101
|
Pongrac P, Fischer S, Thompson JA, Wright G, White PJ. Early Responses of Brassica oleracea Roots to Zinc Supply Under Sufficient and Sub-Optimal Phosphorus Supply. FRONTIERS IN PLANT SCIENCE 2020; 10:1645. [PMID: 31998335 PMCID: PMC6962232 DOI: 10.3389/fpls.2019.01645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/21/2019] [Indexed: 05/24/2023]
Abstract
Shoot zinc (Zn) concentration in Brassica oleracea is affected by soil Zn and phosphorus (P) supply. Most problematic is the negative impact of P fertilizers on Zn concentrations in crops, which makes balancing yield and mineral quality challenging. To evaluate early molecular mechanisms involved in the accumulation of large shoot Zn concentrations regardless of the P supply, two B. oleracea accessions differing in root architecture and root exudates were grown hydroponically for two weeks with different combinations of P and Zn supply. Ionome profiling and deep RNA sequencing of roots revealed interactions of P and Zn in planta, without apparent phenotypic effects. In addition, increasing P supply did not reduce tissue Zn concentration. Substantial changes in gene expression in response to different P and/or Zn supplies in roots of both accessions ensured nutritionally sufficient P and Zn uptake. Numerous genes were differentially expressed after changing Zn or P supply and most of them were unique to only one accession, highlighting their different strategies in achieving nutrient sufficiency. Thus, different gene networks responded to the changing P and Zn supply in the two accessions. Additionally, enrichment analysis of gene ontology classes revealed that genes involved in lipid metabolism, response to starvation, and anion transport mechanisms were most responsive to differences in P and Zn supply in both accessions. The results agreed with previously studies demonstrating alterations in P and Zn transport and phospholipid metabolism in response to reduced P and Zn supply. It is anticipated that improved knowledge of genes responsive to P or Zn supply will help illuminate the roles in uptake and accumulation of P and Zn and might identify candidate genes for breeding high-yield-high-Zn brassicas.
Collapse
Affiliation(s)
- Paula Pongrac
- Ecological Science Group, The James Hutton Institute, Dundee, United Kingdom
- Low and Medium Energy Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sina Fischer
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Gladys Wright
- Ecological Science Group, The James Hutton Institute, Dundee, United Kingdom
| | - Philip J. White
- Ecological Science Group, The James Hutton Institute, Dundee, United Kingdom
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
102
|
Yang SY, Lu WC, Ko SS, Sun CM, Hung JC, Chiou TJ. Upstream Open Reading Frame and Phosphate-Regulated Expression of Rice OsNLA1 Controls Phosphate Transport and Reproduction. PLANT PHYSIOLOGY 2020; 182:393-407. [PMID: 31659125 PMCID: PMC6945825 DOI: 10.1104/pp.19.01101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/17/2019] [Indexed: 05/20/2023]
Abstract
Rice (Oryza sativa) OsNLA1 has been proposed to play a crucial role in regulating phosphate (Pi) acquisition in roots, similar to that of Arabidopsis (Arabidopsis thaliana) AtNLA. However, unlike AtNLA, OsNLA1 is not a target of miR827, a Pi starvation-induced microRNA. It is, therefore, of interest to know whether the expression of OsNLA1 depends on Pi supply and how it is regulated. In this study, we provide evidence that OsNLA1 controls Pi acquisition by directing the degradation of several OsPHT1 Pi transporters (i.e. OsPT1/2/4/7/8/12). We further show that OsNLA1 has an additional function in reproduction and uncover the mechanism of its expression regulation. Analysis of mRNA levels, promoter-GUS activity, and protoplast transient expression showed that the expression of OsNLA1.1, the most abundant transcript variant, is up-regulated in response to increasing Pi supply. The OsNLA1 promoter region was found to contain an upstream open reading frame that is required for Pi-responsive expression regulation. OsNLA1 promoter activity was observed in roots, ligules, leaves, sheaths, pollen grains, and surrounding the vascular tissues of anthers, suggesting that OsNLA1 is important throughout the development of rice. Disruption of OsNLA1 resulted in increased Pi uptake from roots as well as impaired pollen development and reduced grain production. In summary, our study reveals that Pi-induced OsNLA1 expression regulated by a unique mechanism functions in Pi acquisition, Pi translocation, and reproductive success.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Chien Lu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Ching-Mei Sun
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jo-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
103
|
Sega P, Kruszka K, Szewc Ł, Szweykowska-Kulińska Z, Pacak A. Identification of transcription factors that bind to the 5'-UTR of the barley PHO2 gene. PLANT MOLECULAR BIOLOGY 2020; 102:73-88. [PMID: 31745747 DOI: 10.1007/s11103-019-00932-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
In barley and other higher plants, phosphate homeostasis is maintained by a regulatory network involving the PHO2 (PHOSPHATE2) encoding ubiquitin-conjugating (UBC) E2 enzyme, the PHR1 (PHOSPHATE STARVATION RESPONSE 1) transcription factor (TF), IPS1 (INDUCED BYPHOSPHATESTARVATION1) RNA, and miR399. During phosphate ion (Pi) deprivation, PHR1 positively regulates MIR399 expression, after transcription and processing mature miR399 guides the Ago protein to the 5'-UTR of PHO2 transcripts. Non-coding IPS1 RNA is highly expressed during Pi starvation, and the sequestration of miR399 molecules protects PHO2 mRNA from complete degradation. Here, we reveal new cis- and trans-regulatory elements that are crucial for efficient PHO2 gene expression in barley. We found that the 5'-UTR of PHO2 contains two PHR1 binding sites (P1BSs) and one Pi-responsive PHO element. Using a yeast one-hybrid (Y1H) assay, we identified two candidate proteins that might mediate this transcriptional regulation: a barley PHR1 ortholog and a TF containing an uncharacterized MYB domain. Additional results classified this new potential TF as belonging to the APL (ALTERED PHLOEM DEVELOPMENT) protein family, and we observed its nuclear localization in barley protoplasts. Pi starvation induced the accumulation of barley APL transcripts in both the shoots and roots. Interestingly, the deletion of the P1BS motif from the first intron of the barley 5'-UTR led to a significant increase in the transcription of a downstream β-glucuronidase (GUS) reporter gene in tobacco leaves. Our work extends the current knowledge about putative cis- and trans-regulatory elements that may affect the expression of the barley PHO2 gene.
Collapse
Affiliation(s)
- Paweł Sega
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Łukasz Szewc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zofia Szweykowska-Kulińska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
104
|
Yang J, Xie MY, Yang XL, Liu BH, Lin HH. Phosphoproteomic Profiling Reveals the Importance of CK2, MAPKs and CDPKs in Response to Phosphate Starvation in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:2785-2796. [PMID: 31424513 DOI: 10.1093/pcp/pcz167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus is one of the most important macronutrients required for plant growth and development. The importance of phosphorylation modification in regulating phosphate (Pi) homeostasis in plants is emerging. We performed phosphoproteomic profiling to characterize proteins whose degree of phosphorylation is altered in response to Pi starvation in rice root. A subset of 554 proteins, including 546 down-phosphorylated and eight up-phosphorylated proteins, exhibited differential phosphorylation in response to Pi starvation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the differentially phosphorylated proteins indicated that RNA processing, transport, splicing and translation and carbon metabolism played critical roles in response to Pi starvation in rice. Levels of phosphorylation of four mitogen-activated protein kinases (MAPKs), including OsMAPK6, five calcium-dependent protein kinases (CDPKs) and OsCK2β3 decreased in response to Pi starvation. The decreased phosphorylation level of OsMAPK6 was confirmed by Western blotting. Mutation of OsMAPK6 led to Pi accumulation under Pi-sufficient conditions. Motif analysis indicated that the putative MAPK, casein kinase 2 (CK2) and CDPK substrates represented about 54.4%, 21.5% and 4.7%, respectively, of the proteins exhibiting differential phosphorylation. Based on the motif analysis, 191, 151 and 46 candidate substrates for MAPK, CK2 and CDPK were identified. These results indicate that modification of phosphorylation profiles provides complementary information on Pi-starvation-induced processes, with CK2, MAPK and CDPK protein kinase families playing key roles in these processes in rice.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Meng-Yang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Xiao-Li Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Bao-Hui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| |
Collapse
|
105
|
Phenylalanine ammonia-lyase family is closely associated with response to phosphate deficiency in rice. Genes Genomics 2019; 42:67-76. [PMID: 31736007 DOI: 10.1007/s13258-019-00879-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Phenylalanine ammonia-lyase (PAL) catalyzes the first step in the biosynthetic phenylpropanoid pathway (PPP) via deamination of phenylalanine to trans-cinnamic acid, a precursor for the lignin and flavonoid biosynthetic pathways. Although its role is well-established in various plants, the functional significance of PAL genes in rice remains poorly understood. OBJECTIVE This study aims to find out the global feature of rice PAL genes associated with phosphate use efficiency. METHODS To identify the biological functions of individual rice PAL genes, we performed meta-expression profiling analysis based on phylogenomics of rice PAL genes and confirmed the expression patterns using Quantitative real-time PCR (qPCR). RESULTS We identified nine genes that were remarkably up-regulated during long-term phosphate (Pi) starvation and recovery processes through RNA-Seq data analysis. Expression patterns of the nine rice PAL genes under Pi starvation were further confirmed by qPCR, indicating that the function of PAL genes is strongly associated with Pi starvation response in rice. CONCLUSION Our study reports the functional significance of rice PAL genes involved in adaptation to low Pi growth conditions and provides useful information to improve Pi use efficiency in crop plant.
Collapse
|
106
|
Zhang ZH, Zhou T, Tang TJ, Song HX, Guan CY, Huang JY, Hua YP. A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5437-5455. [PMID: 31232451 PMCID: PMC6793439 DOI: 10.1093/jxb/erz295] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/13/2019] [Indexed: 05/04/2023]
Abstract
Oilseed rape (Brassica napus) has great potential for phytoremediation of cadmium (Cd)-polluted soils due to its large plant biomass production and strong metal accumulation. Enhanced plant Cd resistance (PCR) is a crucial prerequisite for phytoremediation through hyper-accumulation of excess Cd. However, the complexity of the allotetraploid genome of rapeseed hinders our understanding of PCR. To explore rapeseed Cd-resistance mechanisms, we examined two genotypes, 'ZS11' (Cd-resistant) and 'W10' (Cd-sensitive), that exhibit contrasting PCR while having similar tissue Cd concentrations, and characterized their different fingerprints in terms of plant morphophysiology (electron microscopy), ion abundance (inductively coupled plasma mass spectrometry), DNA variation (whole-genome resequencing), transcriptomics (high-throughput mRNA sequencing), and metabolomics (ultra-high performance liquid chromatography-mass spectrometry). Fine isolation of cell components combined with ionomics revealed that more Cd accumulated in the shoot vacuoles and root pectins of the resistant genotype than in the sensitive one. Genome and transcriptome sequencing identified numerous DNA variants and differentially expressed genes involved in pectin modification, ion binding, and compartmentalization. Transcriptomics-assisted gene co-expression networks characterized BnaCn.ABCC3 and BnaA8.PME3 as the central members involved in the determination of rapeseed PCR. High-resolution metabolic profiles revealed greater accumulation of shoot Cd chelates, and stronger biosynthesis and higher demethylation of root pectins in the resistant genotype than in the sensitive one. Our comprehensive examination using a multiomics approach has greatly improved our understanding of the role of subcellular reallocation of Cd in the determination of PCR.
Collapse
Affiliation(s)
- Zhen-Hua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Ting Zhou
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Tian-Jiao Tang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Hai-Xing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Chun-Yun Guan
- National Center of Oilseed Crop Improvement, Hunan Branch, Changsha, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Peng Hua
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
- Correspondence:
| |
Collapse
|
107
|
Zhang J, Zhou Z, Bai J, Tao X, Wang L, Zhang H, Zhu JK. Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions. Natl Sci Rev 2019; 7:102-112. [PMID: 34692021 PMCID: PMC8288854 DOI: 10.1093/nsr/nwz142] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
The microRNA miR396 directly represses GROWTH-REGULATING FACTORs (OsGRFs) and has been implicated in regulating rice yield and in nitrogen assimilation. Overexpressing the miR396 targets OsGRF4 and OsGRF6 improves rice yield via increased grain size and panicle branching, respectively. Here, we used CRISPR/Cas9 to assess the function of miR396 genes in rice. Knockout of MIR396ef (MIR396e and MIR396f), but not other isoforms, enhanced both grain size and panicle branching, resulting in increased grain yield. Importantly, under nitrogen-deficient conditions, mir396ef mutants showed an even higher relative increase in grain yield as well as elevated above-ground biomass. Furthermore, we identified OsGRF8 as a new target of miR396, in addition to the known targets OsGRF4 and OsGRF6. Disruption of the miR396-targeting site in OsGRF8 was sufficient to both enlarge grain size and elongate panicles. Our results suggest that rice-seed and panicle development are regulated by miR396ef-GRF4/6/8-GIF1/2/3 modules and that miR396ef are promising targets of genome editing for breeding environmentally friendly rice varieties that require less nitrogen fertilization.
Collapse
Affiliation(s)
- Jinshan Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Bellagen Biotechnology Co. Ltd., Ji’nan 250000, China
| | - Zhenyu Zhou
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjuan Bai
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xiaoping Tao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Ling Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hui Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Science, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
108
|
Cao Y, Feng H, Sun D, Xu G, Rathinasabapathi B, Chen Y, Ma LQ. Heterologous Expression of Pteris vittata Phosphate Transporter PvPht1;3 Enhances Arsenic Translocation to and Accumulation in Tobacco Shoots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10636-10644. [PMID: 31411864 DOI: 10.1021/acs.est.9b02082] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in As accumulation and has been used in phytoremediation of As-contaminated soils. Arsenate (AsV) is the predominant As species in aerobic soils and is taken up by plants via phosphate transporters (Pht) including P. vittata. In this work, we cloned the PvPht1;3 full length coding sequence from P. vittata and investigated its role in As accumulation by yeast and plants. PvPht1;3 complemented a yeast P uptake mutant strain and showed a stronger affinity and transport capacity to AsV than PvPht1;2. In transgenic tobacco, PvPht1;3 enhanced AsV absorption and translocation, increasing As accumulation in the shoots under both hydroponic and soil experiments. On the basis of the expression patterns via qRT-PCR, PvPht1;3 was strongly induced by P deficiency but not As exposure. To further understand its expression pattern, transgenic Arabidopsis thaliana and soybean expressing the GUS reporter gene, driven by PvPht1;3 promoter, were produced. The GUS staining showed that the reporter gene was mainly expressed in the stele cells, indicating that PvPht1;3 was expressed in stele cells and was likely involved in P/As translocation. Taken together, the data suggested that PvPht1;3 was a high-affinity AsV transporter and was probably responsible for efficient As translocation in P. vittata. Our results suggest that expressing PvPht1;3 enhances As translocation and accumulation in plants, thereby improving phytoremediation of As-contaminated soils.
Collapse
Affiliation(s)
- Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Huayuan Feng
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Dan Sun
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department , University of Florida , Gainesville , Florida 32611 , United States
| | - Yanshan Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- School of the Environment , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Lena Q Ma
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
109
|
Osorio MB, Ng S, Berkowitz O, De Clercq I, Mao C, Shou H, Whelan J, Jost R. SPX4 Acts on PHR1-Dependent and -Independent Regulation of Shoot Phosphorus Status in Arabidopsis. PLANT PHYSIOLOGY 2019; 181:332-352. [PMID: 31262954 PMCID: PMC6716250 DOI: 10.1104/pp.18.00594] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/21/2019] [Indexed: 05/19/2023]
Abstract
Phosphorus (P) is an essential macronutrient for all living organisms and limits plant growth. Four proteins comprising a single SYG1/Pho81/XPR1 (SPX) domain, SPX1 to SPX4, are putative phosphate-dependent inhibitors of Arabidopsis (Arabidopsis thaliana) PHOSPHATE STARVATION RESPONSE1 (PHR1), the master transcriptional activator of phosphate starvation responses. This work demonstrated that SPX4 functions as a negative regulator not only of PHR1-dependent but also of PHR1-independent responses in P-replete plants. Transcriptomes of P-limited spx4 revealed that, unlike SPX1 and SPX2, SPX4 modulates the shoot phosphate starvation response but not short-term recovery after phosphate resupply. In roots, transcriptional regulation of P status is SPX4 independent. Genes misregulated in spx4 shoots intersect with both PHR1-dependent and PHOSPHATE2-dependent signaling networks associated with plant development, senescence, and ion/metabolite transport. Gene regulatory network analyses suggested that SPX4 interacts with transcription factors other than PHR1, such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN55, known regulators of shoot development. Transient expression studies in protoplasts indicated that PHR1 retention in the cytosol by SPX4 occurs in a dose- and P-status-dependent manner. Using a luciferase reporter in vivo, SPX4 expression kinetics and stability revealed that SPX4 is a short-lived protein with P-status-dependent turnover. SPX4 protein levels were quickly restored by phosphate resupply to P-limited plants. Unlike its monocot ortholog, AtSPX4 was not stabilized by the phosphate analog phosphite, implying that intracellular P status is sensed by its SPX domain via phosphate-rich metabolite signals.
Collapse
Affiliation(s)
- Marina Borges Osorio
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Sophia Ng
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Inge De Clercq
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou 310058, China
| | - James Whelan
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Ricarda Jost
- Department of Animal, Plant, and Soil Sciences and Centre for AgriBioscience, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
110
|
Wang Z, Gui H, Luo Z, Zhen Z, Yan C, Xing B. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1755-1763. [PMID: 31295694 DOI: 10.1016/j.envpol.2019.06.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Only limited information is available on the effects of dissolved organic phosphorus (DOP) on arsenate (As(V)) bioaccumulation and biotransformation in organisms. In this study, we examined the influence of three different DOP forms (β-sodium glycerophosphate (βP), adenosine 5'-triphosphate (ATP), and D-Glucose-6-phosphate disodium (GP) salts) and inorganic phosphate (IP) on As(V) toxicity, accumulation, and biotransformation in Microcystis aeruginosa. Results showed that M. aeruginosa utilized the three DOP forms to sustain its growth. At a subcellular level, the higher phosphorus (P) distribution in metal-sensitive fractions (MSF) observed in the IP treatments could explain the comparatively lower toxic stress of algae compared to the DOP treatments. Meanwhile, the higher MSF distribution of arsenic (As) in M. aeruginosa in the presence of DOP could explain the higher toxicity with lower 96-h half maximal effective concentration (EC50) values. Although we observed As(V) and P discrimination in M. aeruginosa under IP treatments with high intracellular P/As, we did not find this discrimination under the DOP treatments. As accumulation in algal cells was therefore greatly enhanced by DOP, especially βP, given its lower transformation rate to phosphate compared to ATP and GP in media. Additionally, As(V) reduction and, subsequently, As(III) methylation were greatly facilitated in M. aeruginosa by the presence of DOP, particularly GP, which was confirmed by the higher relative expression of its two functional genes (arsC and arsM). Our findings indicate that As(V) accumulation and its subsequent biotransformation were enhanced by organic P forms, which provides new insight into how DOP modulates As metabolism in algae.
Collapse
Affiliation(s)
- Zhenhong Wang
- College of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, Anhui, 234000, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, Anhui, 234000, China
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
111
|
Du Q, Campbell M, Yu H, Liu K, Walia H, Zhang Q, Zhang C. Network-based feature selection reveals substructures of gene modules responding to salt stress in rice. PLANT DIRECT 2019; 3:e00154. [PMID: 31417977 PMCID: PMC6689793 DOI: 10.1002/pld3.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 05/27/2023]
Abstract
Rice, an important food resource, is highly sensitive to salt stress, which is directly related to food security. Although many studies have identified physiological mechanisms that confer tolerance to the osmotic effects of salinity, the link between rice genotype and salt tolerance is not very clear yet. Association of gene co-expression network and rice phenotypic data under stress has penitential to identify stress-responsive genes, but there is no standard method to associate stress phenotype with gene co-expression network. A novel method for integration of gene co-expression network and stress phenotype data was developed to conduct a system analysis to link genotype to phenotype. We applied a LASSO-based method to the gene co-expression network of rice with salt stress to discover key genes and their interactions for salt tolerance-related phenotypes. Submodules in gene modules identified from the co-expression network were selected by the LASSO regression, which establishes a linear relationship between gene expression profiles and physiological responses, that is, sodium/potassium condenses under salt stress. Genes in these submodules have functions related to ion transport, osmotic adjustment, and oxidative tolerance. We argued that these genes in submodules are biologically meaningful and useful for studies on rice salt tolerance. This method can be applied to other studies to efficiently and reliably integrate co-expression network and phenotypic data.
Collapse
Affiliation(s)
- Qian Du
- School of Biological SciencesCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
| | - Malachy Campbell
- Department of Agronomy and HorticultureCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVA
| | - Huihui Yu
- School of Biological SciencesCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
| | - Kan Liu
- School of Biological SciencesCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
| | - Harkamal Walia
- Department of Agronomy and HorticultureCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
| | - Qi Zhang
- Department of StatisticsUniversity of NebraskaLincolnNE
| | - Chi Zhang
- School of Biological SciencesCenter for Plant Science and InnovationUniversity of NebraskaLincolnNE
| |
Collapse
|
112
|
Zhang J, Jiang F, Shen Y, Zhan Q, Bai B, Chen W, Chi Y. Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC PLANT BIOLOGY 2019; 19:306. [PMID: 31296169 PMCID: PMC6624980 DOI: 10.1186/s12870-019-1914-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 06/30/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Phosphorus (P) deficiency in soil is a worldwide issue and a major constraint on the production of sorghum, which is an important staple food, forage and energy crop. The depletion of P reserves and the increasing price of P fertilizer make fertilizer application impractical, especially in developing countries. Therefore, identifying sorghum accessions with low-P tolerance and understanding the underlying molecular basis for this tolerance will facilitate the breeding of P-efficient plants, thereby resolving the P crisis in sorghum farming. However, knowledge in these areas is very limited. RESULTS The 29 sorghum accessions used in this study demonstrated great variability in their tolerance to low-P stress. The internal P content in the shoot was correlated with P tolerance. A low-P-tolerant accession and a low-P-sensitive accession were chosen for RNA-seq analysis to identify potential underlying molecular mechanisms. A total of 2089 candidate genes related to P starvation tolerance were revealed and found to be enriched in 11 pathways. Gene Ontology (GO) enrichment analyses showed that the candidate genes were associated with oxidoreductase activity. In addition, further study showed that malate affected the length of the primary root and the number of tips in sorghum suffering from low-P stress. CONCLUSIONS Our results show that acquisition of P from soil contributes to low-P tolerance in different sorghum accessions; however, the underlying molecular mechanism is complicated. Plant hormone (including auxin, ethylene, jasmonic acid, salicylic acid and abscisic acid) signal transduction related genes and many transcriptional factors were found to be involved in low-P tolerance in sorghum. The identified accessions will be useful for breeding new sorghum varieties with enhanced P starvation tolerance.
Collapse
Affiliation(s)
- Jinglong Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Fangfang Jiang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Yixin Shen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Qiuwen Zhan
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Binqiang Bai
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Wei Chen
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Yingjun Chi
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| |
Collapse
|
113
|
Wang L, Jiang X, Wang L, Wang W, Fu C, Yan X, Geng X. A survey of transcriptome complexity using PacBio single-molecule real-time analysis combined with Illumina RNA sequencing for a better understanding of ricinoleic acid biosynthesis in Ricinus communis. BMC Genomics 2019; 20:456. [PMID: 31170917 PMCID: PMC6555039 DOI: 10.1186/s12864-019-5832-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Ricinus communis is a highly economically valuable oil crop plant from the spurge family, Euphorbiaceae. However, the available reference genomes are incomplete and to date studies on ricinoleic acid biosynthesis at the transcriptional level are limited. Results In this study, we combined PacBio single-molecule long read isoform and Illumina RNA sequencing to identify the alternative splicing (AS) events, novel isoforms, fusion genes, long non-coding RNAs (lncRNAs) and alternative polyadenylation (APA) sites to unveil the transcriptomic complexity of castor beans and identify critical genes related to ricinoleic acid biosynthesis. Here, we identified 11,285 AS-variants distributed in 21,448 novel genes and detected 520 fusion genes, 320 lncRNAs and 9511 (APA-sites). Furthermore, a total of 6067, 5983 and 4058 differentially expressed genes between developing beans of the R. communis lines 349 and 1115 with extremely different oil content were identified at 7, 14 and 21 days after flowering, respectively. Specifically, 14, 18 and 11 DEGs were annotated encoding key enzymes related to ricinoleic acid biosynthesis reflecting the higher castor oil content of 1115 compared than 349. Quantitative real-time RT-PCR further validated fifteen of these DEGs at three-time points. Conclusion Our results significantly improved the existed gene models of R. communis, and a putative model of key genes was built to show the differences between strains 349 and 1115, illustrating the molecular mechanism of castor oil biosynthesis. A multi-transcriptome database and candidate genes were provided to further improve the level of ricinoleic acid in transgenic crops. Electronic supplementary material The online version of this article (10.1186/s12864-019-5832-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaoling Jiang
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Lei Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Wei Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Chunling Fu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xingchu Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic, Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.
| | - Xinxin Geng
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan, China.
| |
Collapse
|
114
|
Mo X, Zhang M, Liang C, Cai L, Tian J. Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated metabolite processes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:697-706. [PMID: 31054472 DOI: 10.1016/j.plaphy.2019.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 05/22/2023]
Abstract
Phosphorus (P) is a major constituent of biomolecules in plant cells, and is an essential plant macronutrient. Low phosphate (Pi) availability in soils is a major constraint on plant growth. Although a complex variety of plant responses to Pi starvation has been well documented, few studies have integrated both global transcriptome and metabolome analyses to shed light on molecular mechanisms underlying metabolic responses to P deficiency. This study is the first time to investigate global profiles of metabolites and transcripts in soybean (Glycine max) roots subjected to Pi starvation through targeted liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS/MS) and RNA-sequencing analyses. This integrated analysis allows for assessing coordinated transcriptomic and metabolic responses in terms of both pathway enzyme expression and regulatory levels. Between two Pi availability treatments, a total of 155 metabolites differentially accumulated in soybean roots, of which were phosphorylated metabolites, flavonoids and amino acids. Meanwhile, a total of 1644 differentially expressed genes (DEGs) were identified in soybean roots, including 1199 up-regulated and 445 down-regulated genes. Integration of metabolome and transcriptome analyses revealed Pi starvation responsive connection between specific metabolic processes in soybean roots, especially metabolic processes involving phosphorylated metabolites (e.g., phosphorylated lipids and nucleic acids). Taken together, this study suggests that complex molecular responses scavenging internal Pi from phosphorylated metabolites are typical adaptive strategies soybean roots employ as responses to Pi starvation. Identified DEGs will provide potential target region for future efforts to develop P-efficient soybean cultivars.
Collapse
Affiliation(s)
- Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Mengke Zhang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Luyu Cai
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
115
|
Wang Y, Gao Y, Zhang H, Wang H, Liu X, Xu X, Zhang Z, Kohnen MV, Hu K, Wang H, Xi F, Zhao L, Lin C, Gu L. Genome-Wide Profiling of Circular RNAs in the Rapidly Growing Shoots of Moso Bamboo (Phyllostachys edulis). PLANT & CELL PHYSIOLOGY 2019; 60:1354-1373. [PMID: 30835314 DOI: 10.1093/pcp/pcz043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/24/2019] [Indexed: 05/19/2023]
Abstract
Circular RNAs, including circular exonic RNAs (circRNA), circular intronic RNAs (ciRNA) and exon-intron circRNAs (EIciRNAs), are a new type of noncoding RNAs. Growing shoots of moso bamboo (Phyllostachys edulis) represent an excellent model of fast growth and their circular RNAs have not been studied yet. To understand the potential regulation of circular RNAs, we systematically characterized circular RNAs from eight different developmental stages of rapidly growing shoots. Here, we identified 895 circular RNAs including a subset of mutually inclusive circRNA. These circular RNAs were generated from 759 corresponding parental coding genes involved in cellulose, hemicellulose and lignin biosynthetic process. Gene co-expression analysis revealed that hub genes, such as DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), MAINTENANCE OF METHYLATION (MOM), dicer-like 3 (DCL3) and ARGONAUTE 1 (AGO1), were significantly enriched giving rise to circular RNAs. The expression level of these circular RNAs presented correlation with its linear counterpart according to transcriptome sequencing. Further protoplast transformation experiments indicated that overexpressing circ-bHLH93 generating from transcription factor decreased its linear transcript. Finally, the expression profiles suggested that circular RNAs may have interplay with miRNAs to regulate their cognate linear mRNAs, which was further supported by overexpressing miRNA156 decreasing the transcript of circ-TRF-1 and linear transcripts of TRF-1. Taken together, the overall profile of circular RNAs provided new insight into an unexplored category of long noncoding RNA regulation in moso bamboo.
Collapse
Affiliation(s)
- Yongsheng Wang
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yubang Gao
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hangxiao Zhang
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huihui Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuqing Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi Xu
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyu Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Markus V Kohnen
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kaiqiang Hu
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feihu Xi
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangzhen Zhao
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, USA
| | - Lianfeng Gu
- College of Life Science, Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
116
|
Jiang M, Sun L, Isupov MN, Littlechild JA, Wu X, Wang Q, Wang Q, Yang W, Wu Y. Structural basis for the Target DNA recognition and binding by the MYB domain of phosphate starvation response 1. FEBS J 2019; 286:2809-2821. [PMID: 30974511 DOI: 10.1111/febs.14846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/18/2019] [Accepted: 04/09/2019] [Indexed: 11/26/2022]
Abstract
The phosphate starvation response 1 (PHR1) protein has a central role in mediating the response to phosphate starvation in plants. PHR1 is composed of a number of domains including a MYB domain involved with DNA binding and a coiled-coil domain proposed to be involved with dimer formation. PHR1 binds to the promoter of phosphate starvation-induced genes to control the levels of phosphate required for nutrition. Previous studies have shown that both the MYB domain and the coiled-coil domain of PHR1 are required for binding the target DNA. Here, we describe the crystal structure of the PHR1 MYB domain and two structures of its complex with the PHR1-binding DNA sequence (P1BS). Structural and isothermal titration calorimetry has been carried out showing that the MYB domain of PHR1 alone is sufficient for target DNA recognition and binding. Two copies of the PHR1 MYB domain bind to the same major groove of the P1BS DNA with few direct interactions between the individual MYB domains. In addition, the PHR1 MYB-P1BS DNA complex structures reveal amino acid residues involved in DNA recognition and binding. Mutagenesis of these residues results in lost or impaired ability of PHR1 MYB to bind to its target DNA. The results presented reveal the structural basis for DNA recognition by the PHR1 MYB domain and demonstrate that two PHR1 MYB domains attach to their P1BS DNA targeting sequence. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank under accession codes 6J4K (PHR1 MYB), 6J4R (PHR1 MYB-R-P1BS), 6J5B (MYB-CC-R2-P1BS).
Collapse
Affiliation(s)
- Meiqin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lifang Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, UK
| | | | - Xiuling Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qianchao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wendi Yang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
117
|
Revealing the dominant long noncoding RNAs responding to the infection with Colletotrichum gloeosporioides in Hevea brasiliensis. Biol Direct 2019; 14:7. [PMID: 30987641 PMCID: PMC6466799 DOI: 10.1186/s13062-019-0235-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Abstract
Background Rubber tree (Hevea brasiliensis) acts as an important tropic economic crop and rubber tree anthracnose, mainly caused by Colletotrichum gloeosporioides, is one of the most common fungal disease, which leads to serious loss of rubber production. Therefore, the investigation on disease resistance is of great worldwide significance. In the past decades, substantial progress has been made on coding gene families related with plant disease resistance. However, in rubber tree, whether the disease resistance mechanism involves noncoding RNAs, especially long noncoding RNAs (lncRNAs), still remains poorly understood. Results Here, we modeled the development of H. brasiliensis leaf samples inoculated with C. gloeosporioides at divergent stages, explored to identify the expressed ncRNAs by RNA-seq, and investigated the dominant lncRNAs responding to the infection, through constructing a co-expressed network systematically. On the dominant lncRNAs, we explored the potential functional role of lncRNA11254 recruiting the transcription factor, and that lncRNA11041 and lncRNA11205 probably stimulate the accumulation of corresponding disease responsive miRNAs, and further modulate the expressions of target genes, accompanying with experimental examination. Conclusions Take together, computational analyses in silico and experimental evidences in our research collectively revealed the responsive roles of dominant lncRNAs to the pathogen. The results will provide new perspectives to unveil the plant disease resistance mechanisms, and will presumably provide a new theoretical basis and candidate prognostic markers for the optimization and innovation of genetic breeding for rubber tree. Reviewers This article was reviewed by Ryan McGinty and Roland Huber. Electronic supplementary material The online version of this article (10.1186/s13062-019-0235-z) contains supplementary material, which is available to authorized users.
Collapse
|
118
|
Fabiańska I, Gerlach N, Almario J, Bucher M. Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:2123-2137. [PMID: 30317641 PMCID: PMC6519159 DOI: 10.1111/nph.15538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/19/2018] [Indexed: 05/22/2023]
Abstract
Plants respond to phosphorus (P) limitation through an array of morphological, physiological and metabolic changes which are part of the phosphate (Pi) starvation response (PSR). This response influences the establishment of the arbuscular mycorrhizal (AM) symbiosis in most land plants. It is, however, unknown to what extent available P and the PSR redefine plant interactions with the fungal microbiota in soil. Using amplicon sequencing of the fungal taxonomic marker ITS2, we examined the changes in root-associated fungal communities in the AM nonhost species Arabidopsis thaliana in response to soil amendment with P and to genetic perturbations in the plant PSR. We observed robust shifts in root-associated fungal communities of P-replete plants in comparison with their P-deprived counterparts, while bulk soil communities remained unaltered. Moreover, plants carrying mutations in the phosphate signaling network genes, phr1, phl1 and pho2, exhibited similarly altered root fungal communities characterized by the depletion of the chytridiomycete taxon Olpidium brassicae specifically under P-replete conditions. This study highlights the nutritional status and the underlying nutrient signaling network of an AM nonhost plant as previously unrecognized factors influencing the assembly of the plant fungal microbiota in response to P in nonsterile soil.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
| | - Nina Gerlach
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
| | - Juliana Almario
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneCologne50931Germany
- Present address:
Center for Plant Molecular BiologyUniversity of TübingenTübingen72074Germany
| | - Marcel Bucher
- Botanical InstituteCologne BiocenterUniversity of CologneCologne50931Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneCologne50931Germany
| |
Collapse
|
119
|
Ure D, Awada A, Frowley N, Munk N, Stanger A, Mutus B. Greenhouse tomato plant roots/carboxymethyl cellulose method for the efficient removal and recovery of inorganic phosphate from agricultural wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:258-263. [PMID: 30580121 DOI: 10.1016/j.jenvman.2018.12.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Phosphate (P) is a biologically important compound that is commonly incorporated into fertilizers. Wastewater from agricultural processes results in excessive accumulation of P and eutrophication of lakes. We have developed a system for the remediation, recovery, and potential reuse of P from agricultural wastewater using tomato plant roots (roots) as a capture matrix and carboxymethyl cellulose (CMC) as an eluent and enhancer of P precipitation. Untreated roots can bind up to 55.2 ± 15.2 grams of P per kilogram (g/kg) of roots in comparison to the maximum 8.2 ± 1.5 g/kg bound by the previously used iron-chitosan (Fe-chito). The addition of CMC enhances the precipitation of P with a clearance of 97.2% as opposed to 33.3% without CMC. On site tests show an average removal of 226.5 μg/L per day or a total of ∼28 g of P removed after 23 days. This corresponds to a 71% P removal rate.
Collapse
Affiliation(s)
- David Ure
- Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada
| | - Angela Awada
- Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada
| | - Nicole Frowley
- Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada
| | - Neils Munk
- Bruce Peninsula Biosphere Association (BPBA), Tobermory, Ontario, Canada
| | - Amanda Stanger
- Bruce Peninsula Biosphere Association (BPBA), Tobermory, Ontario, Canada
| | - Bulent Mutus
- Department of Chemistry and Biochemistry, University of Windsor, Ontario, Canada.
| |
Collapse
|
120
|
Ajmera I, Hodgman TC, Lu C. An Integrative Systems Perspective on Plant Phosphate Research. Genes (Basel) 2019; 10:E139. [PMID: 30781872 PMCID: PMC6410211 DOI: 10.3390/genes10020139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/31/2022] Open
Abstract
The case for improving crop phosphorus-use-efficiency is widely recognized. Although much is known about the molecular and regulatory mechanisms, improvements have been hampered by the extreme complexity of phosphorus (P) dynamics, which involves soil chemistry; plant-soil interactions; uptake, transport, utilization and remobilization within plants; and agricultural practices. The urgency and direction of phosphate research is also dependent upon the finite sources of P, availability of stocks to farmers and reducing environmental hazards. This work introduces integrative systems approaches as a way to represent and understand this complexity, so that meaningful links can be established between genotype, environment, crop traits and yield. It aims to provide a large set of pointers to potential genes and research practice, with a view to encouraging members of the plant-phosphate research community to adopt such approaches so that, together, we can aid efforts in global food security.
Collapse
Affiliation(s)
- Ishan Ajmera
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK.
| | - T Charlie Hodgman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK.
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0 QF, UK.
| |
Collapse
|
121
|
Chang MX, Gu M, Xia YW, Dai XL, Dai CR, Zhang J, Wang SC, Qu HY, Yamaji N, Feng Ma J, Xu GH. OsPHT1;3 Mediates Uptake, Translocation, and Remobilization of Phosphate under Extremely Low Phosphate Regimes. PLANT PHYSIOLOGY 2019; 179:656-670. [PMID: 30567970 PMCID: PMC6426419 DOI: 10.1104/pp.18.01097] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 05/19/2023]
Abstract
Plant roots rely on inorganic orthophosphate (Pi) transporters to acquire soluble Pi from soil solutions that exists at micromolar levels in natural ecosystems. Here, we functionally characterized a rice (Oryza sativa) Pi transporter, Os Phosphate Transporter-1;3 (OsPHT1;3), that mediates Pi uptake, translocation, and remobilization. OsPHT1;3 was directly regulated by Os Phosphate Starvation Response-2 and, in response to Pi starvation, showed enhanced expression in young leaf blades and shoot basal regions and even more so in roots and old leaf blades. OsPHT1;3 was able to complement a yeast mutant strain defective in five Pi transporters and mediate Pi influx in Xenopus laevis oocytes. Overexpression of OsPHT1;3 led to increased Pi concentration both in roots and shoots. However, unlike that reported for other known OsPHT1 members that facilitate Pi uptake at relatively higher Pi levels, mutation of OsPHT1;3 impaired Pi uptake and root-to-shoot Pi translocation only when external Pi concentration was below 5 μm Moreover, in basal nodes, the expression of OsPHT1;3 was restricted to the phloem of regular vascular bundles and enlarged vascular bundles. An isotope labeling experiment with 32P showed that ospht1;3 mutant lines were impaired in remobilization of Pi from source to sink leaves. Furthermore, overexpression and mutation of OsPHT1;3 led to reciprocal alteration in the expression of OsPHT1;2 and several other OsPHT1 genes. Yeast-two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays all demonstrated a physical interaction between OsPHT1;3 and OsPHT1;2. Taken together, our results indicate that OsPHT1;3 acts as a crucial factor for Pi acquisition, root-to-shoot Pi translocation, and redistribution of phosphorus in plants growing in environments with extremely low Pi levels.
Collapse
Affiliation(s)
- Ming Xing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Yu Wei Xia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Xiao Li Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Chang Rong Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Shi Chao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Hong Ye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Guo Hua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| |
Collapse
|
122
|
Kc S, Liu M, Zhang Q, Fan K, Shi Y, Ruan J. Metabolic Changes of Amino Acids and Flavonoids in Tea Plants in Response to Inorganic Phosphate Limitation. Int J Mol Sci 2018; 19:ijms19113683. [PMID: 30469347 PMCID: PMC6274676 DOI: 10.3390/ijms19113683] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 11/16/2022] Open
Abstract
The qualities of tea (Camellia sinensis) are not clearly understood in terms of integrated leading molecular regulatory network mechanisms behind inorganic phosphate (Pi) limitation. Thus, the present work aims to elucidate transcription factor-dependent responses of quality-related metabolites and the expression of genes to phosphate (P) starvation. The tea plant organs were subjected to metabolomics analysis by GC×GC-TOF/MS and UPLC-Q-TOF/MS along with transcription factors and 13 metabolic genes by qRT-PCR. We found P starvation upregulated SPX2 and the change response of Pi is highly dependent on young shoots. This led to increased change in abundance of carbohydrates (fructose and glucose), amino acids in leaves (threonine and methionine), and root (phenylalanine, alanine, tryptophan, and tyrosine). Flavonoids and their glycosides accumulated in leaves and root exposed to P limitation was consistent with the upregulated expression of anthocyanidin reductase (EC 1.3.1.77), leucoanthocyanidin dioxygenase (EC 1.4.11.19) and glycosyltransferases (UGT78D1, UGT78D2 and UGT57L12). Despite the similar kinetics and high correlation response of Pi and SPX2 in young shoots, predominating theanine and other amino acids (serine, threonine, glutamate, valine, methionine, phenylalanine) and catechin (EGC, EGCG and CG) content displayed opposite changes in response to Pi limitation between Fengqing and Longjing-43 tea cultivars.
Collapse
Affiliation(s)
- Santosh Kc
- Graduate School of the Chinese Academy of Agricultural Sciences (GSCAAS), Zhongguancun Nandajie, Haidian, Beijing 100081, China.
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| | - Meiya Liu
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| | - Qunfeng Zhang
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| | - Kai Fan
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| | - Yuanzhi Shi
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| | - Jianyun Ruan
- Tea Research Institute (TRICAAS), 9 Meiling South Road, Hangzhou 310008, China.
| |
Collapse
|
123
|
Dong C, He F, Berkowitz O, Liu J, Cao P, Tang M, Shi H, Wang W, Li Q, Shen Z, Whelan J, Zheng L. Alternative Splicing Plays a Critical Role in Maintaining Mineral Nutrient Homeostasis in Rice ( Oryza sativa). THE PLANT CELL 2018; 30:2267-2285. [PMID: 30254029 PMCID: PMC6241280 DOI: 10.1105/tpc.18.00051] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/26/2018] [Accepted: 09/20/2018] [Indexed: 05/19/2023]
Abstract
Alternative splicing (AS) of pre-mRNAs promotes transcriptome and proteome diversity and plays important roles in a wide range of biological processes. However, the role of AS in maintaining mineral nutrient homeostasis in plants is largely unknown. To clarify this role, we obtained whole transcriptome RNA sequencing data from rice (Oryza sativa) roots grown in the presence or absence of several mineral nutrients (Fe, Zn, Cu, Mn, and P). Our systematic analysis revealed 13,291 alternatively spliced genes, representing ∼53.3% of the multiexon genes in the rice genome. As the overlap between differentially expressed genes and differentially alternatively spliced genes is small, a molecular understanding of the plant's response to mineral deficiency is limited by analyzing differentially expressed genes alone. We found that the targets of AS are highly nutrient-specific. To verify the role of AS in mineral nutrition, we characterized mutants in genes encoding Ser/Arg (SR) proteins that function in AS. We identified several SR proteins as critical regulators of Zn, Mn, and P nutrition and showed that three SR protein-encoding genes regulate P uptake and remobilization between leaves and shoots of rice, demonstrating that AS has a key role in regulating mineral nutrient homeostasis in rice.
Collapse
Affiliation(s)
- Chunlan Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Fei He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Oliver Berkowitz
- ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Sciences, School of Life Sciences, La Trobe University, Victoria 3086, Australia
| | - Jingxian Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Pengfei Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Min Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Huichao Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Wujian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qiaolu Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
- Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Sciences, School of Life Sciences, La Trobe University, Victoria 3086, Australia
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
- Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
124
|
Chen G, Zou Y, Hu J, Ding Y. Genome-wide analysis of the rice PPR gene family and their expression profiles under different stress treatments. BMC Genomics 2018; 19:720. [PMID: 30285603 PMCID: PMC6167770 DOI: 10.1186/s12864-018-5088-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 01/30/2023] Open
Abstract
Background Pentatricopeptide-repeat proteins (PPRs) are characterized by tandem arrays of a degenerate 35-amino-acid (PPR motifs), which can bind RNA strands and participate in post-transcription. PPR proteins family is one of the largest families in land plants and play important roles in organelle RNA metabolism and plant development. However, the functions of PPR genes involved in biotic and abiotic stresses of rice (Oryza sativa L.) remain largely unknown. Results In the present study, a comprehensive genome-wide analysis of PPR genes was performed. A total of 491 PPR genes were found in the rice genome, of which 246 PPR genes belong to the P subfamily, and 245 genes belong to the PLS subfamily. Gene structure analysis showed that most PPR genes lack intron. Chromosomal location analysis indicated that PPR genes were widely distributed in all 12 rice chromosomes. Phylogenetic relationship analysis revealed the distinct difference between the P and PLS subfamilies. Many PPR proteins are predicted to target chloroplasts or mitochondria, and a PPR protein (LOC_Os10g34310) was verified to localize in mitochondria. Furthermore, three PPR genes (LOC_Os03g17634,LOC_Os07g40820,LOC_Os04g51350) were verified as corresponding miRNA targets. The expression pattern analysis showed that many PPR genes could be induced under biotic and abiotic stresses. Finally, seven PPR genes were confirmed with their expression patterns under salinity or drought stress. Conclusions We found 491 PPR genes in the rice genome, and our genes structure analysis and syntenic analysis indicated that PPR genes might be derived from amplification by retro-transposition. The expression pattern present here suggested that PPR proteins have crucial roles in response to different abiotic stresses in rice. Taken together, our study provides a comprehensive analysis of the PPR gene family and will facilitate further studies on their roles in rice growth and development. Electronic supplementary material The online version of this article (10.1186/s12864-018-5088-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guanglong Chen
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zou
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jihong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
125
|
Xue Y, Zhuang Q, Zhu S, Xiao B, Liang C, Liao H, Tian J. Genome Wide Transcriptome Analysis Reveals Complex Regulatory Mechanisms Underlying Phosphate Homeostasis in Soybean Nodules. Int J Mol Sci 2018; 19:E2924. [PMID: 30261621 PMCID: PMC6213598 DOI: 10.3390/ijms19102924] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
Phosphorus (P) deficiency is a major limitation for legume crop production. Although overall adaptations of plant roots to P deficiency have been extensively studied, only fragmentary information is available in regard to root nodule responses to P deficiency. In this study, genome wide transcriptome analysis was conducted using RNA-seq analysis in soybean nodules grown under P-sufficient (500 μM KH₂PO₄) and P-deficient (25 μM KH₂PO₄) conditions to investigate molecular mechanisms underlying soybean (Glycine max) nodule adaptation to phosphate (Pi) starvation. Phosphorus deficiency significantly decreased soybean nodule growth and nitrogenase activity. Nodule Pi concentrations declined by 49% in response to P deficiency, but this was well below the 87% and 88% decreases observed in shoots and roots, respectively. Nodule transcript profiling revealed that a total of 2055 genes exhibited differential expression patterns between Pi sufficient and deficient conditions. A set of (differentially expressed genes) DEGs appeared to be involved in maintaining Pi homeostasis in soybean nodules, including eight Pi transporters (PTs), eight genes coding proteins containing the SYG1/PHO81/XPR1 domain (SPXs), and 16 purple acid phosphatases (PAPs). The results suggest that a complex transcriptional regulatory network participates in soybean nodule adaption to Pi starvation, most notable a Pi signaling pathway, are involved in maintaining Pi homeostasis in nodules.
Collapse
Affiliation(s)
- Yingbin Xue
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Qingli Zhuang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Shengnan Zhu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Bixian Xiao
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
126
|
Wang Z, Zhu T, Ma W, Wang N, Qu G, Zhang S, Wang J. Genome-wide analysis of long non-coding RNAs in Catalpa bungei and their potential function in floral transition using high-throughput sequencing. BMC Genet 2018; 19:86. [PMID: 30236060 PMCID: PMC6149005 DOI: 10.1186/s12863-018-0671-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/10/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have crucial roles in various biological regulatory processes. However, the study of lncRNAs is limited in woody plants. Catalpa bungei is a valuable ornamental tree with a long cultivation history in China, and a deeper understanding of the floral transition mechanism in C. bungei would be interesting from both economic and scientific perspectives. RESULTS In this study, we categorized C. bungei buds from early flowering (EF) and normal flowering (NF) varieties into three consecutive developmental stages. These buds were used to systematically study lncRNAs during floral transition using high-throughput sequencing to identify molecular regulatory networks. Quantitative real-time PCR was performed to study RNA expression changes in different stages. In total, 12,532 lncRNAs and 26,936 messenger RNAs (mRNAs) were detected. Moreover, 680 differentially expressed genes and 817 differentially expressed lncRNAs were detected during the initiation of floral transition. The results highlight the mRNAs and lncRNAs that may be involved in floral transition, as well as the many lncRNAs serving as microRNA precursors. We predicted the functions of lncRNAs by analysing the relationships between lncRNAs and mRNAs. Seven lncRNA-mRNA interaction pairs may participate in floral transition. CONCLUSIONS This study is the first to identify lncRNAs and their potential functions in floral transition, providing a starting point for detailed determination of the functions of lncRNAs in C. bungei.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 People’s Republic of China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Haidian District, Dongxiaofu 1#, Beijing, 100091 People’s Republic of China
| |
Collapse
|
127
|
Jeong K, Pantoja O, Baten A, Waters D, Kretzschmar T, Wissuwa M, Julia CC, Heuer S, Rose TJ. Transcriptional response of rice flag leaves to restricted external phosphorus supply during grain filling in rice cv. IR64. PLoS One 2018; 13:e0203654. [PMID: 30212503 PMCID: PMC6136725 DOI: 10.1371/journal.pone.0203654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/26/2018] [Indexed: 11/18/2022] Open
Abstract
Plant phosphorus (P) remobilisation during leaf senescence has fundamental implications for global P cycle fluxes. Hypothesising that genes involved in remobilisation of P from leaves during grain filling would show altered expression in response to P deprivation, we investigated gene expression in rice flag leaves at 8 days after anthesis (DAA) and 16 DAA in plants that received a continuous supply of P in the nutrient solution vs plants where P was omitted from the nutrient solution for 8 consecutive days prior to measurement. The transcriptional response to growth in the absence of P differed between the early stage (8 DAA) and the later stage (16 DAA) of grain filling. At 8 DAA, rice plants maintained production of energy substrates through upregulation of genes involved in photosynthesis. In contrast, at 16 DAA carbon substrates were produced by degradation of structural polysaccharides and over 50% of highly upregulated genes in P-deprived plants were associated with protein degradation and nitrogen/amino acid transport, suggesting withdrawal of P from the nutrient solution led to accelerated senescence. Genes involved in liberating inorganic P from the organic P compounds and vacuolar P transporters displayed differential expression depending on the stage of grain filling stage and timing of P withdrawal.
Collapse
Affiliation(s)
- Kwanho Jeong
- Southern Cross Plant Science, Southern Cross University, Australia
- Southern Cross GeoScience, Southern Cross University, Australia
| | - Omar Pantoja
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Abdul Baten
- Southern Cross Plant Science, Southern Cross University, Australia
| | - Daniel Waters
- ARC ITTC for Functional Grains, Charles Sturt University, Wagga Wagga NSW, Australia
| | - Tobias Kretzschmar
- Southern Cross Plant Science, Southern Cross University, Australia
- Genotyping Services Laboratory, International Rice Research Institute (IRRI), Metro Manila, Philippines
| | - Matthias Wissuwa
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi, Tsukuba, Ibaraki, Japan
| | - Cecile C. Julia
- Southern Cross Plant Science, Southern Cross University, Australia
- Southern Cross GeoScience, Southern Cross University, Australia
| | - Sigrid Heuer
- Department of Plant Biology and Crop Sciences, Rothamsted Research, West Common, Harpenden, Herts, United Kingdom
| | - Terry J. Rose
- Southern Cross Plant Science, Southern Cross University, Australia
- Southern Cross GeoScience, Southern Cross University, Australia
- * E-mail:
| |
Collapse
|
128
|
Zahraeifard S, Foroozani M, Sepehri A, Oh DH, Wang G, Mangu V, Chen B, Baisakh N, Dassanayake M, Smith AP. Rice H2A.Z negatively regulates genes responsive to nutrient starvation but promotes expression of key housekeeping genes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4907-4919. [PMID: 29955860 PMCID: PMC6137989 DOI: 10.1093/jxb/ery244] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/24/2018] [Indexed: 05/19/2023]
Abstract
The H2A.Z histone variant plays a role in the modulation of environmental responses, but the nature of the associated mechanisms remains enigmatic. We investigated global H2A.Z deposition and transcriptomic changes in rice (Oryza sativa) upon exposure to phosphate (Pi) deficiency and in response to RNAi knockdown of OsARP6, which encodes a key component of the H2A.Z exchange complex. Both Pi deficiency and OsARP6-knockdown resulted in similar, profound effects on global H2A.Z distribution. H2A.Z in the gene body of stress-responsive genes was negatively correlated with gene expression, and this was more apparent in response to Pi deficiency. In contrast, the role of H2A.Z at the transcription start site (TSS) was more context dependent, acting as a repressor of some stress-responsive genes, but an activator of some genes with housekeeping functions. This was especially evident upon OsARP6-knockdown, which resulted in down-regulation of a number of genes linked to chloroplast function that contained decreases in H2A.Z at the TSS. Consistently, OsARP6-RNAi plants exhibited lower chlorophyll content relative to the wild-type. Our results demonstrate that gene body-localized H2A.Z plays a prominent role in repressing stress-responsive genes under non-inductive conditions, whereas H2A.Z at the TSS functions as a positive or negative regulator of transcription.
Collapse
Affiliation(s)
- Sara Zahraeifard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Maryam Foroozani
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Aliasghar Sepehri
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Venkata Mangu
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Bin Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
129
|
Zeng H, Zhang X, Zhang X, Pi E, Xiao L, Zhu Y. Early Transcriptomic Response to Phosphate Deprivation in Soybean Leaves as Revealed by RNA-Sequencing. Int J Mol Sci 2018; 19:E2145. [PMID: 30041471 PMCID: PMC6073939 DOI: 10.3390/ijms19072145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/15/2023] Open
Abstract
Low phosphate (Pi) availability is an important limiting factor affecting soybean production. However, the underlying molecular mechanisms responsible for low Pi stress response and tolerance remain largely unknown, especially for the early signaling events under low Pi stress. Here, a genome-wide transcriptomic analysis in soybean leaves treated with a short-term Pi-deprivation (24 h) was performed through high-throughput RNA sequencing (RNA-seq) technology. A total of 533 loci were found to be differentially expressed in response to Pi deprivation, including 36 mis-annotated loci and 32 novel loci. Among the differentially expressed genes (DEGs), 303 were induced and 230 were repressed by Pi deprivation. To validate the reliability of the RNA-seq data, 18 DEGs were randomly selected and analyzed by quantitative RT-PCR (reverse transcription polymerase chain reaction), which exhibited similar fold changes with RNA-seq. Enrichment analyses showed that 29 GO (Gene Ontology) terms and 8 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were significantly enriched in the up-regulated DEGs and 25 GO terms and 16 KEGG pathways were significantly enriched in the down-regulated DEGs. Some DEGs potentially involved in Pi sensing and signaling were up-regulated by short-term Pi deprivation, including five SPX-containing genes. Some DEGs possibly associated with water and nutrient uptake, hormonal and calcium signaling, protein phosphorylation and dephosphorylation and cell wall modification were affected at the early stage of Pi deprivation. The cis-elements of PHO (phosphatase) element, PHO-like element and P responsive element were present more frequently in promoter regions of up-regulated DEGs compared to that of randomly-selected genes in the soybean genome. Our transcriptomic data showed an intricate network containing transporters, transcription factors, kinases and phosphatases, hormone and calcium signaling components is involved in plant responses to early Pi deprivation.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Xiajun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Xin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Liang Xiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yiyong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
130
|
Shin SY, Jeong JS, Lim JY, Kim T, Park JH, Kim JK, Shin C. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genomics 2018; 19:532. [PMID: 30005603 PMCID: PMC6043990 DOI: 10.1186/s12864-018-4897-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 06/26/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Nitrogen (N) is a key macronutrient essential for plant growth, and its availability has a strong influence on crop development. The application of synthetic N fertilizers on crops has increased substantially in recent decades; however, the applied N is not fully utilized due to the low N use efficiency of crops. To overcome this limitation, it is important to understand the genome-wide responses and functions of key genes and potential regulatory factors in N metabolism. RESULTS Here, we characterized changes in the rice (Oryza sativa) transcriptome, including genes, newly identified putative long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) and their target mRNAs in response to N starvation using four different transcriptome approaches. Analysis of rice genes involved in N metabolism and/or transport using strand-specific RNA-Seq identified 2588 novel putative lncRNA encoding loci. Analysis of previously published RNA-Seq datasets revealed a group of N starvation-responsive lncRNAs showing differential expression under other abiotic stress conditions. Poly A-primed sequencing (2P-Seq) revealed alternatively polyadenylated isoforms of N starvation-responsive lncRNAs and provided precise 3' end information on the transcript models of these lncRNAs. Analysis of small RNA-Seq data identified N starvation-responsive miRNAs and down-regulation of miR169 family members, causing de-repression of NF-YA, as confirmed by strand-specific RNA-Seq and qRT-PCR. Moreover, we profiled the N starvation-responsive down-regulation of root-specific miRNA, osa-miR444a.4-3p, and Degradome sequencing confirmed MADS25 as a novel target gene. CONCLUSIONS In this study, we used a combination of multiple RNA-Seq analyses to extensively profile the expression of genes, newly identified lncRNAs, and microRNAs in N-starved rice roots and shoots. Data generated in this study provide an in-depth understanding of the regulatory pathways modulated by N starvation-responsive miRNAs. The results of comprehensive, large-scale data analysis provide valuable information on multiple aspects of the rice transcriptome, which may be useful in understanding the responses of rice plants to changes in the N supply status of soil.
Collapse
Affiliation(s)
- Sang-Yoon Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jin Seo Jeong
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354 Republic of Korea
- Present address: Laboratory of Plant Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Taewook Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354 Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826 Republic of Korea
- Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
131
|
Zhong Y, Wang Y, Guo J, Zhu X, Shi J, He Q, Liu Y, Wu Y, Zhang L, Lv Q, Mao C. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. THE NEW PHYTOLOGIST 2018; 219:135-148. [PMID: 29658119 DOI: 10.1111/nph.15155] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development, but the molecular mechanism determining how plants sense external inorganic phosphate (Pi) levels and reprogram transcriptional and adaptive responses is incompletely understood. In this study, we investigated the function of OsSPX6 (hereafter SPX6), an uncharacterized member of SPX domain (SYG1, Pho81 and XPR1)-containing proteins in rice, using reverse genetics and biochemical approaches. Transgenic plants overexpressing SPX6 exhibited decreased Pi concentrations and suppression of phosphate starvation-induced (PSI) genes. By contrast, transgenic lines with decreased SPX6 transcript levels or spx6 mutant showed significant Pi accumulation in the leaf and upregulation of PSI genes. Overexpression of SPX6 genetically suppressed the overexpression of PHOSPHATE STARVATION RESPONSE REGULATOR 2 (PHR2) in terms of the accumulation of high Pi content. Moreover, direct interaction of SPX6 with PHR2 impeded PHR2 translocation into the nucleus, and inhibited PHR2 binding to the P1BS (PHR1 binding sequence) element. SPX6 protein was degraded in leaves under Pi-deficient conditions, whereas it accumulated in roots. We conclude that rice SPX6 is another important negative regulator in Pi starvation signaling through the interaction with PHR2. SPX6 shows different responses to Pi starvation in shoot and root, which differ from those of other SPX proteins.
Collapse
Affiliation(s)
- Yongjia Zhong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuguang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiangfan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinlu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiuju He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Qundan Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
- Chemical Biology Center, Lishui Institute of Agricultural Science, Lishui, Zhejiang, 323000, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
132
|
Fang Zhu X, Sheng Zhao X, Wu Q, Fang Shen R. Abscisic acid is involved in root cell wall phosphorus remobilization independent of nitric oxide and ethylene in rice (Oryza sativa). ANNALS OF BOTANY 2018; 121:1361-1368. [PMID: 29562313 PMCID: PMC6007365 DOI: 10.1093/aob/mcy034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/22/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND Abscisic acid (ABA) is a well-studied phytohormone demonstrated to be involved in sub-sets of stress responses in plants, such as iron (Fe) deficiency and phosphorus (P) deficiency in Arabidopsis. However, whether ABA is involved in P deficiency in rice has not been frequently studied. The present study was undertaken to investigate the mechanism underlying ABA-aggravated P deficiency in rice (Oryza sativa). RESULTS P deficiency decreased ABA accumulation rapidly (within 1 h) in the roots. Exogenous ABA negatively regulated root and shoot soluble P contents by decreasing pectin content, inhibiting P deficiency-induced increases in pectin methylesterase activity and expression of the phosphate transporter gene-OsPT6, thereby decreasing the re-utilization of P from the cell wall and its translocation to the shoot. Moreover, neither the nitric oxide (NO) donor sodium nitroprusside nor ethylene precursor 1-aminocyclopropane-1-carboxylic acid had any effect on ABA accumulation, and application of ABA or the ABA inhibitor fluridone also had no effect on NO production and ethylene emission. CONCLUSIONS Under P deficiency, NO levels increase as quickly as ABA levels decrease, to inhibit both the ABA-induced reduction of pectin contents for the re-utilization of cell wall P and the ABA-induced down-regulation of OsPT6 for the translocation of P from roots to shoots. Overall, our results provide novel information indicating that the reduction of ABA under P deficiency is a very important pathway in the re-utilization of cell wall P in rice under P-deficient conditions, which should be a very effective mechanism for plant survival under P deficiency stress for common agronomic practice.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Xu Sheng Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- For correspondence. E-mail
| |
Collapse
|
133
|
Wang L, Liu D. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:108-116. [PMID: 29650148 DOI: 10.1016/j.plantsci.2018.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/18/2018] [Accepted: 03/04/2018] [Indexed: 05/20/2023]
Abstract
Phosphorus is essential for plant growth and development, but levels of inorganic phosphate (Pi), the major form of phosphorus that plants assimilate, are quite limiting in most soils. To cope with Pi deficiency, plants trigger a suite of adaptive responses, including the induction and secretion of acid phosphatases (APases). In this article, we describe how Pi starvation-induced (PSI) APases are analyzed, and we provide a brief historical review of their identification. We then discuss the current understanding of the functions of PSI-secreted APases and how these APases are regulated at the molecular level. Finally, we provide a perspective on the future direction of research in this field.
Collapse
Affiliation(s)
- Liangsheng Wang
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
134
|
Liu Z, Fan M, Li C, Xu JH. Dynamic gene amplification and function diversification of grass-specific O-methyltransferase gene family. Genomics 2018; 111:687-695. [PMID: 29689291 DOI: 10.1016/j.ygeno.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
The plant O-methyltransferases are dependent on S-Adenosyl-l-methionine, which can catalyze a variety of secondary metabolites. Here we identified different number of OMT genes from the respective grass genomes. Phylogenetic analysis showed that this OMT gene family is a grass-specific gene family that is different from COMT. Most of genes were expanded by tandem and segment duplication after the species split from their progenitor. Furthermore, genes from Group I and two clusters from group II are only present in Panicoideae, which included Bx10 and Bx7 involved in the benzoxazinoids pathway, suggesting these genes could participate in insect resistance in Panicoideae. Gene expression profiles showed that OMT genes were preferentially expressed in vegetative stages, especially in roots. These results revealed that this grass-specific OMT gene family could affect the development of vegetative stages, and be involved in the benzoxazinoids pathway or suberin biosynthesis that was different from COMT.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Miao Fan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
135
|
Deng QW, Luo XD, Chen YL, Zhou Y, Zhang FT, Hu BL, Xie JK. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). Biol Res 2018; 51:7. [PMID: 29544529 PMCID: PMC5853122 DOI: 10.1186/s40659-018-0155-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
Background Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. Results In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. Conclusion The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice. Electronic supplementary material The online version of this article (10.1186/s40659-018-0155-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian-Wen Deng
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Dong Luo
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Ya-Ling Chen
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Yi Zhou
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Fan-Tao Zhang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Biao-Lin Hu
- Rice Research Institute, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
| | - Jian-Kun Xie
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
136
|
Li Z, Xu H, Li Y, Wan X, Ma Z, Cao J, Li Z, He F, Wang Y, Wan L, Tong Z, Li X. Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.). PLANT MOLECULAR BIOLOGY 2018; 96:473-492. [PMID: 29532290 DOI: 10.1007/s11103-018-0711-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/19/2018] [Indexed: 05/18/2023]
Abstract
The induction of miR399 and miR398 and the inhibition of miR156, miR159, miR160, miR171, miR2111, and miR2643 were observed under Pi deficiency in alfalfa. The miRNA-mediated genes involved in basic metabolic process, root and shoot development, stress response and Pi uptake. Inorganic phosphate (Pi) deficiency is known to be a limiting factor in plant development and growth. However, the underlying miRNAs associated with the Pi deficiency-responsive mechanism in alfalfa are unclear. To elucidate the molecular mechanism at the miRNA level, we constructed four small RNA (sRNA) libraries from the roots and shoots of alfalfa grown under normal or Pi-deficient conditions. In the present study, alfalfa plants showed reductions in biomass, photosynthesis, and Pi content and increases in their root-to-shoot ratio and citric, malic, and succinic acid contents under Pi limitation. Sequencing results identified 47 and 44 differentially expressed miRNAs in the roots and shoots, respectively. Furthermore, 909 potential target genes were predicted, and some targets were validated by RLM-RACE assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed prominent enrichment in signal transducer activity, binding and basic metabolic pathways for carbohydrates, fatty acids and amino acids; cellular response to hormone stimulus and response to auxin pathways were also enriched. qPCR results verified that the differentially expressed miRNA profile was consistent with sequencing results, and putative target genes exhibited opposite expression patterns. In this study, the miRNAs associated with the response to Pi limitation in alfalfa were identified. In addition, there was an enrichment of miRNA-targeted genes involved in biological regulatory processes such as basic metabolic pathways, root and shoot development, stress response, Pi transportation and citric acid secretion.
Collapse
Affiliation(s)
- Zhenyi Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongyu Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiufu Wan
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhao Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Cao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhensong Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yufei Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liqiang Wan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zongyong Tong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xianglin Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
137
|
Flores AC, Via VD, Savy V, Villagra UM, Zanetti ME, Blanco F. Comparative phylogenetic and expression analysis of small GTPases families in legume and non-legume plants. PLANT SIGNALING & BEHAVIOR 2018; 13:e1432956. [PMID: 29452030 PMCID: PMC5846509 DOI: 10.1080/15592324.2018.1432956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Small monomeric GTPases act as molecular switches in several processes that involve polar cell growth, participating mainly in vesicle trafficking and cytoskeleton rearrangements. This gene superfamily has largely expanded in plants through evolution as compared with other Kingdoms, leading to the suggestion that members of each subfamily might have acquired new functions associated to plant-specific processes. Legume plants engage in a nitrogen-fixing symbiotic interaction with rhizobia in a process that involves polar growth processes associated with the infection throughout the root hair. To get insight into the evolution of small GTPases associated with this process, we use a comparative genomic approach to establish differences in the Ras GTPase superfamily between legume and non-legume plants. RESULTS Phylogenetic analyses did not show clear differences in the organization of the different subfamilies of small GTPases between plants that engage or not in nodule symbiosis. Protein alignments revealed a strong conservation at the sequence level of small GTPases previously linked to nodulation by functional genetics. Interestingly, one Rab and three Rop proteins showed conserved amino acid substitutions in legumes, but these changes do not alter the predicted conformational structure of these proteins. Although the steady-state levels of most small GTPases do not change in response to rhizobia, we identified a subset of Rab, Rop and Arf genes whose transcript levels are modulated during the symbiotic interaction, including their spatial distribution along the indeterminate nodule. CONCLUSIONS This study provides a comprehensive study of the small GTPase superfamily in several plant species. The genetic program associated to root nodule symbiosis includes small GTPases to fulfill specific functions during infection and formation of the symbiosomes. These GTPases seems to have been recruited from members that were already present in common ancestors with plants as distant as monocots since we failed to detect asymmetric evolution in any of the subfamily trees. Expression analyses identified a number of legume members that can have undergone neo- or sub-functionalization associated to the spatio-temporal transcriptional control during the onset of the symbiotic interaction.
Collapse
Affiliation(s)
- Ana Claudia Flores
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Virginia Dalla Via
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Virginia Savy
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Ulises Mancini Villagra
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Flavio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
138
|
Zhang Q, Oh DH, DiTusa SF, RamanaRao MV, Baisakh N, Dassanayake M, Smith AP. Rice nucleosome patterns undergo remodeling coincident with stress-induced gene expression. BMC Genomics 2018; 19:97. [PMID: 29373953 PMCID: PMC5787291 DOI: 10.1186/s12864-017-4397-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/19/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Formation of nucleosomes along eukaryotic DNA has an impact on transcription. Major transcriptional changes occur in response to low external phosphate (Pi) in plants, but the involvement of chromatin-level mechanisms in Pi starvation responses have not been investigated. RESULTS We mapped nucleosomes along with transcriptional changes after 24-h of Pi starvation in rice (Oryza sativa) by deep sequencing of micrococcal nuclease digested chromatin and ribosome-depleted RNA. We demonstrated that nucleosome patterns at rice genes were affected by both cis- and trans-determinants, including GC content and transcription. Also, categorizing rice genes by nucleosome patterns across the transcription start site (TSS) revealed nucleosome patterns that correlated with distinct functional categories of genes. We further demonstrated that Pi starvation resulted in numerous dynamic nucleosomes, which were enhanced at genes differentially expressed in response to Pi starvation. CONCLUSIONS We demonstrate that rice nucleosome patterns are suggestive of gene functions, and reveal a link between chromatin remodeling and transcriptional changes in response to deficiency of a major macronutrient. Our findings help to enhance the understanding towards eukaryotic gene regulation at the chromatin level.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sandra Feuer DiTusa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Mangu V RamanaRao
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aaron P Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
139
|
Ajmera I, Shi J, Giri J, Wu P, Stekel DJ, Lu C, Hodgman TC. Regulatory feedback response mechanisms to phosphate starvation in rice. NPJ Syst Biol Appl 2018; 4:4. [PMID: 29354282 PMCID: PMC5758793 DOI: 10.1038/s41540-017-0041-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 01/31/2023] Open
Abstract
Phosphorus is a growth-limiting nutrient for plants. The growing scarcity of phosphate stocks threatens global food security. Phosphate-uptake regulation is so complex and incompletely known that attempts to improve phosphorus use efficiency have had extremely limited success. This study improves our understanding of the molecular mechanisms underlying phosphate uptake by investigating the transcriptional dynamics of two regulators: the Ubiquitin ligase PHO2 and the long non-coding RNA IPS1. Temporal measurements of RNA levels have been integrated into mechanistic mathematical models using advanced statistical techniques. Models based solely on current knowledge could not adequately explain the temporal expression profiles. Further modeling and bioinformatics analysis have led to the prediction of three regulatory features: the PHO2 protein mediates the degradation of its own transcriptional activator to maintain constant PHO2 mRNA levels; the binding affinity of the transcriptional activator of PHO2 is impaired by a phosphate-sensitive transcriptional repressor/inhibitor; and the extremely high levels of IPS1 and its rapid disappearance upon Pi re-supply are best explained by Pi-sensitive RNA protection. This work offers both new opportunities for plant phosphate research that will be essential for informing the development of phosphate efficient crop varieties, and a foundation for the development of models integrating phosphate with other stress responses. Food security is a global priority. One aspect of this is the ability to grow crops in poorer soils with less fertilizer input, of which phosphate is both essential and resource limited. This study provides a quantitative understanding of the genetic regulation of phosphate uptake in rice upon its deficiency. The mathematical models developed in this article lead to three hypotheses for the gaps identified in current knowledge. One of these hypotheses has previously only been reported in animals while the other prompted laboratory experiments, revealing an extra level of regulation at short timescales. These models provide the basis for crop systems biologists to study other aspects of phosphate regulation, including its internal utilisation, external availability and foraging, and, more crucially, in response to other stresses.
Collapse
Affiliation(s)
- Ishan Ajmera
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough, LE12 5RD UK.,2Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Jing Shi
- 3State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China.,4Department of Biology, Texas A&M University, College Station, TX USA
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ping Wu
- 3State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
| | - Dov J Stekel
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Chungui Lu
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough, LE12 5RD UK.,6School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, NG1 4FQ UK
| | - T Charlie Hodgman
- School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough, LE12 5RD UK.,2Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| |
Collapse
|
140
|
Zhao P, Wang L, Yin H. Transcriptional responses to phosphate starvation in Brachypodium distachyon roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 122:113-120. [PMID: 29216498 DOI: 10.1016/j.plaphy.2017.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Brachypodium distachyon is a model plant that has recently emerged in grass research. Although the growth and photochemical efficiency of this species respond strongly to phosphate (Pi) availability, its Pi starvation response mechanism, which controls the Pi homeostasis, remains largely unknown. This study presents the transcriptomic response profiles of Pi-deficient roots at growth stages during which the plants were starved but obvious growth defects were absent. The results identify several phosphate transporters (i.e., PHO1), purple acid phosphatases, and SYG1/PHO81/XPR1 (SPX) domain-containing proteins out of a total of 1740 differentially expressed genes (DEGs). In particular, the transcription factor ethylene response factor (ERF), basic helix-loop-helix (bHLH), and WRKY family genes were the three most abundant DEG groups and the latter was significantly enriched. Comparative transcriptome analysis of Brachypodium versus Arabidopsis and rice revealed the presence of several common components in response to Pi fluctuations. Most significantly, jasmonic acid (JA) signaling-related genes were overrepresented in gene ontology (GO) enrichment tests. The presence of a possible link between low Pi response, inositol polyphosphates, and JA signaling is therefore discussed.
Collapse
Affiliation(s)
- Pengshan Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Lirong Wang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Hengxia Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
141
|
Mager S, Ludewig U. Massive Loss of DNA Methylation in Nitrogen-, but Not in Phosphorus-Deficient Zea mays Roots Is Poorly Correlated With Gene Expression Differences. FRONTIERS IN PLANT SCIENCE 2018; 9:497. [PMID: 29725341 PMCID: PMC5917015 DOI: 10.3389/fpls.2018.00497] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/03/2018] [Indexed: 05/20/2023]
Abstract
DNA methylation in plants plays a role in transposon silencing, genome stability and gene expression regulation. Environmental factors alter the methylation pattern of DNA and recently nutrient stresses, such as phosphate starvation, were shown to alter DNA methylation. Furthermore, DNA methylation had been frequently addressed in plants with notably small genomes that are poor in transposons. Here, we compare part of the DNA methylome of nitrogen- and phosphorus-deficient maize roots by reduced representation sequencing and analyze their relationship with gene expression under prolonged stresses. Tremendous DNA methylation loss was encountered in maize under nitrogen-deficiency, but much less with phosphorus-deficiency. This occurred only in the symmetrical cytosine context, predominantly in CG context, but also in the CHG context. In contrast to other plants, differential methylation in the more flexible CHH context was essentially absent. In both deficiency conditions a similar number of differentially expressed genes were found and differentially methylated regions (DMRs) were predominantly identified in transposable elements (TEs). A minor fraction of such DMRs was associated with altered gene expression of nearby genes. Interestingly, although these TEs were mostly hypomethylated, they were associated with both up- or down regulated gene expression. Our results suggest a different methylome regulation in maize compared to rice and Arabidopsis upon nutrient deficiencies and point to highly nutrient- and species-specific dynamics of genomic DNA methylation. Description of Significance: DNA methylation suppresses transposons in plant genomes, but was also associated with other genome protective functions and gene expression regulation. Recently it was shown that DNA methylation dynamically responds to several abiotic and biotic environmental factors, but to a large instance, DNA methylation is also heritable. DNA methylation changes have also been reported under phosphorus starvation in rice and Arabidopsis, but its relation with other nutrients and its importance for individual gene expression remains unclear. Here, DNA methylation changes upon the deficiency of two major essential nutrients, nitrogen and phosphorus, were studied in parallel with gene expression responses in maize roots. We show context, nutrient- and species-specific patterns in the methylome, as well as its relation with the nutrient-deficiency transcriptome. While cases of differentially methylated regions in the vicinity of differentially expressed genes were apparent, both positive and negative roles on the gene expression were identified, irrespective of the context.
Collapse
|
142
|
Ren P, Meng Y, Li B, Ma X, Si E, Lai Y, Wang J, Yao L, Yang K, Shang X, Wang H. Molecular Mechanisms of Acclimatization to Phosphorus Starvation and Recovery Underlying Full-Length Transcriptome Profiling in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2018; 9:500. [PMID: 29720989 PMCID: PMC5915550 DOI: 10.3389/fpls.2018.00500] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/03/2018] [Indexed: 05/18/2023]
Abstract
A lack of phosphorus (P) in plants can severely constrain growth and development. Barley, one of the earliest domesticated crops, is extensively planted in poor soil around the world. To date, the molecular mechanisms of enduring low phosphorus, at the transcriptional level, in barley are still unclear. In the present study, two different barley genotypes (GN121 and GN42)-with contrasting phosphorus efficiency-were used to reveal adaptations to low phosphorus stress, at three time points, at the morphological, physiological, biochemical, and transcriptome level. GN121 growth was less affected by phosphorus starvation and recovery than that of GN42. The biomass and inorganic phosphorus concentration of GN121 and GN42 declined under the low phosphorus-induced stress and increased after recovery with normal phosphorus. However, the range of these parameters was higher in GN42 than in GN121. Subsequently, a more complete genome annotation was obtained by correcting with the data sequenced on Illumina HiSeq X 10 and PacBio RSII SMRT platform. A total of 6,182 and 5,270 differentially expressed genes (DEGs) were identified in GN121 and GN42, respectively. The majority of these DEGs were involved in phosphorus metabolism such as phospholipid degradation, hydrolysis of phosphoric enzymes, sucrose synthesis, phosphorylation/dephosphorylation and post-transcriptional regulation; expression of these genes was significantly different between GN121 and GN42. Specifically, six and seven DEGs were annotated as phosphorus transporters in roots and leaves, respectively. Furthermore, a putative model was constructed relying on key metabolic pathways related to phosphorus to illustrate the higher phosphorus efficiency of GN121 compared to GN42 under low phosphorus conditions. Results from this study provide a multi-transcriptome database and candidate genes for further study on phosphorus use efficiency (PUE).
Collapse
Affiliation(s)
- Panrong Ren
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yong Lai
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xunwu Shang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Huajun Wang
| |
Collapse
|
143
|
Wang Z, Zheng Z, Song L, Liu D. Functional Characterization of Arabidopsis PHL4 in Plant Response to Phosphate Starvation. FRONTIERS IN PLANT SCIENCE 2018; 9:1432. [PMID: 30327661 PMCID: PMC6174329 DOI: 10.3389/fpls.2018.01432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/10/2018] [Indexed: 05/09/2023]
Abstract
Plants have evolved an array of adaptive responses to cope with phosphate (Pi) starvation. These responses are mainly controlled at the transcriptional level. In Arabidopsis, PHR1, a member of the MYB-CC transcription factor family, is a key component of the central regulatory system controlling plant transcriptional responses to Pi starvation. Its homologs in the MYB-CC family, PHL1 (PHR1-LIKE 1), PHL2, and perhaps also PHL3, act redundantly with PHR1 to regulate plant Pi starvation responses. The functions of PHR1's closest homolog in this family, PHL4, however, have not been characterized due to the lack of its null mutant. In this work, we generated two phl4 null mutants using the CRISPR/Cas9 technique and investigated the functions of PHL4 in plant responses to Pi starvation. The results indicated that the major developmental, physiological, and molecular responses of the phl4 mutants to Pi starvation did not significantly differ from those of the wild type. By comparing the phenotypes of the phr1 single mutant and phr1phl1 and phr1phl4 double mutants, we found that PHL4 also acts redundantly with PHR1 to regulate plant Pi responses, but that its effects are weaker than those of PHL1. We also found that the overexpression of PHL4 suppresses plant development under both Pi-sufficient and -deficient conditions. Taken together, the results indicate that PHL4 has only a minor role in the regulation of plant responses to Pi starvation and is a negative regulator of plant development.
Collapse
|
144
|
Yang J, Wang L, Mao C, Lin H. Characterization of the rice NLA family reveals a key role for OsNLA1 in phosphate homeostasis. RICE (NEW YORK, N.Y.) 2017; 10:52. [PMID: 29282559 PMCID: PMC5745205 DOI: 10.1186/s12284-017-0193-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/12/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Phosphate (Pi), an essential mineral nutrient for plant development and reproduction, is one of the main components of fertilizers in modern agriculture. Previous research demonstrated that AtNLA1 mediates ubiquitination of Pi transporters in the plasma membrane and triggers their endocytosis and degradation in Arabidopsis. In this study, we researched the function of NLA homologous proteins in Pi homeostasis in rice. FINDINGS Two OsNLA homologs from rice (Oryza sativa L.) were identified by bioinformatics and phylogenetic analysis and designated OsNLA1 and OsNLA2. The OsNLA1 clustered with Arabidopsis AtNLA1, was expressed higher than OsNLA2 and was transcriptionally repressed under Pi-deficient condition. Loss-of-function of OsNLA1 caused P overaccumulation and growth inhibitions in both root and shoot under Pi-sufficient condition. Furthermore, mutation of OsNLA1 affected expression of Pi tranporters and root hair development under Pi-sufficient and/or Pi-deficient conditions. CONCLUSIONS OsNLA1 plays a key role in maintaining phosphate homeostasis in rice.
Collapse
Affiliation(s)
- Jian Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064 China
| | - Lan Wang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064 China
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041 China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064 China
| |
Collapse
|
145
|
|
146
|
Zhou T, Hua Y, Zhang B, Zhang X, Zhou Y, Shi L, Xu F. Low-Boron Tolerance Strategies Involving Pectin-Mediated Cell Wall Mechanical Properties in Brassica napus. PLANT & CELL PHYSIOLOGY 2017; 58:1991-2005. [PMID: 29016959 DOI: 10.1093/pcp/pcx130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/22/2017] [Indexed: 05/18/2023]
Abstract
Boron (B) is an essential micronutrient for the growth and development of plants. Oilseed rape (Brassica napus L.) is a staple oleaginous crop, which is greatly susceptible to B deficiency. Significant differences in tolerance of low-B stresses are observed in rapeseed genotypes, but the underlying mechanism remains unclear, particularly at the single-cell level. Here we provide novel insights into pectin-mediated cell wall (CW) mechanical properties implicated in the differential tolerance of low B in rapeseed genotypes. Under B deficiency, suspension cells of the low-B-sensitive genotype 'W10' showed more severely deformed morphology, lower viabilities and a more easily ruptured CW than those of the low-B-tolerant genotype 'QY10'. Cell rupture was attributed to the weakened CW mechanical strength detected by atomic force microscopy; the CW mechanical strength of 'QY10' was reduced by 13.6 and 17.4%, whereas that of 'W10' was reduced by 29.0 and 30.4% under 0.25 and 0.10 μM B conditions, respectively. The mechanical strength differences between 'QY10' and 'W10' were diminished after the removal of pectin. Further, 'W10' exhibited significantly higher pectin concentrations with much more rhamnogalacturonan II (RG-II) monomer, and also presented obviously higher mRNA abundances of pectin biosynthesis-related genes than 'QY10' under B deficiency. CW regeneration was more difficult for protoplasts of 'W10' than for those of 'QY10'. Taking the results together, we conclude that the variations in pectin-endowed CW mechanical properties play key roles in modulating the differential genotypic tolerance of rapeseed to low-B stresses at both the single-cell and the plant level, and this can potentially be used as a selection trait for low-B-tolerant rapeseed breeding.
Collapse
Affiliation(s)
- Ting Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingpeng Hua
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuqing Zhang
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
147
|
Chen L, Liao H. Engineering crop nutrient efficiency for sustainable agriculture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:710-735. [PMID: 28600834 DOI: 10.1111/jipb.12559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency.
Collapse
Affiliation(s)
- Liyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
148
|
Uraguchi S, Tanaka N, Hofmann C, Abiko K, Ohkama-Ohtsu N, Weber M, Kamiya T, Sone Y, Nakamura R, Takanezawa Y, Kiyono M, Fujiwara T, Clemens S. Phytochelatin Synthase has Contrasting Effects on Cadmium and Arsenic Accumulation in Rice Grains. PLANT & CELL PHYSIOLOGY 2017; 58:1730-1742. [PMID: 29016913 PMCID: PMC5914395 DOI: 10.1093/pcp/pcx114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/03/2017] [Indexed: 05/18/2023]
Abstract
Phytochelatin (PC) synthesis has been well demonstrated as a major metal tolerance mechanism in Arabidopsis thaliana, whereas its contribution to long-distance element transport especially in monocots remains elusive. Using rice as a cereal model, we examined physiological roles of Oryza sativa phytochelatin synthase 1 (OsPCS1) in the distribution and detoxification of arsenic (As) and cadmium (Cd), two toxic elements associated with major food safety concerns. First, we isolated four different transcript variants of OsPCS1 as well as one from OsPCS2. Quantitative real-time reverse transcription-PCR (RT-PCR) of each OsPCS transcript in rice seedlings suggested that expression of OsPCS1full, the longest OsPCS1 variant, was most abundant, followed by OsPCS2. Heterologous expression of OsPCS variants in PCS-deficient mutants of Schizosaccharomyces pombe and A. thaliana suggested that OsPCS1full possessed PCS activity in response to As(III) and Cd while the activity of other PCS variants was very low. To address physiological functions in toxic element tolerance and accumulation, two independent OsPCS1 mutant rice lines (a T-DNA and a Tos17 insertion line) were identified. The OsPCS1 mutants exhibited increased sensitivity to As(III) and Cd in hydroponic experiments, showing the importance of OsPCS1-dependent PC synthesis for rice As(III) and Cd tolerance. Elemental analyses of rice plants grown in soil with environmentally relevant As and Cd concentrations showed increased As accumulation and decreased Cd accumulation in grains of the T-DNA line. The Tos17 mutant also exhibited the reduced Cd accumulation phenotype. These contrasting effects on As and Cd distribution to grains suggest the existence of at least partially distinct PC-dependent pathways for As and Cd.
Collapse
Affiliation(s)
- Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Nobuhiro Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Christian Hofmann
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Kaho Abiko
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Michael Weber
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuka Sone
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Universitätsstrasse 30, D-95440 Bayreuth, Germany
- Corresponding author: E-mail, ; Fax, +49-921-552642
| |
Collapse
|
149
|
Pei W, Jain A, Sun Y, Zhang Z, Ai H, Liu X, Wang H, Feng B, Sun R, Zhou H, Xu G, Sun S. OsSIZ2 exerts regulatory influences on the developmental responses and phosphate homeostasis in rice. Sci Rep 2017; 7:12280. [PMID: 28947784 PMCID: PMC5612973 DOI: 10.1038/s41598-017-10274-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023] Open
Abstract
OsSIZ1, a small ubiquitin-related modifier (SUMO) E3 ligase, exerts regulatory influences on the developmental responses and phosphate (Pi) homeostasis in rice (Oryza sativa). Whether paralogs OsSIZ1 and OsSIZ2 are functionally redundant or the latter regulates these traits independent of the former is not known. To determine this, in this study, OsSIZ2 was functionally characterized by employing reverse genetic approaches. Although the relative expression of OsSIZ2 was spatiotemporally regulated, it showed constitutive expression in root and leaf blade irrespective of Pi regime. Analysis of T-DNA insertion knockout (ossiz2) and RNAi-mediated knockdown (Ri1-3) mutants revealed positive influences on growth and developmental responses including yield-related traits. On the contrary, these mutants exhibited negative effects on the concentrations of Pi and total P in different tissues. The relative expression levels of some of the genes that are involved in Pi sensing and signaling cascades were differentially modulated in the mutants. Further, attenuation in the expression levels of OsSIZ2 in the roots of ossiz1 and relatively similar trend of the effects of the mutation in OsSIZ1 and OsSIZ2 on growth and development and total P concentration in different tissues suggested a prevalence of partial functional redundancy between these paralogs.
Collapse
Affiliation(s)
- Wenxia Pei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ajay Jain
- Amity Centre of Nano Biotechnology and Plant Nutrition, Kant Kalwar, NH-11C, Jaipur, 303002, India
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhantian Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiuli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Huadun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China.,Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bing Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Rui Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hongmin Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
150
|
Das S, Tyagi W, Rai M, Yumnam JS. Understanding Fe 2+ toxicity and P deficiency tolerance in rice for enhancing productivity under acidic soils. Biotechnol Genet Eng Rev 2017; 33:97-117. [PMID: 28927358 DOI: 10.1080/02648725.2017.1370888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plants experience low phosphorus (P) and high iron (Fe) levels in acidic lowland soils that lead to reduced crop productivity. A better understanding of the relationship between these two stresses at molecular and physiological level will lead to development of suitable strategies to increase crop productivity in such poor soils. Tolerance for most abiotic stresses including P deficiency and Fe toxicity is a quantitative trait in rice. Recent studies in the areas of physiology, genetics, and overall metabolic pathways in response to P deficiency of rice plants have improved our understanding of low P tolerance. Phosphorous uptake and P use efficiency are the two key traits for improving P deficiency tolerance. In the case of Fe toxicity tolerance, QTLs have been reported but the identity and role played by underlying genes is just emerging. Details pertaining to Fe deficiency tolerance in rice are well worked out including genes involved in Fe sensing and uptake. But, how rice copes with Fe toxicity is not clearly understood. This review focuses on the progress made in understanding these key environmental stresses. Finally, an opinion on the key genes which can be targeted for this stress is provided.
Collapse
Affiliation(s)
- Sudip Das
- a School of Crop Improvement, College of Post-Graduate (CPGS), Central Agricultural University , Imphal , India
| | - Wricha Tyagi
- a School of Crop Improvement, College of Post-Graduate (CPGS), Central Agricultural University , Imphal , India
| | - Mayank Rai
- a School of Crop Improvement, College of Post-Graduate (CPGS), Central Agricultural University , Imphal , India
| | - Julia S Yumnam
- a School of Crop Improvement, College of Post-Graduate (CPGS), Central Agricultural University , Imphal , India
| |
Collapse
|