101
|
Yu S, Wang JW. The Crosstalk between MicroRNAs and Gibberellin Signaling in Plants. PLANT & CELL PHYSIOLOGY 2020; 61:1880-1890. [PMID: 32845336 DOI: 10.1093/pcp/pcaa079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/05/2020] [Indexed: 05/14/2023]
Abstract
Gibberellin (GA) is an integral phytohormone that plays prominent roles in controlling seed germination, stem elongation, leaf development and floral induction. It has been shown that GA regulates these diverse biological processes mainly through overcoming the suppressive effects of the DELLA proteins, a family of nuclear repressors of GA response. MicroRNAs (miRNAs), which have been identified as master regulators of gene expression in eukaryotes, are also involved in a wide range of plant developmental events through the repression of their target genes. The pathways of GA biosynthesis and signaling, as well as the pathways of miRNA biogenesis and regulation, have been profoundly delineated in the past several decades. Growing evidence has shown that miRNAs and GAs are coordinated in regulating plant development, as several components in GA pathways are targeted by miRNAs, and GAs also regulate the expression of miRNAs or their target genes vice versa. Here, we review the recent advances in our understanding of the molecular connections between miRNAs and GA, with an emphasis on the two miRNAs, miR156 and miR159.
Collapse
Affiliation(s)
- Sha Yu
- Center for RNA research, Institute for Basic Science, Seoul 00826, South Korea
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
102
|
Kinoshita A, Vayssières A, Richter R, Sang Q, Roggen A, van Driel AD, Smith RS, Coupland G. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. eLife 2020; 9:60661. [PMID: 33315012 PMCID: PMC7771970 DOI: 10.7554/elife.60661] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
Floral transition, the onset of plant reproduction, involves changes in shape and identity of the shoot apical meristem (SAM). The change in shape, termed doming, occurs early during floral transition when it is induced by environmental cues such as changes in day-length, but how it is regulated at the cellular level is unknown. We defined the morphological and cellular features of the SAM during floral transition of Arabidopsis thaliana. Both cell number and size increased during doming, and these changes were partially controlled by the gene regulatory network (GRN) that triggers flowering. Furthermore, dynamic modulation of expression of gibberellin (GA) biosynthesis and catabolism enzymes at the SAM contributed to doming. Expression of these enzymes was regulated by two MADS-domain transcription factors implicated in flowering. We provide a temporal and spatial framework for integrating the flowering GRN with cellular changes at the SAM and highlight the role of local regulation of GA.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Alice Vayssières
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Qing Sang
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Adrian Roggen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
103
|
Lee JE, Goretti D, Neumann M, Schmid M, You Y. A gibberellin methyltransferase modulates the timing of floral transition at the Arabidopsis shoot meristem. PHYSIOLOGIA PLANTARUM 2020; 170:474-487. [PMID: 32483836 DOI: 10.1111/ppl.13146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The transition from vegetative to reproductive growth is a key event in the plant life cycle. Plants therefore use a variety of environmental and endogenous signals to determine the optimal time for flowering to ensure reproductive success. These signals are integrated at the shoot apical meristem (SAM), which subsequently undergoes a shift in identity and begins producing flowers rather than leaves, while still maintaining pluripotency and meristematic function. Gibberellic acid (GA), an important hormone associated with cell growth and differentiation, has been shown to promote flowering in many plant species including Arabidopsis thaliana, but the details of how spatial and temporal regulation of GAs in the SAM contribute to floral transition are poorly understood. In this study, we show that the gene GIBBERELLIC ACID METHYLTRANSFERASE 2 (GAMT2), which encodes a GA-inactivating enzyme, is significantly upregulated at the SAM during floral transition and contributes to the regulation of flowering time. Loss of GAMT2 function leads to early flowering, whereas transgenic misexpression of GAMT2 in specific regions around the SAM delays flowering. We also found that GAMT2 expression is independent of the key floral regulator LEAFY but is strongly increased by the application of exogenous GA. Our results indicate that GAMT2 is a repressor of flowering that may act as a buffer of GA levels at the SAM to help prevent premature flowering.
Collapse
Affiliation(s)
- Joanne E Lee
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE-901 87, Sweden
| | - Daniela Goretti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE-901 87, Sweden
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE-901 87, Sweden
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yuan You
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
- Center for Plant Molecular Biology (ZMBP), Department of General Genetics, University Tübingen, Tübingen, 72076, Germany
| |
Collapse
|
104
|
Mao P, Jin X, Bao Q, Mei C, Zhou Q, Min X, Liu Z. WRKY Transcription Factors in Medicago sativa L.: Genome-Wide Identification and Expression Analysis Under Abiotic Stress. DNA Cell Biol 2020; 39:2212-2225. [PMID: 33156699 DOI: 10.1089/dna.2020.5726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is the most widely cultivated leguminous herb in the world. Its agricultural development has been restricted by various adverse environmental conditions, including water deficiency, high salinity, and low temperature. WRKY transcription factors (TFs) serve important roles in the regulation of plant development and stress responses. Research on the WRKY gene family has been reported for several species, but minimal information is available for alfalfa. In the present study, a total of 107 WRKY genes were identified in alfalfa and divided into 3 main groups. The classification, evolution, conserved motifs, and tissue expression were comprehensively analyzed. Meanwhile, 27 MsWRKY candidate genes that may be involved in abiotic stress were isolated through an analysis of gene expression profiles under different stresses, including cold, abscisic acid, drought, and salt treatments. Additionally, investigation of the cis-elements and potential biological functions of these genes further revealed that MsWRKY TFs may serve important roles in multiple stress resistance in alfalfa. This study provides an important foundation for future cloning and functional studies of WRKY genes in alfalfa.
Collapse
Affiliation(s)
- Pei Mao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoyu Jin
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qinyan Bao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Cuo Mei
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xueyang Min
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
105
|
A potential endogenous gibberellin-mediated signaling cascade regulated floral transition in Magnolia × soulangeana 'Changchun'. Mol Genet Genomics 2020; 296:207-222. [PMID: 33146745 DOI: 10.1007/s00438-020-01740-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
The floral transition is a critical developmental switch in plants, and has profound effects on the flower production and yield. Magnolia × soulangeana 'Changchun' is known as a woody ornamental plant, which can bloom in spring and summer, respectively. In this study, anatomical observation, physiological measurement, transcriptome, and small RNA sequencing were performed to investigate potential endogenous regulatory mechanisms underlying floral transition in 'Changchun'. Transition of the shoot apical meristem from vegetative to reproductive growth occurred between late April and early May. During this specific developmental process, a total of 161,645 unigenes were identified, of which 73,257 were significantly differentially expressed, while a number of these two categories of miRNAs were 299 and 148, respectively. Further analysis of differentially expressed genes (DEGs) revealed that gibberellin signaling could regulate floral transition in 'Changchun' in a DELLA-dependent manner. In addition, prediction and analysis of miRNA targeted genes suggested that another potential molecular regulatory module was mediated by the miR172 family and other several novel miRNAs (Ms-novel_miR139, Ms-novel_miR229, and Ms-novel_miR232), with the participation of up- or down-regulating genes, including MsSVP, MsAP2, MsTOE3, MsAP1, MsGATA6, MsE2FA, and MsMDS6. Through the integrated analysis of mRNA and miRNA, our research results will facilitate the understanding of the potential molecular mechanism underlying floral transition in 'Changchun', and also provide basic experimental data for the plant germplasm resources innovation in Magnolia.
Collapse
|
106
|
Yan J, Li X, Zeng B, Zhong M, Yang J, Yang P, Li X, He C, Lin J, Liu X, Zhao X. FKF1 F-box protein promotes flowering in part by negatively regulating DELLA protein stability under long-day photoperiod in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1717-1740. [PMID: 32427421 DOI: 10.1111/jipb.12971] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/18/2020] [Indexed: 05/23/2023]
Abstract
FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1) encodes an F-box protein that regulates photoperiod flowering in Arabidopsis under long-day conditions (LDs). Gibberellin (GA) is also important for regulating flowering under LDs. However, how FKF1 and the GA pathway work in concert in regulating flowering is not fully understood. Here, we showed that the mutation of FKF1 could cause accumulation of DELLA proteins, which are crucial repressors in GA signaling pathway, thereby reducing plant sensitivity to GA in flowering. Both in vitro and in vivo biochemical analyses demonstrated that FKF1 directly interacted with DELLA proteins. Furthermore, we showed that FKF1 promoted ubiquitination and degradation of DELLA proteins. Analysis of genetic data revealed that FKF1 acted partially through DELLAs to regulate flowering under LDs. In addition, DELLAs exerted a negative feedback on FKF1 expression. Collectively, these findings demonstrate that FKF1 promotes flowering partially by negatively regulating DELLA protein stability under LDs, and suggesting a potential mechanism linking the FKF1 to the GA signaling DELLA proteins.
Collapse
Affiliation(s)
- Jindong Yan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Bingjie Zeng
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Jiaxin Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Piao Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Xin Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Chongsheng He
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Jianzhong Lin
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| |
Collapse
|
107
|
Jerome Jeyakumar JM, Ali A, Wang WM, Thiruvengadam M. Characterizing the Role of the miR156-SPL Network in Plant Development and Stress Response. PLANTS 2020; 9:plants9091206. [PMID: 32942558 PMCID: PMC7570127 DOI: 10.3390/plants9091206] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 01/22/2023]
Abstract
MicroRNA (miRNA) is a short, single-stranded, non-coding RNA found in eukaryotic cells that can regulate the expression of many genes at the post-transcriptional level. Among various plant miRNAs with diverse functions, miR156 plays a key role in biological processes, including developmental regulation, immune response, metabolic regulation, and abiotic stress. MiRNAs have become the regulatory center for plant growth and development. MicroRNA156 (miR156) is a highly conserved and emerging tool for the improvement of plant traits, including crop productivity and stress tolerance. Fine-tuning of squamosa promoter biding-like (SPL) gene expression might be a useful strategy for crop improvement. Here, we studied the regulation of the miR156 module and its interaction with SPL factors to understand the developmental transition of various plant species. Furthermore, this review provides a strong background for plant biotechnology and is an important source of information for further molecular breeding to optimize farming productivity.
Collapse
Affiliation(s)
- John Martin Jerome Jeyakumar
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China; (J.M.J.J.); (A.A.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China
| | - Asif Ali
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China; (J.M.J.J.); (A.A.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China
| | - Wen-Ming Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China; (J.M.J.J.); (A.A.)
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Institute of Rice Research, Sichuan Agricultural University, Wenjiang, Chengdu 625014, China
- Correspondence:
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
108
|
Wang W, Bai Y, Koilkonda P, Guan L, Zhuge Y, Wang X, Liu Z, Jia H, Wang C, Fang J. Genome-wide identification and characterization of gibberellin metabolic and signal transduction (GA MST) pathway mediating seed and berry development (SBD) in grape (Vitis vinifera L.). BMC PLANT BIOLOGY 2020; 20:384. [PMID: 32825825 PMCID: PMC7441673 DOI: 10.1186/s12870-020-02591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/12/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Grape is highly sensitive to gibberellin (GA), which is crucial during seed and berry development (SBD) either by itself or by interacting with other hormones, such as auxin, Abscisic acid (ABA), and Cytokinin (CK). However, no systematic analysis of GA metabolic and signal transduction (MST) pathway has been undertaken in grapevine. RESULTS In this study, total endogenous GA3 content significantly decreased during SBD, and a total of 48 known genes in GA metabolic (GAM; 31) and signal transduction (ST; 17) pathways were identified in this process. In the GAM pathway, out of 31 genes, VvGA20ox1-1, VvGA3ox4-1, and VvGA2ox1-1 may be the major factors interacting at the green-berry stage (GBS) accompanied with higher accumulation rate. GA biosynthesis was greater than GA inactivation at GBS, confirming the importance of seeds in GA synthesis. The visible correlation between endogenous GA3 content and gene expression profiles suggested that the transcriptional regulation of GA biosynthesis pathway genes was a key mechanism of GA accumulation at the stone-hardening stage (SHS). Interestingly, we observed a negative feedback regulation between VvGA3oxs-VvGAI1-4, VvGA2oxs-VvGAI1-4, and VvGID1B-VvGAI1-4 in maintaining the balance of GA3 content in berries. Moreover, 11 miRNAs may be involved in the modulation of GA MST pathway by mediating their target genes, such as VvGA3ox, VvGID1B, and VvGAMYB. Many genes in auxin, ABA, and CK MST pathways were further identified and found to have a special pattern in the berry, and the crosstalk between GA and these hormones may modulate the complex process during SBD through the interaction gene network of the multihormone pathway. Lastly, based on the expression characterization of multihormone MST pathway genes, a proposed model of the GA-mediated multihormone regulatory network during SBD was proposed. CONCLUSIONS Our results provided novel insights into GA-mediated regulatory networks during SBD in grape. The complexity of GA-mediated multihormone ST in SBD was also elucidated, thereby providing valuable information for future functional characterizations of specific genes in grape.
Collapse
Affiliation(s)
- Wenran Wang
- Nanjing Agricultural University, College of Horticulture, Nanjing, 210095 PR China
- China Agricultural University, College of Horticulture, Beijing, 100193 China
| | - Yunhe Bai
- Nanjing Agricultural University, College of Horticulture, Nanjing, 210095 PR China
| | - Padmalatha Koilkonda
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Hyderabad, Telangana 500059 India
| | - Le Guan
- Nanjing Agricultural University, College of Horticulture, Nanjing, 210095 PR China
| | - Yaxian Zhuge
- Nanjing Agricultural University, College of Horticulture, Nanjing, 210095 PR China
| | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Zhongjie Liu
- Nanjing Agricultural University, College of Horticulture, Nanjing, 210095 PR China
| | - Haifeng Jia
- Nanjing Agricultural University, College of Horticulture, Nanjing, 210095 PR China
| | - Chen Wang
- Nanjing Agricultural University, College of Horticulture, Nanjing, 210095 PR China
| | - Jinggui Fang
- Nanjing Agricultural University, College of Horticulture, Nanjing, 210095 PR China
| |
Collapse
|
109
|
Szalai G, Tajti J, Hamow KÁ, Ildikó D, Khalil R, Vanková R, Dobrev P, Misheva SP, Janda T, Pál M. Molecular background of cadmium tolerance in Rht dwarf wheat mutant is related to a metabolic shift from proline and polyamine to phytochelatin synthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23664-23676. [PMID: 32291640 PMCID: PMC7326835 DOI: 10.1007/s11356-020-08661-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/30/2020] [Indexed: 05/14/2023]
Abstract
Plant height is among the most important agronomic traits influencing crop yield. Wheat lines carrying Rht genes are important in plant breeding due to their both higher yield capacity and better tolerance to certain environmental stresses. However, the effects of dwarf-inducing genes on stress acclimation mechanisms are still poorly understood. Under the present conditions, cadmium stress induced different stress responses and defence mechanisms in the wild-type and dwarf mutant, and the mutant with the Rht-B1c allele exhibited higher tolerance. In the wild type after cadmium treatment, the abscisic acid synthesis increased in the leaves, which in turn might have induced the polyamine and proline metabolisms in the roots. However, in the mutant line, the slight increment in the leaf abscisic acid content accompanied by relatively high salicylic acid accumulation was not sufficient to induce such a great accumulation of proline and putrescine. Although changes in proline and polyamines, especially putrescine, showed similar patterns, the accumulation of these compounds was antagonistically related to the phytochelatin synthesis in the roots of the wild type after cadmium stress. In the dwarf genotype, a favourable metabolic shift from the synthesis of polyamine and proline to that of phytochelatin was responsible for the higher cadmium tolerance observed.
Collapse
Affiliation(s)
- Gabriella Szalai
- Centre for Agricultural Research, 2462, Martonvásár, H-2462, Hungary
| | - Judit Tajti
- Centre for Agricultural Research, 2462, Martonvásár, H-2462, Hungary
| | | | - Denyicska Ildikó
- Centre for Agricultural Research, 2462, Martonvásár, H-2462, Hungary
| | - Radwan Khalil
- Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Radomira Vanková
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02, Prague, Czech Republic
| | - Petr Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02, Prague, Czech Republic
| | - Svetlana P Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Tibor Janda
- Centre for Agricultural Research, 2462, Martonvásár, H-2462, Hungary
| | - Magda Pál
- Centre for Agricultural Research, 2462, Martonvásár, H-2462, Hungary.
| |
Collapse
|
110
|
Crawford BM, Wang HN, Strobbia P, Zentella R, Pei ZM, Sun TP, Vo-Dinh T. Plasmonic Nanobiosensing: from in situ plant monitoring to cancer diagnostics at the point of care. JPHYS PHOTONICS 2020. [DOI: 10.1088/2515-7647/ab9714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Nucleic acid biosensing technologies have the capability to provide valuable information in applications ranging from medical diagnostics to environmental sensing. The unique properties of plasmonic metallic nanoparticles have been used for sensing purposes and among them, plasmonic sensors based on surface-enhanced Raman scattering (SERS) offer the advantages of sensitive and muliplexed detection owing to the narrow bandwidth of their characteristic Raman spectral features. This paper describes current applications that employ the unique SERS-based inverse molecular sentinel (iMS) nanobiosensors developed in our laboratory. Herein, we demonstrate the use of label-free iMS nanoprobes for detecting specific nucleic acid biomarkers in a wide variety of applications from cancer diagnostics to genetic monitoring for plant biology in renewable biofuel research.
Collapse
|
111
|
Transcriptome Analysis in Male Strobilus Induction by Gibberellin Treatment in Cryptomeria japonica D. Don. FORESTS 2020. [DOI: 10.3390/f11060633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plant hormone gibberellin (GA) is known to regulate elongating growth, seed germination, and the initiation of flower bud formation, and it has been postulated that GAs originally had functions in reproductive processes. Studies on the mechanism of induction of flowering by GA have been performed in Arabidopsis and other model plants. In coniferous trees, reproductive organ induction by GAs is known to occur, but there are few reports on the molecular mechanism in this system. To clarify the gene expression dynamics of the GA induction of the male strobilus in Cryptomeria japonica, we performed comprehensive gene expression analysis using a microarray. A GA-treated group and a nontreated group were allowed to set, and individual trees were sampled over a 6-week time course. A total of 881 genes exhibiting changed expression was identified. In the GA-treated group, genes related to ‘stress response’ and to ‘cell wall’ were initially enriched, and genes related to ‘transcription’ and ‘transcription factor activity’ were enriched at later stages. This analysis also clarified the dynamics of the expression of genes related to GA signaling transduction following GA treatment, permitting us to compare and contrast with the expression dynamics of genes implicated in signal transduction responses to other plant hormones. These results suggested that various plant hormones have complex influences on the male strobilus induction. Additionally, principal component analysis (PCA) using expression patterns of the genes that exhibited sequence similarity with flower bud or floral organ formation-related genes of Arabidopsis was performed. PCA suggested that gene expression leading to male strobilus formation in C. japonica became conspicuous within one week of GA treatment. Together, these findings help to clarify the evolution of the mechanism of induction of reproductive organs by GA.
Collapse
|
112
|
Gene Regulation via the Combination of Transcription Factors in the INDETERMINATE DOMAIN and GRAS Families. Genes (Basel) 2020; 11:genes11060613. [PMID: 32498388 PMCID: PMC7349898 DOI: 10.3390/genes11060613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD) family proteins are plant-specific transcription factors. Some Arabidopsis IDD (AtIDD) proteins regulate the expression of SCARECROW (SCR) by interacting with GRAS family transcription factors SHORT-ROOT (SHR) and SCR, which are involved in root tissue formation. Some AtIDD proteins regulate genes involved in the synthesis (GA3ox1) or signaling (SCL3) of gibberellic acid (GA) by interacting with DELLA proteins, a subfamily of the GRAS family. We analyzed the DNA binding properties and protein–protein interactions of select AtIDD proteins. We also investigated the transcriptional activity of the combination of AtIDD and GRAS proteins (AtIDD proteins combined with SHR and SCR or with REPRESSOR of ga1-3 (RGA)) on the promoters of SCR,SCL3, and GA3ox1 by conducting a transient assay using Arabidopsis culture cells. Our results showed that the SCR promoter could be activated by the IDD and RGA complexes and that the SCL3 and GA3ox1 promoters could be activated by the IDD, SHR, and SCR complexes, indicating the possibility that these complexes regulate and consequently coordinate the expression of genes involved in GA synthesis (GA3ox1), GA signaling (SCL3), and root formation (SCR).
Collapse
|
113
|
Affiliation(s)
- Dorota Kawa
- Department of Plant Biology and Genome CenterUniversity of California, Davis
| |
Collapse
|
114
|
Wu J, Yan G, Duan Z, Wang Z, Kang C, Guo L, Liu K, Tu J, Shen J, Yi B, Fu T, Li X, Ma C, Dai C. Roles of the Brassica napus DELLA Protein BnaA6.RGA, in Modulating Drought Tolerance by Interacting With the ABA Signaling Component BnaA10.ABF2. FRONTIERS IN PLANT SCIENCE 2020; 11:577. [PMID: 32477388 PMCID: PMC7240051 DOI: 10.3389/fpls.2020.00577] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/17/2020] [Indexed: 05/22/2023]
Abstract
Drought is a major threat to plant growth and crop productivity. Reduced level of the gibberellin would result in increased drought tolerance, but the underlying mechanism is still unclear. In Brassica napus, there are four BnaRGA genes that code for DELLA proteins, negative regulators of GA signaling. Among them, expression of BnaA6.RGA was greatly induced by drought and abscisic acid (ABA). Previously, we created the gain-of-function mutant of BnaA6.RGA, bnaa6.rga-D, and the loss-of-function quadruple mutant, bnarga by CRISPR/Cas9, respectively. Here we show that bnaa6.rga-D displayed enhanced drought tolerance, and its stomatal closure was hypersensitive to ABA treatment. By contrast, bnarga displayed reduced drought tolerance and was less sensitive to ABA treatment, but there is no difference in drought tolerance between single BnaRGA mutant and WT, suggesting a functional redundancy between the BnaRGA genes in this process. Furthermore, we found that BnaRGAs were able to interact physically with BnaA10.ABF2, an essential transcription factor in ABA signaling. The BnaA10.ABF2-BnaA6.RGA protein complex greatly increased the expression level of the drought responsive gene BnaC9.RAB18. Taken together, this work highlighted the fundamental roles of DELLA proteins in drought tolerance in B. napus, and provide desirable germplasm for further breeding of drought tolerance in rapeseed.
Collapse
Affiliation(s)
- Jiajing Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guanbo Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhiqiang Duan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
115
|
Lantzouni O, Alkofer A, Falter-Braun P, Schwechheimer C. GROWTH-REGULATING FACTORS Interact with DELLAs and Regulate Growth in Cold Stress. THE PLANT CELL 2020; 32:1018-1034. [PMID: 32060178 PMCID: PMC7145461 DOI: 10.1105/tpc.19.00784] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/02/2020] [Accepted: 02/12/2020] [Indexed: 05/18/2023]
Abstract
DELLA proteins are repressors of the gibberellin (GA) hormone signaling pathway that act mainly by regulating transcription factor activities in plants. GAs induce DELLA repressor protein degradation and thereby control a number of critical developmental processes as well as responses to stresses such as cold. The strong effect of cold temperatures on many physiological processes has rendered it difficult to assess, based on phenotypic criteria, the role of GA and DELLAs in plant growth during cold stress. Here, we uncover substantial differences in the GA transcriptomes between plants grown at ambient temperature (21°C) and plants exposed to cold stress (4°C) in Arabidopsis (Arabidopsis thaliana). We further identify over 250, to the largest extent previously unknown, DELLA-transcription factor interactions using the yeast two-hybrid system. By integrating both data sets, we reveal that most members of the nine-member GRF (GROWTH REGULATORY FACTOR) transcription factor family are DELLA interactors and, at the same time, that several GRF genes are targets of DELLA-modulated transcription after exposure to cold stress. We find that plants with altered GRF dosage are differentially sensitive to the manipulation of GA and hence DELLA levels, also after cold stress, and identify a subset of cold stress-responsive genes that qualify as targets of this DELLA-GRF regulatory module.
Collapse
Affiliation(s)
- Ourania Lantzouni
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Angela Alkofer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Pascal Falter-Braun
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
116
|
Zhang Y, Li Z, Ma B, Hou Q, Wan X. Phylogeny and Functions of LOB Domain Proteins in Plants. Int J Mol Sci 2020; 21:ijms21072278. [PMID: 32224847 PMCID: PMC7178066 DOI: 10.3390/ijms21072278] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Lateral organ boundaries (LOB) domain (LBD) genes, a gene family encoding plant-specific transcription factors, play important roles in plant growth and development. At present, though there have been a number of genome-wide analyses on LBD gene families and functional studies on individual LBD proteins, the diverse functions of LBD family members still confuse researchers and an effective strategy is required to summarize their functional diversity. To further integrate and improve our understanding of the phylogenetic classification, functional characteristics and regulatory mechanisms of LBD proteins, we review and discuss the functional characteristics of LBD proteins according to their classifications under a phylogenetic framework. It is proved that this strategy is effective in the anatomy of diverse functions of LBD family members. Additionally, by phylogenetic analysis, one monocot-specific and one eudicot-specific subclade of LBD proteins were found and their biological significance in monocot and eudicot development were also discussed separately. The review will help us better understand the functional diversity of LBD proteins and facilitate further studies on this plant-specific transcription factor family.
Collapse
Affiliation(s)
- Yuwen Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Biao Ma
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
- Correspondence: or ; Tel.: +86-10-6299-5866
| |
Collapse
|
117
|
Yu J, Xie Q, Li C, Dong Y, Zhu S, Chen J. Comprehensive characterization and gene expression patterns of LBD gene family in Gossypium. PLANTA 2020; 251:81. [PMID: 32185507 DOI: 10.1007/s00425-020-03364-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/13/2020] [Indexed: 05/16/2023]
Abstract
A comprehensive account of the LBD gene family of Gossypium was provided in this work. Expression analysis and functional characterization revealed that LBD genes might play different roles in G. hirsutum and G. barbadense. The Lateral Organ Boundaries Domain (LBD) proteins comprise a plant-specific transcription factor family, which plays crucial roles in physiological processes of plant growth, development, and stress tolerance. In the present work, a systematical analysis of LBD gene family from two allotetraploid cotton species, G. hirsutum and G. barbadense, together with their genomic donor species, G. arboreum and G. raimondii, was conducted. There were 131, 128, 62, and 68 LBDs identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. The LBD proteins could be classified into two main classes, class I and class II, based on the structure of their lateral organ boundaries domain and traits of phylogenetic tree, and class I was further divided into five subgroups. The gene structure and motif composition analyses conducted in both G. hirsutum and G. barbadense revealed that LBD genes kept relatively conserved within the subfamilies. Synteny analysis suggested that segmental duplication acted as an important mechanism in expansion of the cotton LBD gene family. Cis-element analysis predicated the possible functions of LBD genes. Public RNA-seq data were investigated to analyze the expression patterns of cotton LBD genes in various tissues as well as gene expression under abiotic stress treatments. Furthermore, RT-qPCR results found that GhLBDs had various expression regulation under MeJA treatments. Expression analysis indicated the differential functions of cotton LBD genes in response to abiotic stress and hormones.
Collapse
Affiliation(s)
- Jingwen Yu
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qianwen Xie
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Li
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yating Dong
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuijin Zhu
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Jinhong Chen
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
118
|
De Vos D, Nelissen H, AbdElgawad H, Prinsen E, Broeckhove J, Inzé D, Beemster GT. How grass keeps growing: an integrated analysis of hormonal crosstalk in the maize leaf growth zone. THE NEW PHYTOLOGIST 2020; 225:2513-2525. [PMID: 31705666 PMCID: PMC7116270 DOI: 10.1111/nph.16315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/02/2019] [Indexed: 05/07/2023]
Abstract
We studied the maize leaf to understand how long-distance signals, auxin and cytokinin, control leaf growth dynamics. We constructed a mathematical model describing the transport of these hormones along the leaf growth zone and their interaction with the local gibberellin (GA) metabolism in the control of cell division. Assuming gradually declining auxin and cytokinin supply at the leaf base, the model generated spatiotemporal hormone distribution and growth patterns that matched experimental data. At the cellular level, the model predicted a basal leaf growth as a result of cell division driven by auxin and cytokinin. Superimposed on this, GA synthesis regulated growth through the control of the size of the region of active cell division. The predicted hormone and cell length distributions closely matched experimental data. To correctly predict the leaf growth profiles and final organ size of lines with reduced or elevated GA production, the model required a signal proportional to the size of the emerged part of the leaf that inhibited the basal leaf growth driven by auxin and cytokinin. Excision and shading of the emerged part of the growing leaf allowed us to demonstrate that this signal exists and depends on the perception of light intensity.
Collapse
Affiliation(s)
- Dirk De Vos
- Laboratory for Integrated Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Modeling Of Systems And Internet Communication (MOSAIC), Department of Mathematics and Informatics, University of Antwerp, 2020 Antwerp, Belgium
- Corresponding Authors ,+32 3 265 34 21 , +32 3 265 34 21
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Els Prinsen
- Laboratory for Integrated Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Jan Broeckhove
- Modeling Of Systems And Internet Communication (MOSAIC), Department of Mathematics and Informatics, University of Antwerp, 2020 Antwerp, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Gerrit T.S. Beemster
- Laboratory for Integrated Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Corresponding Authors ,+32 3 265 34 21 , +32 3 265 34 21
| |
Collapse
|
119
|
Tan X, Li S, Hu L, Zhang C. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC PLANT BIOLOGY 2020; 20:81. [PMID: 32075594 PMCID: PMC7032001 DOI: 10.1186/s12870-020-2286-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs' response to drought stress is still lacking, especially in the case of B. napus. In order to further understand the molecular mechanism of the response of B. napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) responding drought stress and rehydration treatment at the seedling stage. RESULTS A total of 5546 down-regulated and 6997 up-regulated mRNAs were detected in Q2 compared with 7824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up- regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA-mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 transcription factors (TFs) corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes. Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response. CONCLUSIONS The results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Su Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Liyong Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
120
|
Zhou P, Pu T, Gui C, Zhang X, Gong L. Transcriptome Analysis Reveals Biosynthesis of Important Bioactive Constituents and Mechanism of Stem Formation of Dendrobium huoshanense. Sci Rep 2020; 10:2857. [PMID: 32071345 PMCID: PMC7028924 DOI: 10.1038/s41598-020-59737-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
The stem of Dendrobium huoshanense C.Z. Tang and S.J. Cheng was widely used as a medicinal herb in health care products due to its broad pharmacological activities. However, the molecular regulation mechanism of stem development and biosynthetic pathways of important bioactive substances are still unclear in D. huoshanense. In this study, the bioactive compounds in leaves, stems and roots, and the identification of candidate genes involved in stem formation and biosynthesis of active compounds via transcriptome sequence were analyzed. The accumulation of total polysaccharides and flavonoids were varied significantly in different tissues. A comparative transcriptomic analysis revealed several differentially expressed genes (DEGs) involved in polysaccharides biosynthesis (103 genes), including fructose and mannose related genes (29 genes) and glycosyltransferase genes (74 genes), and flavonoids biosynthesis (15 genes). Some candidate genes that participated in photoperiod regulation (27 genes), starch and sucrose metabolism (46 genes), and hormone-induced activation of signaling pathways (38 genes) may be involved in stem formation. In sum, this study provides a foundation for investigating the molecular processes in the biosynthesis of active compounds and stem development. The transcriptome data presented here provides an important resource for the future studies of the molecular genetics and functional genomics in D. huoshanense and optimized control of the active compounds produced by D. huoshanense.
Collapse
Affiliation(s)
- Peina Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Tianzhen Pu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Chun Gui
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Xiuqiao Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Ling Gong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| |
Collapse
|
121
|
Cao H, Han Y, Li J, Ding M, Li Y, Li X, Chen F, Soppe WJ, Liu Y. Arabidopsis thaliana SEED DORMANCY 4-LIKE regulates dormancy and germination by mediating the gibberellin pathway. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:919-933. [PMID: 31641755 DOI: 10.1093/jxb/erz471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The molecular mechanisms underlying seed dormancy and germination are not fully understood. Here, we show that Arabidopsis thaliana SEED DORMANCY 4-LIKE (AtSdr4L) is a novel specific regulator of dormancy and germination. AtSdr4L encodes a protein with an unknown biochemical function that is localized in the nucleus and is expressed specifically in seeds. Loss of function of AtSdr4L results in increased seed dormancy. The germination of freshly harvested seeds of the Atsdr4l mutant is insensitive to gibberellin (GA). After-ripened mutant seeds are hypersensitive to the GA biosynthesis-inhibitor paclobutrazol but show unaltered sensitivity to abscisic acid. Several GA biosynthesis genes and GA-regulated cell wall remodeling genes are down-regulated in the mutant in both dormant and after-ripened seeds. These results suggest that the Atsdr4l mutation causes both decreased GA biosynthesis and reduced responses. In addition, a genetic analysis indicated that AtSdr4L is epistatic to DELAY OF GERMINATION1 (DOG1) for dormancy and acts upstream of RGA-LIKE 2 (RGL2) in the GA pathway. We propose that AtSdr4L regulates seed dormancy and germination by mediating both the DOG1 and GA pathways.
Collapse
Affiliation(s)
- Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yi Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Ding
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wim Jj Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
122
|
Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LSP. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol 2020; 40:320-340. [DOI: 10.1080/07388551.2019.1710459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aarti Gupta
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
123
|
Liu Y, Hao X, Lu Q, Zhang W, Zhang H, Wang L, Yang Y, Xiao B, Wang X. Genome-wide identification and expression analysis of flowering-related genes reveal putative floral induction and differentiation mechanisms in tea plant (Camellia sinensis). Genomics 2020; 112:2318-2326. [PMID: 31923617 DOI: 10.1016/j.ygeno.2020.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022]
Abstract
The tea leaf is economically important, while reproductive growth reduce tea output. However, little is known about flowering mechanisms in tea plants. Here, we determined the approximate times of floral induction, floral transition and floral organ differentiation by morphological observation. We identified 401 and 356 flowering-related genes from the genomes of Camellia sinensis var. sinensis and Camellia sinensis var. assamica, respectively. Then, we compared the expression profiles of flowering-related genes in floriferous and oliganthous cultivars, the result showed that PRR7, GI, GID1B and GID1C expression is correlated with the floral induction; LFY, PNF and PNY expression was correlated with floral bud formation. Transcriptome analysis also showed that GI, PRR7 and GID1 were correlated with stress-induced flowering. Thus, we proposed putative mechanisms of flowering in tea plants. This study provides new insights into flowering and a theoretical basis for balancing vegetative and reproductive growth in tea plants and other economical plants.
Collapse
Affiliation(s)
- Ying Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Xinyuan Hao
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Qinhua Lu
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Weifu Zhang
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Haojie Zhang
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Lu Wang
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China
| | - Yajun Yang
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China.
| | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xinchao Wang
- Tea Research Institute of Chinese Academy, Agricultural Sciences/National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hangzhou 310008, China.
| |
Collapse
|
124
|
Lim CW, Lee SC. ABA-Dependent and ABA-Independent Functions of RCAR5/PYL11 in Response to Cold Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:587620. [PMID: 33101352 PMCID: PMC7545830 DOI: 10.3389/fpls.2020.587620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana has 14 abscisic acid (ABA) receptors-PYR1/PYLs/RCARs-which have diverse and redundant functions in ABA signaling; however, the precise role of these ABA receptors remains to be elucidated. Here, we report the functional characterization of RCAR5/PYL11 in response to cold stress. Expression of RCAR5 gene in dry seeds and leaves was ABA-dependent and ABA-independent, respectively. Under cold stress conditions, seed germination was negatively affected by the level of RCAR5 expression, which was dependent on ABA and was regulated by HAB1, OST1, and ABI5-downstream components of RCAR5 in ABA signaling. Leaves of RCAR5-overexpressing plants showed enhanced stomatal closure-independent of ABA-and high expression levels of cold, dehydration, and/or ABA-responsive genes compared to those of wild-type; these traits conferred enhanced freezing tolerance. Our data suggest that RCAR5 functions in response to cold stress by delaying seed germination and inducing rapid stomatal closure via ABA-dependent and ABA-independent pathways, respectively.
Collapse
|
125
|
Chhetri HB, Furches A, Macaya-Sanz D, Walker AR, Kainer D, Jones P, Harman-Ware AE, Tschaplinski TJ, Jacobson D, Tuskan GA, DiFazio SP. Genome-Wide Association Study of Wood Anatomical and Morphological Traits in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2020; 11:545748. [PMID: 33013968 PMCID: PMC7509168 DOI: 10.3389/fpls.2020.545748] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/21/2020] [Indexed: 05/04/2023]
Abstract
To understand the genetic mechanisms underlying wood anatomical and morphological traits in Populus trichocarpa, we used 869 unrelated genotypes from a common garden in Clatskanie, Oregon that were previously collected from across the distribution range in western North America. Using GEMMA mixed model analysis, we tested for the association of 25 phenotypic traits and nine multitrait combinations with 6.741 million SNPs covering the entire genome. Broad-sense trait heritabilities ranged from 0.117 to 0.477. Most traits were significantly correlated with geoclimatic variables suggesting a role of climate and geography in shaping the variation of this species. Fifty-seven SNPs from single trait GWAS and 11 SNPs from multitrait GWAS passed an FDR threshold of 0.05, leading to the identification of eight and seven nearby candidate genes, respectively. The percentage of phenotypic variance explained (PVE) by the significant SNPs for both single and multitrait GWAS ranged from 0.01% to 6.18%. To further evaluate the potential roles of candidate genes, we used a multi-omic network containing five additional data sets, including leaf and wood metabolite GWAS layers and coexpression and comethylation networks. We also performed a functional enrichment analysis on coexpression nearest neighbors for each gene model identified by the wood anatomical and morphological trait GWAS analyses. Genes affecting cell wall composition and transport related genes were enriched in wood anatomy and stomatal density trait networks. Signaling and metabolism related genes were also common in networks for stomatal density. For leaf morphology traits (leaf dry and wet weight) the networks were significantly enriched for GO terms related to photosynthetic processes as well as cellular homeostasis. The identified genes provide further insights into the genetic control of these traits, which are important determinants of the suitability and sustainability of improved genotypes for lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Hari B. Chhetri
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Anna Furches
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - David Kainer
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Piet Jones
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - Anne E. Harman-Ware
- Biosciences Center, and National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel Jacobson
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Stephen P. DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, United States
- *Correspondence: Stephen P. DiFazio,
| |
Collapse
|
126
|
Liang D, Huang X, Shen Y, Shen T, Zhang H, Lin L, Wang J, Deng Q, Lyu X, Xia H. Hydrogen cyanamide induces grape bud endodormancy release through carbohydrate metabolism and plant hormone signaling. BMC Genomics 2019; 20:1034. [PMID: 31888462 PMCID: PMC6937986 DOI: 10.1186/s12864-019-6368-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 12/03/2019] [Indexed: 12/02/2022] Open
Abstract
Background Grape buds exhibit non-uniform, or delayed, break in early spring in subtropical regions because the accumulation of chilling is insufficient. Hydrogen cyanamide (H2CN2, HC) can partially replace chilling to effectively promote bud sprouting and is used widely in warm winter areas. However, the exact underlying mechanism of grape bud release from endodormancy induced by HC remains elusive. Results In this study, the transcriptome of grape winter buds under in vitro conditions following HC and water treatment (control) was analyzed using RNA-seq technology. A total of 6772 differentially expressed genes (DEGs) were identified. Furthermore, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that starch and sucrose metabolism and plant hormone signaling transduction were most enriched out of the 50 total pathways. HC treatment induced the upregulated expression of sucrose synthase (SUS), sucrose phosphate synthase (SPS), α-amylase (AM), and β-amylase (BM) and downregulated expression of sucrose invertase (INV), hexokinase (HK), fructokinase (FK), soluble starch synthase (SS), and granule-bound starch synthase (GBSS). Hence, the starch concentration in the HC-treated group was significantly lower than that in control, whereas soluble sugar content in the HC-treated group increased quickly and was higher than that in control between 0 and 8 d. The concentration of indoleacetic acid (IAA) and zeatin (ZT) increased, whereas that of abscisic acid (ABA) and gibberellin (GA) decreased in HC treated group, which coincided with the expression level of genes involved in above hormone signals. The content of hydrogen peroxide (H2O2) and enzyme activity of superoxide dismutase (SOD) and peroxidase (POD) were increased in grape buds with HC treatment, whereas catalase (CAT) activity was decreased. HC treatment increased the expression of POD, SOD, primary amine oxidase (PAO), polyamine oxidase (PAOX), and glutathione peroxidase (GSH-Px). Conclusion Based on these results, it is possible to propose a mechanistic model that underlies the regulation of endodormancy release in grapevine buds by exogenous HC application.
Collapse
Affiliation(s)
- Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaojing Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanqiu Shen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tian Shen
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huifen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiulan Lyu
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
127
|
The functional diversity of structural disorder in plant proteins. Arch Biochem Biophys 2019; 680:108229. [PMID: 31870661 DOI: 10.1016/j.abb.2019.108229] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Structural disorder in proteins is a widespread feature distributed in all domains of life, particularly abundant in eukaryotes, including plants. In these organisms, intrinsically disordered proteins (IDPs) perform a diversity of functions, participating as integrators of signaling networks, in transcriptional and post-transcriptional regulation, in metabolic control, in stress responses and in the formation of biomolecular condensates by liquid-liquid phase separation. Their roles impact the perception, propagation and control of various developmental and environmental cues, as well as the plant defense against abiotic and biotic adverse conditions. In this review, we focus on primary processes to exhibit a broad perspective of the relevance of IDPs in plant cell functions. The information here might help to incorporate this knowledge into a more dynamic view of plant cells, as well as open more questions and promote new ideas for a better understanding of plant life.
Collapse
|
128
|
Yang T, Lian Y, Wang C. Comparing and Contrasting the Multiple Roles of Butenolide Plant Growth Regulators: Strigolactones and Karrikins in Plant Development and Adaptation to Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20246270. [PMID: 31842355 PMCID: PMC6941112 DOI: 10.3390/ijms20246270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Strigolactones (SLs) and karrikins (KARs) are both butenolide molecules that play essential roles in plant growth and development. SLs are phytohormones, with SLs having known functions within the plant they are produced in, while KARs are found in smoke emitted from burning plant matter and affect seeds and seedlings in areas of wildfire. It has been suggested that SL and KAR signaling may share similar mechanisms. The α/β hydrolases DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2), which act as receptors of SL and KAR, respectively, both interact with the F-box protein MORE AXILLARY GROWTH 2 (MAX2) in order to target SUPPRESSOR OF MAX2 1 (SMAX1)-LIKE/D53 family members for degradation via the 26S proteasome. Recent reports suggest that SLs and/or KARs are also involved in regulating plant responses and adaptation to various abiotic stresses, particularly nutrient deficiency, drought, salinity, and chilling. There is also crosstalk with other hormone signaling pathways, including auxin, gibberellic acid (GA), abscisic acid (ABA), cytokinin (CK), and ethylene (ET), under normal and abiotic stress conditions. This review briefly covers the biosynthetic and signaling pathways of SLs and KARs, compares their functions in plant growth and development, and reviews the effects of any crosstalk between SLs or KARs and other plant hormones at various stages of plant development. We also focus on the distinct responses, adaptations, and regulatory mechanisms related to SLs and/or KARs in response to various abiotic stresses. The review closes with discussion on ways to gain additional insights into the SL and KAR pathways and the crosstalk between these related phytohormones.
Collapse
Affiliation(s)
| | | | - Chongying Wang
- Correspondence: ; Tel.: +86-0931-8914155; Fax: +86-0931-8914155
| |
Collapse
|
129
|
Vicente R, Bolger AM, Martínez-Carrasco R, Pérez P, Gutiérrez E, Usadel B, Morcuende R. De Novo Transcriptome Analysis of Durum Wheat Flag Leaves Provides New Insights Into the Regulatory Response to Elevated CO 2 and High Temperature. FRONTIERS IN PLANT SCIENCE 2019; 10:1605. [PMID: 31921252 PMCID: PMC6915051 DOI: 10.3389/fpls.2019.01605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/14/2019] [Indexed: 05/08/2023]
Abstract
Global warming is becoming a significant problem for food security, particularly in the Mediterranean basin. The use of molecular techniques to study gene-level responses to environmental changes in non-model organisms is increasing and may help to improve the mechanistic understanding of durum wheat response to elevated CO2 and high temperature. With this purpose, we performed transcriptome RNA sequencing (RNA-Seq) analyses combined with physiological and biochemical studies in the flag leaf of plants grown in field chambers at ear emergence. Enhanced photosynthesis by elevated CO2 was accompanied by an increase in biomass and starch and fructan content, and a decrease in N compounds, as chlorophyll, soluble proteins, and Rubisco content, in association with a decline of nitrate reductase and initial and total Rubisco activities. While high temperature led to a decline of chlorophyll, Rubisco activity, and protein content, the glucose content increased and starch decreased. Furthermore, elevated CO2 induced several genes involved in mitochondrial electron transport, a few genes for photosynthesis and fructan synthesis, and most of the genes involved in secondary metabolism and gibberellin and jasmonate metabolism, whereas those related to light harvesting, N assimilation, and other hormone pathways were repressed. High temperature repressed genes for C, energy, N, lipid, secondary, and hormone metabolisms. Under the combined increases in atmospheric CO2 and temperature, the transcript profile resembled that previously reported for high temperature, although elevated CO2 partly alleviated the downregulation of primary and secondary metabolism genes. The results suggest that there was a reprogramming of primary and secondary metabolism under the future climatic scenario, leading to coordinated regulation of C-N metabolism towards C-rich metabolites at elevated CO2 and a shift away from C-rich secondary metabolites at high temperature. Several candidate genes differentially expressed were identified, including protein kinases, receptor kinases, and transcription factors.
Collapse
Affiliation(s)
- Rubén Vicente
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - Rafael Martínez-Carrasco
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Pilar Pérez
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Elena Gutiérrez
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Björn Usadel
- Institute for Biology 1, RWTH Aachen University, Aachen, Germany
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Rosa Morcuende
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| |
Collapse
|
130
|
Duan AQ, Feng K, Liu JX, Que F, Xu ZS, Xiong AS. Elevated gibberellin altered morphology, anatomical structure, and transcriptional regulatory networks of hormones in celery leaves. PROTOPLASMA 2019; 256:1507-1517. [PMID: 31168667 DOI: 10.1007/s00709-019-01396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Gibberellins (GAs), as one of the important hormones in regulating the growth and development of higher plants, can significantly promote cell elongation and expansion. Celery is a widely grown leafy vegetable crop with rich nutritional value. However, the effect of gibberellins on celery leaves is unclear. In this paper, the celery variety "Jinnan Shiqin" plants were treated with gibberellic acid (GA3) and paclobutrazol (PBZ, a gibberellin inhibitor). Our results showed that GA3 treatment promoted the growth of celery leaves and caused lignification of celery leaf tissue. In addition, the transcript levels of genes associated with gibberellins, auxin, cytokinins, ethylene, jasmonic acid, abscisic acid, and brassinolide were altered in response to increased or decreased exogenous gibberellins or inhibitor. GA3 may regulate celery growth by interacting with other hormones through crosstalk mechanisms. This study provided a reference for further study of the regulation mechanism of gibberellins metabolism, and exerted effects on understanding the role of gibberellins in the growth and development of celery.
Collapse
Affiliation(s)
- Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
131
|
Bai M, Sun J, Liu J, Ren H, Wang K, Wang Y, Wang C, Dehesh K. The B-box protein BBX19 suppresses seed germination via induction of ABI5. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1192-1202. [PMID: 31112314 PMCID: PMC6744306 DOI: 10.1111/tpj.14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 05/04/2023]
Abstract
Seed germination is a fundamental process in the plant life cycle and is regulated by functionally opposing internal and external inputs. Here we explored the role of a negative regulator of photomorphogenesis, a B-box-containing protein (BBX19), as a molecular link between the inhibitory action of the phytohormone abscisic acid (ABA) and the promoting role of light in germination. We show that seeds of BBX19-overexpressing lines, in contrast to those of BBX19 RNA interference lines, display ABA hypersensitivity, albeit independently of elongated hypocotyl 5 (HY5). Moreover, we establish that BBX19 functions neither via perturbation of GA signaling, the ABA antagonistic phytohormone, nor through interference with the DELLA protein germination repressors. Rather, BBX19 functions as an inducer of ABA INSENSITIVE5 (ABI5) by binding to the light-responsive GT1 motifs in the gene promoter. In summary, we identify BBX19 as a regulatory checkpoint, directing diverse developmental processes and tailoring adaptive responses to distinct endogenous and exogenous signals.
Collapse
Affiliation(s)
- Mengjuan Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jingjing Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jinyi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Haoran Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Kang Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yanling Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, P.R. China
| | - Changquan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506, USA
| |
Collapse
|
132
|
Gazara RK, de Oliveira EAG, Rodrigues BC, Nunes da Fonseca R, Oliveira AEA, Venancio TM. Transcriptional landscape of soybean (Glycine max) embryonic axes during germination in the presence of paclobutrazol, a gibberellin biosynthesis inhibitor. Sci Rep 2019; 9:9601. [PMID: 31270425 PMCID: PMC6610145 DOI: 10.1038/s41598-019-45898-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Gibberellins (GA) are key positive regulators of seed germination. Although the GA effects on seed germination have been studied in a number of species, little is known about the transcriptional reprogramming modulated by GA during this phase in species other than Arabidopsis thaliana. Here we report the transcriptome analysis of soybean embryonic axes during germination in the presence of paclobutrazol (PBZ), a GA biosynthesis inhibitor. We found a number of differentially expressed cell wall metabolism genes, supporting their roles in cell expansion during germination. Several genes involved in the biosynthesis and signaling of other phytohormones were also modulated, indicating an intensive hormonal crosstalk at the embryonic axis. We have also found 26 photosynthesis genes that are up-regulated by PBZ at 24 hours after imbibition (HAI) and down-regulated at 36 HAI, which led us to suggest that this is part of a strategy to implement an autotrophic growth program in the absence of GA-driven mobilization of reserves. Finally, 30 transcription factors (mostly from the MYB, bHLH, and bZIP families) were down-regulated by PBZ and are likely downstream GA targets that will drive transcriptional changes during germination.
Collapse
Affiliation(s)
- Rajesh K Gazara
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Eduardo A G de Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Bruno C Rodrigues
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Macaé, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Macaé, Brazil
| | - Antônia Elenir A Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.
| |
Collapse
|
133
|
Sakamoto K, Ogiwara N, Kaji T, Sugimoto Y, Ueno M, Sonoda M, Matsui A, Ishida J, Tanaka M, Totoki Y, Shinozaki K, Seki M. Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. JOURNAL OF PLANT RESEARCH 2019; 132:541-568. [PMID: 31165947 DOI: 10.1007/s10265-019-01117-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/25/2019] [Indexed: 05/11/2023]
Abstract
Soybean (Glycine max) roots establish associations with nodule-inducing rhizobia and arbuscular mycorrhizal (AM) fungi. Both rhizobia and AM fungi have been shown to affect the activity of and colonization by the other, and their interactions can be detected within host plants. Here, we report the transcription profiles of genes differentially expressed in soybean roots in the presence of rhizobial, AM, or rhizobial-AM dual symbiosis, compared with those in control (uninoculated) roots. Following inoculation, soybean plants were grown in a glasshouse for 6 weeks; thereafter their root transcriptomes were analyzed using an oligo DNA microarray. Among the four treatments, the root nodule number and host plant growth were highest in plants with dual symbiosis. We observed that the expression of 187, 441, and 548 host genes was up-regulated and 119, 1,439, and 1,298 host genes were down-regulated during rhizobial, AM, and dual symbiosis, respectively. The expression of 34 host genes was up-regulated in each of the three symbioses. These 34 genes encoded several membrane transporters, type 1 metallothionein, and transcription factors in the MYB and bHLH families. We identified 56 host genes that were specifically up-regulated during dual symbiosis. These genes encoded several nodulin proteins, phenylpropanoid metabolism-related proteins, and carbonic anhydrase. The nodulin genes up-regulated by the AM fungal colonization probably led to the observed increases in root nodule number and host plant growth. Some other nodulin genes were down-regulated specifically during AM symbiosis. Based on the results above, we suggest that the contribution of AM fungal colonization is crucial to biological N2-fixation and host growth in soybean with rhizobial-AM dual symbiosis.
Collapse
Affiliation(s)
- Kazunori Sakamoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan.
| | - Natsuko Ogiwara
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Tomomitsu Kaji
- JA ZEN-NOH Research and Development Center, 4-18-1 Higashiyawata, Hiratsuka, Kanagawa, 254-0016, Japan
| | - Yurie Sugimoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Mitsuru Ueno
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Masatoshi Sonoda
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
134
|
Kumar M, Le DT, Hwang S, Seo PJ, Kim HU. Role of the INDETERMINATE DOMAIN Genes in Plants. Int J Mol Sci 2019; 20:ijms20092286. [PMID: 31075826 PMCID: PMC6539433 DOI: 10.3390/ijms20092286] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
The INDETERMINATE DOMAIN (IDD) genes comprise a conserved transcription factor family that regulates a variety of developmental and physiological processes in plants. Many recent studies have focused on the genetic characterization of IDD family members and revealed various biological functions, including modulation of sugar metabolism and floral transition, cold stress response, seed development, plant architecture, regulation of hormone signaling, and ammonium metabolism. In this review, we summarize the functions and working mechanisms of the IDD gene family in the regulatory network of metabolism and developmental processes.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Dung Thi Le
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Seongbin Hwang
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
135
|
Strobbia P, Ran Y, Crawford BM, Cupil-Garcia V, Zentella R, Wang HN, Sun TP, Vo-Dinh T. Inverse Molecular Sentinel-Integrated Fiberoptic Sensor for Direct and in Situ Detection of miRNA Targets. Anal Chem 2019; 91:6345-6352. [PMID: 30916925 DOI: 10.1021/acs.analchem.9b01350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular advances have been made in analysis systems for a wide variety of applications ranging from biodiagnostics, biosafety, bioengineering, and biofuel research applications. There are, however, limited practical tools necessary for in situ and accurate detection of nucleic acid targets during field work. New technology is needed to translate these molecular advances from laboratory settings into the real-life practical monitoring realm. The exquisite characteristics (e.g., sensitivity and adaptability) of plasmonic nanosensors have made them attractive candidates for field-ready sensing applications. Herein, we have developed a fiber-based plasmonic sensor capable of direct detection (i.e., no washing steps required) of nucleic acid targets, which can be detected simply by immerging the sensor in the sample solution. This sensor is composed of an optical fiber that is decorated with plasmonic nanoprobes based on silver-coated gold nanostars (AuNS@Ag) to detect target nucleic acids using the surface-enhanced Raman scattering (SERS) sensing mechanism of nanoprobes referred to as inverse molecular sentinels (iMS). These fiber-optrodes can be reused for several detection-regeneration cycles (>6). The usefulness and applicability of the iMS fiber-sensors was tested by detecting target miRNA in extracts from leaves of plants that were induced to have different expression levels of miRNA targets. These fiber-optrodes enable direct detection of miRNA in plant tissue extract without the need for complex assays by simply immersing the fiber in the sample solution. The results indicate the fiber-based sensors developed herein have the potential to be a powerful tool for field and in situ analysis of nucleic acid samples.
Collapse
Affiliation(s)
- Pietro Strobbia
- Fitzpatrick Institute for Photonics , Duke University , Durham , North Carolina 27708 , United States
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Yang Ran
- Fitzpatrick Institute for Photonics , Duke University , Durham , North Carolina 27708 , United States
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| | - Bridget M Crawford
- Fitzpatrick Institute for Photonics , Duke University , Durham , North Carolina 27708 , United States
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Vanessa Cupil-Garcia
- Fitzpatrick Institute for Photonics , Duke University , Durham , North Carolina 27708 , United States
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Rodolfo Zentella
- Department of Biology , Duke University , Durham , North Carolina 27708 , United States
| | - Hsin-Neng Wang
- Fitzpatrick Institute for Photonics , Duke University , Durham , North Carolina 27708 , United States
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Tai-Ping Sun
- Department of Biology , Duke University , Durham , North Carolina 27708 , United States
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics , Duke University , Durham , North Carolina 27708 , United States
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
136
|
Dolgikh AV, Kirienko AN, Tikhonovich IA, Foo E, Dolgikh EA. The DELLA Proteins Influence the Expression of Cytokinin Biosynthesis and Response Genes During Nodulation. FRONTIERS IN PLANT SCIENCE 2019; 10:432. [PMID: 31024597 PMCID: PMC6465611 DOI: 10.3389/fpls.2019.00432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/21/2019] [Indexed: 05/27/2023]
Abstract
The key event that initiates nodule organogenesis is the perception of bacterial signal molecules, the Nod factors, triggering a complex of responses in epidermal and cortical cells of the root. The Nod factor signaling pathway interacts with plant hormones, including cytokinins and gibberellins. Activation of cytokinin signaling through the homeodomain-containing transcription factors KNOX is essential for nodule formation. The main regulators of gibberellin signaling, the DELLA proteins are also involved in regulation of nodule formation. However, the interaction between the cytokinin and gibberellin signaling pathways is not fully understood. Here, we show in Pisum sativum L. that the DELLA proteins can activate the expression of KNOX and BELL transcription factors involved in regulation of cytokinin metabolic and response genes. Consistently, pea la cry-s (della1 della2) mutant showed reduced ability to upregulate expression of some cytokinin metabolic genes during nodulation. Our results suggest that DELLA proteins may regulate cytokinin metabolism upon nodulation.
Collapse
Affiliation(s)
- Alexandra V. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Anna N. Kirienko
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | - Eloise Foo
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Elena A. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| |
Collapse
|
137
|
Wang S, Zhang N, Zhu X, Yang J, Li S, Che Y, Liu W, Si H. Identification and expression analysis of StGRAS gene family in potato (Solanum tuberosum L.). Comput Biol Chem 2019; 80:195-205. [PMID: 30978571 DOI: 10.1016/j.compbiolchem.2019.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 12/25/2022]
Abstract
The GRAS gene family is a class of plant-specific transcription factors which play pivotal roles in the regulation of plant growth and development. At present, the GRAS gene family has been completely identified in Arabidopsis thaliana, however, there are no systematic research reports in potato. In the present study, we obtained an overview of the GRAS gene family including gene structure, gene expression, chromosome mapping and phylogenetic analysis, and 52 StGRASs were identified in the potato by bioinformatics analysis, which could be divided into eight subfamilies based on phylogeny. More than 90% of genes do not contain introns and the StGRAS family major function is protein binding according to gene ontology analysis (GO).The tissue specific expression analysis showed that StGRAS3, StGRAS35 and StGRAS50 gene had the higher expression in roots, stems and leaves compared with other StGRAS, StGRAS9 and StGRAS28 genes were responded to plant hormones IAA, ABA and GA3 treatment. The result could provide a basis for further studying the function of GRAS genes and GRAS-mediated signal transduction pathways in potato.
Collapse
Affiliation(s)
- Shulin Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xi Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhang Che
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Weigang Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
138
|
Li M, Sun B, Xie F, Gong R, Luo Y, Zhang F, Yan Z, Tang H. Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard. PeerJ 2019; 7:e6682. [PMID: 30972257 PMCID: PMC6448559 DOI: 10.7717/peerj.6682] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
GRAS transcription factors are known to play important roles in plant signal transduction and development. A comprehensive study was conducted to explore the GRAS family in the Brassica juncea genome. A total of 88 GRAS genes were identified which were categorized into nine groups according to the phylogenetic analysis. Gene structure analysis showed a high group-specificity, which corroborated the gene grouping results. The chromosome distribution and sequence analysis suggested that gene duplication events are vital for the expansion of GRAS genes in the B. juncea genome. The changes in evolution rates and amino acid properties among groups might be responsible for their functional divergence. Interaction networks and cis-regulatory elements were analyzed including DELLA and eight interaction proteins (including four GID1, two SLY1, and two PIF3 proteins) that are primarily involved in light and hormone signaling. To understand their regulatory role in growth and development, the expression profiles of BjuGRASs and interaction genes were examined based on transcriptome data and qRT-PCR, and selected genes (BjuGRAS3, 5, 7, 8, 10, BjuB006276, BjuB037910, and BjuA021658) had distinct temporal expression patterns during stem swelling, indicating that they possessed diverse regulatory functions during the developmental process. These results contribute to our understanding on the GRAS gene family and provide the basis for further investigations on the evolution and functional characterization of GRAS genes.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Fangjie Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zesheng Yan
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
139
|
Yuan J, Liu T, Yu Z, Li Y, Ren H, Hou X, Li Y. Genome-wide analysis of the Chinese cabbage IQD gene family and the response of BrIQD5 in drought resistance. PLANT MOLECULAR BIOLOGY 2019; 99:603-620. [PMID: 30783953 DOI: 10.1007/s11103-019-00839-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/09/2019] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE Thirty-five IQD genes were identified and analysed in Chinese cabbage and BrIQD5 transgenic plants enhanced the drought resistance of plants. The IQD (IQ67-domain) family plays an important role in various abiotic stress responses in plant species. However, the roles of IQD genes in the Chinese cabbage response to abiotic stress remain unclear. Here, 35 IQD genes, from BrIQD1 to BrIQD35, were identified in Chinese cabbage (Brassica rapa ssp. pekinensis). Based on the phylogenetic analysis, these genes were clustered into three subfamilies (I-III), and members within the same subfamilies shared conserved exon-intron distribution and motif composition. The 35 BrIQD genes were unevenly distributed on 9 of the 10 chromosomes with 4 segmental duplication events. Ka/Ks ratios showed that the duplicated BrIQDs had mainly experienced strong purifying selection. Quantitative real-time polymerase chain reaction of 35 BrIQDs under PEG6000 indicated that BrIQD5 was significantly induced by PEG6000. To verify BrIQD5 function, BrIQD5 was heterologously overexpressed in tobacco and was silenced in Chinese cabbage. BrIQD5-overexpressed plants showed more tolerance to drought stress than wild-type plants, while BrIQD5-silenced plants in Chinese cabbage showed decreased drought tolerance. Additionally, six BrIQD5 potential interactive proteins were isolated by the yeast two-hybrid assay, including BrCaMa, BrCaMb and four other stress-related proteins. Motif IQ1 of BrIQD5 is important for the interaction with BrCaMa and BrCaMb, and the isoleucine in motif IQ1 is an essential amino acid for calmodulin binding to BrIQD5. The identification and cloning of the new Chinese cabbage drought tolerance genes will promote the drought-resistant breeding of Chinese cabbage and help to better understand the mechanism of IQD involved in the drought tolerance of plants.
Collapse
Affiliation(s)
- Jingping Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhanghong Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibo Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
140
|
Arro J, Yang Y, Song GQ, Zhong GY. RNA-Seq reveals new DELLA targets and regulation in transgenic GA-insensitive grapevines. BMC PLANT BIOLOGY 2019; 19:80. [PMID: 30777012 PMCID: PMC6379989 DOI: 10.1186/s12870-019-1675-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/07/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Gibberellins (GAs) and their regulator DELLA are involved in many aspects of plant growth and development and most of our current knowledge in the DELLA-facilitated GA signaling was obtained from the studies of annual species. To understand GA-DELLA signaling in perennial species, we created ten GA-insensitive transgenic grapevines carrying a DELLA mutant allele (Vvgai1) in the background of Vitis vinifera 'Thompson Seedless' and conducted comprehensive analysis of their RNA expression profiles in the shoot, leaf and root tissues. RESULTS The transgenic lines showed varying degrees of dwarf stature and other typical DELLA mutant phenotypes tightly correlated with the levels of Vvgai1 expression. A large number of differentially expressed genes (DEGs) were identified in the shoot, leaf and root tissues of the transgenic lines and these DEGs were involved in diverse biological processes; many of the DEGs showed strong tissue specificity and about 30% them carried a DELLA motif. We further discovered unexpected expression patterns of several key flowering induction genes VvCO, VvCOL1 and VvTFL1. CONCLUSIONS Our results not only confirmed many previous DELLA study findings in annual species, but also revealed new DELLA targets and responses in grapevine, including the roles of homeodomain transcription factors as potential co-regulators with DELLA in controlling the development of grapevine which uniquely possess both vegetative and reproductive meristems at the same time. The contrasting responses of some key flowering induction pathway genes provides new insights into the divergence of GA-DELLA regulations between annual and perennial species in GA-DELLA signaling.
Collapse
Affiliation(s)
- Jie Arro
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| | - Yingzhen Yang
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| | - Guo-Qing Song
- Department of Horticulture, Michigan State University, East Lansing, MI 48823 USA
| | - Gan-Yuan Zhong
- USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| |
Collapse
|
141
|
Kölling M, Kumari P, Bürstenbinder K. Calcium- and calmodulin-regulated microtubule-associated proteins as signal-integration hubs at the plasma membrane-cytoskeleton nexus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:387-396. [PMID: 30590729 DOI: 10.1093/jxb/ery397] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/06/2018] [Indexed: 05/09/2023]
Abstract
Plant growth and development are a genetically predetermined series of events but can change dramatically in response to environmental stimuli, involving perpetual pattern formation and reprogramming of development. The rate of growth is determined by cell division and subsequent cell expansion, which are restricted and controlled by the cell wall-plasma membrane-cytoskeleton continuum, and are coordinated by intricate networks that facilitate intra- and intercellular communication. An essential role in cellular signaling is played by calcium ions, which act as universal second messengers that transduce, integrate, and multiply incoming signals during numerous plant growth processes, in part by regulation of the microtubule cytoskeleton. In this review, we highlight recent advances in the understanding of calcium-mediated regulation of microtubule-associated proteins, their function at the microtubule cytoskeleton, and their potential role as hubs in crosstalk with other signaling pathways.
Collapse
Affiliation(s)
- Malte Kölling
- Leibniz Institute of Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | - Pratibha Kumari
- Leibniz Institute of Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | | |
Collapse
|
142
|
Liu J, Sherif SM. Hormonal Orchestration of Bud Dormancy Cycle in Deciduous Woody Perennials. FRONTIERS IN PLANT SCIENCE 2019; 10:1136. [PMID: 31620159 PMCID: PMC6759871 DOI: 10.3389/fpls.2019.01136] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/19/2019] [Indexed: 05/03/2023]
Abstract
Woody perennials enter seasonal dormancy to avoid unfavorable environmental conditions. Plant hormones are the critical mediators regulating this complex process, which is subject to the influence of many internal and external factors. Over the last two decades, our knowledge of hormone-mediated dormancy has increased considerably, primarily due to advancements in molecular biology, omics, and bioinformatics. These advancements have enabled the elucidation of several aspects of hormonal regulation associated with bud dormancy in various deciduous tree species. Plant hormones interact with each other extensively in a context-dependent manner. The dormancy-associated MADS (DAM) transcription factors appear to enable hormones and other internal signals associated with the transition between different phases of bud dormancy. These proteins likely hold a great potential in deciphering the underlying mechanisms of dormancy initiation, maintenance, and release. In this review, a recent understanding of the roles of plant hormones, their cross talks, and their potential interactions with DAM proteins during dormancy is discussed.
Collapse
|
143
|
Shi WY, Du YT, Ma J, Min DH, Jin LG, Chen J, Chen M, Zhou YB, Ma YZ, Xu ZS, Zhang XH. The WRKY Transcription Factor GmWRKY12 Confers Drought and Salt Tolerance in Soybean. Int J Mol Sci 2018; 19:E4087. [PMID: 30562982 PMCID: PMC6320995 DOI: 10.3390/ijms19124087] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/17/2022] Open
Abstract
WRKYs are important regulators in plant development and stress responses. However, knowledge of this superfamily in soybean is limited. In this study, we characterized the drought- and salt-induced gene GmWRKY12 based on RNA-Seq and qRT-PCR. GmWRKY12, which is 714 bp in length, encoded 237 amino acids and grouped into WRKY II. The promoter region of GmWRKY12 included ABER4, MYB, MYC, GT-1, W-box and DPBF cis-elements, which possibly participate in abscisic acid (ABA), drought and salt stress responses. GmWRKY12 was minimally expressed in different tissues under normal conditions but highly expressed under drought and salt treatments. As a nucleus protein, GmWRKY12 was responsive to drought, salt, ABA and salicylic acid (SA) stresses. Using a transgenic hairy root assay, we further characterized the roles of GmWRKY12 in abiotic stress tolerance. Compared with control (Williams 82), overexpression of GmWRKY12 enhanced drought and salt tolerance, increased proline (Pro) content and decreased malondialdehyde (MDA) content under drought and salt treatment in transgenic soybean seedlings. These results may provide a basis to understand the functions of GmWRKY12 in abiotic stress responses in soybean.
Collapse
Affiliation(s)
- Wen-Yan Shi
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China.
| | - Dong-Hong Min
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Xiao-Hong Zhang
- College of Life Sciences, College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China.
| |
Collapse
|
144
|
Bedini A, Mercy L, Schneider C, Franken P, Lucic-Mercy E. Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior. FRONTIERS IN PLANT SCIENCE 2018; 9:1800. [PMID: 30619390 PMCID: PMC6304697 DOI: 10.3389/fpls.2018.01800] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi establish probably one of the oldest mutualistic relationships with the roots of most plants on earth. The wide distribution of these fungi in almost all soil ecotypes and the broad range of host plant species demonstrate their strong plasticity to cope with various environmental conditions. AM fungi elaborate fine-tuned molecular interactions with plants that determine their spread within root cortical tissues. Interactions with endomycorrhizal fungi can bring various benefits to plants, such as improved nutritional status, higher photosynthesis, protection against biotic and abiotic stresses based on regulation of many physiological processes which participate in promoting plant performances. In turn, host plants provide a specific habitat as physical support and a favorable metabolic frame, allowing uptake and assimilation of compounds required for the life cycle completion of these obligate biotrophic fungi. The search for formal and direct evidences of fungal energetic needs raised strong motivated projects since decades, but the impossibility to produce AM fungi under axenic conditions remains a deep enigma and still feeds numerous debates. Here, we review and discuss the initial favorable and non-favorable metabolic plant context that may fate the mycorrhizal behavior, with a focus on hormone interplays and their links with mitochondrial respiration, carbon partitioning and plant defense system, structured according to the action of phosphorus as a main limiting factor for mycorrhizal symbiosis. Then, we provide with models and discuss their significances to propose metabolic targets that could allow to develop innovations for the production and application of AM fungal inocula.
Collapse
Affiliation(s)
| | | | | | - Philipp Franken
- Department of Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Leibniz-Institut für Gemüse- und Zierpflanzenbau Großbeeren/Erfurt, Großbeeren, Germany
| | | |
Collapse
|
145
|
Kodama M, Brinch-Pedersen H, Sharma S, Holme IB, Joernsgaard B, Dzhanfezova T, Amby DB, Vieira FG, Liu S, Gilbert MTP. Identification of transcription factor genes involved in anthocyanin biosynthesis in carrot (Daucus carota L.) using RNA-Seq. BMC Genomics 2018; 19:811. [PMID: 30409110 PMCID: PMC6225646 DOI: 10.1186/s12864-018-5135-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/01/2018] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Anthocyanins are water-soluble colored flavonoids present in multiple organs of various plant species including flowers, fruits, leaves, stems and roots. DNA-binding R2R3-MYB transcription factors, basic helix-loop-helix (bHLH) transcription factors, and WD40 repeat proteins are known to form MYB-bHLH-WD repeat (MBW) complexes, which activates the transcription of structural genes in the anthocyanin pathway. Although black cultivars of carrots (Daucus carota L.) can accumulate large quantities of anthocyanin in their storage roots, the regulatory genes responsible for their biosynthesis are not well characterized. The current study aimed to analyze global transcription profiles based on RNA sequencing (RNA-Seq), and mine MYB, bHLH and WD40 genes that may function as positive or negative regulators in the carrot anthocyanin biosynthesis pathways. RESULTS RNA was isolated from differently colored calli, as well as tissue samples from taproots of various black carrot cultivars across the course of development, and gene expression levels of colored and non-colored tissue and callus samples were compared. The expression of 32 MYB, bHLH and WD40 genes were significantly correlated with anthocyanin content in black carrot taproot. Of those, 11 genes were consistently up- or downregulated in a purple color-specific manner across various calli and cultivar comparisons. The expression of 10 out of these 11 genes was validated using real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). CONCLUSIONS The results of this study provide insights into regulatory genes that may be responsible for carrot anthocyanin biosynthesis, and suggest that future focus on them may help improve our overall understanding of the anthocyanin synthesis pathway.
Collapse
Affiliation(s)
- Miyako Kodama
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Genome Research and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Brinch-Pedersen
- Research Centre Flakkebjerg, Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Shrikant Sharma
- Research Centre Flakkebjerg, Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Inger Bæksted Holme
- Research Centre Flakkebjerg, Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | | | | | - Daniel Buchvaldt Amby
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Shanlin Liu
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, 518083 China
| | - M Thomas P Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- NTNU University Museum, Erling Skakkes gate 47A, 7012 Trondheim, Norway
| |
Collapse
|
146
|
Guan S, Xu Q, Ma D, Zhang W, Xu Z, Zhao M, Guo Z. Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice. Gene 2018; 685:96-105. [PMID: 30389557 DOI: 10.1016/j.gene.2018.10.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/24/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022]
Abstract
Weedy rice is an important germplasm resource for rice improvement because it has useful genes for many abiotic stresses including cold tolerance. We identified the cold tolerance and cold sensitivity of two weedy rice lines (WR 03-35 and WR 03-26) and two cultivated rice lines (Kongyu 131 and 9311). During the seedling stage of these lines, we used RNA-seq to measure changes in weedy rice and cultivated rice whole-genome transcriptome before and after cold treatment. We identified 14,213 and 14,730 differentially expressed genes (DEGs) in cold-tolerant genotypes (WR 03-35, Kongyu 131), and 9219 and 720 DEGs were observed in two cold-sensitive genotypes (WR 03-26, 9311). Many common and special DEGs were analyzed in cold-tolerant and cold-sensitive genotypes, respectively. Some typical genes related to cold stress such as the basic helix-loop-helix (bHLH) gene and leucine-rich repeat (LRR) domain gene etc. The number of these DEGs in cold-tolerant genotypes is more than those found in cold-sensitive genotypes. The gene ontology (GO) enrichment analyses showed significantly enriched terms for biological processes, cellular components and molecular functions. In addition, some genes related to several plant hormones such as abscisic acid (ABA), gibberellic acid (GA), auxin and ethylene were identified. To confirm the RNA-seq data, semi-quantitative RT-PCR and qRT-PCR were performed on 12 randomly selected DEGs. The expression patterns of RNA-seq on these genes corresponded with the semi-quantitative RT-PCR and qRT-PCR method. This study suggests the gene resources related to cold stress from weedy rice could be valuable for understanding the mechanisms involved in cold stress and rice breeding for improving cold tolerance.
Collapse
Affiliation(s)
- Shixin Guan
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Quan Xu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Dianrong Ma
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenzhong Zhang
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhengjin Xu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Minghui Zhao
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.
| | - Zhifu Guo
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
147
|
Song H, Sun W, Yang G, Sun J. WRKY transcription factors in legumes. BMC PLANT BIOLOGY 2018; 18:243. [PMID: 30332991 PMCID: PMC6192229 DOI: 10.1186/s12870-018-1467-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/03/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND WRKY transcription factors, so named because of the WRKYGQK heptapeptide at the N-terminal end, are widely distributed in plants and play an important role in physiological changes and response to biotic and abiotic stressors. Many previous studies have focused on the evolution of WRKY transcription factors in a given plant; however, little is known about WRKY evolution in legumes. The gene expression pattern of duplicated WRKY transcription factors remains unclear. RESULTS We first identified the WRKY proteins in 12 legumes. We found that the WRKYGQK heptapeptide tended to mutate into WRKYGKK. The Q site in WRKYGQK preferentially mutated, while W, K, and Y were conserved. The phylogenetic tree shows that the WRKY proteins in legumes have multiple origins, especially group IIc. For example, WRKY64 from Lupinus angustifolius (LaWRKY64) contains three WRKY domains, of which the first two clustered together in the N-terminal WRKY domain of the group I WRKY protein, and the third WRKY domain grouped in the C-terminal WRKY domain of the group I WRKY protein. Orthologous WRKY genes have a faster evolutionary rate and are subject to constrained selective pressure, unlike paralogous WRKY genes. Different gene features were observed between duplicated WRKY genes and singleton WRKY genes. Duplicated Glycine max WRKY genes with similar gene features have gene expression divergence. CONCLUSIONS We analyzed the WRKY number and type in 12 legumes, concluding that the WRKY proteins have multiple origins. A novel WRKY protein, LaWRKY64, was found in L. angustifolius. The first two WRKY domains of LaWRKY64 have the same origin. The orthologous and paralogous WRKY proteins have different evolutionary rates. Duplicated WRKY genes have gene expression divergence under normal growth conditions in G. max. These results provide insight into understanding WRKY evolution and expression.
Collapse
Affiliation(s)
- Hui Song
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Weihong Sun
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Guofeng Yang
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Juan Sun
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| |
Collapse
|
148
|
Li Z, Gao Y, Zhang Y, Lin C, Gong D, Guan Y, Hu J. Reactive Oxygen Species and Gibberellin Acid Mutual Induction to Regulate Tobacco Seed Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:1279. [PMID: 30356911 PMCID: PMC6190896 DOI: 10.3389/fpls.2018.01279] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Seed germination is a complex process controlled by various mechanisms. To examine the potential contribution of reactive oxygen species (ROS) and gibberellin acid (GA) in regulating seed germination, diphenylene iodonium chloride (DPI) and uniconazole (Uni), as hydrogen peroxide (H2O2) and GA synthesis inhibitor, respectively, were exogenously applied on tobacco seeds using the seed priming method. Seed priming with DPI or Uni decreased germination percentage as compared with priming with H2O, especially the DPI + Uni combination. H2O2 and GA completely reversed the inhibition caused by DPI or Uni. The germination percentages with H2O2 + Uni and GA + DPI combinations kept the same level as with H2O. Meanwhile, GA or H2O2 increased GA content and deceased ABA content through corresponding gene expressions involving homeostasis and signal transduction. In addition, the activation of storage reserve mobilization and the enhancement of soluble sugar content and isocitrate lyase (ICL) activity were also induced by GA or H2O2. These results strongly suggested that H2O2 and GA were essential for tobacco seed germination and by downregulating the ABA/GA ratio and inducing reserve composition mobilization mutually promoted seed germination. Meanwhile, ICL activity was jointly enhanced by a lower ABA/GA ratio and a higher ROS concentration.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajing Guan
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
149
|
Liu H, Ren X, Zhu J, Wu X, Liang C. Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress. PLANTA 2018; 248:647-659. [PMID: 29855701 DOI: 10.1007/s00425-018-2922-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H+-ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H+-ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.
Collapse
Affiliation(s)
- Hongyue Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqian Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiuzheng Zhu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xi Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
150
|
Liang H, Zhang Y, Martinez P, Rasmussen CG, Xu T, Yang Z. The Microtubule-Associated Protein IQ67 DOMAIN5 Modulates Microtubule Dynamics and Pavement Cell Shape. PLANT PHYSIOLOGY 2018; 177:1555-1568. [PMID: 29976837 PMCID: PMC6084666 DOI: 10.1104/pp.18.00558] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 05/10/2023]
Abstract
The dynamic arrangement of cortical microtubules (MTs) plays a pivotal role in controlling cell growth and shape formation in plants, but the mechanisms by which cortical MTs are organized to regulate these processes are not well characterized. In particular, the dynamic behavior of cortical MTs is critical for their spatial organization, yet the molecular mechanisms controlling MT dynamics remain poorly understood. In this study, we used the puzzle piece-shaped pavement cells of Arabidopsis (Arabidopsis thaliana) leaves as a model system in which to study cortical MT organization. We isolated an ethyl methanesulfonate mutant with reduced interdigitation of pavement cells in cotyledons. This line carried a mutation in IQ67 DOMAIN5 (IQD5), which encodes a member of the plant-specific IQ motif protein family. Live-cell imaging and biochemical analyses demonstrated that IQD5 binds to MTs and promotes MT assembly. MT-depolymerizing drug treatment and in vivo MT dynamics assays suggested that IQD5 functions to stabilize MTs. Hence, our findings provide genetic, cell biological, and biochemical evidence that IQD5 regulates MT dynamics that affect MT organization and subsequent cell shape formation.
Collapse
Affiliation(s)
- Hong Liang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Yi Zhang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
- University of the Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
| | - Pablo Martinez
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Carolyn G Rasmussen
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Tongda Xu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| |
Collapse
|