGT1 in plant defense and development. PLANT SIGNALING & BEHAVIOR 2011; 6:1479-82. [PMID: 21897126 PMCID: PMC3256375 DOI: 10.4161/psb.6.10.17708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
SGT1 (suppressor of G-two allele of SKP1) is highly conserved among all eukaryotes. In plants, SGT1 interacts with various proteins, including molecular chaperones (HSP70 and HSP90) and certain SCF ubiquitin ligases, and hence SGT1 likely functions in protein folding and stability. Since these protein complexes are involved in many aspects of plant biology, plants with a defective SGT1 display a plethora of phenotypic alterations. In this review we highlight the interaction between SGT1 with other protein complexes and summarize the function of SGT1 in plant defense responses and development, including the recent advancements in the understanding of the role of SGT1 in jasmonic acid (JA) biosynthesis and signaling.
Collapse
Affiliation(s)
- Stefan Meldau
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|
118
|
Response to biotic and oxidative stress in Arabidopsis thaliana: Analysis of variably phosphorylated proteins. J Proteomics 2011; 74:1934-49. [DOI: 10.1016/j.jprot.2011.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/29/2011] [Accepted: 05/09/2011] [Indexed: 12/11/2022]
|
119
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Elmore JM, Lin ZJD, Coaker G. Plant NB-LRR signaling: upstreams and downstreams. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:365-71. [PMID: 21459033 PMCID: PMC3155621 DOI: 10.1016/j.pbi.2011.03.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/19/2023]
Abstract
Plant disease resistance proteins commonly belong to the nucleotide binding-leucine rich repeat (NB-LRR) protein family. These specialized immune proteins mediate recognition of diverse pathogen-derived effector proteins and initiate potent defense responses. NB-LRRs exhibit a multidomain architecture and each domain appears to have discrete functions depending on the stage of NB-LRR signaling. Novel proteins that were found to interact with the core HSP90 chaperone complex regulate accumulation and activation of NB-LRR immune receptors. Recent studies have also advanced our understanding of how accessory proteins contribute to NB-LRR activation. The dynamic nature of NB-LRR localization to different subcellular compartments before and after activation suggests that NB-LRRs may activate immune responses in multiple parts of the cell. In this review we highlight recent advances in understanding NB-LRR function.
Collapse
Affiliation(s)
| | | | - Gitta Coaker
- CORRESPONDING AUTHOR: Gitta Coaker, , Phone: 530-752-6541, Fax: 530-752-5674, Department of Plant Pathology, 254 Hutchison Hall, University of California, Davis, CA, 95616
| |
Collapse
|
121
|
Lozano-Durán R, Rosas-Díaz T, Luna AP, Bejarano ER. Identification of host genes involved in geminivirus infection using a reverse genetics approach. PLoS One 2011; 6:e22383. [PMID: 21818318 PMCID: PMC3144222 DOI: 10.1371/journal.pone.0022383] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 06/20/2011] [Indexed: 12/17/2022] Open
Abstract
Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Tábata Rosas-Díaz
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Ana P. Luna
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Eduardo R. Bejarano
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| |
Collapse
|
122
|
Clément M, Leonhardt N, Droillard MJ, Reiter I, Montillet JL, Genty B, Laurière C, Nussaume L, Noël LD. The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1481-92. [PMID: 21586649 PMCID: PMC3135925 DOI: 10.1104/pp.111.174425] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/17/2011] [Indexed: 05/20/2023]
Abstract
Cytosolic/nuclear molecular chaperones of the heat shock protein families HSP90 and HSC70 are conserved and essential proteins in eukaryotes. These proteins have essentially been implicated in the innate immunity and abiotic stress tolerance in higher plants. Here, we demonstrate that both chaperones are recruited in Arabidopsis (Arabidopsis thaliana) for stomatal closure induced by several environmental signals. Plants overexpressing HSC70-1 or with reduced HSP90.2 activity are compromised in the dark-, CO(2)-, flagellin 22 peptide-, and abscisic acid (ABA)-induced stomatal closure. HSC70-1 and HSP90 proteins are needed to establish basal expression levels of several ABA-responsive genes, suggesting that these chaperones might also be involved in ABA signaling events. Plants overexpressing HSC70-1 or with reduced HSP90.2 activity are hypersensitive to ABA in seed germination assays, suggesting that several chaperone complexes with distinct substrates might tune tissue-specific responses to ABA and the other biotic and abiotic stimuli studied. This study demonstrates that the HSC70/HSP90 machinery is important for stomatal closure and serves essential functions in plants to integrate signals from their biotic and abiotic environments.
Collapse
|
123
|
Jungkunz I, Link K, Vogel F, Voll LM, Sonnewald S, Sonnewald U. AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:983-95. [PMID: 21418353 DOI: 10.1111/j.1365-313x.2011.04558.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arabidopsis thaliana contains 18 genes encoding Hsp70s. This heat shock protein superfamily is divided into two sub-families: DnaK and Hsp110/SSE. In order to functionally characterize members of the Hsp70 superfamily, loss-of-function mutants with reduced cytosolic Hsp70 expression were studied. AtHsp70-1 and AtHsp70-2 are constitutively expressed and represent the major cytosolic Hsp70 isoforms under ambient conditions. Analysis of single and double mutants did not reveal any difference compared to wild-type controls. In yeast, SSE protein has been shown to act as a nucleotide exchange factor, essential for Hsp70 function. To test whether members of the Hsp110/SSE sub-family serve essential functions in plants, two members of the sub-family, AtHsp70-14 and AtHsp70-15, were analysed. Both genes are highly homologous and constitutively expressed. Deficiency of AtHsp70-15 but not of AtHsp70-14 led to severe growth retardation. AtHsp70-15-deficient plants were smaller than wild-type and exhibited a slightly different leaf shape. Stomatal closure under ambient conditions and in response to ABA was impaired in the AtHsp70-15 transgenic plants, but ABA-dependent inhibition of germination was not affected. Heat treatment of AtHsp70-15-deficient plants resulted in drastically increased mortality, indicating that AtHsp70-15 plays an essential role during normal growth and in the heat response of Arabidopsis plants. AtHsp70-15-deficient plants are more tolerant to infection by turnip mosaic virus. Comparative transcriptome analysis revealed that AtHsp70-15-deficient plants display a constitutive stress response similar to the cytosolic protein response. Based on these results, AtHsp70-15 is likely to be a key factor in proper folding of cytosolic proteins, and may function as nucleotide exchange factor as proposed for yeast.
Collapse
Affiliation(s)
- Isabel Jungkunz
- Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
124
|
Kim TH, Hauser F, Ha T, Xue S, Böhmer M, Nishimura N, Munemasa S, Hubbard K, Peine N, Lee BH, Lee S, Robert N, Parker JE, Schroeder JI. Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Curr Biol 2011; 21:990-7. [PMID: 21620700 DOI: 10.1016/j.cub.2011.04.045] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 03/01/2011] [Accepted: 04/27/2011] [Indexed: 11/18/2022]
Abstract
Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen-resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM-and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16, and NPR1 are not necessary. Although DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA activation of SnRK2 kinases, it disrupts cytosolic Ca(2+) signaling and downstream anion channel activation in a PAD4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and that this occurs at the level of Ca(2+) signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.
Collapse
Affiliation(s)
- Tae-Houn Kim
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M, Gonzalez E, Paz-Ares J, Nussaume L. Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. THE PLANT CELL 2011; 23:1523-35. [PMID: 21521698 PMCID: PMC3101552 DOI: 10.1105/tpc.110.081067] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/15/2011] [Accepted: 04/06/2011] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, the PHOSPHATE TRANSPORTER1 (PHT1) family encodes the high-affinity phosphate transporters. They are transcriptionally induced by phosphate starvation and require PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR (PHF1) to exit the endoplasmic reticulum (ER), indicating intracellular traffic as an additional level of regulation of PHT1 activity. Our study revealed that PHF1 acts on PHT1, upstream of vesicle coat protein COPII formation, and that additional regulatory events occur during PHT1 trafficking and determine its ER exit and plasma membrane stability. Phosphoproteomic and mutagenesis analyses revealed modulation of PHT1;1 ER export by Ser-514 phosphorylation status. Confocal microscopy analysis of root tip cells showed that PHT1;1 is localized to the plasma membrane and is present in intracellular endocytic compartments. More precisely, PHT1;1 was localized to sorting endosomes associated with prevacuolar compartments. Kinetic analysis of PHT1;1 stability and targeting suggested a modulation of PHT1 internalization from the plasma membrane to the endosomes, followed by either subsequent recycling (in low Pi) or vacuolar degradation (in high Pi). For the latter condition, we identified a rapid mechanism that reduces the pool of PHT1 proteins present at the plasma membrane. This mechanism is regulated by the Pi concentration in the medium and appears to be independent of degradation mechanisms potentially regulated by the PHO2 ubiquitin conjugase. We propose a model for differential trafficking of PHT1 to the plasma membrane or vacuole as a function of phosphate concentration.
Collapse
Affiliation(s)
- Vincent Bayle
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie-Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 6191 Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lez-Durance Cedex, France
| | - Jean-François Arrighi
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie-Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 6191 Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lez-Durance Cedex, France
| | - Audrey Creff
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie-Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 6191 Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lez-Durance Cedex, France
| | - Claude Nespoulous
- Laboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique UR1199, Place Viala, F-34060 Montpellier Cedex 1, France
| | - Jérôme Vialaret
- Laboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique UR1199, Place Viala, F-34060 Montpellier Cedex 1, France
| | - Michel Rossignol
- Laboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique UR1199, Place Viala, F-34060 Montpellier Cedex 1, France
| | - Esperanza Gonzalez
- Centro Nacional de Biotecnologia–Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid E-28049, Spain
| | - Javier Paz-Ares
- Centro Nacional de Biotecnologia–Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid E-28049, Spain
| | - Laurent Nussaume
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie-Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 6191 Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lez-Durance Cedex, France
- Address correspondence to
| |
Collapse
|
126
|
Chivasa S, Tomé DFA, Hamilton JM, Slabas AR. Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator. Mol Cell Proteomics 2011; 10:M110.003905. [PMID: 21156838 PMCID: PMC3047153 DOI: 10.1074/mcp.m110.003905] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/24/2010] [Indexed: 12/27/2022] Open
Abstract
Extracellular ATP is an important signal molecule required to cue plant growth and developmental programs, interactions with other organisms, and responses to environmental stimuli. The molecular targets mediating the physiological effects of extracellular ATP in plants have not yet been identified. We developed a well characterized experimental system that depletes Arabidopsis cell suspension culture extracellular ATP via treatment with the cell death-inducing mycotoxin fumonisin B1. This provided a platform for protein profile comparison between extracellular ATP-depleted cells and fumonisin B1-treated cells replenished with exogenous ATP, thus enabling the identification of proteins regulated by extracellular ATP signaling. Using two-dimensional difference in-gel electrophoresis and matrix-assisted laser desorption-time of flight MS analysis of microsomal membrane and total soluble protein fractions, we identified 26 distinct proteins whose gene expression is controlled by the level of extracellular ATP. An additional 48 proteins that responded to fumonisin B1 were unaffected by extracellular ATP levels, confirming that this mycotoxin has physiological effects on Arabidopsis that are independent of its ability to trigger extracellular ATP depletion. Molecular chaperones, cellular redox control enzymes, glycolytic enzymes, and components of the cellular protein degradation machinery were among the extracellular ATP-responsive proteins. A major category of proteins highly regulated by extracellular ATP were components of ATP metabolism enzymes. We selected one of these, the mitochondrial ATP synthase β-subunit, for further analysis using reverse genetics. Plants in which the gene for this protein was knocked out by insertion of a transfer-DNA sequence became resistant to fumonisin B1-induced cell death. Therefore, in addition to its function in mitochondrial oxidative phosphorylation, our study defines a new role for ATP synthase β-subunit as a pro-cell death protein. More significantly, this protein is a novel target for extracellular ATP in its function as a key negative regulator of plant cell death.
Collapse
Affiliation(s)
- Stephen Chivasa
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Daniel F. A. Tomé
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - John M. Hamilton
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Antoni R. Slabas
- From the ‡School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
127
|
Kolodziejek I, Misas-Villamil JC, Kaschani F, Clerc J, Gu C, Krahn D, Niessen S, Verdoes M, Willems LI, Overkleeft HS, Kaiser M, van der Hoorn RA. Proteasome activity imaging and profiling characterizes bacterial effector syringolin A. PLANT PHYSIOLOGY 2011; 155:477-89. [PMID: 21045122 PMCID: PMC3075764 DOI: 10.1104/pp.110.163733] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/01/2010] [Indexed: 05/20/2023]
Abstract
Syringolin A (SylA) is a nonribosomal cyclic peptide produced by the bacterial pathogen Pseudomonas syringae pv syringae that can inhibit the eukaryotic proteasome. The proteasome is a multisubunit proteolytic complex that resides in the nucleus and cytoplasm and contains three subunits with different catalytic activities: β1, β2, and β5. Here, we studied how SylA targets the plant proteasome in living cells using activity-based profiling and imaging. We further developed this technology by introducing new, more selective probes and establishing procedures of noninvasive imaging in living Arabidopsis (Arabidopsis thaliana) cells. These studies showed that SylA preferentially targets β2 and β5 of the plant proteasome in vitro and in vivo. Structure-activity analysis revealed that the dipeptide tail of SylA contributes to β2 specificity and identified a nonreactive SylA derivative that proved essential for imaging experiments. Interestingly, subcellular imaging with probes based on epoxomicin and SylA showed that SylA accumulates in the nucleus of the plant cell and suggests that SylA targets the nuclear proteasome. Furthermore, subcellular fractionation studies showed that SylA labels nuclear and cytoplasmic proteasomes. The selectivity of SylA for the catalytic subunits and subcellular compartments is discussed, and the subunit selectivity is explained by crystallographic data.
Collapse
|
128
|
Uppalapati SR, Ishiga Y, Ryu CM, Ishiga T, Wang K, Noël LD, Parker JE, Mysore KS. SGT1 contributes to coronatine signaling and Pseudomonas syringae pv. tomato disease symptom development in tomato and Arabidopsis. THE NEW PHYTOLOGIST 2011; 189:83-93. [PMID: 20854394 DOI: 10.1111/j.1469-8137.2010.03470.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
• Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) causes an economically important bacterial speck disease on tomato and produces symptoms with necrotic lesions surrounded by chlorosis. The chlorosis is mainly attributed to a jasmonic acid (JA)-isoleucine analogue, coronatine (COR), produced by Pst DC3000. However, the molecular processes underlying lesion development and COR-induced chlorosis are poorly understood. • In this study, we took advantage of a chlorotic phenotype elicited by COR on Nicotiana benthamiana leaves and virus-induced gene silencing (VIGS) as a rapid reverse genetic screening tool and identified a role for SGT1 (suppressor of G2 allele of skp1) in COR-induced chlorosis. • Silencing of SGT1 in tomato resulted in reduction of disease-associated symptoms (cell death and chlorosis), suggesting a molecular connection between COR-induced chlorosis and cell death. In Arabidopsis, AtSGT1b but not AtSGT1a was required for COR responses, including root growth inhibition and Pst DC3000 symptom (water soaked lesion) development. Notably, overexpression of AtSGT1b did not alter Pst DC3000 symptoms or sensitivity to COR. • Taken together, our results demonstrate that SGT1/SGT1b is required for COR-induced chlorosis and subsequent necrotic disease development in tomato and Arabidopsis. SGT1 is therefore a component of the COR/JA-mediated signal transduction pathway.
Collapse
|
129
|
Slootweg E, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, Joosten M, Pomp R, van Schaik C, Dees R, Borst JW, Smant G, Schots A, Bakker J, Goverse A. Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. THE PLANT CELL 2010; 22:4195-215. [PMID: 21177483 PMCID: PMC3027179 DOI: 10.1105/tpc.110.077537] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 10/18/2010] [Accepted: 11/19/2010] [Indexed: 05/18/2023]
Abstract
The Rx1 protein, as many resistance proteins of the nucleotide binding-leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the nucleus and cytoplasm. Manipulating the nucleocytoplasmic distribution of Rx1 or its elicitor revealed that Rx1 is activated in the cytoplasm and cannot be activated in the nucleus. The coiled coil (CC) domain was found to be required for accumulation of Rx1 in the nucleus, whereas the LRR domain promoted the localization in the cytoplasm. Analyses of structural subdomains of the CC domain revealed no autonomous signals responsible for active nuclear import. Fluorescence recovery after photobleaching and nuclear fractionation indicated that the CC domain binds transiently to large complexes in the nucleus. Disruption of the Rx1 resistance function and protein conformation by mutating the ATP binding phosphate binding loop in the NB domain, or by silencing the cochaperone SGT1, impaired the accumulation of Rx1 protein in the nucleus, while Rx1 versions lacking the LRR domain were not affected in this respect. Our results support a model in which interdomain interactions and folding states determine the nucleocytoplasmic distribution of Rx1.
Collapse
Affiliation(s)
- Erik Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Suetsugu N, Takano A, Kohda D, Wada M. Structure and activity of JAC1 J-domain implicate the involvement of the cochaperone activity with HSC70 in chloroplast photorelocation movement. PLANT SIGNALING & BEHAVIOR 2010; 5:1602-6. [PMID: 21139434 PMCID: PMC3115112 DOI: 10.4161/psb.5.12.13915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 05/20/2023]
Abstract
Chloroplast photorelocation movement towards weak light and away from strong light is essential for plants to adapt to the fluctuation of ambient light conditions. In the previous study, we showed that blue light receptor phototropins mediated blue light-induced chloroplast movement in Arabidopsis by regulating short actin filaments localized at the chloroplast periphery (cp-actin filaments) rather than actin cables in the cytoplasm. However, the signaling pathway for the chloroplast photorelocation movement is still unclear. We also identified JAC1 (J-domain protein required for chloroplast accumulation response 1) as an essential component for the accumulation response and dark positioning in Arabidopsis. We recently determined the crystal structure of the J-domain of JAC1. The JAC1 J-domain has a positively charged surface, which forms a putative interface with the Hsc70 chaperone by analogy to that of bovine auxilin. Furthermore, the mutation of the highly conserved HPD motif in the JAC1 J-domain impaired the in vivo activity of JAC1. These data suggest that JAC1 cochaperone activity with HSC70 is essential for chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| | - Akira Takano
- Division of Structural Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka, Japan
| | - Daisuke Kohda
- Division of Structural Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka, Japan
| | - Masamitsu Wada
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| |
Collapse
|
131
|
Tameling WIL, Nooijen C, Ludwig N, Boter M, Slootweg E, Goverse A, Shirasu K, Joosten MHAJ. RanGAP2 mediates nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function. THE PLANT CELL 2010; 22:4176-94. [PMID: 21169509 PMCID: PMC3027175 DOI: 10.1105/tpc.110.077461] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/22/2010] [Accepted: 11/29/2010] [Indexed: 05/18/2023]
Abstract
The potato (Solanum tuberosum) nucleotide binding-leucine-rich repeat immune receptor Rx confers resistance to Potato virus X (PVX) and requires Ran GTPase-activating protein 2 (RanGAP2) for effective immune signaling. Although Rx does not contain a discernible nuclear localization signal, the protein localizes to both the cytoplasm and nucleus in Nicotiana benthamiana. Transient coexpression of Rx and cytoplasmically localized RanGAP2 sequesters Rx in the cytoplasm. This relocation of the immune receptor appeared to be mediated by the physical interaction between Rx and RanGAP2 and was independent of the concomitant increased GAP activity. Coexpression with RanGAP2 also potentiates Rx-mediated immune signaling, leading to a hypersensitive response (HR) and enhanced resistance to PVX. Besides sequestration, RanGAP2 also stabilizes Rx, a process that likely contributes to enhanced defense signaling. Strikingly, coexpression of Rx with the Rx-interacting WPP domain of RanGAP2 fused to a nuclear localization signal leads to hyperaccumulation of both the WPP domain and Rx in the nucleus. As a consequence, both Rx-mediated resistance to PVX and the HR induced by auto-active Rx mutants are significantly suppressed. These data show that a balanced nucleocytoplasmic partitioning of Rx is required for proper regulation of defense signaling. Furthermore, our data indicate that RanGAP2 regulates this partitioning by serving as a cytoplasmic retention factor for Rx.
Collapse
Affiliation(s)
- Wladimir I L Tameling
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Slootweg E, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, Joosten M, Pomp R, van Schaik C, Dees R, Borst JW, Smant G, Schots A, Bakker J, Goverse A. Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. THE PLANT CELL 2010; 22:4195-4215. [PMID: 21177483 DOI: 10.2307/41059420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Rx1 protein, as many resistance proteins of the nucleotide binding-leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the nucleus and cytoplasm. Manipulating the nucleocytoplasmic distribution of Rx1 or its elicitor revealed that Rx1 is activated in the cytoplasm and cannot be activated in the nucleus. The coiled coil (CC) domain was found to be required for accumulation of Rx1 in the nucleus, whereas the LRR domain promoted the localization in the cytoplasm. Analyses of structural subdomains of the CC domain revealed no autonomous signals responsible for active nuclear import. Fluorescence recovery after photobleaching and nuclear fractionation indicated that the CC domain binds transiently to large complexes in the nucleus. Disruption of the Rx1 resistance function and protein conformation by mutating the ATP binding phosphate binding loop in the NB domain, or by silencing the cochaperone SGT1, impaired the accumulation of Rx1 protein in the nucleus, while Rx1 versions lacking the LRR domain were not affected in this respect. Our results support a model in which interdomain interactions and folding states determine the nucleocytoplasmic distribution of Rx1.
Collapse
Affiliation(s)
- Erik Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity. PLoS Pathog 2010; 6:e1001111. [PMID: 20862316 PMCID: PMC2940742 DOI: 10.1371/journal.ppat.1001111] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 08/18/2010] [Indexed: 11/19/2022] Open
Abstract
Plant defense responses need to be tightly regulated to prevent auto-immunity, which is detrimental to growth and development. To identify negative regulators of Resistance (R) protein-mediated resistance, we screened for mutants with constitutive defense responses in the npr1-1 background. Map-based cloning revealed that one of the mutant genes encodes a conserved TPR domain-containing protein previously known as SRFR1 (SUPPRESSOR OF rps4-RLD). The constitutive defense responses in the srfr1 mutants in Col-0 background are suppressed by mutations in SNC1, which encodes a TIR-NB-LRR (Toll Interleukin1 Receptor-Nucleotide Binding-Leu-Rich Repeat) R protein. Yeast two-hybrid screens identified SGT1a and SGT1b as interacting proteins of SRFR1. The interactions between SGT1 and SRFR1 were further confirmed by co-immunoprecipitation analysis. In srfr1 mutants, levels of multiple NB-LRR R proteins including SNC1, RPS2 and RPS4 are increased. Increased accumulation of SNC1 is also observed in the sgt1b mutant. Our data suggest that SRFR1 functions together with SGT1 to negatively regulate R protein accumulation, which is required for preventing auto-activation of plant immunity. The nucleotide-binding domain and leucine-rich repeats-containing (NLR) proteins are structurally conserved immune receptors found in both animals and plants. Correct folding of NLR proteins requires two conserved proteins, SGT1 and HSP90. We showed that another evolutionarily conserved protein, SRFR1, interacts with SGT1 in both yeast two-hybrid assays and co-immunoprecipitation analysis. Loss-of-function mutations in SRFR1 result in constitutive activation of immune responses. The constitutive activation of immune responses in the srfr1 mutants is dependent on the NLR Resistance (R) protein SNC1. In srfr1 mutant plants, levels of multiple R proteins including SNC1, RPS2 and RPS4 are elevated. Consistent with previous findings that SGT1b is involved in the negative regulation of protein levels of certain NLR R proteins, increased accumulation of SNC1 is also observed in the sgt1b mutant. Our data suggest that SRFR1 functions together with SGT1 to negatively regulate NLR R protein accumulation to prevent autoimmunity in plants.
Collapse
|
134
|
Jelenska J, van Hal JA, Greenberg JT. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc Natl Acad Sci U S A 2010; 107:13177-82. [PMID: 20615948 PMCID: PMC2919979 DOI: 10.1073/pnas.0910943107] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Plant heat shock protein Hsp70 is the major target of HopI1, a virulence effector of pathogenic Pseudomonas syringae. Hsp70 is essential for the virulence function of HopI1. HopI1 directly binds Hsp70 through its C-terminal J domain and stimulates Hsp70 ATP hydrolysis activity in vitro. In plants, HopI1 forms large complexes in association with Hsp70 and induces and recruits cytosolic Hsp70 to chloroplasts, the site of HopI1 localization. Deletion of a central P/Q-rich repeat region disrupts HopI1 virulence but not Hsp70 interactions or association with chloroplasts. Thus, HopI1 must not only bind Hsp70 through its J domain, but likely actively affects Hsp70 activity and/or specificity. At high temperature, HopI1 is dispensable for P. syringae pathogenicity, unless excess Hsp70 is provided. A working hypothesis is that Hsp70 has a defense-promoting activity(s) that HopI1 or high temperature can subvert. Enhanced susceptibility of Hsp70-depleted plants to nonpathogenic strains of P. syringae supports a defense-promoting role for Hsp70.
Collapse
Affiliation(s)
- Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jodocus A. van Hal
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
135
|
García AV, Blanvillain-Baufumé S, Huibers RP, Wiermer M, Li G, Gobbato E, Rietz S, Parker JE. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog 2010; 6:e1000970. [PMID: 20617163 PMCID: PMC2895645 DOI: 10.1371/journal.ppat.1000970] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 05/27/2010] [Indexed: 12/25/2022] Open
Abstract
An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR) receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor)-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1). In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES)) or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR)) in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack. Plants have evolved a multilayered innate immune system to recognize and respond to potentially destructive microbes in the environment. Resistance to invasive biotrophic and hemi-biotrophic pathogens often involves transcriptional mobilization of defenses and programmed death of host cells at infection sites. However, these processes disturb normal metabolism and growth and therefore have to be tightly controlled. In this study, we examine resistance signaling events inside Arabidopsis cells after pathogen activation of intracellular immune receptors. We show that the nucleo-cytoplasmic protein EDS1 acts as an important regulator of transcriptional reprogramming in the immune response by allowing the induction and repression of particular defense-related genes. We provide evidence that EDS1 accomplishes its role as a defense signaling ‘hub’ through coordinated activities in the cytoplasm and nucleus. Maintaining a balance between these two EDS1 pools is probably important for resistance and cell death to a range of infectious microbes and to not ‘overshoot’ defense activation which would be detrimental for the plant.
Collapse
Affiliation(s)
- Ana V. García
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Servane Blanvillain-Baufumé
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Robin P. Huibers
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Marcel Wiermer
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Guangyong Li
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Enrico Gobbato
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Steffen Rietz
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
136
|
R proteins as fundamentals of plant innate immunity. Cell Mol Biol Lett 2010; 16:1-24. [PMID: 20585889 PMCID: PMC6275759 DOI: 10.2478/s11658-010-0024-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 06/16/2010] [Indexed: 12/13/2022] Open
Abstract
Plants are attacked by a wide spectrum of pathogens, being the targets of viruses, bacteria, fungi, protozoa, nematodes and insects. Over the course of their evolution, plants have developed numerous defense mechanisms including the chemical and physical barriers that are constitutive elements of plant cell responses locally and/or systemically. However, the modern approach in plant sciences focuses on the evolution and role of plant protein receptors corresponding to specific pathogen effectors. The recognition of an invader's molecules could be in most cases a prerequisite sine qua non for plant survival. Although the predicted three-dimensional structure of plant resistance proteins (R) is based on research on their animal homologs, advanced technologies in molecular biology and bioinformatics tools enable the investigation or prediction of interaction mechanisms for specific receptors with pathogen effectors. Most of the identified R proteins belong to the NBS-LRR family. The presence of other domains (including the TIR domain) apart from NBS and LRR is fundamental for the classification of R proteins into subclasses. Recently discovered additional domains (e.g. WRKY) of R proteins allowed the examination of their localization in plant cells and the role they play in signal transduction during the plant resistance response to biotic stress factors. This review focuses on the current state of knowledge about the NBS-LRR family of plant R proteins: their structure, function and evolution, and the role they play in plant innate immunity.
Collapse
|
137
|
Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T. A plastid-targeted heat shock cognate 70kDa protein interacts with the Abutilon mosaic virus movement protein. Virology 2010; 401:6-17. [PMID: 20193958 DOI: 10.1016/j.virol.2010.02.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 01/16/2010] [Accepted: 02/05/2010] [Indexed: 11/18/2022]
Abstract
The movement protein (MP) of bipartite geminiviruses facilitates cell-to-cell as well as long-distance transport within plants and influences viral pathogenicity. Yeast two-hybrid assays identified a chaperone, the nuclear-encoded and plastid-targeted heat shock cognate 70kDa protein (cpHSC70-1) of Arabidopsis thaliana, as a potential binding partner for the Abutilon mosaic virus (AbMV) MP. In planta, bimolecular fluorescence complementation (BiFC) analysis showed cpHSC70-1/MP complexes and MP homooligomers at the cell periphery and co-localized with chloroplasts. BiFC revealed cpHSC70-1 oligomers associated with chloroplasts, but also distributed at the cellular margin and in filaments arising from plastids reminiscent of stromules. Silencing the cpHSC70 gene of Nicotiana benthamiana using an AbMV DNA A-derived gene silencing vector induced minute white leaf areas, which indicate an effect on chloroplast stability. Although AbMV DNA accumulated within chlorotic spots, a spatial restriction of these occurred, suggesting a functional relevance of the MP-chaperone interaction for viral transport and symptom induction.
Collapse
Affiliation(s)
- Björn Krenz
- Institute of Biology, Department of Molecular Biology and Plant Virology, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
138
|
Gu C, Kolodziejek I, Misas-Villamil J, Shindo T, Colby T, Verdoes M, Richau KH, Schmidt J, Overkleeft HS, van der Hoorn RAL. Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:160-70. [PMID: 20042019 DOI: 10.1111/j.1365-313x.2009.04122.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The proteasome plays essential roles in nearly all biological processes in plant defense and development, yet simple methods for displaying proteasome activities in extracts and living tissues are not available to plant science. Here, we introduce an easy and robust method to simultaneously display the activities of all three catalytic proteasome subunits in plant extracts or living plant tissues. The method is based on a membrane-permeable, small-molecule fluorescent probe that irreversibly reacts with the catalytic site of the proteasome catalytic subunits in an activity-dependent manner. Activities can be quantified from fluorescent protein gels and used to study proteasome activities in vitro and in vivo. We demonstrate that proteasome catalytic subunits can be selectively inhibited by aldehyde-based inhibitors, including the notorious caspase-3 inhibitor DEVD. Furthermore, we show that the proteasome activity, but not its abundance, is significantly increased in Arabidopsis upon treatment with benzothiadiazole (BTH). This upregulation of proteasome activity depends on NPR1, and occurs mostly in the cytoplasm. The simplicity, robustness and versatility of this method will make this method widely applicable in plant science.
Collapse
Affiliation(s)
- Christian Gu
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Kadota Y, Shirasu K, Guerois R. NLR sensors meet at the SGT1–HSP90 crossroad. Trends Biochem Sci 2010; 35:199-207. [DOI: 10.1016/j.tibs.2009.12.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 12/21/2022]
|
140
|
Lipka U, Fuchs R, Kuhns C, Petutschnig E, Lipka V. Live and let die – Arabidopsis nonhost resistance to powdery mildews. Eur J Cell Biol 2010; 89:194-9. [DOI: 10.1016/j.ejcb.2009.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
141
|
Lee S, Lee DW, Lee Y, Mayer U, Stierhof YD, Lee S, Jürgens G, Hwang I. Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. THE PLANT CELL 2009; 21:3984-4001. [PMID: 20028838 PMCID: PMC2814507 DOI: 10.1105/tpc.109.071548] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plastid-targeted proteins pass through the cytosol as unfolded precursors. If proteins accumulate in the cytosol, they can form nonspecific aggregates that cause severe cellular damage. Here, we demonstrate that high levels of plastid precursors are degraded through the ubiquitin-proteasome system (UPS) in Arabidopsis thaliana cells. The cytosolic heat shock protein cognate 70-4 (Hsc70-4) and E3 ligase carboxy terminus of Hsc70-interacting protein (CHIP) were highly induced in plastid protein import2 plants, which had a T-DNA insertion at Toc159 and showed an albino phenotype and a severe defect in protein import into chloroplasts. Hsc70-4 and CHIP together mediated plastid precursor degradation when import-defective chloroplast-targeted reporter proteins were transiently expressed in protoplasts. Hsc70-4 recognized specific sequence motifs in transit peptides and thereby led to precursor degradation through the UPS. CHIP, which interacted with Hsc70-4, functioned as an E3 ligase in the Hsc70-4-mediated protein degradation. The physiological role of Hsc70-4 was confirmed by analyzing Hsc70-4 RNA interference plants in an hsc70-1 mutant background. Plants with lower Hsc70 levels exhibited abnormal embryogenesis, resulting in defective seedlings that displayed high levels of reactive oxygen species and monoubiquitinated Lhcb4 precursors. We propose that Hsc70-4 and CHIP mediate plastid-destined precursor degradation to prevent cytosolic precursor accumulation and thereby play a critical role in embryogenesis.
Collapse
Affiliation(s)
- Sookjin Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Dong Wook Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Yongjik Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Ulrike Mayer
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
| | - York-Dieter Stierhof
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
| | - Sumin Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Gerd Jürgens
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Address correspondence to
| |
Collapse
|
142
|
Caplan JL, Zhu X, Mamillapalli P, Marathe R, Anandalakshmi R, Dinesh-Kumar SP. Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants. Cell Host Microbe 2009; 6:457-69. [PMID: 19917500 PMCID: PMC2784700 DOI: 10.1016/j.chom.2009.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/10/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
Mounting an effective innate immune response against pathogens requires the rapid and global reprogramming of host cellular processes. Here we employed complementary proteomic methods to identify differentially regulated proteins early during a plant's defense response. Besides defense-related proteins, constituents of the largest category of upregulated proteins were cytoplasmic- and ER-residing molecular chaperones. Investigating the significance of upregulated ER chaperones, we find that silencing of ER-resident protein disulfide isomerases NbERp57 and NbP5 and the calreticulins NbCRT2 and NbCRT3 led to partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 were required for the expression of a previously uncharacterized induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for N-mediated hypersensitive response, programmed cell death, and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane-bound or secreted proteins during plant innate immunity.
Collapse
Affiliation(s)
- Jeffrey L. Caplan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Xiaohong Zhu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Padmavathi Mamillapalli
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Rajendra Marathe
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - Radhamani Anandalakshmi
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | - S. P. Dinesh-Kumar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| |
Collapse
|
143
|
Brkljacic J, Zhao Q, Meier I. WPP-domain proteins mimic the activity of the HSC70-1 chaperone in preventing mistargeting of RanGAP1-anchoring protein WIT1. PLANT PHYSIOLOGY 2009; 151:142-54. [PMID: 19617588 PMCID: PMC2736004 DOI: 10.1104/pp.109.143404] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/14/2009] [Indexed: 05/24/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) tryptophan-proline-proline (WPP)-domain proteins, WPP1 and WPP2, are plant-unique, nuclear envelope-associated proteins of unknown function. They have sequence similarity to the nuclear envelope-targeting domain of plant RanGAP1, the GTPase activating protein of the small GTPase Ran. WPP domain-interacting tail-anchored protein 1 (WIT1) and WIT2 are two Arabidopsis proteins containing a coiled-coil domain and a C-terminal predicted transmembrane domain. They are required for RanGAP1 association with the nuclear envelope in root tips. Here, we show that WIT1 also binds WPP1 and WPP2 in planta, we identify the chaperone heat shock cognate protein 70-1 (HSC70-1) as in vivo interaction partner of WPP1 and WPP2, and we show that HSC70-1 interacts in planta with WIT1. WIT1 and green fluorescent protein (GFP)-WIT1 are targeted to the nuclear envelope in Arabidopsis. In contrast, GFP-WIT1 forms large cytoplasmic aggregates when overexpressed transiently in Nicotiana benthamiana leaf epidermis cells. Coexpression of HSC70-1 significantly reduces GFP-WIT1 aggregation and permits association of most GFP-WIT1 with the nuclear envelope. Significantly, WPP1 and WPP2 show the same activity. A WPP1 mutant with reduced affinity for GFP-WIT1 fails to decrease its aggregation. While the WPP-domain proteins act on a region of WIT1 containing the coiled-coil domain, HSC70-1 additionally acts on the C-terminal transmembrane domain. Taken together, our data suggest that both HSC70-1 and the WPP-domain proteins play a role in facilitating WIT1 nuclear envelope targeting, which is, to our knowledge, the first described in planta activity for the WPP-domain proteins.
Collapse
Affiliation(s)
- Jelena Brkljacic
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
144
|
Cheng YT, Germain H, Wiermer M, Bi D, Xu F, García AV, Wirthmueller L, Després C, Parker JE, Zhang Y, Li X. Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. THE PLANT CELL 2009; 21:2503-16. [PMID: 19700630 PMCID: PMC2751965 DOI: 10.1105/tpc.108.064519] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 07/17/2009] [Accepted: 07/31/2009] [Indexed: 05/19/2023]
Abstract
Plant immune responses depend on dynamic signaling events across the nuclear envelope through nuclear pores. Nuclear accumulation of certain resistance (R) proteins and downstream signal transducers are critical for their functions, but it is not understood how these processes are controlled. Here, we report the identification, cloning, and analysis of Arabidopsis thaliana modifier of snc1,7 (mos7-1), a partial loss-of-function mutation that suppresses immune responses conditioned by the autoactivated R protein snc1 (for suppressor of npr1-1, constitutive 1). mos7-1 single mutant plants exhibit defects in basal and R protein-mediated immunity and in systemic acquired resistance but do not display obvious pleiotropic defects in development, salt tolerance, or plant hormone responses. MOS7 is homologous to human and Drosophila melanogaster nucleoporin Nup88 and resides at the nuclear envelope. In animals, Nup88 attenuates nuclear export of activated NF-kappaB transcription factors, resulting in nuclear accumulation of NF-kappaB. Our analysis shows that nuclear accumulation of snc1 and the defense signaling components Enhanced Disease Susceptibility 1 and Nonexpresser of PR genes 1 is significantly reduced in mos7-1 plants, while nuclear retention of other tested proteins is unaffected. The data suggest that specifically modulating the nuclear concentrations of certain defense proteins regulates defense outputs.
Collapse
Affiliation(s)
- Yu Ti Cheng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Wang Y, Bao Z, Zhu Y, Hua J. Analysis of temperature modulation of plant defense against biotrophic microbes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:498-506. [PMID: 19348568 DOI: 10.1094/mpmi-22-5-0498] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant-pathogen interactions are known to be affected by environmental factors including temperature; however, the temperature effects have not been systematically studied in plant disease resistance. Here, we characterized the effects of a moderate increase in temperature on resistance to bacterial pathogen Pseudomonas syringae and two viral elicitors in Arabidopsis thaliana and Nicotiana benthamiana. Both the basal and the resistance (R) gene-mediated defense responses to Pseudomonas syringae are found to be inhibited by a moderately high temperature, and hypersensitive responses induced by R genes against two viruses are also reduced by an increase of temperature. These indicate that temperature modulation of defense responses to biotrophic and hemibiotrophic pathogens might be a general phenomenon. We further investigated the roles of two small signaling molecules, salicylic acid and jasmonic acid, as well as two defense regulators, EDS1 and PAD4, in this temperature modulation. These components, though modulated by temperature or involved in temperature regulation or both, are not themselves determinants of temperature sensitivity in the defense responses analyzed. The inhibition of plant defense response by a moderately high temperature may thus be mediated by other defense signaling components or a combination of multiple factors.
Collapse
Affiliation(s)
- Yi Wang
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
146
|
Cuzick A, Maguire K, Hammond-Kosack KE. Lack of the plant signalling component SGT1b enhances disease resistance to Fusarium culmorum in Arabidopsis buds and flowers. THE NEW PHYTOLOGIST 2009; 181:901-912. [PMID: 19140951 DOI: 10.1111/j.1469-8137.2008.02712.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fusarium culmorum causes ear blight disease on cereal crops resulting in considerable losses to grain yield, quality and safety. This fungus can also infect Arabidopsis floral tissues. In this study, the Arabidopsis floral infection model was used to assess the impact of five defence mutants on disease.Fusarium culmorum was spray inoculated onto the floral tissues of the mutantseds1, lms1, rar1, sgt1a and sgt1b involved in basal and resistance gene-mediated defence to pathogens. Floral disease development was assessed quantitatively.Only the sgt1b mutant exhibited a significantly different interaction phenotype compared with wild-type plants. The buds and flowers were more resistant to infection and developed milder symptoms, but had wild-type levels of deoxynivalenol (DON)mycotoxin. Microscopic studies indicated that to cause disease, F. culmorum requires plant cells in the invaded tissues to be competent to activate both a cell death response and a sustained oxidative burst. The sgt1a mutant exhibited a weak trend towards greater disease resistance in the new silique tissues. This study highlights that the SGT1-mediated signalling cascade(s), which had previously only been demonstrated to be required for Arabidopsis resistance against biotrophic pathogens, is causally involved in F. culmorum disease symptom development.
Collapse
Affiliation(s)
- Alayne Cuzick
- Centre for Sustainable Pest and Disease Management, Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Kerry Maguire
- Centre for Sustainable Pest and Disease Management, Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Kim E Hammond-Kosack
- Centre for Sustainable Pest and Disease Management, Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
147
|
Stuttmann J, Lechner E, Guérois R, Parker JE, Nussaume L, Genschik P, Noël LD. COP9 signalosome- and 26S proteasome-dependent regulation of SCFTIR1 accumulation in Arabidopsis. J Biol Chem 2009; 284:7920-30. [PMID: 19147500 DOI: 10.1074/jbc.m809069200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ubiquitination and proteasome-mediated degradation of proteins are crucial for eukaryotic physiology and development. The largest class of E3 ubiquitin ligases is made up of the cullin-RING ligases (CRLs), which themselves are positively regulated through conjugation of the ubiquitin-like peptide RUB/NEDD8 to cullins. RUB modification is antagonized by the COP9 signalosome (CSN), an evolutionarily conserved eight-subunit complex that is essential in most eukaryotes and cleaves RUB from cullins. The CSN behaves genetically as an activator of CRLs, although it abolishes CRL activity in vitro. This apparent paradox was recently reconciled in different organisms, as the CSN was shown to prevent autocatalytic degradation of several CRL substrate adaptors. We tested for such a mechanism in the model plant Arabidopsis by measuring the impact of a newly identified viable csn2 mutant on the activity and stability of SCF(TIR1), a receptor to the phytohormone auxin and probably the best characterized plant CRL. Our analysis reveals that not only the F-box protein TIR1 but also relevant cullins are destabilized in csn2 and other Arabidopsis csn mutants. These results provide an explanation for the auxin resistance of csn mutants. We further observed in vivo a post-translational modification of TIR1 dependent on the proteasome inhibitor MG-132 and provide evidence for proteasome-mediated degradation of TIR1, CUL1, and ASK1 (Arabidopsis SKP1 homolog). These results are consistent with CSN-dependent protection of Arabidopsis CRLs from autocatalytic degradation, as observed in other eukaryotes, and provide evidence for antagonist roles of the CSN and 26S proteasome in modulating accumulation of the plant CRL SCF(TIR1).
Collapse
Affiliation(s)
- Johannes Stuttmann
- Institut de Biologie Environnementale et Biotechnologie, UMR 6191, CNRS-Commissariat à l'Energie Atomique, UniversitédelaMéditerranée Aix-Marseille II, Centre d'Etudes Nucléaires Cadarache, F-13108 Saint Paul lez Durance Cedex, France
| | | | | | | | | | | | | |
Collapse
|
148
|
Cazalé AC, Clément M, Chiarenza S, Roncato MA, Pochon N, Creff A, Marin E, Leonhardt N, Noël LD. Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2653-64. [PMID: 19443614 DOI: 10.1093/jxb/erp109] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Molecular chaperones of the heat shock cognate 70 kDa (HSC70) family are highly conserved in all living organisms and assist nascent protein folding in normal physiological conditions as well as in biotic and abiotic stress conditions. In the absence of specific inhibitors or viable knockout mutants, cytosolic/nuclear HSC70-1 overexpression (OE) and mutants in the HSC70 co-chaperone SGT1 (suppressor of G(2)/M allele of skp1) were used as genetic tools to identify HSC70/SGT1 functions in Arabidopsis development and abiotic stress responses. HSC70-1 OE caused a reduction in root and shoot meristem activities, thus explaining the dwarfism of those plants. In addition, HSC70-1 OE did not impair auxin-dependent phenotypes, suggesting that SGT1 functions previously identified in auxin signalling are HSC70 independent. While responses to abiotic stimuli such as UV-C exposure, phosphate starvation, or seedling de-etiolation were not perturbed by HSC70-1 OE, it specifically conferred gamma-ray hypersensitivity and tolerance to salt, cadmium (Cd), and arsenic (As). Cd and As perception was not perturbed, but plants overexpressing HSC70-1 accumulated less Cd, thus providing a possible molecular explanation for their tolerance phenotype. In summary, genetic evidence is provided for HSC70-1 involvement in a limited set of physiological processes, illustrating the essential and yet specific functions of this chaperone in development and abiotic stress responses in Arabidopsis.
Collapse
|
149
|
Abstract
The nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins function as immune sensors in both plants and animals. NLR proteins recognize, directly or indirectly, pathogen-derived molecules and trigger immune responses. To function as a sensor, NLR proteins must be correctly folded and maintained in a recognition-competent state in the appropriate cellular location. Upon pathogen recognition, conformational changes and/or translocation of the sensors would activate the downstream immunity signaling pathways. Misfolded or used sensors are a threat to the cell and must be immediately inactivated and discarded to avoid inappropriate activation of downstream pathways. Such maintenance of NLR-type sensors requires the SGT1-HSP90 pair, a chaperone complex that is structurally and functionally conserved in eukaryotes. Deciphering how the chaperone machinery works would facilitate an understanding of the mechanisms of pathogen recognition and signal transduction by NLR proteins in both plants and animals.
Collapse
Affiliation(s)
- Ken Shirasu
- RIKEN Plant Science Center, Yokohama City, Kanagawa 230-0045, Japan.
| |
Collapse
|
150
|
Dueckershoff K, Mueller S, Mueller MJ, Reinders J. Impact of cyclopentenone-oxylipins on the proteome of Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1975-85. [DOI: 10.1016/j.bbapap.2008.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/28/2008] [Accepted: 09/08/2008] [Indexed: 01/02/2023]
|