101
|
Rinne PLH, Paul LK, van der Schoot C. Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus. BMC PLANT BIOLOGY 2018; 18:220. [PMID: 30290771 PMCID: PMC6173867 DOI: 10.1186/s12870-018-1432-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/19/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND The performance and survival of deciduous trees depends on their innate ability to anticipate seasonal change. A key event is the timely production of short photoperiod-induced terminal and axillary buds that are dormant and freezing-tolerant. Some observations suggest that low temperature contributes to terminal bud initiation and dormancy. This is puzzling because low temperatures in the chilling range universally release dormancy. It also raises the broader question if the projected climate instabilities, as well as the northward migration of trees, will affect winter preparations and survival of trees. RESULTS To gauge the response capacity of trees, we exposed juvenile hybrid aspens to a 10-h short photoperiod in combination with different day/night temperature regimes: high (24/24 °C), moderate (18/18 °C), moderate-low (18/12 °C) and low (12/12 °C), and analysed bud development, dormancy establishment, and marker gene expression. We found that low temperature during the bud formation period (pre-dormancy) upregulated dormancy-release genes of the gibberellin (GA) pathway, including the key GA biosynthesis genes GA20oxidase and GA3oxidase, the GA-receptor gene GID1, as well as GA-inducible enzymes of the 1,3-β-glucanase family that degrade callose at plasmodesmal Dormancy Sphincter Complexes. Simultaneously, this pre-dormancy low temperature perturbed the expression of flowering pathway genes, including CO, FT, CENL1, AGL14, LFY and AP1. In brief, pre-dormancy low temperature compromised bud development, dormancy establishment, and potentially vernalization. On the other hand, a high pre-dormancy temperature prevented dormancy establishment and resulted in flushing. CONCLUSIONS The results show that pre-dormancy low temperature represents a form of chilling that antagonizes dormancy establishment. Combined with available field data, this indicates that natural Populus ecotypes have evolved to avoid the adverse effects of high and low temperatures by initiating and completing dormant buds within an approximate temperature-window of 24-12 °C. Global warming and erratic temperature patterns outside this range can therefore endanger the successful propagation of deciduous perennials.
Collapse
Affiliation(s)
- Päivi L. H. Rinne
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432 Aas, Norway
| | - Laju K. Paul
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432 Aas, Norway
| | - Christiaan van der Schoot
- Faculty of Biosciences, Department of Plant Sciences, Norwegian University of Life Sciences, Christian Magnus Falsens vei 18, 1432 Aas, Norway
| |
Collapse
|
102
|
N'guyen GQ, Martin N, Jain M, Lagacé L, Landry CR, Filteau M. A systems biology approach to explore the impact of maple tree dormancy release on sap variation and maple syrup quality. Sci Rep 2018; 8:14658. [PMID: 30279486 PMCID: PMC6168607 DOI: 10.1038/s41598-018-32940-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Maple sap is a complex nutrient matrix collected during spring to produce maple syrup. The characteristics of sap change over the production period and its composition directly impacts syrup quality. This variability could in part be attributed to changes in tree metabolism following dormancy release, but little is known about these changes in deciduous trees. Therefore, understanding the variation in sap composition associated with dormancy release could help pinpoint the causes of some defects in maple syrup. In particular, a defect known as "buddy", is an increasing concern for the industry. This off-flavor appears around the time of bud break, hence its name. To investigate sap variation related to bud break and the buddy defect, we monitored sap variation with respect to a dormancy release index (Sbb) and syrup quality. First, we looked at variation in amino acid content during this period. We observed a shift in amino acid relative proportions associated with dormancy release and found that most of them increase rapidly near the point of bud break, correlating with changes in syrup quality. Second, we identified biological processes that respond to variation in maple sap by performing a competition assay using the barcoded Saccharomyces cerevisiae prototroph deletion collection. This untargeted approach revealed that the organic sulfur content may be responsible for the development of the buddy off-flavor, and that dormancy release is necessary for the appearance of the defect, but other factors such as microbial activity may also be contributing.
Collapse
Affiliation(s)
- Guillaume Quang N'guyen
- Département des Sciences des aliments, Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Québec, G1V 0A6, Canada.,Département de Biologie, Département de Biochimie, Microbiologie et Bio-informatique, PROTEO, Centre de recherche en données massives and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Nathalie Martin
- Centre de recherche, de développement et de transfert technologique acéricole Inc., Saint-Norbert-d'Arthabaska, Québec, G0P 1B0, Canada
| | - Mani Jain
- Département de Biologie, Département de Biochimie, Microbiologie et Bio-informatique, PROTEO, Centre de recherche en données massives and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Luc Lagacé
- Centre de recherche, de développement et de transfert technologique acéricole Inc., Saint-Norbert-d'Arthabaska, Québec, G0P 1B0, Canada
| | - Christian R Landry
- Département de Biologie, Département de Biochimie, Microbiologie et Bio-informatique, PROTEO, Centre de recherche en données massives and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Marie Filteau
- Département des Sciences des aliments, Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
103
|
Zheng C, Acheampong AK, Shi Z, Mugzech A, Halaly-Basha T, Shaya F, Sun Y, Colova V, Mosquna A, Ophir R, Galbraith DW, Or E. Abscisic acid catabolism enhances dormancy release of grapevine buds. PLANT, CELL & ENVIRONMENT 2018; 41:2490-2503. [PMID: 29907961 DOI: 10.1111/pce.13371] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 05/13/2023]
Abstract
The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It was formerly proposed that dormancy is maintained by abscisic acid (ABA)-mediated repression of bud-meristem activity and that removal of this repression triggers dormancy release. It was also proposed that such removal of repression may be achieved via natural or artificial up-regulation of VvA8H-CYP707A4, which encodes ABA 8'-hydroxylase, and is the most highly expressed paralog in grapevine buds. The current study further examines these assumptions, and its experiments reveal that (a) hypoxia and ethylene, stimuli of bud dormancy release, enhance expression of VvA8H-CYP707A4 within grape buds, (b) the VvA8H-CYP707A4 protein accumulates during the natural transition to the dormancy release stage, and (c) transgenic vines overexpressing VvA8H-CYP707A4 exhibit increased ABA catabolism and significant enhancement of bud break in controlled and natural environments and longer basal summer laterals. The results suggest that VvA8H-CYP707A4 functions as an ABA degrading enzyme, and are consistent with a model in which the VvA8H-CYP707A4 level in the bud is up-regulated by natural and artificial bud break stimuli, which leads to increased ABA degradation capacity, removal of endogenous ABA-mediated repression, and enhanced regrowth. Interestingly, it also hints at sharing of regulatory steps between latent and lateral bud outgrowth.
Collapse
Affiliation(s)
- Chuanlin Zheng
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Atiako Kwame Acheampong
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Zhaowan Shi
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Amichay Mugzech
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Tamar Halaly-Basha
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Felix Shaya
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yufei Sun
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Violeta Colova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A & M University, Tallahassee, Florida
| | - Assaf Mosquna
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ophir
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - David W Galbraith
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, Arizona
| | - Etti Or
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
104
|
Pérez FJ, Noriega X. Sprouting of paradormant and endodormant grapevine buds under conditions of forced growth: similarities and differences. PLANTA 2018; 248:837-847. [PMID: 29936547 DOI: 10.1007/s00425-018-2941-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Bud-break assays under forced growth conditions suggest that a drop in ABA content and an increase in sugars are common features in the sprouting of paradormant (PD) and endodormant (ED) grapevine buds. However, increases in cell division and in respiration are unique characteristics of the ED budding. In tropical and subtropical regions where the variations in day length and temperatures are minor throughout the year, the rupture of grapevine buds can be achieved during the current growing season given rise to a double-cropping system annually. However, it is unknown whether the breaking buds are in the paradormancy (PD) or endodormancy (ED) stage. In this study, we compared the breakage of PD and ED buds under conditions of forced growth. To do this, the expression of genes related to the metabolism of phytohormones and sugars, and of relevant physiological functions such as respiration and cell division was analyzed temporally throughout the incubation period in both types of buds. An early fall in the expression of the ABA biosynthesis gene (VvNCED1) and increases in genes related to sugar metabolism and transports were observed during the incubation period in both types of buds. However, while in the PD buds, the genes related to respiration and the cell cycle did not undergo significant changes in their expression during the incubation period, in the ED buds, the expression of these genes together with those related to auxin and cytokinin biosynthesis experienced a large increase. The results suggest that a drop in ABA content and an increase in sugars are early signals for the onset of bud break in both PD and ED vines, while the increase in respiration and cell division are unique characteristics of the ED buds, which reflect its transition from a resting state to a state of active growth.
Collapse
Affiliation(s)
- Francisco J Pérez
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Ximena Noriega
- Fac. Ciencias, Lab. de Bioquímica Vegetal, Universidad de Chile, Casilla 653, Santiago, Chile
| |
Collapse
|
105
|
Watanabe M, Netzer F, Tohge T, Orf I, Brotman Y, Dubbert D, Fernie AR, Rennenberg H, Hoefgen R, Herschbach C. Metabolome and Lipidome Profiles of Populus × canescens Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S. FRONTIERS IN PLANT SCIENCE 2018; 9:1292. [PMID: 30233628 PMCID: PMC6133996 DOI: 10.3389/fpls.2018.01292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/16/2018] [Indexed: 05/06/2023]
Abstract
The temperate climax tree species Fagus sylvatica and the floodplain tree species Populus × canescens possess contrasting phosphorus (P) nutrition strategies. While F. sylvatica has been documented to display P storage and mobilization (Netzer et al., 2017), this was not observed for Populus × canescens (Netzer et al., 2018b). Nevertheless, changes in the abundance of organic bound P in gray poplar trees indicated adaptation of the P nutrition to different needs during annual growth. The present study aimed at characterizing seasonal changes in metabolite and lipid abundances in gray poplar and uncovering differences in metabolite requirement due to specific needs depending on the season. Seasonal variations in the abundance of (i) sugar-Ps and phospholipids, (ii) amino acids, (iii) sulfur compounds, and (iv) carbon metabolites were expected. It was hypothesized that seasonal changes in metabolite levels relate to N, S, and C storage and mobilization. Changes in organic metabolites binding Pi (Porg) are supposed to support these processes. Variation in triacylglycerols, in sugar-phosphates, in metabolites of the TCA cycle and in the amino acid abundance of poplar twig buds, leaves, bark, and wood were found to be linked to changes in metabolite abundances as well as to C, N, and S storage and mobilization processes. The observed changes support the view of a lack of any P storage in poplar. Yet, during dormancy, contents of phospholipids in twig bark and wood were highest probably due to frost-hardening and to its function in extra-plastidic membranes such as amyloplasts, oleosomes, and protein bodies. Consistent with this assumption, in spring sugar-Ps increased when phospholipids declined and poplar plants entering the vegetative growth period and, hence, metabolic activity increases. These results indicate that poplar trees adopt a policy of P nutrition without P storage and mobilization that is different from their N- and S-nutrition strategies.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- NARA Institute of Science and Technology, Ikoma, Japan
| | - Florian Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- NARA Institute of Science and Technology, Ikoma, Japan
| | - Isabel Orf
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - David Dubbert
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
| | - Cornelia Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
106
|
Grimberg Å, Lager I, Street NR, Robinson KM, Marttila S, Mähler N, Ingvarsson PK, Bhalerao RP. Storage lipid accumulation is controlled by photoperiodic signal acting via regulators of growth cessation and dormancy in hybrid aspen. THE NEW PHYTOLOGIST 2018; 219:619-630. [PMID: 29761498 DOI: 10.1111/nph.15197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/28/2018] [Indexed: 05/24/2023]
Abstract
The signalling pathways that control seasonal modulation of carbon metabolism in perennial plants are poorly understood. Using genetic, metabolic and natural variation approaches, we identify factors mediating photoperiodic control of storage lipid accumulation in the model tree hybrid aspen (Populus tremula × tremuloides). We characterized lipid accumulation in transgenic hybrid aspen with impaired photoperiodic and hormonal responses. Genome-wide association mapping was performed in Swedish aspen (P. tremula) genotypes to determine genetic loci associated with genotype variation in lipid content. Our data show that the storage lipid triacylglycerol (TAG) accumulates in cambial meristem and pith rays of aspen in response to photoperiodic signal controlling growth cessation and dormancy induction. We show that photoperiodic control of TAG accumulation is mediated by the FLOWERING LOCUS T/CONSTANS module, which also controls the induction of growth cessation. Hormonal and chromatin remodelling pathways also contribute to TAG accumulation by photoperiodic signal. Natural variation exists in lipid accumulation that is controlled by input from multiple loci. Our data shed light on how the control of storage metabolism is temporally coordinated with growth cessation and dormancy by photoperiodic signal, and reveals that storage lipid accumulation between seeds and perennating organs of trees may involve distinct regulatory circuits.
Collapse
Affiliation(s)
- Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Artedigränd 7, 90187, Umeå, Sweden
| | - Kathryn M Robinson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Artedigränd 7, 90187, Umeå, Sweden
| | - Salla Marttila
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Artedigränd 7, 90187, Umeå, Sweden
| | - Pär K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 75007, Uppsala, Sweden
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Skogsmarksgränd, 90183, Umeå, Sweden
| |
Collapse
|
107
|
Beauvieux R, Wenden B, Dirlewanger E. Bud Dormancy in Perennial Fruit Tree Species: A Pivotal Role for Oxidative Cues. FRONTIERS IN PLANT SCIENCE 2018; 9:657. [PMID: 29868101 PMCID: PMC5969045 DOI: 10.3389/fpls.2018.00657] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 05/07/2023]
Abstract
For perennial plants, bud dormancy is a crucial step as its progression over winter determines the quality of bud break, flowering, and fruiting. In the past decades, many studies, based on metabolic, physiological, subcellular, genetic, and genomic analyses, have unraveled mechanisms underlying bud dormancy progression. Overall, all the pathways identified are interconnected in a very complex manner. Here, we review early and recent findings on the dormancy processes in buds of temperate fruit trees species including hormonal signaling, the role of plasma membrane, carbohydrate metabolism, mitochondrial respiration and oxidative stress, with an effort to link them together and emphasize the central role of reactive oxygen species accumulation in the control of dormancy progression.
Collapse
|
108
|
Guzicka M, Pawlowski TA, Staszak A, Rozkowski R, Chmura DJ. Molecular and structural changes in vegetative buds of Norway spruce during dormancy in natural weather conditions. TREE PHYSIOLOGY 2018; 38:721-734. [PMID: 29300984 DOI: 10.1093/treephys/tpx156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/20/2017] [Indexed: 05/08/2023]
Abstract
The dormancy and the growth of trees in temperate climates are synchronized with seasons. Preparation for dormancy and its proper progression are key for survival and development in the next season. Using a unique approach that combined microscopy and proteomic methods, we investigated changes in Norway spruce (Picea abies (L.) H. Karst.) embryonic shoots during four distinct stages of dormancy in natural weather conditions. We identified 13 proteins that varied among dormancy stages, and were linked to regulation of protein level; functioning of chloroplasts and other plastids; DNA and RNA regulation; and oxidative stress. We also found a group of five proteins, related to cold hardiness, that did not differ in expression among stages of dormancy, but had the highest abundancy level. Ultrastructure of organelles is tightly linked to their metabolic activity, and hence may indicate dormancy status. The observed ultrastructure during endodormancy was stable, whereas during ecodormancy, the structural changes were dynamic and related mainly to nucleus, plastids and mitochondria. At the ultrastructural level, the lack of starch and the presence of callose in plasmodesmata in all regions of embryonic shoot were indicators of full endodormancy. At the initiation of ecodormancy, we noted an increase in metabolic activity of organelles, tissue-specific starch hyperaccumulation and degradation. However, in proteomic analysis, we did not find variation in expression of proteins related to starch degradation or to symplastic isolation of cells. The combination of ultrastructural and proteomic methods gave a more complete picture of vegetative bud dormancy than either of them applied separately. We found some changes at the structural level, but not their analogues in the proteome. Our study suggests a very important role of plastids' organization and metabolism, and their protection in the course of dormancy and during the shift from endo- to ecodormancy and the acquisition of growth competence.
Collapse
Affiliation(s)
- Marzenna Guzicka
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Tomasz A Pawlowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Aleksandra Staszak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Roman Rozkowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Daniel J Chmura
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
109
|
Meitha K, Agudelo-Romero P, Signorelli S, Gibbs DJ, Considine JA, Foyer CH, Considine MJ. Developmental control of hypoxia during bud burst in grapevine. PLANT, CELL & ENVIRONMENT 2018; 41:1154-1170. [PMID: 29336037 DOI: 10.1111/pce.13141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 05/08/2023]
Abstract
Dormant or quiescent buds of woody perennials are often dense and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed, the increase in tissue oxygen status is rapid and developmentally regulated. Here, we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the 3 VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively, these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT-, and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds.
Collapse
Affiliation(s)
- Karlia Meitha
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Patricia Agudelo-Romero
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, 6009, Australia
| | - Santiago Signorelli
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - John A Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
| | - Christine H Foyer
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
- The School of Molecular and Chemical Sciences and UWA School of Agriculture and Environment, The University of Western Australia, Perth, 6009, Australia
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Department of Primary Industries and Rural Development, South Perth, 6151, Australia
| |
Collapse
|
110
|
Lenser T, Tarkowská D, Novák O, Wilhelmsson PKI, Bennett T, Rensing SA, Strnad M, Theißen G. When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:352-371. [PMID: 29418033 DOI: 10.1111/tpj.13861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 05/27/2023]
Abstract
Life in unpredictably changing habitats is a great challenge, especially for sessile organisms like plants. Fruit and seed heteromorphism is one way to cope with such variable environmental conditions. It denotes the production of distinct types of fruits and seeds that often mediate distinct life-history strategies in terms of dispersal, germination and seedling establishment. But although the phenomenon can be found in numerous species and apparently evolved several times independently, its developmental time course or molecular regulation remains largely unknown. Here, we studied fruit development in Aethionema arabicum, a dimorphic member of the Brassicaceae family. We characterized fruit morph differentiation by comparatively analyzing discriminating characters like fruit growth, seed abortion and dehiscence zone development. Our data demonstrate that fruit morph determination is a 'last-minute' decision happening in flowers after anthesis directly before the first morphotypical differences start to occur. Several growth experiments in combination with hormone and gene expression analyses further indicate that an accumulation balance of the plant hormones auxin and cytokinin in open flowers together with the transcript abundance of the Ae. arabicum ortholog of BRANCHED1, encoding a transcription factor known for its conserved function as a branching repressor, may guide fruit morph determination. Thus, we hypothesize that the plasticity of the fruit morph ratio in Ae. arabicum may have evolved through the modification of a preexisting network known to govern correlative dominance between shoot organs.
Collapse
Affiliation(s)
- Teresa Lenser
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Per K I Wilhelmsson
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| |
Collapse
|
111
|
Zhang Z, Zhuo X, Zhao K, Zheng T, Han Y, Yuan C, Zhang Q. Transcriptome Profiles Reveal the Crucial Roles of Hormone and Sugar in the Bud Dormancy of Prunus mume. Sci Rep 2018; 8:5090. [PMID: 29572446 PMCID: PMC5865110 DOI: 10.1038/s41598-018-23108-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/01/2018] [Indexed: 01/09/2023] Open
Abstract
Bud dormancy transition is a vital developmental process for perennial plant survival. The process is precisely regulated by diverse endogenous genetic factors and environmental cues, but the mechanisms are not yet fully understood. Prunus mume is an ideal crop for bud dormancy analysis because of its early spring-flowering characteristics and small sequenced genome. Here, we analyzed the transcriptome profiles at the three endodormancy stages and natural flush stage using RNA sequencing combined with phytohormone and sugar content measurements. Significant alterations in hormone contents and carbohydrate metabolism have been observed, and α-amylases, Glucan Hydrolase Family 17 and diphosphate-glycosyltransferase family might play crucial roles in the interactions between hormones and sugars. The following hypothetical model for understanding the molecular mechanism of bud dormancy in Prunus mume is proposed: low temperatures exposure induces the significant up-regulation of eight C-repeat binding factor genes, which directly promotes all six dormancy-associated MADS-box genes, resulting in dormancy establishment. The prolonged cold and/or subsequently increasing temperature then decreases the expression levels of these two gene families, which alleviates the inhibition of FLOWERING LOCUS T and reopens the growth-promoting pathway, resulting in dormancy release and the initiation of the bud break process.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - XiaoKang Zhuo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Kai Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
112
|
Zhao K, Zhou Y, Ahmad S, Yong X, Xie X, Han Y, Li Y, Sun L, Zhang Q. PmCBFs synthetically affect PmDAM6 by alternative promoter binding and protein complexes towards the dormancy of bud for Prunus mume. Sci Rep 2018. [PMID: 29540742 PMCID: PMC5852209 DOI: 10.1038/s41598-018-22537-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The survival in freezing temperature for woody plants is exclusively dependent on the perception of coldness and induction of dormancy. CBF/DREB1 transcriptional factors join cold-response conduits and the DAM genes, especially PmDAM6, are well-known regulators of dormancy. Despite the immense importance, little is documented on the association between CBF proteins and the complexity of the promoter region in PmDAM6 with the function of bud dormancy in P. mume. Therefore, this study was based on the cloning of PmDAM6 and six PmCBFs to evaluate their integral roles in the process of bud development. The consistency of expressions in either vegetative or reproductive buds provided a negative control from PmCBFs to PmDAM6 during the onset of dormancy. Besides, PmCBF5 could form heteromeric complexes with PmDAM1 and PmDAM6. PmCBF1, PmCBF3, and PmDAM4 recognized the promoter of PmDAM6 by the alternative binding sites. Therefore, the interactions of these genes formulated the base of an obvious model to respond to the coldness and engendered dormancy release. Findings of this study will further help the unveil the genetic control of bud dormancy and its augmentation in P. mume and may offer an explanation for the vernalization.
Collapse
Affiliation(s)
- Kai Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Yuzhen Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Xue Yong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Xuehua Xie
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Yushu Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083, Beijing, China. .,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
113
|
Tylewicz S, Petterle A, Marttila S, Miskolczi P, Azeez A, Singh RK, Immanen J, Mähler N, Hvidsten TR, Eklund DM, Bowman JL, Helariutta Y, Bhalerao RP. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 2018. [PMID: 29519919 DOI: 10.1126/science.aan8576] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In temperate and boreal ecosystems, seasonal cycles of growth and dormancy allow perennial plants to adapt to winter conditions. We show, in hybrid aspen trees, that photoperiodic regulation of dormancy is mechanistically distinct from autumnal growth cessation. Dormancy sets in when symplastic intercellular communication through plasmodesmata is blocked by a process dependent on the phytohormone abscisic acid. The communication blockage prevents growth-promoting signals from accessing the meristem. Thus, precocious growth is disallowed during dormancy. The dormant period, which supports robust survival of the aspen tree in winter, is due to loss of access to growth-promoting signals.
Collapse
Affiliation(s)
- S Tylewicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - A Petterle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - S Marttila
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-230 53 Alnarp, Sweden
| | - P Miskolczi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - A Azeez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.,Plant Molecular Biology Laboratory, Jain R&D Laboratory, Agri Park, Jain Hills, Shirsoli Road, Jalgaon, India
| | - R K Singh
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - J Immanen
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, Post Office Box 65, Helsinki, Finland
| | - N Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - T R Hvidsten
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - D M Eklund
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, SE-75236 Uppsala, Sweden
| | - J L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Y Helariutta
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge, UK
| | - R P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.
| |
Collapse
|
114
|
Yue C, Cao H, Hao X, Zeng J, Qian W, Guo Y, Ye N, Yang Y, Wang X. Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. PLANT CELL REPORTS 2018; 37:425-441. [PMID: 29214380 DOI: 10.1007/s00299-017-2238-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 05/20/2023]
Abstract
Thirty genes involved in GA and ABA metabolism and signalling were identified, and the expression profiles indicated that they play crucial roles in the bud activity-dormancy transition in tea plants. Gibberellin (GA) and abscisic acid (ABA) are fundamental phytohormones that extensively regulate plant growth and development, especially bud dormancy and sprouting transition in perennial plants. However, there is little information on GA- and ABA-related genes and their expression profiles during the activity-dormancy transition in tea plants. In the present study, 30 genes involved in the metabolism and signalling pathways of GA and ABA were first identified, and their expression patterns in different tissues were assessed. Further evaluation of the expression patterns of selected genes in response to GA3 and ABA application showed that CsGA3ox, CsGA20ox, CsGA2ox, CsZEP and CsNCED transcripts were differentially expressed after exogenous treatment. The expression profiles of the studied genes during winter dormancy and spring sprouting were investigated, and somewhat diverse expression patterns were found for GA- and ABA-related genes. This diversity was associated with the bud activity-dormancy cycle of tea plants. These results indicate that the genes involved in the metabolism and signalling of GA and ABA are important for regulating the bud activity-dormancy transition in tea plants.
Collapse
Affiliation(s)
- Chuan Yue
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Hongli Cao
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinyuan Hao
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Jianming Zeng
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Wenjun Qian
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Yuqiong Guo
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Naixing Ye
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yajun Yang
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| | - Xinchao Wang
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| |
Collapse
|
115
|
Martín-Fontecha ES, Tarancón C, Cubas P. To grow or not to grow, a power-saving program induced in dormant buds. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:102-109. [PMID: 29125947 DOI: 10.1016/j.pbi.2017.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 05/06/2023]
Abstract
Plant shoot branching patterns determine leaf, flower and fruit production, and thus reproductive success and yield. Branch primordia, or axillary buds, arise in the axils of leaves and their decision to either grow or enter dormancy is coordinated at the whole plant level. Comparisons of transcriptional profiles of axillary buds entering dormancy have identified a shared set of responses that closely resemble a Low Energy Syndrome. This syndrome is aimed at saving carbon use to support essential maintenance functions, rather than additional growth, and involves growth arrest (thus dormancy), metabolic reprogramming and hormone signalling. This response is widely conserved in distantly related woody and herbaceous species, and not only underlies but also precedes the growth-to-dormancy transition induced in buds by different stimuli.
Collapse
Affiliation(s)
- Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carlos Tarancón
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
116
|
Zhao K, Zhou Y, Li Y, Zhuo X, Ahmad S, Han Y, Yong X, Zhang Q. Crosstalk of PmCBFs and PmDAMs Based on the Changes of Phytohormones under Seasonal Cold Stress in the Stem of Prunus mume. Int J Mol Sci 2018; 19:ijms19020015. [PMID: 29360732 PMCID: PMC5855539 DOI: 10.3390/ijms19020015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Plants facing the seasonal variations always need a growth restraining mechanism when temperatures turn down. C-repeat binding factor (CBF) genes work essentially in the cold perception. Despite lots of researches on CBFs, the multiple crosstalk is still interesting on their interaction with hormones and dormancy-associated MADS (DAM) genes in the growth and dormancy control. Therefore, this study highlights roles of PmCBFs in cold-induced dormancy from different orgens. And a sense-response relationship between PmCBFs and PmDAMs is exhibited in this process, jointly regulated by six PmCBFs and PmDAM4-6. Meantime, GA3 and ABA showed negative and positive correlation with PmCBFs expression levels, respectively. We also find a high correlation between IAA and PmDAM1-3. Finally, we display the interaction mode of PmCBFs and PmDAMs, especially PmCBF1-PmDAM1. These results can disclose another view of molecular mechanism in plant growth between cold-response pathway and dormancy regulation together with genes and hormones.
Collapse
Affiliation(s)
- Kai Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Yuzhen Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Yushu Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Xiaokang Zhuo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Xue Yong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China.
| |
Collapse
|
117
|
Abscisic Acid (ABA ) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear Group) Flower Bud Endodormancy. Int J Mol Sci 2018; 19:ijms19010310. [PMID: 29361708 PMCID: PMC5796254 DOI: 10.3390/ijms19010310] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 11/17/2022] Open
Abstract
Dormancy is an adaptive mechanism that allows temperate deciduous plants to survive unfavorable winter conditions. In the present work, we investigated the possible function of abscisic acid (ABA) on the endodormancy process in pear. The ABA content increased during pear flower bud endodormancy establishment and decreased towards endodormancy release. In total, 39 putative genes related to ABA metabolism and signal transductions were identified from pear genome. During the para- to endodormancy transition, PpNCED-2 and PpNCED-3 had high expression levels, while PpCYP707As expression levels were low. However, during endodormancy, the expression of PpCYP707A-3 sharply increased with increasing cold accumulation. At the same time, the ABA content of pear buds declined, and the percentage of bud breaks rapidly increased. On the other hand, the expression levels of PpPYLs, PpPP2Cs, PpSnRK2s, and PpABI4/ABI5s were also changed during the pear flower bud dormancy cycle. Furthermore, exogenous ABA application to para-dormant buds significantly reduced the bud breaks and accelerated the transition to endodormancy. During the whole treatment time, the expression level of PpPP2C-12 decreased to a greater extent in ABA-treated buds than in control. However, the expression levels of PpSnRK2-1, PpSnRK2-4, and PpABI5-1 were higher in ABA-treated buds. Our results indicated that PpCYP707A-3 and PpNCEDs play pivotal roles on the regulation of endodormancy release, while ABA signal transduction pathway also appears to be involved in the process. The present work provided the basic information about the function of ABA-related genes during pear flower bud dormancy process.
Collapse
|
118
|
Chen Z, Rao P, Yang X, Su X, Zhao T, Gao K, Yang X, An X. A Global View of Transcriptome Dynamics During Male Floral Bud Development in Populus tomentosa. Sci Rep 2018; 8:722. [PMID: 29335419 PMCID: PMC5768756 DOI: 10.1038/s41598-017-18084-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/05/2017] [Indexed: 02/01/2023] Open
Abstract
To obtain a comprehensive overview of the dynamic transcriptome during male floral bud development in Populus tomentosa, high-throughput RNA-seq was conducted during eight flowering-related stages. Among the 109,212 de novo assembled unigenes, 6,959 were differentially expressed during the eight stages. The overrepresented classed of genes identified by Gene Ontology (GO) enrichment included 'response to environmental stimuli' and 'plant-type spore development'. One-third of the differentially expressed genes were transcription factors (TFs). Several genes and gene families were analyzed in depth, including MADS-box TFs, Squamosa promoter binding protein-like family, receptor-like kinases, FLOWERING LOCUS T/TERMINAL-FLOWER-LIKE 1 family, key genes involved in anther and tapetum development, as well as LEAFY, WUSCHEL and CONSTANS. The results provided new insights into the roles of these and other well known gene families during the annual flowering cycle. To explore the mechanisms regulating poplar flowering, a weighted gene co-expression network was constructed using 98 floral-related genes involved in flower meristem identity and flower development. Many modules of co-expressed genes and hub genes were identified, such as APETALA1 and HUA1. This work provides many new insights on the annual flowering cycle in a perennial plant, and a major new resource for plant biology and biotechnology.
Collapse
Affiliation(s)
- Zhong Chen
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Pian Rao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyu Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoxing Su
- Berry Genomics Co., Ltd, Beijing, 100015, China
| | - Tianyun Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Kai Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiong Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinmin An
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
119
|
Zhao K, Zhou Y, Ahmad S, Xu Z, Li Y, Yang W, Cheng T, Wang J, Zhang Q. Comprehensive Cloning of Prunus mume Dormancy Associated MADS-Box Genes and Their Response in Flower Bud Development and Dormancy. FRONTIERS IN PLANT SCIENCE 2018; 9:17. [PMID: 29449849 PMCID: PMC5800298 DOI: 10.3389/fpls.2018.00017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/04/2018] [Indexed: 05/08/2023]
Abstract
Dormancy Associated MADS-box genes are SVP/MADs-box members and supposed to play crucial roles in plant dormancy of perennial species. In Prunus mume, PmDAM6 has been previously identified to induce plant dormancy. In the current study, six PmDAMs were cloned in P. mume and functionally analyzed in yeast and tobacco to detect the roles of the genes paralogous to PmDAM6. The expression patterns together with sequence similarities indicate that PmDAMs are divided into two sub-clades within SVP group. Moreover, PmDAMs are verified to take part in the development of different plant organs, specifically the flower buds, in some intricate patterns. Furthermore, the PmDAM proteins are found to have special functions by forming corresponding protein complex during the development of flower bud and induction of dormancy. In particular, when PmDAM1 dominating in flower bud in the warm months, the protein complexes are consisted of PmDAM1 itself or with PmDAM2. With the decrease temperatures in the following months, PmDAM6 was found to be highly expressed and gradually changed the complex structure to PmDAM6-protein complex due to strong binding tendencies with PmDAM1 and PmDAM3. Finally, the homodimers of PmDAM6 prevailed to induce the dormancy. The results obtained in the current study highlight the functions of PmDAMs in the tissue development and dormancy, which provide available suggestions for further explorations of protein-complex functions in association with bud growth and dormancy.
Collapse
Affiliation(s)
- Kai Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yuzhen Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Zongda Xu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yushu Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Weiru Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- *Correspondence: Qixiang Zhang,
| |
Collapse
|
120
|
Maurya JP, Triozzi PM, Bhalerao RP, Perales M. Environmentally Sensitive Molecular Switches Drive Poplar Phenology. FRONTIERS IN PLANT SCIENCE 2018; 9:1873. [PMID: 30619428 PMCID: PMC6304729 DOI: 10.3389/fpls.2018.01873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/04/2018] [Indexed: 05/20/2023]
Abstract
Boreal and temperate woody perennials are highly adapted to their local climate, which delimits the length of the growing period. Moreover, seasonal control of growth-dormancy cycles impacts tree productivity and geographical distribution. Therefore, traits related to phenology are of great interest to tree breeders and particularly relevant in the context of global warming. The recent application of transcriptional profiling and genetic association studies to poplar species has provided a robust molecular framework for investigating molecules with potential links to phenology. The environment dictates phenology by modulating the expression of endogenous molecular switches, the identities of which are currently under investigation. This review outlines the current knowledge of these molecular switches in poplar and covers several perspectives concerning the environmental control of growth-dormancy cycles. In the process, we highlight certain genetic pathways which are affected by short days, low temperatures and cold-induced signaling.
Collapse
Affiliation(s)
- Jay P. Maurya
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Paolo M. Triozzi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Rishikesh P. Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- *Correspondence: Rishikesh P. Bhalerao, Mariano Perales,
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- *Correspondence: Rishikesh P. Bhalerao, Mariano Perales,
| |
Collapse
|
121
|
Falavigna VDS, Guitton B, Costes E, Andrés F. I Want to (Bud) Break Free: The Potential Role of DAM and SVP-Like Genes in Regulating Dormancy Cycle in Temperate Fruit Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1990. [PMID: 30687377 PMCID: PMC6335348 DOI: 10.3389/fpls.2018.01990] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/20/2018] [Indexed: 05/18/2023]
Abstract
Bud dormancy is an adaptive process that allows trees to survive the hard environmental conditions that they experience during the winter of temperate climates. Dormancy is characterized by the reduction in meristematic activity and the absence of visible growth. A prolonged exposure to cold temperatures is required to allow the bud resuming growth in response to warm temperatures. In fruit tree species, the dormancy cycle is believed to be regulated by a group of genes encoding MADS-box transcription factors. These genes are called DORMANCY-ASSOCIATED MADS-BOX (DAM) and are phylogenetically related to the Arabidopsis thaliana floral regulators SHORT VEGETATIVE PHASE (SVP) and AGAMOUS-LIKE 24. The interest in DAM and other orthologs of SVP (SVP-like) genes has notably increased due to the publication of several reports suggesting their role in the control of bud dormancy in numerous fruit species, including apple, pear, peach, Japanese apricot, and kiwifruit among others. In this review, we briefly describe the physiological bases of the dormancy cycle and how it is genetically regulated, with a particular emphasis on DAM and SVP-like genes. We also provide a detailed report of the most recent advances about the transcriptional regulation of these genes by seasonal cues, epigenetics and plant hormones. From this information, we propose a tentative classification of DAM and SVP-like genes based on their seasonal pattern of expression. Furthermore, we discuss the potential biological role of DAM and SVP-like genes in bud dormancy in antagonizing the function of FLOWERING LOCUS T-like genes. Finally, we draw a global picture of the possible role of DAM and SVP-like genes in the bud dormancy cycle and propose a model that integrates these genes in a molecular network of dormancy cycle regulation in temperate fruit trees.
Collapse
|
122
|
Lloret A, Badenes ML, Ríos G. Modulation of Dormancy and Growth Responses in Reproductive Buds of Temperate Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1368. [PMID: 30271422 PMCID: PMC6146825 DOI: 10.3389/fpls.2018.01368] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
During autumn perennial trees cease growth and form structures called buds in order to protect meristems from the unfavorable environmental conditions, including low temperature and desiccation. In addition to increased tolerance to these abiotic stresses, reproductive buds modulate developmental programs leading to dormancy induction to avoid premature growth resumption, and flowering pathways. Stress tolerance, dormancy, and flowering processes are thus physically and temporarily restricted to a bud, and consequently forced to interact at the regulatory level. We review recent genomic, genetic, and molecular contributions to the knowledge of these three processes in trees, highlighting the role of epigenetic modifications, phytohormones, and common regulatory factors. Finally, we emphasize the utility of transcriptomic approaches for the identification of key structural and regulatory genes involved in bud processes, illustrated with our own experience using peach as a model.
Collapse
|
123
|
Lee Y, Karunakaran C, Lahlali R, Liu X, Tanino KK, Olsen JE. Photoperiodic Regulation of Growth-Dormancy Cycling through Induction of Multiple Bud-Shoot Barriers Preventing Water Transport into the Winter Buds of Norway Spruce. FRONTIERS IN PLANT SCIENCE 2017; 8:2109. [PMID: 29321789 PMCID: PMC5732187 DOI: 10.3389/fpls.2017.02109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/27/2017] [Indexed: 05/08/2023]
Abstract
Whereas long days (LDs) sustain shoot elongation, short days (SDs) induce growth cessation and formation of dormant buds in young individuals of a wide range of temperate and boreal tree species. In specific conifers, including Norway spruce, photoperiodic control of bud development is associated with the formation of a plate of thick-walled cells, denoted as the crown, at the base of the bud. Information about cellular characteristics of this crown region is limited. We aimed to test whether the crown region is an important SD-induced barrier ensuring dehydration of the developing winter bud by preventing water influx. Using microscopy and synchrotron techniques, we show here that under LD, cell walls in growing shoot tips had highly methyl-esterified homogalacturonan pectin. During SD-induced bud development, the homogalacturonan in the crown region was de-methyl-esterified, enabling Ca2+ binding and crosslinking, a process known to decrease cell wall water permeability by reducing pectin pore size. In addition, there was abundant callose deposition at plasmodesmata in the crown region, and xylem connections between the bud and the subtending shoot were blocked. Consistent with reduced water transport across the crown region into the bud, uptake of fluorescein in shoot tips was blocked at the base of the bud under SD. Upon transfer from SD to bud-break-inducing LD, these processes were reversed, and aquaporin transcript levels significantly increased in young stem tissue after 4 weeks under LD. These findings indicate that terminal bud development is associated with reduced water transport through decreased cell wall permeability and blocking of plasmodesmata and xylem connections in the crown structure. This provides further understanding of the regulatory mechanism for growth-dormancy cycling in coniferous tree species such as Norway spruce.
Collapse
Affiliation(s)
- YeonKyeong Lee
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Xia Liu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | - Karen K. Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jorunn E. Olsen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
124
|
Proteomics reveals key proteins participating in growth difference between fall dormant and non-dormant alfalfa in terminal buds. J Proteomics 2017; 173:126-138. [PMID: 29229487 DOI: 10.1016/j.jprot.2017.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/18/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022]
Abstract
To explore the molecular mechanism of growth differences between fall dormant (FD) and non-FD alfalfa, we conducted iTRAQ-based quantitative proteomics on terminal buds of Maverick (FD) and Cuf101 (non-FD) cultivars, identified differential abundance protein species (DAPS) and verified expression profiling of certain corresponding mRNA by qRT-PCR. A total of 3872 protein species were annotated. Of the 90 DAPS, 56 and 34 were respectively up- and down-accumulated in Maverick, compared to Cuf101. They were grouped into 35 functional categories and enriched in seven pathways. Of which, auxin polar transport was up-regulated, while phenylpropanoid biosynthesis, pyruvate metabolism and transportation, vitamin B1 synthesis process and flavonoid biosynthesis were down-regulated in Maverick, comparing with Cuf101. In Maverick, mRNA abundances of l-asparaginase, chalcone and stilbene synthase family protein, cinnamyl alcohol dehydrogenase-like protein, thiazole biosynthetic enzyme, pyruvate dehydrogenase E1 beta subunit, and aldo/keto reductase family oxidoreductase were significantly lower at FD than at other stages, and lower than in Cuf101. We also observed opposite mRNA profiles of thiazole biosynthetic enzyme, chalcone and stilbene synthase family protein, pyruvate dehydrogenase E1 beta subunit in both cultivars from summer to autumn. Our results suggest that these DAPS could play important roles in growth difference between FD and non-FD alfalfa. BIOLOGICAL SIGNIFICANCE Up to now, as far as we know, currently the proteins related with the growth differences between FD and non-FD alfalfa cultivars in autumn have not yet been identified in terminal buds. This study identified the protein species expressed in alfalfa terminal buds, selected differentially abundant protein species in terminal buds between Maverick (FD) and Cuf101 (non-FD) cultivars in autumn and identified the important protein species participated in the growth differences. This study lays a foundation for further investigation of the molecular mechanism of the growth differences between FD and non-FD alfalfa and the cultivation of advanced alfalfa cultivars.
Collapse
|
125
|
Grivet D, Avia K, Vaattovaara A, Eckert AJ, Neale DB, Savolainen O, González-Martínez SC. High rate of adaptive evolution in two widespread European pines. Mol Ecol 2017; 26:6857-6870. [PMID: 29110402 DOI: 10.1111/mec.14402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Abstract
Comparing related organisms with differing ecological requirements and evolutionary histories can shed light on the mechanisms and drivers underlying genetic adaptation. Here, by examining a common set of hundreds of loci, we compare patterns of nucleotide diversity and molecular adaptation of two European conifers (Scots pine and maritime pine) living in contrasted environments and characterized by distinct population genetic structure (low and clinal in Scots pine, high and ecotypic in maritime pine) and demographic histories. We found higher nucleotide diversity in Scots pine than in maritime pine, whereas rates of new adaptive substitutions (ωa ), as estimated from the distribution of fitness effects, were similar across species and among the highest found in plants. Sample size and population genetic structure did not appear to have resulted in significant bias in estimates of ωa . Moreover, population contraction-expansion dynamics for each species did not affect differentially the rate of adaptive substitution in these two pines. Several methodological and biological factors may underlie the unusually high rate of adaptive evolution of Scots pine and maritime pine. By providing two new case studies with contrasting evolutionary histories, we contribute to disentangling the multiple factors potentially affecting adaptive evolution in natural plant populations.
Collapse
Affiliation(s)
- Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain.,Sustainable Forest Management Research Institute, INIA - University of Valladolid, Palencia, Spain
| | - Komlan Avia
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland.,Algal Genetics Group, UMR 8227, CNRS, Sorbonne Universités, UPMC, Station Biologique Roscoff, Roscoff, France.,UMI 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique Roscoff, Roscoff, France
| | - Aleksia Vaattovaara
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland.,Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA
| | - Outi Savolainen
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain.,Sustainable Forest Management Research Institute, INIA - University of Valladolid, Palencia, Spain.,BIOGECO, INRA, Univ. Bordeaux, Cestas, France
| |
Collapse
|
126
|
Conde D, Moreno-Cortés A, Dervinis C, Ramos-Sánchez JM, Kirst M, Perales M, González-Melendi P, Allona I. Overexpression of DEMETER, a DNA demethylase, promotes early apical bud maturation in poplar. PLANT, CELL & ENVIRONMENT 2017; 40:2806-2819. [PMID: 28810288 DOI: 10.1111/pce.13056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/26/2017] [Accepted: 08/11/2017] [Indexed: 05/21/2023]
Abstract
The transition from active growth to dormancy is critical for the survival of perennial plants. We identified a DEMETER-like (CsDML) cDNA from a winter-enriched cDNA subtractive library in chestnut (Castanea sativa Mill.), an economically and ecologically important species. Next, we characterized this DNA demethylase and its putative ortholog in the more experimentally tractable hybrid poplar (Populus tremula × alba), under the signals that trigger bud dormancy in trees. We performed phylogenetic and protein sequence analysis, gene expression profiling, and 5-methyl-cytosine methylation immunodetection studies to evaluate the role of CsDML and its homolog in poplar, PtaDML6. Transgenic hybrid poplars overexpressing CsDML were produced and analysed. Short days and cold temperatures induced CsDML and PtaDML6. Overexpression of CsDML accelerated short-day-induced bud formation, specifically from Stages 1 to 0. Buds acquired a red-brown coloration earlier than wild-type plants, alongside with the up-regulation of flavonoid biosynthesis enzymes and accumulation of flavonoids in the shoot apical meristem and bud scales. Our data show that the CsDML gene induces bud formation needed for the survival of the apical meristem under the harsh conditions of winter.
Collapse
Affiliation(s)
- Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Alicia Moreno-Cortés
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Christopher Dervinis
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - José M Ramos-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| |
Collapse
|
127
|
Papacek M, Christmann A, Grill E. Interaction network of ABA receptors in grey poplar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:199-210. [PMID: 28746755 DOI: 10.1111/tpj.13646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
The plant hormone abscisic acid (ABA) is a key player in responses to abiotic stress. ABA regulates a plant's water status and mediates drought tolerance by controlling stomatal gas exchange, water conductance and differential gene expression. ABA is recognized and bound by the Regulatory Component of ABA Receptors (RCARs)/PYR1/PYL (Pyrabactin Resistance 1/PYR1-like). Ligand binding stabilizes the interaction of RCARs with type 2C protein phosphatases (PP2C), which are ABA co-receptors. While the core pathway of ABA signalling has been elucidated, the large number of different ABA receptors and co-receptors within a plant species generates a complexity of heteromeric receptor complexes that has not functionally been resolved in any plant species to date. In this study, we characterized ABA receptors and co-receptors of grey poplar (Populus x canescens [Ait.] Sm.) and their capacity to regulate ABA responses. We observed a high number of regulatory combinations of holo-receptor complexes, but also some preferential and selective RCAR-PP2C interactions. Poplar and Arabidopsis ABA receptor components revealed a strong structural and functional conservation. Heterologous receptor complexes of poplar and Arabidopsis components showed functionality in vitro and regulated ABA-responsive gene expression in cells of both species. ABA-responsive promoters of Arabidopsis were also active in poplar, which was explored to generate poplar reporter lines expressing green fluorescent protein in response to ABA. The study presents a detailed analysis of receptor complexes of a tree species and shows high conservation of ABA receptor components between an annual and a perennial plant.
Collapse
Affiliation(s)
- Michael Papacek
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße 4, D-85354, Freising, Germany
| | - Alexander Christmann
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße 4, D-85354, Freising, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann Straße 4, D-85354, Freising, Germany
| |
Collapse
|
128
|
Maurya JP, Bhalerao RP. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective. ANNALS OF BOTANY 2017; 120:351-360. [PMID: 28605491 PMCID: PMC5591416 DOI: 10.1093/aob/mcx061] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND How plants adapt their developmental patterns to regular seasonal changes is an important question in biology. The annual growth cycle in perennial long-lived trees is yet another example of how plants can adapt to seasonal changes. The two main signals that plants rely on to respond to seasonal changes are photoperiod and temperature, and these signals have critical roles in the temporal regulation of the annual growth cycle of trees. SCOPE This review presents the latest findings to provide insight into the molecular mechanisms that underlie how photoperiodic and temperature signals regulate seasonal growth in trees. CONCLUSION The results point to a high level of conservation in the signalling pathways that mediate photoperiodic control of seasonal growth in trees and flowering in annual plants such as arabidopsis. Furthermore, the data indicate that symplastic communication may mediate certain aspects of seasonal growth. Although considerable insight into the control of phenology in model plants such as poplar and spruce has been obtained, the future challenge is extending these studies to other, non-model trees.
Collapse
Affiliation(s)
- Jay P Maurya
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
- For correspondence. E-mail
| |
Collapse
|
129
|
Khalil-Ur-Rehman M, Wang W, Xu YS, Haider MS, Li CX, Tao JM. Comparative Study on Reagents Involved in Grape Bud Break and Their Effects on Different Metabolites and Related Gene Expression during Winter. FRONTIERS IN PLANT SCIENCE 2017; 8:1340. [PMID: 28824676 PMCID: PMC5543042 DOI: 10.3389/fpls.2017.01340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 07/18/2017] [Indexed: 05/30/2023]
Abstract
To elucidate promoting and inhibiting effects of hydrogen cynamide (HC) and abscisic acid (ABA) on quiescence release of grape buds, physiological and molecular approaches were used to explore the mechanisms of quiescence based on metabolic and gene expression analysis. Physiological and molecular mechanisms involved in bud quiescence of grape were studied before and after application of HC, ABA, and ABA-HC. The data showed that ABA inhibited proclamation of quiescence in grape buds and attenuated the influence of HC. Bud quiescence was promoted and regulated by HC and ABA pre-treatment on buds of grape cultivar "Shine Muscat" with 5% HC, 100 μM ABA and combination of ABA-HC (5% HC+100 μM ABA) during quiescence under forcing condition. Exogenous application of ABA elevated superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) related specific activities, while catalase (CAT) activity was increased during initial period of forcing and then decreased. The concentration of plant growth hormones including gibberellins (GA) and indole acetic acid increased by HC application but decreased the ABA contents under forcing condition. ABA increased the fructose content during quiescence under forcing condition while sucrose and total soluble sugars peaked in HC treated buds as compared to control. Genes related to ABA pathway, protein phosphatase 2C (PP2C family) were down regulated in the buds treated with HC, ABA and ABA-HC as compared to control while two genes related to GA pathway (GID1 family), out of which one gene showed down regulation during initial period of forcing while other gene was up regulated in response to HC and ABA-HC treatments as compared to control. Exogenous ABA application up regulated genes related to antioxidant enzymes as compared to control. The gene probable fructose-bisphosphate aldolase 1, chloroplastic-like, was up regulated in response to ABA treatment as compared to control. Analysis of metabolites and related gene expression pattern would provide a comprehensive view of quiescence after HC, ABA, and ABA-HC treatments in grape buds which may helpful for ultimate improvement in table grape production.
Collapse
|
130
|
Tuan PA, Bai S, Saito T, Ito A, Moriguchi T. Dormancy-Associated MADS-Box (DAM) and the Abscisic Acid Pathway Regulate Pear Endodormancy Through a Feedback Mechanism. PLANT & CELL PHYSIOLOGY 2017; 58:1378-1390. [PMID: 28586469 DOI: 10.1093/pcp/pcx074] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/10/2017] [Indexed: 05/20/2023]
Abstract
In the pear 'Kosui' (Pyrus pyrifolia Nakai), the dormancy-associated MADS-box (PpDAM1 = PpMADS13-1) gene has been reported to play an essential role in bud endodormancy. Here, we found that PpDAM1 up-regulated expression of 9-cis-epoxycarotenoid dioxygenase (PpNCED3), which is a rate-limiting gene for ABA biosynthesis. Transient assays with a dual luciferase reporter system (LUC assay) and electrophoretic mobility shift assay (EMSA) showed that PpDAM1 activated PpNCED3 expression by binding to the CArG motif in the PpNCED3 promoter. PpNCED3 expression was increased toward endodormancy release in lateral flower buds of 'Kosui', which is consistent with the induced levels of ABA, its catabolism (ABA 8'-hydroxylase) and signaling genes (type 2C protein phosphatase genes and SNF1-related protein kinase 2 genes). In addition, we found that an ABA response element (ABRE)-binding transcription factor, PpAREB1, exhibiting high expression concomitant with endodormancy release, bound to three ABRE motifs in the promoter region of PpDAM1 and negatively regulated its activity. Taken together, our results suggested a feedback regulation between PpDAM1 and the ABA metabolism and signaling pathway during endodormancy of pear. This first evidence of an interaction between a DAM and ABA biosynthesis in vitro will provide further insights into bud endodormancy regulatory mechanisms of deciduous trees including pear.
Collapse
Affiliation(s)
- Pham Anh Tuan
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
| | - Songling Bai
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Takanori Saito
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Akiko Ito
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
| | - Takaya Moriguchi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
- Institute of Fruit Tree and Tea Science, NARO, Okitsu-Nakacho Shimizu, Shizuoka 424-0292, Japan
| |
Collapse
|
131
|
Zhao Y, Gao J, Im Kim J, Chen K, Bressan RA, Zhu JK. Control of Plant Water Use by ABA Induction of Senescence and Dormancy: An Overlooked Lesson from Evolution. PLANT & CELL PHYSIOLOGY 2017; 58:1319-1327. [PMID: 28961993 DOI: 10.1093/pcp/pcx086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/13/2017] [Indexed: 05/20/2023]
Abstract
Drought stress is a condition that in specific climate contexts results in insufficient water availability and often limits plant productivity through perturbing development and reducing plant growth and survival. Plants use senescence of old leaves and dormancy of buds and seeds to survive extreme environmental conditions. The plant hormone ABA accumulates after drought stress, and increases plant survival by inducing quick responses such as stomatal closure, and long-term responses such as extended growth inhibition, osmotic regulation, accumulation of cuticular wax, senescence, abscission and dormancy. Here we focus on how the long-term ABA responses contribute to plant survival during severe drought stress. Leaf senescence and abscission of older leaves reduce total plant transpirational water loss and increase the transfer of nutrients to meristems and to some storage tissues. Osmotic regulation favors water consumption in sink tissues, and accumulation of cuticular wax helps to seal the plant surface and limits non-stomatal water loss.
Collapse
Affiliation(s)
- Yang Zhao
- Shanghai Center for Plant Stress Biology, and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinghui Gao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaan'xi 712100, China
| | - Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kong Chen
- Shanghai Center for Plant Stress Biology, and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
132
|
Cronn R, Dolan PC, Jogdeo S, Wegrzyn JL, Neale DB, St Clair JB, Denver DR. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles. BMC Genomics 2017; 18:558. [PMID: 28738815 PMCID: PMC5525293 DOI: 10.1186/s12864-017-3916-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/30/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 109 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. RESULTS We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. CONCLUSIONS Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.
Collapse
Affiliation(s)
- Richard Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA.
| | - Peter C Dolan
- University of Minnesota - Morris, Morris, MN, 56267, USA
| | - Sanjuro Jogdeo
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - David B Neale
- Department of Plant Sciences, University of California - Davis, Davis, CA, 95616, USA
| | - J Bradley St Clair
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
133
|
Chao WS, Doğramacı M, Horvath DP, Anderson JV, Foley ME. Comparison of phytohormone levels and transcript profiles during seasonal dormancy transitions in underground adventitious buds of leafy spurge. PLANT MOLECULAR BIOLOGY 2017; 94:281-302. [PMID: 28365837 DOI: 10.1007/s11103-017-0607-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/20/2017] [Indexed: 05/06/2023]
Abstract
Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that maintains its perennial growth habit through generation of underground adventitious buds (UABs) on the crown and lateral roots. These UABs undergo seasonal phases of dormancy under natural conditions, namely para-, endo-, and ecodormancy in summer, fall, and winter, respectively. These dormancy phases can also be induced in growth chambers by manipulating photoperiod and temperature. In this study, UABs induced into the three phases of dormancy under controlled conditions were used to compare changes in phytohormone and transcriptome profiles. Results indicated that relatively high levels of ABA, the ABA metabolite PA, and IAA were found in paradormant buds. When UABs transitioned from para- to endodormancy, ABA and PA levels decreased, whereas IAA levels were maintained. Additionally, transcript profiles associated with regulation of soluble sugars and ethylene activities were also increased during para- to endodormancy transition, which may play some role in maintaining endodormancy status. When crown buds transitioned from endo- to ecodormancy, the ABA metabolites PA and DPA decreased significantly along with the down-regulation of ABA biosynthesis genes, ABA2 and NCED3. IAA levels were also significantly lower in ecodormant buds than that of endodormant buds. We hypothesize that extended cold treatment may trigger physiological stress in endodormant buds, and that these stress-associated signals induced the endo- to ecodormancy transition and growth competence. The up-regulation of NAD/NADH phosphorylation and dephosphorylation pathway, and MAF3-like and GRFs genes, may be considered as markers of growth competency.
Collapse
Affiliation(s)
- Wun S Chao
- Biosciences Research Lab, USDA-Agricultural Research Service, 1605 Albrecht Boulevard N., Fargo, ND, 58102-2765, USA.
| | - Münevver Doğramacı
- Biosciences Research Lab, USDA-Agricultural Research Service, 1605 Albrecht Boulevard N., Fargo, ND, 58102-2765, USA
| | - David P Horvath
- Biosciences Research Lab, USDA-Agricultural Research Service, 1605 Albrecht Boulevard N., Fargo, ND, 58102-2765, USA
| | - James V Anderson
- Biosciences Research Lab, USDA-Agricultural Research Service, 1605 Albrecht Boulevard N., Fargo, ND, 58102-2765, USA
| | - Michael E Foley
- Biosciences Research Lab, USDA-Agricultural Research Service, 1605 Albrecht Boulevard N., Fargo, ND, 58102-2765, USA
| |
Collapse
|
134
|
Tarancón C, González-Grandío E, Oliveros JC, Nicolas M, Cubas P. A Conserved Carbon Starvation Response Underlies Bud Dormancy in Woody and Herbaceous Species. FRONTIERS IN PLANT SCIENCE 2017; 8:788. [PMID: 28588590 PMCID: PMC5440562 DOI: 10.3389/fpls.2017.00788] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/27/2017] [Indexed: 05/18/2023]
Abstract
Plant shoot systems give rise to characteristic above-ground plant architectures. Shoots are formed from axillary meristems and buds, whose growth and development is modulated by systemic and local signals. These cues convey information about nutrient and water availability, light quality, sink/source organ activity and other variables that determine the timeliness and competence to maintain development of new shoots. This information is translated into a local response, in meristems and buds, of growth or quiescence. Although some key genes involved in the onset of bud latency have been identified, the gene regulatory networks (GRNs) controlled by these genes are not well defined. Moreover, it has not been determined whether bud dormancy induced by environmental cues, such as a low red-to-far-red light ratio, shares genetic mechanisms with bud latency induced by other causes, such as apical dominance or a short-day photoperiod. Furthermore, the evolution and conservation of these GRNs throughout angiosperms is not well established. We have reanalyzed public transcriptomic datasets that compare quiescent and active axillary buds of Arabidopsis, with datasets of axillary buds of the woody species Vitis vinifera (grapevine) and apical buds of Populus tremula x Populus alba (poplar) during the bud growth-to-dormancy transition. Our aim was to identify potentially common GRNs induced during the process that leads to bud para-, eco- and endodormancy. In Arabidopsis buds that are entering eco- or paradormancy, we have identified four induced interrelated GRNs that correspond to a carbon (C) starvation syndrome, typical of tissues undergoing low C supply. This response is also detectable in poplar and grapevine buds before and during the transition to dormancy. In all eukaryotes, C-limiting conditions are coupled to growth arrest and latency like that observed in dormant axillary buds. Bud dormancy might thus be partly a consequence of the underlying C starvation syndrome triggered by environmental and endogenous cues that anticipate or signal conditions unfavorable for sustained shoot growth.
Collapse
Affiliation(s)
- Carlos Tarancón
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Eduardo González-Grandío
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Juan C. Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Michael Nicolas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| |
Collapse
|
135
|
Kumar G, Gupta K, Pathania S, Swarnkar MK, Rattan UK, Singh G, Sharma RK, Singh AK. Chilling Affects Phytohormone and Post-Embryonic Development Pathways during Bud Break and Fruit Set in Apple (Malus domestica Borkh.). Sci Rep 2017; 7:42593. [PMID: 28198417 PMCID: PMC5309832 DOI: 10.1038/srep42593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/11/2017] [Indexed: 01/10/2023] Open
Abstract
The availability of sufficient chilling during bud dormancy plays an important role in the subsequent yield and quality of apple fruit, whereas, insufficient chilling availability negatively impacts the apple production. The transcriptome profiling during bud dormancy release and initial fruit set under low and high chill conditions was performed using RNA-seq. The comparative high number of differentially expressed genes during bud break and fruit set under high chill condition indicates that chilling availability was associated with transcriptional reorganization. The comparative analysis reveals the differential expression of genes involved in phytohormone metabolism, particularly for Abscisic acid, gibberellic acid, ethylene, auxin and cytokinin. The expression of Dormancy Associated MADS-box, Flowering Locus C-like, Flowering Locus T-like and Terminal Flower 1-like genes was found to be modulated under differential chilling. The co-expression network analysis indentified two high chill specific modules that were found to be enriched for "post-embryonic development" GO terms. The network analysis also identified hub genes including Early flowering 7, RAF10, ZEP4 and F-box, which may be involved in regulating chilling-mediated dormancy release and fruit set. The results of transcriptome and co-expression network analysis indicate that chilling availability majorly regulates phytohormone-related pathways and post-embryonic development during bud break.
Collapse
Affiliation(s)
- Gulshan Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Khushboo Gupta
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.,ICAR-Indian Institute of Agricultural Biotechnology, PDU Campus, IINRG, Namkum, Ranchi-834010 (JH), India
| | - Shivalika Pathania
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Mohit Kumar Swarnkar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Usha Kumari Rattan
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Gagandeep Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Ram Kumar Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Anil Kumar Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.,Academy of Scientific and Innovative Research, New Delhi, India.,ICAR-Indian Institute of Agricultural Biotechnology, PDU Campus, IINRG, Namkum, Ranchi-834010 (JH), India
| |
Collapse
|
136
|
Wu R, Wang T, Warren BAW, Allan AC, Macknight RC, Varkonyi-Gasic E. Kiwifruit SVP2 gene prevents premature budbreak during dormancy. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1071-1082. [PMID: 28158721 PMCID: PMC5853213 DOI: 10.1093/jxb/erx014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/18/2017] [Indexed: 05/19/2023]
Abstract
Overexpression of SVP2 in kiwifruit delays budbreak before sufficient winter chilling. SVP2-mediated vegetative growth restriction involves stress response pathways, and commonalities exist between Arabidopsis and kiwifruit SVP targets.
Collapse
Affiliation(s)
- Rongmei Wu
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, New Zealand
| | - Ben A W Warren
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, New Zealand
- Correspondence:
| |
Collapse
|
137
|
Strømme CB, Julkunen-Tiitto R, Olsen JE, Nybakken L, Tognetti R. High daytime temperature delays autumnal bud formation in Populus tremula under field conditions. TREE PHYSIOLOGY 2017; 37:71-81. [PMID: 28173533 DOI: 10.1093/treephys/tpw089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/28/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
The effects of warming on autumnal growth cessation and bud formation in trees remain ambiguous due to contrasting observations between a range of studies under controlled conditions and field experiments. High night temperature has been reported to advance growth cessation and bud formation in several tree species grown under controlled conditions. On the other hand, some recent field experiments have shown that autumn warming delays bud formation, although the temperature parameters that could account for this effect have not been identified. In addition, dioecious species have been shown to respond differently to environmental change, and differential warming effects on the sexes have received limited attention, even more so in relation to phenology. In a data set including three separate field experiments employing either experimental warming or an elevational gradient, we tested the effect of different temperature parameters on apical, vegetative bud formation and transitions between bud stages in female and male clones of Eurasian aspen (Populus tremula). Increased temperature was found to delay bud formation, and this process was best explained by maximum daily temperature. Males were significantly delayed compared with females in forming green closed buds, a process best explained by mean 24 h temperature. Bud maturation was best explained by mean daytime temperature, and buds matured significantly faster in males than in females, possibly explaining why females and males did not differ in terms of overall bud formation. In conclusion, our data show that delayed bud formation in Eurasian aspen during autumn can be attributed to the effect of high temperature, and this effect is in contrast to most of the evidence from studies of bud development in controlled environments.
Collapse
Affiliation(s)
- Christian Bianchi Strømme
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Norway
| | | | | | - Line Nybakken
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Norway
| | | |
Collapse
|
138
|
Khalil-Ur-Rehman M, Sun L, Li CX, Faheem M, Wang W, Tao JM. Comparative RNA-seq based transcriptomic analysis of bud dormancy in grape. BMC PLANT BIOLOGY 2017; 17:18. [PMID: 28103799 PMCID: PMC5244717 DOI: 10.1186/s12870-016-0960-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/22/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Bud dormancy is an important biological phenomenon of perennial plants that enables them to survive under harsh environmental circumstances. Grape (Vitis vinifera) is one of the most grown fruit crop worldwide; however, underlying mechanisms involved in grape bud dormancy are not yet clear. This work was aimed to explore the underlying molecular mechanism regulating bud dormancy in grape. RESULTS We have performed transcriptome and differential transcript expression analyses of "Shine Muscat" grape buds using the Illumina RNA-seq system. Comparisons of transcript expression levels among three stages of dormancy, paradormancy (PD) vs endodormancy (ED), summer buds (SB) vs ED and SB vs PD, resulted in the detection of 8949, 9780 and 3938 differentially expressed transcripts, respectively. Out of approximately 78 million high-quality generated reads, 6096 transcripts were differentially expressed (log2 ratio ≥ 1, FDR ≤ 0.001). Grape reference genome was used for alignment of sequence reads and to measure the expression level of transcripts. Furthermore, findings obtained were then compared using two different databases; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), to annotate the transcript descriptions and to assign a pathway to each transcript. KEGG analysis revealed that secondary metabolites biosynthesis and plant hormone signaling was found most enriched out of the 127 total pathways. In the comparisons of the PD vs ED and SB vs ED stages of grape buds, the gibberellin (GA) and abscisic acid (ABA) pathways were found to be the most enriched. The ABA and GA pathways were further analyzed to observe the expression pattern of differentially expressed transcripts. Transcripts related to the PP2C family (ABA pathway) were found to be up-regulated in the PD vs ED comparison and down-regulated in the SB vs ED and SB vs PD comparisons. GID1 family transcripts (GA pathway) were up-regulated while DELLA family transcripts were down-regulated during the three dormancy stages. Differentially expressed transcripts (DEGs) related to redox activity were abundant in the GO biological process category. RT-qPCR assay results for 12 selected transcripts validated the data obtained by RNA-seq. CONCLUSION At this stage, taking into account the results obtained so far, it is possible to put forward a hypothesis for the molecular mechanism underlying grape bud dormancy, which may pave the way for ultimate improvements in the grape industry.
Collapse
Affiliation(s)
- Muhammad Khalil-Ur-Rehman
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Long Sun
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Chun-Xia Li
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Muhammad Faheem
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Wu Wang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Jian-Min Tao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
139
|
Jin F, Li J, Ding Q, Wang QS, He XQ. Proteomic analysis provides insights into changes in the central metabolism of the cambium during dormancy release in poplar. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:26-39. [PMID: 27889518 DOI: 10.1016/j.jplph.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 05/22/2023]
Abstract
Seasonal cycling of growth and dormancy is an important feature for the woody plants growing in temperate zone, and dormancy is an effective strategy for surviving the winter stress. But the mechanisms of dormancy maintenance and its release are still not clear, especially little information is available with regard to the changes of proteome during the process. A better understanding in the function of proteins and their related metabolic pathways would expand our knowledge of the mechanisms of dormancy maintenance and its release in trees. In this study, we employed the isobaric tags for relative and absolute quantification (iTRAQ) approach with LC-MS/MS analysis to investigate the protein profile changes during dormancy release in poplar. In addition, the change of lipid, total insoluble carbohydrates and starch granules in the cambium was investigated by histochemical methods. A total of 3789 proteins were identified in poplar cambial tissues, 1996 of them were significantly altered during the dormancy release. Most of the altered proteins involved in signaling, phytohormone, energy metabolism, stress and secondary metabolism by functional analysis. Our data shows that the lipid metabolism proteins changed significantly both in the release stage of eco- and endodormancy, while the changes of carbohydrate metabolism proteins were mainly in endo-dormancy release stage. Moreover, histochemical results were consistent with the proteomic data. Our results reveal diverse stage-specific metabolism changes during the dormancy-release process induced by chilling in poplar, which provided new information regarding the regulation mechanisms of dormancy maintenance and its release in trees.
Collapse
Affiliation(s)
- Feng Jin
- Northeast Agricultural University, Harbin 150040, China
| | - Jing Li
- Northeast Agricultural University, Harbin 150040, China
| | - Qi Ding
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing-Song Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
140
|
Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP. Photoperiod- and temperature-mediated control of phenology in trees - a molecular perspective. THE NEW PHYTOLOGIST 2017; 213:511-524. [PMID: 27901272 DOI: 10.1111/nph.14346] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/07/2016] [Indexed: 05/17/2023]
Abstract
Contents 511 I. 511 II. 512 III. 513 IV. 513 V. 517 VI. 517 VII. 521 VIII. 521 Acknowledgements 521 References 521 SUMMARY: Trees growing in boreal and temperate regions synchronize their growth with seasonal climatic changes in adaptive responses that are essential for their survival. These trees cease growth before the winter and establish a dormant state during which growth cessation is maintained by repression of responses to growth-promotive signals. Reactivation of growth in the spring follows the release from dormancy promoted by prolonged exposure to low temperature during the winter. The timing of the key events and regulation of the molecular programs associated with the key stages of the annual growth cycle are controlled by two main environmental cues: photoperiod and temperature. Recently, key components mediating photoperiodic control of growth cessation and bud set have been identified, and striking similarities have been observed in signaling pathways controlling growth cessation in trees and floral transition in Arabidopsis. Although less well understood, the regulation of bud dormancy and bud burst may involve cell-cell communication and chromatin remodeling. Here, we discuss current knowledge of the molecular-level regulation of the annual growth cycle of woody trees in temperate and boreal regions, and identify key questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83, Umeå, Sweden
| | - Tetiana Svystun
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, S-223 62, Lund, Sweden
| | - Badr AlDahmash
- College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Anna Maria Jönsson
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, S-223 62, Lund, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83, Umeå, Sweden
- College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
141
|
Vergara R, Noriega X, Aravena K, Prieto H, Pérez FJ. ABA Represses the Expression of Cell Cycle Genes and May Modulate the Development of Endodormancy in Grapevine Buds. FRONTIERS IN PLANT SCIENCE 2017; 8:812. [PMID: 28579998 PMCID: PMC5437152 DOI: 10.3389/fpls.2017.00812] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
Recently, the plant hormone abscisic acid (ABA) has been implicated as a key player in the regulation of endodormancy (ED) in grapevine buds (Vitis vinifera L). In this study, we show that in the vine, the expression of genes related to the biosynthesis of ABA (VvNCED1; VvNCED2) and the content of ABA are significantly higher in the latent bud than at the shoot apex, while the expression of an ABA catabolic gene (VvA8H3) showed no significant difference between either organ. A negative correlation between the content of ABA and transcript levels of cell cycle genes (CCG) was found in both tissues. This result suggested that ABA may negatively regulate the expression of CCG in meristematic tissues of grapevines. To test this proposition, the effect of ABA on the expression of CCG was analyzed in two meristematic tissues of the vine: somatic embryos and shoot apexes. The results indicated that cell cycle progression is repressed by ABA in both organs, since it down-regulated the expression of genes encoding cyclin-dependent kinases (VvCDKB1, VvCDKB2) and genes encoding cyclins of type A (VvCYCA1, VvCYCA2, VvCYCA3), B (VvCYCB), and D (VvCYCD3.2a) and up-regulated the expression of VvICK5, a gene encoding an inhibitor of CDKs. During ED, the content of ABA increased, and the expression of CCG decreased. Moreover, the dormancy-breaking compound hydrogen cyanamide (HC) reduced the content of ABA and up-regulated the expression of CCG, this last effect was abolished when HC and ABA were co-applied. Taken together, these results suggest that ABA-mediated repression of CCG transcription may be part of the mechanism through which ABA modulates the development of ED in grapevine buds.
Collapse
Affiliation(s)
- Ricardo Vergara
- Laboratorio de Bioquímica Vegetal, Facultad de Ciencias, Universidad de ChileSantiago, Chile
- Programa Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de ChileSantiago, Chile
| | - Ximena Noriega
- Laboratorio de Bioquímica Vegetal, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Karla Aravena
- Laboratorio de Bioquímica Vegetal, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Humberto Prieto
- Laboratorio de Biotecnología Vegetal, Instituto de Investigaciones Agropecuarias, La PlatinaSantiago, Chile
| | - Francisco J. Pérez
- Laboratorio de Bioquímica Vegetal, Facultad de Ciencias, Universidad de ChileSantiago, Chile
- *Correspondence: Francisco J. Pérez,
| |
Collapse
|
142
|
Hao X, Yang Y, Yue C, Wang L, Horvath DP, Wang X. Comprehensive Transcriptome Analyses Reveal Differential Gene Expression Profiles of Camellia sinensis Axillary Buds at Para-, Endo-, Ecodormancy, and Bud Flush Stages. FRONTIERS IN PLANT SCIENCE 2017; 8:553. [PMID: 28458678 PMCID: PMC5394108 DOI: 10.3389/fpls.2017.00553] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/27/2017] [Indexed: 05/19/2023]
Abstract
Winter dormancy is an important biological feature for tea plant to survive cold winters, and it also affects the economic output of tea plant, one of the few woody plants in the world whose leaves are harvested and one of the few non-conifer evergreen species with characterized dormancies. To discover the bud dormancy regulation mechanism of tea plant in winter, we analyzed the global gene expression profiles of axillary buds at the paradormancy, endodormancy, ecodormancy, and bud flush stages by RNA-Seq analysis. In total, 16,125 differentially expressed genes (DEGs) were identified among the different measured conditions. Gene set enrichment analysis was performed on the DEGs identified from each dormancy transition. Enriched gene ontology terms, gene sets and transcription factors were mainly associated with epigenetic mechanisms, phytohormone signaling pathways, and callose-related cellular communication regulation. Furthermore, differentially expressed transcription factors as well as chromatin- and phytohormone-associated genes were identified. GI-, CAL-, SVP-, PHYB-, SFR6-, LHY-, ZTL-, PIF4/6-, ABI4-, EIN3-, ETR1-, CCA1-, PIN3-, CDK-, and CO-related gene sets were enriched. Based on sequence homology analysis, we summarized the key genes with significant expression differences in poplar and tea plant. The major molecular pathways involved in tea plant dormancy regulation are consistent with those of poplar to a certain extent; however, the gene expression patterns varied. This study provides the global transcriptome profiles of overwintering buds at different dormancy stages and is meaningful for improving the understanding of bud dormancy in tea plant.
Collapse
Affiliation(s)
- Xinyuan Hao
- Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of AgricultureHangzhou, China
| | - Yajun Yang
- Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of AgricultureHangzhou, China
| | - Chuan Yue
- Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of AgricultureHangzhou, China
| | - Lu Wang
- Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of AgricultureHangzhou, China
| | - David P. Horvath
- Biosciences Research Laboratory, Sunflower and Plant Biology Research Unit, United States Department of Agriculture-Agricultural Research Service, FargoND, USA
- *Correspondence: David P. Horvath, Xinchao Wang,
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural SciencesHangzhou, China
- National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of AgricultureHangzhou, China
- *Correspondence: David P. Horvath, Xinchao Wang,
| |
Collapse
|
143
|
Brunner AM, Varkonyi-Gasic E, Jones RC. Phase Change and Phenology in Trees. COMPARATIVE AND EVOLUTIONARY GENOMICS OF ANGIOSPERM TREES 2017. [DOI: 10.1007/7397_2016_30] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
144
|
Ionescu IA, Møller BL, Sánchez-Pérez R. Chemical control of flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:369-382. [PMID: 28204655 DOI: 10.1093/jxb/erw427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flowering at the right time is of great importance; it secures seed production and therefore species survival and crop yield. In addition to the genetic network controlling flowering time, there are a number of much less studied metabolites and exogenously applied chemicals that may influence the transition to flowering as well as flower opening. Increased emphasis on research within this area has the potential to counteract the negative effects of global warming on flowering time, especially in perennial crop plants. Perennial crops have a requirement for winter chill, but winters become increasingly warm in temperate regions. This has dramatic effects on crop yield. Different strategies are therefore being developed to engineer flowering time to match local growing conditions. The majority of these efforts are within plant breeding, which benefits from a substantial amount of knowledge on the genetic aspects of flowering time regulation in annuals, but less so in perennials. An alternative to plant breeding approaches is to engineer flowering time chemically via the external application of flower-inducing compounds. This review discusses a variety of exogenously applied compounds used in fruit farming to date, as well as endogenous growth substances and metabolites that can influence flowering time of annuals and perennials.
Collapse
Affiliation(s)
- Irina Alexandra Ionescu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Villum Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Villum Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Raquel Sánchez-Pérez
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Villum Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
145
|
Hamilton JA, El Kayal W, Hart AT, Runcie DE, Arango-Velez A, Cooke JEK. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). TREE PHYSIOLOGY 2016; 36:1432-1448. [PMID: 27449791 DOI: 10.1093/treephys/tpw061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
Timely responses to environmental cues enable the synchronization of phenological life-history transitions essential for the health and survival of north-temperate and boreal tree species. While photoperiodic cues will remain persistent under climate change, temperature cues may vary, contributing to possible asynchrony in signals influencing developmental and physiological transitions essential to forest health. Understanding the relative contribution of photoperiod and temperature as determinants of the transition from active growth to dormancy is important for informing adaptive forest management decisions that consider future climates. Using a combination of photoperiod (long = 20 h or short = 8 h day lengths) and temperature (warm = 22 °C/16 °C and cool = 8 °C/4 °C day/night, respectively) treatments, we used microscopy, physiology and modeling to comprehensively examine hallmark traits of the growth-dormancy transition-including bud formation, growth cessation, cold hardiness and gas exchange-within two provenances of white spruce [Picea glauca (Moench) Voss] spanning a broad latitude in Alberta, Canada. Following exposure to experimental treatments, seedlings were transferred to favorable conditions, and the depth of dormancy was assessed by determining the timing and ability of spruce seedlings to resume growth. Short photoperiods promoted bud development and growth cessation, whereas longer photoperiods extended the growing season through the induction of lammas growth. In contrast, cool temperatures under both photoperiodic conditions delayed bud development. Photoperiod strongly predicted the development of cold hardiness, whereas temperature predicted photosynthetic rates associated with active growth. White spruce was capable of attaining endodormancy, but its release was environmentally determined. Dormancy depth varied substantially across experimental treatments suggesting that environmental cues experienced within one season could affect growth in the following season, which is particularly important for a determinate species such as white spruce. The joint influence of these environmental cues points toward the importance of including local constant photoperiod and shifting temperature cues into predictive models that consider how climate change may affect northern forests.
Collapse
Affiliation(s)
- Jill A Hamilton
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Walid El Kayal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Ashley T Hart
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Daniel E Runcie
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Adriana Arango-Velez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
- Department of Forestry and Horticulture, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| |
Collapse
|
146
|
Muhr M, Prüfer N, Paulat M, Teichmann T. Knockdown of strigolactone biosynthesis genes in Populus affects BRANCHED1 expression and shoot architecture. THE NEW PHYTOLOGIST 2016; 212:613-626. [PMID: 27376674 DOI: 10.1111/nph.14076] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/25/2016] [Indexed: 05/20/2023]
Abstract
Plant architecture is modified by a regulatory system that controls axillary bud outgrowth. Key components in this system are strigolactones (SLs) and BRANCHED1, which inhibit bud outgrowth. Their role has been described in herbaceous model systems, including Arabidopsis, rice and pea. However, a role in woody perennial species, including the model tree poplar, has not been unequivocally proven. In this study, we tested a role for SLs in Populus × canescens by treatment with the synthetic SL GR24. We generated MORE AXILLARY BRANCHING4 (MAX4) knockdown lines to study the architectural phenotype of poplar SL biosynthesis mutants and the expression of SL-regulated genes. We show that GR24 is perceived by the model tree poplar. MAX4 knockdown lines exhibit typical SL deficiency symptoms. The observed changes in branching pattern, internode length and plant height can be rescued by grafting. We identified putative poplar BRANCHED1 and BRANCHED2 genes and provide evidence for a regulation of BRANCHED1 by SLs. Our results suggest a conservation of major regulatory mechanisms in bud outgrowth control in the model tree poplar. This may facilitate further research, pinpointing the role of SLs and BRANCHED1 in the complex regulation of bud outgrowth in trees.
Collapse
Affiliation(s)
- Merlin Muhr
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Göttingen, 37077, Germany
| | - Nele Prüfer
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Göttingen, 37077, Germany
| | - Maria Paulat
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Göttingen, 37077, Germany
| | - Thomas Teichmann
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Göttingen, 37077, Germany.
| |
Collapse
|
147
|
Parada F, Noriega X, Dantas D, Bressan-Smith R, Pérez FJ. Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines. JOURNAL OF PLANT PHYSIOLOGY 2016; 201:71-78. [PMID: 27448722 DOI: 10.1016/j.jplph.2016.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 05/08/2023]
Abstract
Grapevine buds (Vitis vinifera L) enter endodormancy (ED) after perceiving the short-day (SD) photoperiod signal and undergo metabolic changes that allow them to survive the winter temperatures. In the present study, we observed an inverse relationship between the depth of ED and the respiration rate of grapevine buds. Moreover, the respiration of dormant and non-dormant buds differed in response to temperature and glucose, two stimuli that normally increase respiration in plant tissues. While respiration in non-dormant buds rose sharply in response to both stimuli, respiration in dormant buds was only slightly affected. This suggests that a metabolic inhibitor is present. Here, we propose that the plant hormone abscisic acid (ABA) could be this inhibitor. ABA inhibits respiration in non-dormant buds and represses the expression of respiratory genes, such as ALTERNATIVE NADH DEHYDROGENASE (VaND1, VvaND2), CYTOCHROME OXIDASE (VvCOX6) and CYTOCHROME C (VvCYTC), and induces the expression of VvSnRK1, a gene encoding a member of a highly conserved family of protein kinases that act as energy sensors and regulate gene expression in response to energy depletion. In addition to inducing ED the SD-photoperiod up-regulated the expression of VvNCED, a gene that encodes a key enzyme in ABA synthesis. Taken together, these results suggest that ABA through the mediation of VvSnRK1, could play a key role in the regulation of the metabolic changes accompanying the entry into ED of grapevine buds.
Collapse
Affiliation(s)
- Francisca Parada
- Universidad de Chile, Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Casilla 653, Santiago, Chile.
| | - Ximena Noriega
- Universidad de Chile, Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Casilla 653, Santiago, Chile.
| | - Débora Dantas
- Universidade Estadual do Norte Fluminense, Centro de Ciencias e Tecnologías Agropecuarias, Avda, Alberto Lamego 2000, Campos dos Goytacazes RJ, Brazil.
| | - Ricardo Bressan-Smith
- Universidade Estadual do Norte Fluminense, Centro de Ciencias e Tecnologías Agropecuarias, Avda, Alberto Lamego 2000, Campos dos Goytacazes RJ, Brazil.
| | - Francisco J Pérez
- Universidad de Chile, Facultad de Ciencias, Laboratorio de Bioquímica Vegetal, Casilla 653, Santiago, Chile.
| |
Collapse
|
148
|
Ding Q, Zeng J, He XQ. MiR169 and its target PagHAP2-6 regulated by ABA are involved in poplar cambium dormancy. JOURNAL OF PLANT PHYSIOLOGY 2016; 198:1-9. [PMID: 27111502 DOI: 10.1016/j.jplph.2016.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/05/2016] [Accepted: 03/11/2016] [Indexed: 05/10/2023]
Abstract
Dormancy is an effective strategy for perennial plants in temperate zones to survive the winter stress. MicroRNAs (miRNAs) have been well known as important regulators for various biological processes. In this study, we checked the expression of miR169 members in the cambium zone during dormancy and active growth in poplar and found that they had distinct expression patterns. We identified and characterized a dormancy-specific target gene of miR169, PagHAP2-6. 5' RACE assays confirmed the direct cleavage of PagHAP2-6 mRNA by miR169. The yeast functional complementation analysis showed that PagHAP2-6 was a homolog of Heme Activator Protein2 (HAP2)/Nuclear factor Y-A (NF-YA) transcription factor in poplar. qRT-PCR analysis indicated that PagHAP2-6 was highly expressed in the dormant stage, which was converse to the expression pattern of pag-miR169a, n, and r. In addition, the transcription of PagHAP2-6 was induced by exogenous abscisic acid (ABA), and both over-expression of PagHAP2-6 in Arabidopsis and transient co-expression assays in Nicotiana benthamiana indicated that PagHAP2-6 could increase the resistance to exogenous ABA. Taken together, the results suggested that miR169 and its target PagHAP2-6 regulated by ABA were involved in poplar cambium dormancy, which provided new insights into the regulatory mechanisms of tree dormancy-active growth transition.
Collapse
Affiliation(s)
- Qi Ding
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jun Zeng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
149
|
Considine MJ, Considine JA. On the language and physiology of dormancy and quiescence in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3189-203. [PMID: 27053719 DOI: 10.1093/jxb/erw138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The language of dormancy is rich and poetic, as researchers spanning disciplines and decades have attempted to understand the spell that entranced 'Sleeping Beauty', and how she was gently awoken. The misleading use of 'dormancy', applied to annual axillary buds, for example, has confounded progress. Language is increasingly important as genetic and genomic approaches become more accessible to species of agricultural and ecological importance. Here we examine how terminology has been applied to different eco-physiological states in plants, and with pertinent reference to quiescent states described in other domains of life, in order to place plant quiescence and dormancy in a more complete context than previously described. The physiological consensus defines latency or quiescence as opportunistic avoidance states, where growth resumes in favourable conditions. In contrast, the dormant state in higher plants is entrained in the life history of the organism. Competence to resume growth requires quantitative and specific conditioning. This definition applies only to the embryo of seeds and specialized meristems in higher plants; however, mechanistic control of dormancy extends to mobile signals from peripheral tissues and organs, such as the endosperm of seed or subtending leaf of buds. The distinction between dormancy, quiescence, and stress-hardiness remains poorly delineated, most particularly in buds of winter perennials, which comprise multiple meristems of differing organogenic states. Studies in seeds have shown that dormancy is not a monogenic trait, and limited study has thus far failed to canalize dormancy as seen in seeds and buds. We argue that a common language, based on physiology, is central to enable further dissection of the quiescent and dormant states in plants. We direct the topic largely to woody species showing a single cycle of growth and reproduction per year, as these bear the majority of global timber, fruit, and nut production, as well being of great ecological value. However, for context and hypotheses, we draw on knowledge from annuals and other specialized plant conditions, from a perspective of the major physical, metabolic, and molecular cues that regulate cellular activity.
Collapse
Affiliation(s)
- Michael J Considine
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia Department of Agriculture and Food Western Australia, South Perth, WA 6151 Australia Centre for Plant Sciences, University of Leeds, Leeds, Yorkshire LS2 9JT, UK
| | - John A Considine
- School of Plant Biology, and The Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
150
|
Suarez-Gonzalez A, Hefer CA, Christe C, Corea O, Lexer C, Cronk QCB, Douglas CJ. Genomic and functional approaches reveal a case of adaptive introgression fromPopulus balsamifera(balsam poplar) inP. trichocarpa(black cottonwood). Mol Ecol 2016; 25:2427-42. [DOI: 10.1111/mec.13539] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 01/14/2023]
Affiliation(s)
| | - Charles A. Hefer
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Camille Christe
- Unit of Ecology & Evolution; Department of Biology; University of Fribourg; CH-1700 Fribourg Switzerland
| | - Oliver Corea
- Department of Biology and Centre for Forest Biology; University of Victoria; Victoria BC V8W 3N5 Canada
| | - Christian Lexer
- Unit of Ecology & Evolution; Department of Biology; University of Fribourg; CH-1700 Fribourg Switzerland
- Department of Botany and Biodiversity Research; University of Vienna; A-1030 Vienna Austria
| | - Quentin C. B. Cronk
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Carl J. Douglas
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| |
Collapse
|