101
|
Cytological and Proteomic Analysis of Wheat Pollen Abortion Induced by Chemical Hybridization Agent. Int J Mol Sci 2019; 20:ijms20071615. [PMID: 30939734 PMCID: PMC6480110 DOI: 10.3390/ijms20071615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
In plants, pollen grain transfers the haploid male genetic material from anther to stigma, both between flowers (cross-pollination) and within the same flower (self-pollination). In order to better understand chemical hybridizing agent (CHA) SQ-1-induced pollen abortion in wheat, comparative cytological and proteomic analyses were conducted. Results indicated that pollen grains underwent serious structural injury, including cell division abnormality, nutritional deficiencies, pollen wall defect and pollen grain malformations in the CHA-SQ-1-treated plants, resulting in pollen abortion and male sterility. A total of 61 proteins showed statistically significant differences in abundance, among which 18 proteins were highly abundant and 43 proteins were less abundant in CHA-SQ-1 treated plants. 60 proteins were successfully identified using MALDI-TOF/TOF mass spectrometry. These proteins were found to be involved in pollen maturation and showed a change in the abundance of a battery of proteins involved in multiple biological processes, including pollen development, carbohydrate and energy metabolism, stress response, protein metabolism. Interactions between these proteins were predicted using bioinformatics analysis. Gene ontology and pathway analyses revealed that the majority of the identified proteins were involved in carbohydrate and energy metabolism. Accordingly, a protein-protein interaction network involving in pollen abortion was proposed. These results provide information for the molecular events underlying CHA-SQ-1-induced pollen abortion and may serve as an additional guide for practical hybrid breeding.
Collapse
|
102
|
Jacobowitz JR, Doyle WC, Weng JK. PRX9 and PRX40 Are Extensin Peroxidases Essential for Maintaining Tapetum and Microspore Cell Wall Integrity during Arabidopsis Anther Development. THE PLANT CELL 2019; 31:848-861. [PMID: 30886127 PMCID: PMC6501601 DOI: 10.1105/tpc.18.00907] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/06/2019] [Accepted: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Pollen and microspore development are essential steps in the life cycle of all land plants that generate male gametes. Within flowering plants, pollen development occurs inside of the anther. Here, we report the identification of two class III peroxidase-encoding genes, PEROXIDASE9 (PRX9) and PRX40, that are genetically redundant and essential for proper anther and pollen development in Arabidopsis (Arabidopsis thaliana). Arabidopsis double mutants devoid of functional PRX9 and PRX40 are male sterile. The mutant anthers display swollen, hypertrophic tapetal cells and pollen grains, suggesting disrupted cell wall integrity. These phenotypes lead to nearly 100%-penetrant pollen degeneration upon anther maturation. Using immunochemical and biochemical approaches, we show that PRX9 and PRX40 likely cross-link extensins to contribute to tapetal cell wall integrity during anther development. This work suggests that PRX9 and PRX40 encode Arabidopsis extensin peroxidases and highlights the importance of extensin cross-linking during pollen development.
Collapse
Affiliation(s)
- Joseph R Jacobowitz
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - William C Doyle
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
103
|
The recognition of development-related genes in the testis and MAGs of time-series Harmonia axyridis adults using a time-series analysis by RNA-seq. Gene 2019; 693:52-60. [PMID: 30699331 DOI: 10.1016/j.gene.2019.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/13/2019] [Accepted: 01/22/2019] [Indexed: 11/20/2022]
|
104
|
Li D, Wu D, Li S, Guo N, Gao J, Sun X, Cai Y. Transcriptomic profiling identifies differentially expressed genes associated with programmed cell death of nucellar cells in Ginkgo biloba L. BMC PLANT BIOLOGY 2019; 19:91. [PMID: 30819114 PMCID: PMC6396491 DOI: 10.1186/s12870-019-1671-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/01/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Previously, we demonstrated that pollen chamber formation (PCF) in G. biloba ovules was a process of programmed cell death (PCD) within the nucellar cells at the micropylar end. However, the signal triggering the cascades of the programmed events in these nucellar cells remains unexplored. RESULTS A transcriptomic strategy was employed to unravel the mechanism underlying the nucellar PCD via the comparative profiles of RNA-seq between pre-PCF and post-PCF ovules. A total of 5599 differentially expressed genes (DEGs) with significance was identified from G. biloba ovules and classified into three main categories of GO annotation, including 17 biological processes, 15 cellular components and 17 molecular functions. KEGG analysis showed that 72 DEGs were enriched in "Plant hormone signal transduction". Furthermore, 99 DEGs were found to be associated with the PCD process, including the genes involved in ethylene signaling pathway, PCD initiation, and PCD execution. Moreover, calcium-cytochemical localization indicated that calcium could play a role in regulating PCD events within the nucellar cells during pollen chamber formation in G. biloba ovules. CONCLUSIONS A putative working model, consisting of three overlapping processes, is proposed for the nucellar PCD: at the stage of PCD preparation, ethylene signaling pathway is activated for transcriptional regulation of the downstream targets; subsequently, at the stage of PCD initiation, the upregulated expression of several transcription factors, i.e., NAC, bHLH, MADS-box, and MYB, further promotes the corresponding transcript levels of CYTOCHROME C and CALMODULINs, thereby, leads to the PCD initiation via the calcium-dependent signaling cascade; finally, at the stage of PCD execution, some proteases like metacaspases and vacuolar processing enzyme for hydrolysis, together with the process of autophagy, play roles in the clearance of cellular components. Afterwards, a pollen chamber is generated from the removal of specific nucellar cells in the developing ovule.
Collapse
Affiliation(s)
- Dahui Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Di Wu
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Shizhou Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Ning Guo
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Junshan Gao
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Xu Sun
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Yongping Cai
- College of Life Science, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
105
|
Zhang S, Xu Z, Sun H, Sun L, Shaban M, Yang X, Zhu L. Genome-Wide Identification of Papain-Like Cysteine Proteases in Gossypium hirsutum and Functional Characterization in Response to Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2019; 10:134. [PMID: 30842780 PMCID: PMC6391353 DOI: 10.3389/fpls.2019.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 05/12/2023]
Abstract
Cotton, a natural fiber producing crop of huge importance, is often prone to attack of Verticillium dahliae. Papain-like cysteine proteases (PLCPs) constitute a large family in plants and were proposed to involve in plant defense against pathogen attack in a number of studies. However, there is no detailed characterization of PLCP genes in cotton against infection of V. dahliae. In this study, we carried out a genome-wide analysis in cotton and identified seventy-eight PLCPs, which were divided into nine subfamilies based on their evolution phylogeny: RD21 (responsive to desiccation 21), CEP (cysteine endopeptidase), XCP (xylem cysteine peptidase), XBCP3 (xylem bark cysteine peptidase 3), THI, SAG12 (senescence-associated gene 12), RD19 (responsive to desiccation 19), ALP (aleurain-like protease) and CTB (cathepsin B-like). Genes in each subfamily exhibit a similar structure and motif composition. The expression patterns of these genes in different organs were examined, and subfamily RD21 was the most abundant in these families. Expression profiles under abiotic stress showed that thirty-five PLCP genes were induced by multiple stresses. Further transcriptome analysis showed that sixteen PLCP genes were up-regulated in response to V. dahliae in cotton. Among those, GhRD21-7 showed a higher transcription level than most other PLCP genes. Additionally, over-expression of GhRD21-7 led to enhanced resistance and RNAi lines were more susceptible to V. dahliae in cotton. Our results provide valuable information for future functional genomic studies of PLCP gene family in cotton.
Collapse
|
106
|
Ding X, Zhang H, Ruan H, Li Y, Chen L, Wang T, Jin L, Li X, Yang S, Gai J. Exploration of miRNA-mediated fertility regulation network of cytoplasmic male sterility during flower bud development in soybean. 3 Biotech 2019; 9:22. [PMID: 30622860 DOI: 10.1007/s13205-018-1543-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/16/2018] [Indexed: 01/15/2023] Open
Abstract
Cytoplasmic male sterility (CMS) plays an important role in the production of soybean hybrid seeds. MicroRNAs (miRNAs) are a class of non-coding endogenous ~ 21 nt small RNAs that play crucial roles in flower and pollen development by targeting genes in plants. To dissect the function of miRNAs in soybean CMS, a total of 558 known miRNAs, 10 novel miRNAs, and 466 target genes were identified in flower buds of the soybean CMS line NJCMS1A and its restorer line NJCMS1C through small RNA sequencing and degradome analysis. In addition, miRNA-mediated editing events were also observed, and the two most frequently observed editing types (A → G and C → U) were validated by cloning and sequencing. And as the base editing occurred, some targets were filtered, such as gma-miR2118b-P6GT with Glyma.08G122000.2. Further integrated analysis of transcriptome and small RNA found some miRNAs and their targets' expression patterns showing a negative correlation, such as gma-miR156b/GmSPL9a and gma-miR4413b/GmPPR. Furthermore, opposite expression pattern was observed between gma-miR156b and GmSPL9 during early stage of flower bud development. Taken together, the regulatory network of gma-miR156b/GmSPL9 and gma-miR4413b/GmPPR with flower bud development in soybean CMS was developed. Most importantly, previous reports showed that these targets might be related to pollen development and male sterility, suggesting that both conserved and species-specific miRNAs might act as regulators of flower bud development in soybean CMS. These findings may provide a better understanding of the miRNA-mediated regulatory networks of CMS mechanisms in soybean.
Collapse
|
107
|
Han J, Li H, Yin B, Zhang Y, Liu Y, Cheng Z, Liu D, Lu H. The papain-like cysteine protease CEP1 is involved in programmed cell death and secondary wall thickening during xylem development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:205-215. [PMID: 30376110 PMCID: PMC6305193 DOI: 10.1093/jxb/ery356] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/23/2018] [Indexed: 05/24/2023]
Abstract
Both tracheary elements and fiber cells undergo programmed cell death (PCD) during xylem development. In this study we investigated the role of papain-like cysteine protease CEP1 in PCD in the xylem of Arabidopsis. CEP1 was located in the cell wall of xylem cells, and CEP1 expression levels in inflorescence stems increased during stem maturation. cep1 mutant plants exhibited delayed stem growth and reduced xylem cell number compared to wild-type plants. Transmission electron microscopy demonstrated that organelle degradation was delayed during PCD, and thicker secondary walls were present in fiber cells and tracheary elements of the cep1 mutant. Transcriptional analyses of the maturation stage of the inflorescence stem revealed that genes involved in the biosynthesis of secondary wall components, including cellulose, hemicellulose, and lignin, as well as wood-associated transcriptional factors, were up-regulated in the cep1 mutant. These results suggest that CEP1 is directly involved in the clearing of cellular content during PCD and regulates secondary wall thickening during xylem development.
Collapse
Affiliation(s)
- Jingyi Han
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Bin Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yongzhuo Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ziyi Cheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Di Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
108
|
Hirakawa T, Matsunaga S. Characterization of DNA Repair Foci in Root Cells of Arabidopsis in Response to DNA Damage. FRONTIERS IN PLANT SCIENCE 2019; 10:990. [PMID: 31417598 PMCID: PMC6682680 DOI: 10.3389/fpls.2019.00990] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 05/20/2023]
Abstract
As a sessile organism, plants are constantly challenged by diverse environmental stresses that threaten genome integrity by way of induction of DNA damage. In plants, each tissue is composed of differentiated cell types, and the response to DNA damage differs among each cell type. However, limited information is available on the subnuclear dynamics of different cell types in response to DNA damage in plants. A chromatin remodeling factor RAD54, which plays an important role in the exchange reaction and alteration of chromatin structure during homologous recombination, specifically accumulates at damaged sites, forming DNA repair foci (termed RAD54 foci) in nuclei after γ-irradiation. In this study, we performed a time-course analysis of the appearance of RAD54 foci in root cells of Arabidopsis after γ-irradiation to characterize the subnuclear dynamics in each cell type. A short time after γ-irradiation, no significant difference in detection frequency of RAD54 foci was observed among epidermal, cortical, and endodermal cells in the meristematic zone of roots. Interestingly, cells showing RAD54 foci persisted in roots at long time after γ-irradiation, and RAD54 foci in these cells localized to nuclear periphery with high frequency. These observations suggest that the nuclear envelope plays a role in the maintenance of genome stability in response to DNA damage in Arabidopsis roots.
Collapse
|
109
|
Höwing T, Dann M, Müller B, Helm M, Scholz S, Schneitz K, Hammes UZ, Gietl C. The role of KDEL-tailed cysteine endopeptidases of Arabidopsis (AtCEP2 and AtCEP1) in root development. PLoS One 2018; 13:e0209407. [PMID: 30576358 PMCID: PMC6303060 DOI: 10.1371/journal.pone.0209407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
Plants encode a unique group of papain-type cysteine endopeptidases (CysEP) characterized by a C-terminal KDEL endoplasmic reticulum retention signal (KDEL-CysEP) and an unusually broad substrate specificity. The three Arabidopsis KDEL-CysEPs (AtCEP1, AtCEP2, and AtCEP3) are differentially expressed in vegetative and generative tissues undergoing programmed cell death (PCD). While KDEL-CysEPs have been shown to be implicated in the collapse of tissues during PCD, roles of these peptidases in processes other than PCD are unknown. Using mCherry-AtCEP2 and EGFP-AtCEP1 reporter proteins in wild type versus atcep2 or atcep1 mutant plants, we explored the participation of AtCEP in young root development. Loss of AtCEP2, but not AtCEP1 resulted in shorter primary roots due to a decrease in cell length in the lateral root (LR) cap, and impairs extension of primary root epidermis cells such as trichoblasts in the elongation zone. AtCEP2 was localized to root cap corpses adherent to epidermal cells in the rapid elongation zone. AtCEP1 and AtCEP2 are expressed in root epidermis cells that are separated for LR emergence. Loss of AtCEP1 or AtCEP2 caused delayed emergence of LR primordia. KDEL-CysEPs might be involved in developmental tissue remodeling by supporting cell wall elongation and cell separation.
Collapse
Affiliation(s)
- Timo Höwing
- Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | - Marcel Dann
- Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | - Benedikt Müller
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Michael Helm
- Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | - Sebastian Scholz
- Plant Developmental Biology, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | - Kay Schneitz
- Plant Developmental Biology, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
| | - Ulrich Z. Hammes
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Christine Gietl
- Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universitaet Muenchen, Freising, Germany
- * E-mail:
| |
Collapse
|
110
|
Cubría-Radío M, Nowack MK. Transcriptional networks orchestrating programmed cell death during plant development. Curr Top Dev Biol 2018; 131:161-184. [PMID: 30612616 PMCID: PMC7116394 DOI: 10.1016/bs.ctdb.2018.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Transcriptional gene regulation is a fundamental biological principle in the development of eukaryotes. It does control not only cell proliferation, specification, and differentiation, but also cell death processes as an integral feature of an organism's developmental program. As in animals, developmentally regulated cell death in plants occurs in numerous contexts and is of vital importance for plant vegetative and reproductive development. In comparison with the information available on the molecular regulation of programmed cell death (PCD) in animals, however, our knowledge on plant PCD still remains scarce. Here, we discuss the functions of different classes of transcription factors that have been implicated in the control of developmentally regulated cell death. Though doubtlessly representing but a first layer of PCD regulation, information on PCD-regulating transcription factors and their targets represents a promising strategy to understand the complex machinery that ensures the precise and failsafe execution of PCD processes in plant development.
Collapse
Affiliation(s)
- Marta Cubría-Radío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
111
|
Yang L, Wu Y, Zhang M, Zhang J, Stewart JM, Xing C, Wu J, Jin S. Transcriptome, cytological and biochemical analysis of cytoplasmic male sterility and maintainer line in CMS-D8 cotton. PLANT MOLECULAR BIOLOGY 2018; 97:537-551. [PMID: 30066309 DOI: 10.1007/s11103-018-0757-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/14/2018] [Indexed: 05/26/2023]
Abstract
Key message This research based on RNA-seq, biochemical, and cytological analyses sheds that ROS may serve as important signaling molecules of cytoplasmic male sterility in CMS-D8 cotton. To understand the mechanism of cytoplasmic male sterility in cotton (Gossypium hirsutum), transcriptomic, cytological, and biochemical analysis were performed between the cytoplasmic male sterility CMS-D8 line, Zhong41A, and its maintainer line Zhong41B. A total of 2335 differentially expressed genes (DEGs) were identified in the CMS line at three different stages of anther development. Bioinformatics analysis of these DEGs indicated their relationship to reactive oxygen species (ROS) homeostasis, including reduction-oxidation reactions and the metabolism of glutathione and ascorbate. At the same time, DEGs associated with tapetum development, especially the transition to secretory tapetum, were down-regulated in the CMS line. Biochemical analysis indicated that the ability of the CMS line to eliminate ROS was decreased, which led to the rapid release of H2O2. Cytological analysis revealed that the most crucial defect in the CMS line was the abnormal tapetum. All these results are consistent with the RNA sequencing data. On the basis of our findings, we propose that ROS act as signal molecules, which are released from mitochondria and transferred to the nucleus, triggering the formation of abnormal tapetum.
Collapse
Affiliation(s)
- Li Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China.
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| |
Collapse
|
112
|
Tapetal-Delayed Programmed Cell Death (PCD) and Oxidative Stress-Induced Male Sterility of Aegilops uniaristata Cytoplasm in Wheat. Int J Mol Sci 2018; 19:ijms19061708. [PMID: 29890696 PMCID: PMC6032135 DOI: 10.3390/ijms19061708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/31/2023] Open
Abstract
Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of hybrid vigor. Pollen development is often accompanied by oxidative metabolism responses and tapetal programmed cell death (PCD), and deficiency in these processes could lead to male sterility. Aegilops uniaristata cytoplasmic male sterility (Mu-CMS) wheat is a novel male-sterile line in wheat, which possess important potential in hybrid wheat breeding. However, its CMS mechanisms remain poorly understood. In our study, U87B1-706A, with the Aegilops uniaristata cytoplasm, and the maintainer line 706B were used to explore the abortive reason. Compared with 706B, histological analysis and PCD detection of the anther demonstrated that U87B1-706A appeared as delayed tapetal PCD as well as a disorganized organelle phenotype in the early uninucleate stage. Subsequently, a shrunken microspore and disordered exine structure were exhibited in the late uninucleate stage. While the activities of antioxidase increased markedly, the nonenzymatic antioxidant contents declined obviously following overacummulation of reactive oxygen species (ROS) during pollen development in U87B1-706A. Real-time quantitative PCR testified that the transcript levels of the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) genes, encoding pivotal antioxidant enzymes, were up-regulated in early pollen development. Therefore, we deduce excess ROS as a signal may be related to the increased expression levels of enzyme genes, thereby breaking the antioxidative system balance, resulting in delayed tapetal PCD initiation, which finally led to pollen abortion and male sterility in U87B1-706A. These results provide evidence to further explore the mechanisms of abortive pollen in CMS wheat.
Collapse
|
113
|
Srivastava R, Li Z, Russo G, Tang J, Bi R, Muppirala U, Chudalayandi S, Severin A, He M, Vaitkevicius SI, Lawrence-Dill CJ, Liu P, Stapleton AE, Bassham DC, Brandizzi F, Howell SH. Response to Persistent ER Stress in Plants: A Multiphasic Process That Transitions Cells from Prosurvival Activities to Cell Death. THE PLANT CELL 2018; 30:1220-1242. [PMID: 29802214 PMCID: PMC6048783 DOI: 10.1105/tpc.18.00153] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 05/09/2023]
Abstract
The unfolded protein response (UPR) is a highly conserved response that protects plants from adverse environmental conditions. The UPR is elicited by endoplasmic reticulum (ER) stress, in which unfolded and misfolded proteins accumulate within the ER. Here, we induced the UPR in maize (Zea mays) seedlings to characterize the molecular events that occur over time during persistent ER stress. We found that a multiphasic program of gene expression was interwoven among other cellular events, including the induction of autophagy. One of the earliest phases involved the degradation by regulated IRE1-dependent RNA degradation (RIDD) of RNA transcripts derived from a family of peroxidase genes. RIDD resulted from the activation of the promiscuous ribonuclease activity of ZmIRE1 that attacks the mRNAs of secreted proteins. This was followed by an upsurge in expression of the canonical UPR genes indirectly driven by ZmIRE1 due to its splicing of Zmbzip60 mRNA to make an active transcription factor that directly upregulates many of the UPR genes. At the peak of UPR gene expression, a global wave of RNA processing led to the production of many aberrant UPR gene transcripts, likely tempering the ER stress response. During later stages of ER stress, ZmIRE1's activity declined, as did the expression of survival modulating genes, Bax inhibitor1 and Bcl-2-associated athanogene7, amid a rising tide of cell death. Thus, in response to persistent ER stress, maize seedlings embark on a course of gene expression and cellular events progressing from adaptive responses to cell death.
Collapse
Affiliation(s)
- Renu Srivastava
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
| | - Zhaoxia Li
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
| | - Giulia Russo
- MSU-DOE Plant Research Laboratories, Department of Plant Biology, East Lansing, Michigan 48824
| | - Jie Tang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Ran Bi
- Department of Statistics, Iowa State University, Ames, Iowa 50011
| | - Usha Muppirala
- Genome Informatics Facility, Iowa State University, Ames, Iowa 50011
| | | | - Andrew Severin
- Genome Informatics Facility, Iowa State University, Ames, Iowa 50011
| | - Mingze He
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Samuel I Vaitkevicius
- MSU-DOE Plant Research Laboratories, Department of Plant Biology, East Lansing, Michigan 48824
| | - Carolyn J Lawrence-Dill
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa 50011
| | - Ann E Stapleton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403
| | - Diane C Bassham
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratories, Department of Plant Biology, East Lansing, Michigan 48824
| | - Stephen H Howell
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
114
|
Wang W, Zhou XM, Xiong HX, Mao WY, Zhao P, Sun MX. Papain-like and legumain-like proteases in rice: genome-wide identification, comprehensive gene feature characterization and expression analysis. BMC PLANT BIOLOGY 2018; 18:87. [PMID: 29764367 PMCID: PMC5952849 DOI: 10.1186/s12870-018-1298-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/26/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Papain-like and legumain-like proteases are proteolytic enzymes which play key roles in plant development, senescence and defense. The activities of proteases in both families could be inhibited by a group of small proteins called cystatin. Cystatin family genes have been well characterized both in tobacco and rice, suggesting their potential roles in seed development. However, their potential targets, papain-like and legumain-like proteases, have not been well characterized in plants, especially in rice, a model plant for cereal biology. RESULTS Here, 33 papain-like and 5 legumain-like proteases have been identified in rice genome, respectively. Gene structure, distribution in rice chromosome, and evolutionary relationship to their counterparts in other plants have been well characterized. Comprehensive expression profile analysis revealed that two family genes display divergent expression pattern, which are regulated temporally and spatially during the process of seed development and germination. Our experiments also revealed that the expression of most genes in these two families is sensitively responsive to plant hormones and different abiotic stresses. CONCLUSIONS Genome-wide identification and comprehensive gene expression pattern analysis of papain-like and legumain-like proteases in rice suggests their multiple and cooperative roles in seed development and response to environmental variations, which provides several useful cues for further in-depth study.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xue-Mei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Han-Xian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wan-Ying Mao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
115
|
Marzol E, Borassi C, Bringas M, Sede A, Rodríguez Garcia DR, Capece L, Estevez JM. Filling the Gaps to Solve the Extensin Puzzle. MOLECULAR PLANT 2018; 11:645-658. [PMID: 29530817 DOI: 10.1016/j.molp.2018.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/28/2018] [Accepted: 03/04/2018] [Indexed: 05/20/2023]
Abstract
Extensins (EXTs) are highly repetitive plant O-glycoproteins that require several post-translational modifications (PTMs) to become functional in plant cell walls. First, they are hydroxylated on contiguous proline residues; then they are O-glycosylated on hydroxyproline and serine. After secretion into the apoplast, O-glycosylated EXTs form a tridimensional network organized by inter- and intra-Tyr linkages. Recent studies have made significant progress in the identification of the enzymatic machinery required to process EXTs, which includes prolyl 4-hydroxylases, glycosyltransferases, papain-type cysteine endopeptidases, and peroxidases. EXTs are abundant in plant tissues and are particularly important in rapidly expanding root hairs and pollen tubes, which grow in a polar manner. Small changes in EXT PTMs affect fast-growing cells, although the molecular mechanisms underlying this regulation are unknown. In this review, we highlight recent advances in our understanding of EXT modifications throughout the secretory pathway, EXT assembly in cell walls, and possible sensing mechanisms involving the Catharanthus roseus cell surface sensor receptor-like kinases located at the interface between the apoplast and the cytoplasmic side of the plasma membrane.
Collapse
Affiliation(s)
- Eliana Marzol
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Mauro Bringas
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires, CP C1428EGA, Argentina
| | - Ana Sede
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
| | - Diana Rosa Rodríguez Garcia
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (INQUIMAE-CONICET), Buenos Aires, CP C1428EGA, Argentina
| | - Jose M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avenida Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina.
| |
Collapse
|
116
|
Liu Z, Shi X, Li S, Zhang L, Song X. Oxidative Stress and Aberrant Programmed Cell Death Are Associated With Pollen Abortion in Isonuclear Alloplasmic Male-Sterile Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:595. [PMID: 29780399 PMCID: PMC5945952 DOI: 10.3389/fpls.2018.00595] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/16/2018] [Indexed: 05/18/2023]
Abstract
Cytoplasmic male sterility is crucial for the utilization of hybrid heterosis and it possibly occurs in parallel with tapetal programmed cell death (PCD) and oxidative metabolism responses. However, little is known about the mechanisms that underlie pollen abortion in wheat. Therefore, we obtained two isonuclear alloplasmic male sterile lines (IAMSLs) with Aegilops kotschyi and Ae. juvenalis cytoplasm. Compared with the maintainer line, cytochemical analyses of the anthers demonstrated that the IAMSLs exhibited anomalous tapetal PCD and organelles, with premature PCD in K87B1-706A and delayed PCD in Ju87B1-706A. We also found that the dynamic trends in reactive oxygen species (ROS) were consistent in these two IAMSLs during anther development and they were potentially associated with the initiation of tapetal PCD. In addition, the activities of ROS-scavenging enzymes increased rapidly, whereas non-enzymatic antioxidants were downregulated together with excess ROS production in IAMSLs. Real-time PCR analysis showed that the expression levels of superoxide dismutase, catalase, and ascorbate peroxidase genes, which encode important antioxidant enzymes, were significantly upregulated during early pollen development. Thus, we inferred that excessive ROS and the abnormal transcript levels of antioxidant enzyme genes disrupted the balance of the antioxidant system and the presence of excess ROS may have been related to aberrant tapetal PCD progression, thereby affecting the development of microspores and ultimately causing male sterility. These relationships between the mechanism of PCD and ROS metabolism provide new insights into the mechanisms responsible for abortive pollen in wheat.
Collapse
Affiliation(s)
| | | | | | | | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
117
|
Jokipii-Lukkari S, Delhomme N, Schiffthaler B, Mannapperuma C, Prestele J, Nilsson O, Street NR, Tuominen H. Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce. PLANT PHYSIOLOGY 2018; 176:2851-2870. [PMID: 29487121 PMCID: PMC5884607 DOI: 10.1104/pp.17.01590] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/15/2018] [Indexed: 05/18/2023]
Abstract
Seasonal cues influence several aspects of the secondary growth of tree stems, including cambial activity, wood chemistry, and transition to latewood formation. We investigated seasonal changes in cambial activity, secondary cell wall formation, and tracheid cell death in woody tissues of Norway spruce (Picea abies) throughout one seasonal cycle. RNA sequencing was performed simultaneously in both the xylem and cambium/phloem tissues of the stem. Principal component analysis revealed gradual shifts in the transcriptomes that followed a chronological order throughout the season. A notable remodeling of the transcriptome was observed in the winter, with many genes having maximal expression during the coldest months of the year. A highly coexpressed set of monolignol biosynthesis genes showed high expression during the period of secondary cell wall formation as well as a second peak in midwinter. This midwinter peak in expression did not trigger lignin deposition, as determined by pyrolysis-gas chromatography/mass spectrometry. Coexpression consensus network analyses suggested the involvement of transcription factors belonging to the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES and MYELOBLASTOSIS-HOMEOBOX families in the seasonal control of secondary cell wall formation of tracheids. Interestingly, the lifetime of the latewood tracheids stretched beyond the winter dormancy period, correlating with a lack of cell death-related gene expression. Our transcriptomic analyses combined with phylogenetic and microscopic analyses also identified the cellulose and lignin biosynthetic genes and putative regulators for latewood formation and tracheid cell death in Norway spruce, providing a toolbox for further physiological and functional assays of these important phase transitions.
Collapse
Affiliation(s)
- Soile Jokipii-Lukkari
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Sveriges Lantbruksuniversitet, SE-901 83 Umeå, Sweden
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Sveriges Lantbruksuniversitet, SE-901 83 Umeå, Sweden
| | - Bastian Schiffthaler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Jakob Prestele
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Sveriges Lantbruksuniversitet, SE-901 83 Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
118
|
Havé M, Balliau T, Cottyn-Boitte B, Dérond E, Cueff G, Soulay F, Lornac A, Reichman P, Dissmeyer N, Avice JC, Gallois P, Rajjou L, Zivy M, Masclaux-Daubresse C. Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1369-1385. [PMID: 29281085 PMCID: PMC6037082 DOI: 10.1093/jxb/erx482] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.
Collapse
Affiliation(s)
- Marien Havé
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | | - Emeline Dérond
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Gwendal Cueff
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | | | - Aurélia Lornac
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Pavel Reichman
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Jean-Christophe Avice
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Patrick Gallois
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Loïc Rajjou
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | |
Collapse
|
119
|
Bárány I, Berenguer E, Solís MT, Pérez-Pérez Y, Santamaría ME, Crespo JL, Risueño MC, Díaz I, Testillano PS. Autophagy is activated and involved in cell death with participation of cathepsins during stress-induced microspore embryogenesis in barley. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1387-1402. [PMID: 29309624 PMCID: PMC6019037 DOI: 10.1093/jxb/erx455] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/30/2017] [Indexed: 05/02/2023]
Abstract
Microspores are reprogrammed towards embryogenesis by stress. Many microspores die after this stress, limiting the efficiency of microspore embryogenesis. Autophagy is a degradation pathway that plays critical roles in stress response and cell death. In animals, cathepsins have an integral role in autophagy by degrading autophagic material; less is known in plants. Plant cathepsins are papain-like C1A cysteine proteases involved in many physiological processes, including programmed cell death. We have analysed the involvement of autophagy in cell death, in relation to cathepsin activation, during stress-induced microspore embryogenesis in Hordeum vulgare. After stress, reactive oxygen species (ROS) and cell death increased and autophagy was activated, including HvATG5 and HvATG6 up-regulation and increase of ATG5, ATG8, and autophagosomes. Concomitantly, cathepsin L/F-, B-, and H-like activities were induced, cathepsin-like genes HvPap-1 and HvPap-6 were up-regulated, and HvPap-1, HvPap-6, and HvPap-19 proteins increased and localized in the cytoplasm, resembling autophagy structures. Inhibitors of autophagy and cysteine proteases reduced cell death and promoted embryogenesis. The findings reveal a role for autophagy in stress-induced cell death during microspore embryogenesis, and the participation of cathepsins. Similar patterns of activation, expression, and localization suggest a possible connection between cathepsins and autophagy. The results open up new possibilities to enhance microspore embryogenesis efficiency with autophagy and/or cysteine protease modulators.
Collapse
Affiliation(s)
| | | | | | | | | | - José Luis Crespo
- Institute of Plant Biochemistry and Photosynthesis, IBVF, CSIC, Seville, Spain
| | | | - Isabel Díaz
- Center of Plant Biotechnology and Genomics, CBGP, UPM, Madrid, Spain
| | | |
Collapse
|
120
|
Integrated analysis of transcriptome and proteome changes related to the Ogura cytoplasmic male sterility in cabbage. PLoS One 2018. [PMID: 29529074 PMCID: PMC5846740 DOI: 10.1371/journal.pone.0193462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cabbage (Brassica oleracea L. var. capitata), an important vegetable crop in the Brassicaceae family, is economically important worldwide. In the process of hybrid seed production, Ogura cytoplasmic male sterility (OguCMS), controlled by the mitochondrial gene orf138, has been extensively used for cabbage hybrid production with complete and stable male sterility. To identify the critical genes and pathways involved in the sterility and to better understand the underlying molecular mechanisms, the anther of OguCMS line R2P2CMS and the fertile line R2P2 were used for RNA-seq and iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) proteome analysis. RNA-seq analysis generated 13,037,109 to 13,066,594 SE50-clean reads, from the sterile and fertile lines, which were assembled into 36,890 unigenes. Among them, 1,323 differentially expressed genes (DEGs) were identified, consisting of 307 up- and 1016 down-regulated genes. For ITRAQ analysis, a total of 7,147 unique proteins were identified, and 833 were differentially expressed including 538 up- and 295 down-regulated proteins. These were mainly annotated to the ribosome, spliceosome and mRNA surveillance pathways. Combined transcriptomic and proteomic analyses identified 22 and 70 genes with the same and opposite expression profiles, respectively. Using KEGG analysis of DEGs, gibberellin mediated signaling pathways regulating tapetum programmed cell death and four different pathways involved in sporopollenin synthesis were identified. Secretion and translocation of the sporopollenin precursors were identified, and the key genes participating in these pathways were all significantly down-regulated in R2P2CMS. Light and transmission electron (TE) microscopy revealed fat abnormal tapetum rather than vacuolization and degradation at the tetrad and microspore stages of the OguCMS line. This resulted in the failed deposition of sporopollenin on the pollen resulting in sterility. This study provides a comprehensive understanding of the mechanism underlying OguCMS in cabbage.
Collapse
|
121
|
Reza SH, Delhomme N, Street NR, Ramachandran P, Dalman K, Nilsson O, Minina EA, Bozhkov PV. Transcriptome analysis of embryonic domains in Norway spruce reveals potential regulators of suspensor cell death. PLoS One 2018; 13:e0192945. [PMID: 29499063 PMCID: PMC5834160 DOI: 10.1371/journal.pone.0192945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
The terminal differentiation and elimination of the embryo-suspensor is the earliest manifestation of programmed cell death (PCD) during plant ontogenesis. Molecular regulation of suspensor PCD remains poorly understood. Norway spruce (Picea abies) embryos provide a powerful model for studying embryo development because of their large size, sequenced genome, and the possibility to obtain a large number of embryos at a specific developmental stage through somatic embryogenesis. Here, we have carried out global gene expression analysis of the Norway spruce embryo-suspensor versus embryonal mass (a gymnosperm analogue of embryo proper) using RNA sequencing. We have identified that suspensors have enhanced expression of the NAC domain-containing transcription factors, XND1 and ANAC075, previously shown to be involved in the initiation of developmental PCD in Arabidiopsis. The analysis has also revealed enhanced expression of Norway spruce homologues of the known executioners of both developmental and stress-induced cell deaths, such as metacaspase 9 (MC9), cysteine endopeptidase-1 (CEP1) and ribonuclease 3 (RNS3). Interestingly, a spruce homologue of bax inhibitor-1 (PaBI-1, for Picea abies BI-1), an evolutionarily conserved cell death suppressor, was likewise up-regulated in the embryo-suspensor. Since Arabidopsis BI-1 so far has been implicated only in the endoplasmic reticulum (ER)-stress induced cell death, we investigated its role in embryogenesis and suspensor PCD using RNA interference (RNAi). We have found that PaBI-1-deficient lines formed a large number of abnormal embryos with suppressed suspensor elongation and disturbed polarity. Cytochemical staining of suspensor cells has revealed that PaBI-1 deficiency suppresses vacuolar cell death and induces necrotic type of cell death previously shown to compromise embryo development. This study demonstrates that a large number of cell-death components are conserved between angiosperms and gymnosperms and establishes a new role for BI-1 in the progression of vacuolar cell death.
Collapse
Affiliation(s)
- Salim H. Reza
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nathaniel R. Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Prashanth Ramachandran
- Department of Organismal Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Uppsala University, Uppsala, SE, Sweden
| | - Kerstin Dalman
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Elena A. Minina
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| | - Peter V. Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, SE, Sweden
- * E-mail: (SHR); (EAM); (PVB)
| |
Collapse
|
122
|
Ten Prominent Host Proteases in Plant-Pathogen Interactions. Int J Mol Sci 2018; 19:ijms19020639. [PMID: 29495279 PMCID: PMC5855861 DOI: 10.3390/ijms19020639] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 12/16/2022] Open
Abstract
Proteases are enzymes integral to the plant immune system. Multiple aspects of defence are regulated by proteases, including the hypersensitive response, pathogen recognition, priming and peptide hormone release. These processes are regulated by unrelated proteases residing at different subcellular locations. In this review, we discuss 10 prominent plant proteases contributing to the plant immune system, highlighting the diversity of roles they perform in plant defence.
Collapse
|
123
|
Liu H, Hu M, Wang Q, Cheng L, Zhang Z. Role of Papain-Like Cysteine Proteases in Plant Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1717. [PMID: 30564252 PMCID: PMC6288466 DOI: 10.3389/fpls.2018.01717] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 05/18/2023]
Abstract
Papain-like cysteine proteases (PLCP) are prominent peptidases found in most living organisms. In plants, PLCPs was divided into nine subgroups based on functional and structural characterization. They are key enzymes in protein proteolysis and involved in numerous physiological processes. In this paper, we reviewed the updated achievements of physiological roles of plant PLCPs in germination, development, senescence, immunity, and stress responses.
Collapse
Affiliation(s)
- Huijuan Liu
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Menghui Hu
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Qi Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Lin Cheng
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Zaibao Zhang
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
- *Correspondence: Zaibao Zhang,
| |
Collapse
|
124
|
Zou Z, Xie G, Yang L. Papain-like cysteine protease encoding genes in rubber (Hevea brasiliensis): comparative genomics, phylogenetic, and transcriptional profiling analysis. PLANTA 2017; 246:999-1018. [PMID: 28752264 DOI: 10.1007/s00425-017-2739-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/29/2017] [Indexed: 05/22/2023]
Abstract
43 HbPLCPs representing nine subfamilies or 20 orthologous groups were found in rubber, where paralogs were resulted from the recent WGD and local duplication. Several senescence-associated genes were also identified. Papain-like cysteine proteases (PLCPs) comprise a large family of proteolytic enzymes involved in plant growth and development, seed germination, organ senescence, immunity, and stress response. Despite their importance and the extensive research in the model plant Arabidopsis thaliana, little information is available on rubber tree (Hevea brasiliensis), a rubber-producing plant of the Euphorbiaceae family. This study performed a genome-wide identification of PLCP family genes in rubber, resulting in a relatively high number of 43 members. The phylogenetic analysis assigned these genes into nine subfamilies, i.e., RD21 (6), CEP (4), XCP (4), XBCP3 (2), THI (1), SAG12 (18), RD19 (4), ALP (2), and CTB (2). Most of them were shown to have orthologs in Arabidopsis; however, several members in SAG12, CEP and XBCP3 subfamilies form new groups as observed in other core eudicots such as Manihot esculenta, Ricinus communis, Populus trichocarpa, and Vitis vinifera. Based on an expert sequence comparison, 20 orthologous groups (OGs) were proposed for core eudicots, and rubber paralogs were shown to be resulted from the recent whole-genome duplication (WGD) as well as local duplication. Transcriptional profiling showed distinct expression pattern of different members across various tissues, e.g., root, leaf, bark, laticifer, flower, and seed. By using the senescence-specific HbSAG12H1 as the indicator, the transcriptome of senescent rubber leaves was deeply sequenced and several senescence-associated PLCP genes were identified. Results obtained from this study provide valuable information for future functional analysis and utilization of PLCP genes in Hevea and other species.
Collapse
Affiliation(s)
- Zhi Zou
- Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China.
| | - Guishui Xie
- Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
| | - Lifu Yang
- Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, People's Republic of China
| |
Collapse
|
125
|
Involvement of Arabidopsis thaliana endoplasmic reticulum KDEL-tailed cysteine endopeptidase 1 (AtCEP1) in powdery mildew-induced and AtCPR5-controlled cell death. PLoS One 2017; 12:e0183870. [PMID: 28846731 PMCID: PMC5573131 DOI: 10.1371/journal.pone.0183870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/11/2017] [Indexed: 12/02/2022] Open
Abstract
Programmed cell death (PCD) is a prerequisite for successful development and it limits the spread of biotrophic pathogens in a rapid hypersensitive response at the site of infection. KDEL-tailed cysteine endopeptidases (KDEL CysEP) are a subgroup of papain-type cysteine endopeptidases expressed in tissues undergoing PCD. In Arabidopsis, three KDEL CysEPs (AtCEP1, AtCEP2, and AtCEP3) are expressed. We have previously shown that AtCEP1 is a factor of basal resistance to powdery mildew caused by the biotrophic ascomycete Erysiphe cruciferarum, and is expressed in spatiotemporal association with the late fungal development on Arabidopsis leaves. The endoplasmic reticulum-localized proenzyme of AtCEP1 was further visualized at the haustorial complex encased with callose. The AtCPR5 gene (CONSTITUTIVE EXPRESSION OF PR GENES 5) is a regulator of expression of pathogenesis related genes. Loss of AtCPR5 leads to spontaneous expression of chlorotic lesions which was associated with enhanced expression of AtCEP1. We used the atcpr5-2 mutant plants and the atcep1 atcpr5-2 double mutants harboring a non-functional reporter (PCEP1::pre-pro-3xHA-EGFP-KDEL) for visualization of AtCEP1 promoter activity. We found the specific up-regulation of AtCEP1 in direct neighborhood of spreading leaf lesions thus likely representing cells undergoing PCD. Furthermore, we found a strong resistance of atcpr5 mutant plants against infection with E. cruciferarum. Loss of AtCEP1 had no obvious influence on the strong resistance of atcpr5-2 mutant plants against infection with E. cruciferarum. However, the area of necrotic leaf lesions associated with E. cruciferarum colonies was significantly larger in atcpr5-2 as compared to atcep1 atcpr5-2 double mutant plants. The presence of AtCEP1 thus contributes to AtCPR5-controlled PCD at the sites of powdery mildew infection.
Collapse
|
126
|
Li Y, Ding X, Wang X, He T, Zhang H, Yang L, Wang T, Chen L, Gai J, Yang S. Genome-wide comparative analysis of DNA methylation between soybean cytoplasmic male-sterile line NJCMS5A and its maintainer NJCMS5B. BMC Genomics 2017; 18:596. [PMID: 28806912 PMCID: PMC5557475 DOI: 10.1186/s12864-017-3962-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/25/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA methylation is an important epigenetic modification. It can regulate the expression of many key genes without changing the primary structure of the genomic DNA, and plays a vital role in the growth and development of the organism. The genome-wide DNA methylation profile of the cytoplasmic male sterile (CMS) line in soybean has not been reported so far. RESULTS In this study, genome-wide comparative analysis of DNA methylation between soybean CMS line NJCMS5A and its maintainer NJCMS5B was conducted by whole-genome bisulfite sequencing. The results showed 3527 differentially methylated regions (DMRs) and 485 differentially methylated genes (DMGs), including 353 high-credible methylated genes, 56 methylated genes coding unknown protein and 76 novel methylated genes with no known function were identified. Among them, 25 DMRs were further validated that the genome-wide DNA methylation data were reliable through bisulfite treatment, and 9 DMRs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. Finally, 8 key DMGs possibly associated with soybean CMS were identified. CONCLUSIONS Genome-wide DNA methylation profile of the soybean CMS line NJCMS5A and its maintainer NJCMS5B was obtained for the first time. Several specific DMGs which participated in pollen and flower development were further identified to be probably associated with soybean CMS. This study will contribute to further understanding of the molecular mechanism behind soybean CMS.
Collapse
Affiliation(s)
- Yanwei Li
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xuan Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Longshu Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tanliu Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Linfeng Chen
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
127
|
Ko SS, Li MJ, Lin YJ, Hsing HX, Yang TT, Chen TK, Jhong CM, Ku MSB. Tightly Controlled Expression of bHLH142 Is Essential for Timely Tapetal Programmed Cell Death and Pollen Development in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1258. [PMID: 28769961 PMCID: PMC5513933 DOI: 10.3389/fpls.2017.01258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/03/2017] [Indexed: 05/24/2023]
Abstract
Male sterility is important for hybrid seed production. Pollen development is regulated by a complex network. We previously showed that knockout of bHLH142 in rice (Oryza sativa) causes pollen sterility by interrupting tapetal programmed cell death (PCD) and bHLH142 coordinates with TDR to modulate the expression of EAT1. In this study, we demonstrated that overexpression of bHLH142 (OE142) under the control of the ubiquitin promoter also leads to male sterility in rice by triggering the premature onset of PCD. Protein of bHLH142 was found to accumulate specifically in the OE142 anthers. Overexpression of bHLH142 induced early expression of several key regulatory transcription factors in pollen development. In particular, the upregulation of EAT1 at the early stage of pollen development promoted premature PCD in the OE142 anthers, while its downregulation at the late stage impaired pollen development by suppressing genes involved in pollen wall biosynthesis, ROS scavenging and PCD. Collectively, these events led to male sterility in OE142. Analyses of related mutants further revealed the hierarchy of the pollen development regulatory gene network. Thus, the findings of this study advance our understanding of the central role played by bHLH142 in the regulatory network leading to pollen development in rice and how overexpression of its expression affects pollen development. Exploitation of this novel functionality of bHLH142 may confer a big advantage to hybrid seed production.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Min-Jeng Li
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
| | - Hong-Xian Hsing
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Ting-Ting Yang
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Tien-Kuan Chen
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
| | - Chung-Min Jhong
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
| | - Maurice Sun-Ben Ku
- Department of Bioagricultural Science, National Chiayi UniversityChiayi, Taiwan
- School of Biological Sciences, Washington State University, PullmanWA, United States
| |
Collapse
|
128
|
Tremblay RR, Bourassa S, Nehmé B, Calvo EL. Daylily protein constituents of the pollen and stigma a proteomics approach. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:1-12. [PMID: 28242413 DOI: 10.1016/j.jplph.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
This study was aimed at the identification and quantification of the protein components of the pollen grains in parallel with the distal stigmatic tissue of tetraploid cultivars. Proteomes were analyzed using iTRAQ 4plex labeling, peptides separation by online RP-nano-LC and analysis by ESI-MS/MS. Protein identification and quantification were made using the Asparagales database as a reference. A total of 524,037 MS/MS spectra were produced from pollen and stigma samples. From these, a total of 8368 peptides wereidentified corresponding to 994 unique peptides and 432 protein groups. Among them, 128 differentially expressed proteins were retained for further analysis. In absence of the daylily genome availability, we exploited numerous databases and bioinformatics resources to exploring the putative biological functions of these proteins. The profile of differentially expressed proteins suggests an important representation of functions associated to the signalling and response against endogenous and environmental stresses, including several enzymes implicated in the biosynthesis of antibiotics. The abundance in stigma of several structural proteins of the ribosomal sub-units as well as of the core histones suggest that the translation processes and the regulation of gene expression in stigma is a more active mechanism than in pollen. In addition, pollen prioritizes the synthesis of fructose and glucose as opposed to sucrose in stigma as a source of energy. Finally, the modulated proteins in Hemerocallis point to several pathways that give potential clues concerning the molecular mechanisms underlying the functions of the pollen and the stigmatic fluid in daylily reproduction.
Collapse
Affiliation(s)
- Roland R Tremblay
- CHUL Research Center in Reproduction, Centre de Recherche du CHU de Québec,2705 Boulevard Laurier, Suite T3-67, Quebec City, QC, G1 V 4G2, Canada.
| | - Sylvie Bourassa
- Proteomics Platform Quebec Genomics Center, CRCHUL, Centre de Recherche du CHU de Quebec, Canada.
| | - Benjamin Nehmé
- Proteomics Platform Quebec Genomics Center, CRCHUL, Centre de Recherche du CHU de Quebec, Canada.
| | - Ezequiel L Calvo
- Scientific Consultant in Genomics, 701 Leonard, Quebec City, QC, G1X 4C9, Canada.
| |
Collapse
|
129
|
Sueldo DJ, van der Hoorn RAL. Plant life needs cell death, but does plant cell death need Cys proteases? FEBS J 2017; 284:1577-1585. [PMID: 28165668 DOI: 10.1111/febs.14034] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/14/2017] [Accepted: 02/01/2017] [Indexed: 12/13/2022]
Abstract
Caspases are key regulators of apoptosis in animals. This correlation has driven plant researchers for decades to look for caspases regulating programmed cell death (PCD) in plants. These studies revealed caspase-like activities, caspase-related proteases, and cysteine (Cys) proteases regulating PCD in plants, but identified no caspases and no conserved, apoptosis-like death pathway. Here, we critically review the evidence for Cys proteases implicated in PCD in plants. We discuss the role of papain-like Cys proteases, vacuolar processing enzymes, and metacaspases in PCD during the development of tracheary elements, seed coat, suspensor, and tapetum, and during the hypersensitive response. There are several convincing cases where these Cys proteases are required for PCD, but this requirement is often not conserved across different plant species. There are also cases where Cys proteases contribute to the speed, but not the timing of PCD, while other Cys proteases are nonessential for PCD, but have other roles, e.g., in the clearance of cell remains after PCD. These data illustrate the need for caution when generalizing the role of Cys proteases in regulating PCD in plants, and call for studies that further investigate plant Cys proteases and other PCD regulators.
Collapse
Affiliation(s)
- Daniela J Sueldo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, UK
| | | |
Collapse
|
130
|
Zhou S, Zhang H, Li R, Hong Q, Li Y, Xia Q, Zhang W. Function Identification of the Nucleotides in Key cis-Element of DYSFUNCTIONAL TAPETUM1 ( DYT1) Promoter. FRONTIERS IN PLANT SCIENCE 2017; 8:153. [PMID: 28261229 PMCID: PMC5313476 DOI: 10.3389/fpls.2017.00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/25/2017] [Indexed: 05/26/2023]
Abstract
As a core regulatory gene of the anther development, DYSFUNCTIONAL TAPETUM1 (DYT1) was expressed in tapetum preferentially. Previous study had confirmed that a "CTCC" sequence within DYT1 promoter was indispensable for correct DYT1 expression. However, precise analysis on the function of each nucleotide of this sequence still lacks. Here we employed site mutation assay to identify the function roles of the nucleotides. As a result, the "T" and final "C" of "CTCC" were found essential for the temporal and spatial specificity of DYT1 expression, whereas the other two "C" nucleotides exhibited substitutable somewhat. The substitutes of two flanking nucleotides of "CTCC," however, hardly affected the normal promoter function, suggesting that the "CTCC" sequence as a whole did meet the standard of a canonical cis-element by definition. In addition, it was found that as short as 497 bp DYT1 promoter was sufficient for tissue-specific expression, while longer 505 bp DYT1 promoter sequence was sufficient for species-specific expression.
Collapse
|
131
|
Escamez S, Tuominen H. Contribution of cellular autolysis to tissular functions during plant development. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:124-130. [PMID: 27936412 DOI: 10.1016/j.pbi.2016.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 05/26/2023]
Abstract
Plant development requires specific cells to be eliminated in a predictable and genetically regulated manner referred to as programmed cell death (PCD). However, the target cells do not merely die but they also undergo autolysis to degrade their cellular corpses. Recent progress in understanding developmental cell elimination suggests that distinct proteins execute PCD sensu stricto and autolysis. In addition, cell death alone and cell dismantlement can fulfill different functions. Hence, it appears biologically meaningful to distinguish between the modules of PCD and autolysis during plant development.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden.
| |
Collapse
|
132
|
Cecchetti V, Celebrin D, Napoli N, Ghelli R, Brunetti P, Costantino P, Cardarelli M. An auxin maximum in the middle layer controls stamen development and pollen maturation in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1194-1207. [PMID: 27659765 DOI: 10.1111/nph.14207] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/15/2016] [Indexed: 05/06/2023]
Abstract
Here, we investigated the role of auxin distribution in controlling Arabidopsis thaliana late stamen development. We analysed auxin distribution in anthers by monitoring DR5 activity: at different flower developmental stages; inhibiting auxin transport; in the rpk2-3 and ems1 mutants devoid of middle layer (ML) or tapetum, respectively; and in the auxin biosynthesis yuc6 and perception afb1-3 mutants. We ran a phenotypic, DR5::GUS and gene expression analysis of yuc6rpk2 and afb1rpk2 double mutants, and of 1-N-naphthylphthalamic acid (NPA)-treated flower buds. We show that an auxin maximum, caused by transport from the tapetum, is established in the ML at the inception of late stamen development. rpk2-3 mutant stamens lacking the ML have an altered auxin distribution with excessive accumulation in adjacent tissues, causing non-functional pollen grains, indehiscent anthers and reduced filament length; the expression of genes controlling stamen development is also altered in rpk2-3 as well as in NPA-treated flower buds. By decreasing auxin biosynthesis or perception in the rpk2-3 background, we eliminated these developmental and gene expression anomalies. We propose that the auxin maximum in the ML plays a key role in late stamen development, as it ensures correct and coordinated pollen maturation, anther dehiscence and filament elongation.
Collapse
Affiliation(s)
- Valentina Cecchetti
- Istituto di Biologia e Patologia Molecolari (IBPM), Consiglio Nazionale delle Ricerche (CNR), Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Daniela Celebrin
- Istituto di Biologia e Patologia Molecolari (IBPM), Consiglio Nazionale delle Ricerche (CNR), Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Nadia Napoli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Roberta Ghelli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Patrizia Brunetti
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maura Cardarelli
- Istituto di Biologia e Patologia Molecolari (IBPM), Consiglio Nazionale delle Ricerche (CNR), Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
133
|
Huysmans M, Lema A S, Coll NS, Nowack MK. Dying two deaths - programmed cell death regulation in development and disease. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:37-44. [PMID: 27865098 DOI: 10.1016/j.pbi.2016.11.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is a fundamental cellular process that has adopted a plethora of vital functions in multicellular organisms. In plants, PCD processes are elicited as an inherent part of regular development in specific cell types or tissues, but can also be triggered by biotic and abiotic stresses. Although over the last years we have seen progress in our understanding of the molecular regulation of different plant PCD processes, it is still unclear whether a common core machinery exists that controls cell death in development and disease. In this review, we discuss recent advances in the field, comparing some aspects of the molecular regulation controlling developmental and pathogen-triggered PCD in plants.
Collapse
Affiliation(s)
- Marlies Huysmans
- VIB Department of Plant Systems Biology, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Saul Lema A
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Valles 08193, Catalonia, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Valles 08193, Catalonia, Spain.
| | - Moritz K Nowack
- VIB Department of Plant Systems Biology, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|
134
|
Yue L, Twell D, Kuang Y, Liao J, Zhou X. Transcriptome Analysis of Hamelia patens (Rubiaceae) Anthers Reveals Candidate Genes for Tapetum and Pollen Wall Development. FRONTIERS IN PLANT SCIENCE 2017; 7:1991. [PMID: 28119704 PMCID: PMC5220384 DOI: 10.3389/fpls.2016.01991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Studies of the anther transcriptome on non-model plants without a known genome are surprisingly scarce. RNA-Seq and digital gene expression (DGE) profiling provides a comprehensive approach to identify candidate genes contributing to developmental processes in non-model species. Here we built a transcriptome library of developing anthers of Hamelia patens and analyzed DGE profiles from each stage to identify genes that regulate tapetum and pollen development. In total 7,720 putative differentially expressed genes across four anther stages were identified. The number of putative stage-specific genes was: 776 at microspore mother cell stage, 807 at tetrad stage, 322 at uninucleate microspore stage, and the highest number (1,864) at bicellular pollen stage. GO enrichment analysis revealed 243 differentially expressed and 108 stage-specific genes that are potentially related to tapetum development, sporopollenin synthesis, and pollen wall. The number of expressed genes, their function and expression profiles were all significantly correlated with anther developmental processes. Overall comparisons of anther and pollen transcriptomes with those of rice and Arabidopsis together with the expression profiles of homologs of known anther-expressed genes, revealed conserved patterns and also divergence. The divergence may reflect taxon-specific differences in gene expression, the use RNA-seq as a more sensitive methodology, variation in tissue composition and sampling strategies. Given the lack of genomic sequence, this study succeeded in assigning putative identity to a significant proportion of anther-expressed genes and genes relevant to tapetum and pollen development in H. patens. The anther transcriptome revealed a molecular distinction between developmental stages, serving as a resource to unravel the functions of genes involved in anther development in H. patens and informing the analysis of other members of the Rubiaceae.
Collapse
Affiliation(s)
- Lin Yue
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - David Twell
- Department of Genetics, University of LeicesterLeicester, UK
| | - Yanfeng Kuang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | | |
Collapse
|
135
|
Cui Y, Zhao Q, Xie HT, Wong WS, Wang X, Gao C, Ding Y, Tan Y, Ueda T, Zhang Y, Jiang L. MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-Mediated Rab7 Activation Regulates Tapetal Programmed Cell Death and Pollen Development. PLANT PHYSIOLOGY 2017; 173:206-218. [PMID: 27799422 PMCID: PMC5210713 DOI: 10.1104/pp.16.00988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/25/2016] [Indexed: 05/08/2023]
Abstract
Programmed cell death (PCD)-triggered degradation of plant tapetum is essential for microspore development and pollen coat formation; however, little is known about the cellular mechanism regulating tapetal PCD Here, we demonstrate that Rab7-mediated vacuolar transport of tapetum degradation-related cysteine proteases is crucial for tapetal PCD and pollen development in Arabidopsis (Arabidopsis thaliana), with the following evidence: (1) The monensin sensitivity1 (mon1) mutants, which are defective in Rab7 activation, showed impaired male fertility due to a combined defect in both tapetum and male gametophyte development. (2) In anthers, MON1 showed preferential high level expression in tapetal cell layers and pollen. (3) The mon1 mutants exhibited delayed tapetum degeneration and tapetal PCD, resulting in abnormal pollen coat formation and decreased male fertility. (4) MON1/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-mediated Rab7 activation was indispensable for vacuolar trafficking of tapetum degradation-related cysteine proteases, supporting that PCD-triggered tapetum degeneration requires Rab7-mediated vacuolar trafficking of these cysteine proteases. (5) MON1 mutations also resulted in defective pollen germination and tube growth. Taken together, tapetal PCD and pollen development require successful MON1/CCZ1-mediated vacuolar transport in Arabidopsis.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Qiong Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Hong-Tao Xie
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Wing Shing Wong
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Yuqi Tan
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Takashi Ueda
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Yan Zhang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.)
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.)
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., Q.Z., W.S.W., X.W., C.G., Y.D., Y.T., L.J.);
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China (H.-T.X., Y.Z.);
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan (T.U.); and
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| |
Collapse
|
136
|
Li DD, Xue JS, Zhu J, Yang ZN. Gene Regulatory Network for Tapetum Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1559. [PMID: 28955355 PMCID: PMC5601042 DOI: 10.3389/fpls.2017.01559] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/28/2017] [Indexed: 05/19/2023]
Abstract
In flowering plants, male gametophyte development occurs in the anther. Tapetum, the innermost of the four anther somatic layers, surrounds the developing reproductive cells to provide materials for pollen development. A genetic pathway of DYT1-TDF1-AMS-MS188 in regulating tapetum development has been proven. Here we used laser microdissection and pressure catapulting to capture and analyze the transcriptome data for the Arabidopsis tapetum at two stages. With a comprehensive analysis by the microarray data of dyt1, tdf1, ams, and ms188 mutants, we identified possible downstream genes for each transcription factor. These transcription factors regulate many biological processes in addition to activating the expression of the other transcription factor. Briefly, DYT1 may also regulate early tapetum development via E3 ubiquitin ligases and many other transcription factors. TDF1 is likely involved in redox and cell degradation. AMS probably regulates lipid transfer proteins, which are involved in pollen wall formation, and other E3 ubiquitin ligases, functioning in degradating proteins produced in previous processes. MS188 is responsible for most cell wall-related genes, functioning both in tapetum cell wall degradation and pollen wall formation. These results propose a more complex gene regulatory network for tapetum development and function.
Collapse
|
137
|
Zhang S, Shi Q, Albrecht U, Shatters RG, Stange R, McCollum G, Zhang S, Fan C, Stover E. Comparative transcriptome analysis during early fruit development between three seedy citrus genotypes and their seedless mutants. HORTICULTURE RESEARCH 2017; 4:17041. [PMID: 28904803 PMCID: PMC5596110 DOI: 10.1038/hortres.2017.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 05/03/2023]
Abstract
Identification of genes with differential transcript abundance (GDTA) in seedless mutants may enhance understanding of seedless citrus development. Transcriptome analysis was conducted at three time points during early fruit development (Phase 1) of three seedy citrus genotypes: Fallglo (Bower citrus hybrid (Citrus reticulata×C. reticulata×C. paradisi)×Temple (C. reticulata×C. sinensis)), grapefruit (C. paradisi), Pineapple sweet orange (C. sinensis), and their seedless mutants. Seed abortion in seedless mutants was observed at 26 days post anthesis (Time point 2). Affymetrix transcriptomic analysis revealed 359 to 1077 probe sets with differential transcript abundance in the comparison of seedless versus seedy fruits for each citrus genotypes and time points. The GDTA identified by 18 microarray probe sets were validated by qPCR. Hierarchical clustering analysis revealed a range of GDTA associated with development, hormone and protein metabolism, all of which may reflect genes associated with seedless fruit development. There were 14, 9 and 12 genes found exhibiting similar abundance ratios in all three seedless versus seedy genotype comparisons at time point 1, 2 and 3, respectively. Among those genes were genes coding for an aspartic protease and a cysteine protease, which may play important roles in seedless fruit development. New insights into seedless citrus fruit development may contribute to biotech approaches to create seedless cultivars.
Collapse
Affiliation(s)
- Shujian Zhang
- U.S. Horticultural Research Laboratory, USDA-ARS, Ft. Pierce, FL 34945, USA
| | - Qingchun Shi
- U.S. Horticultural Research Laboratory, USDA-ARS, Ft. Pierce, FL 34945, USA
| | - Ute Albrecht
- U.S. Horticultural Research Laboratory, USDA-ARS, Ft. Pierce, FL 34945, USA
| | - Robert G Shatters
- U.S. Horticultural Research Laboratory, USDA-ARS, Ft. Pierce, FL 34945, USA
| | - Ric Stange
- U.S. Horticultural Research Laboratory, USDA-ARS, Ft. Pierce, FL 34945, USA
| | - Greg McCollum
- U.S. Horticultural Research Laboratory, USDA-ARS, Ft. Pierce, FL 34945, USA
| | - Shuo Zhang
- U.S. Horticultural Research Laboratory, USDA-ARS, Ft. Pierce, FL 34945, USA
| | - Chengming Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ed Stover
- U.S. Horticultural Research Laboratory, USDA-ARS, Ft. Pierce, FL 34945, USA
| |
Collapse
|
138
|
Identification of Development-Related Genes in the Ovaries of Adult Harmonia axyridis (Pallas) Lady Beetles Using a Time- Series Analysis by RNA-seq. Sci Rep 2016; 6:39109. [PMID: 27966611 PMCID: PMC5155419 DOI: 10.1038/srep39109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/17/2016] [Indexed: 01/10/2023] Open
Abstract
Adults of the lady beetle species Harmonia axyridis (Pallas) are bred artificially en masse for classic biological control, which requires egg-laying by the H. axyridis ovary. Development-related genes may impact the growth of the H. axyridis adult ovary but have not been reported. Here, we used integrative time-series RNA-seq analysis of the ovary in H. axyridis adults to detect development-related genes. A total of 28,558 unigenes were functionally annotated using seven types of databases to obtain an annotated unigene database for ovaries in H. axyridis adults. We also analysed differentially expressed genes (DEGs) between samples. Based on a combination of the results of this bioinformatics analysis with literature reports and gene expression level changes in four different stages, we focused on the development of oocyte reproductive stem cell and yolk formation process and identified 26 genes with high similarity to development-related genes. 20 DEGs were randomly chosen for quantitative real-time PCR (qRT-PCR) to validate the accuracy of the RNA-seq results. This study establishes a robust pipeline for the discovery of key genes using high-throughput sequencing and the identification of a class of development-related genes for characterization.
Collapse
|
139
|
Meng L, Liu Z, Zhang L, Hu G, Song X. Cytological characterization of a thermo-sensitive cytoplasmic male-sterile wheat line having K-type cytoplasm of Aegilops kotschyi. BREEDING SCIENCE 2016; 66:752-761. [PMID: 28163591 PMCID: PMC5282749 DOI: 10.1270/jsbbs.16039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/14/2016] [Indexed: 05/05/2023]
Abstract
Male sterility is an important tool for obtaining crop heterosis. A thermo-sensitive cytoplasmic male-sterile (TCMS) line was developed recently using a new method based on tiller regeneration. In the present study, we explored the critical growth stages required to maintain thermo-sensitive male sterility in TCMS lines and found that fertility is associated with abnormal tapetal and microspore development. We investigated the fertility and cytology of temperature-treated plant anthers at various developmental stages. TCMS line KTM3315A exhibited thermo-sensitive male sterility in Zadoks growth stages 41-49 and 58-59. Morphologically, the line exhibited thermo-sensitive male sterility at 3-9 days before heading and at 3-6 days before flowering, and it was partially restored in three locations during spring and summer. TCMS line KTM3315A plants exhibited premature tapetal programmed cell death (PCD) from the early uninucleate stage of microspore development until the tapetal cells degraded completely. Microspore development was then blocked and the pollen abortion type was stainable abortion. Thus, male fertility in the line KTM3315A is sensitive to temperature and premature tapetal PCD is the main cause of pollen abortion, where it determines the starting period and affects male fertility conversion in K-type TCMS lines at certain temperatures.
Collapse
Affiliation(s)
- Liying Meng
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Zihan Liu
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Gan Hu
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| | - Xiyue Song
- College of Agronomy, Northwest A&F University,
Yangling, Shaanxi,
China, 712100
| |
Collapse
|
140
|
Yu J, Meng Z, Liang W, Behera S, Kudla J, Tucker MR, Luo Z, Chen M, Xu D, Zhao G, Wang J, Zhang S, Kim YJ, Zhang D. A Rice Ca2+ Binding Protein Is Required for Tapetum Function and Pollen Formation. PLANT PHYSIOLOGY 2016; 172:1772-1786. [PMID: 27663411 PMCID: PMC5100779 DOI: 10.1104/pp.16.01261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/19/2016] [Indexed: 05/21/2023]
Abstract
In flowering plants, successful male reproduction requires the sophisticated interaction between somatic anther wall layers and reproductive cells. Timely degradation of the innermost tissue of the anther wall layer, the tapetal layer, is critical for pollen development. Ca2+ is a well-known stimulus for plant development, but whether it plays a role in affecting male reproduction remains elusive. Here we report a role of Defective in Exine Formation 1 (OsDEX1) in rice (Oryza sativa), a Ca2+ binding protein, in regulating rice tapetal cell degradation and pollen formation. In osdex1 anthers, tapetal cell degeneration is delayed and degradation of the callose wall surrounding the microspores is compromised, leading to aborted pollen formation and complete male sterility. OsDEX1 is expressed in tapetal cells and microspores during early anther development. Recombinant OsDEX1 is able to bind Ca2+ and regulate Ca2+ homeostasis in vitro, and osdex1 exhibited disturbed Ca2+ homeostasis in tapetal cells. Phylogenetic analysis suggested that OsDEX1 may have a conserved function in binding Ca2+ in flowering plants, and genetic complementation of pollen wall defects of an Arabidopsis (Arabidopsis thaliana) dex1 mutant confirmed its evolutionary conservation in pollen development. Collectively, these findings suggest that OsDEX1 plays a fundamental role in the development of tapetal cells and pollen formation, possibly via modulating the Ca2+ homeostasis during pollen development.
Collapse
Affiliation(s)
- Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Zhaolu Meng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Smrutisanjita Behera
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Jörg Kudla
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Matthew R Tucker
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Dawei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Guochao Zhao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Jie Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Siyi Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.);
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K);
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| |
Collapse
|
141
|
Zamyatnin AA. Plant Proteases Involved in Regulated Cell Death. BIOCHEMISTRY (MOSCOW) 2016; 80:1701-15. [PMID: 26878575 DOI: 10.1134/s0006297915130064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death.
Collapse
Affiliation(s)
- A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
142
|
Song L, Zhou Z, Tang S, Zhang Z, Xia S, Qin M, Li B, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J. Ectopic Expression of BnaC.CP20.1 Results in Premature Tapetal Programmed Cell Death in Arabidopsis. PLANT & CELL PHYSIOLOGY 2016; 57:1972-84. [PMID: 27388342 DOI: 10.1093/pcp/pcw119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/23/2016] [Indexed: 05/23/2023]
Abstract
Tapetal programmed cell death (PCD) is essential in pollen grain development, and cysteine proteases are ubiquitous enzymes participating in plant PCD. Although the major papain-like cysteine proteases (PLCPs) have been investigated, the exact functions of many PLCPs are still poorly understood in PCD. Here, we identified a PLCP gene, BnaC.CP20.1, which was closely related to XP_013596648.1 from Brassica oleracea. Quantitative real-time PCR analysis revealed that BnaC.CP20.1 expression was down-regulated in male-sterile lines in oilseed rape, suggesting a connection between this gene and male sterility. BnaC.CP20.1 is especially active in the tapetum and microspores in Brassica napus from the uninucleate stage until formation of mature pollen grains during anther development. On expression of BnaC.CP20.1 prior to the tetrad stage, BnA9::BnaC.CP20.1 transgenic lines in Arabidopsis thaliana showed a male-sterile phenotype with shortened siliques containing fewer or no seeds by self-crossing. Scanning electron microscopy indicated that the reticulate exine was defective in aborted microspores. Callose degradation was delayed and microspores were not released from the tetrad in a timely fashion. Additionally, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay indicated that BnaC.CP20.1 ectopic expression led to premature tapetal PCD. Transmission electron microscopy analyses further demonstrated that the pollen abortion was due to the absence of tectum connections to the bacula in the transgenic anthers. These findings suggest that timely expression of BnaC.CP20.1 is necessary for tapetal degeneration and pollen wall formation.
Collapse
Affiliation(s)
- Liping Song
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengfu Zhou
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
143
|
Zhou LZ, Höwing T, Müller B, Hammes UZ, Gietl C, Dresselhaus T. Expression analysis of KDEL-CysEPs programmed cell death markers during reproduction in Arabidopsis. PLANT REPRODUCTION 2016; 29:265-72. [PMID: 27349421 DOI: 10.1007/s00497-016-0288-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 05/23/2023]
Abstract
CEP cell death markers. Programmed cell death (PCD) is essential for proper plant growth and development. Plant-specific papain-type KDEL-tailed cysteine endopeptidases (KDEL-CysEPs or CEPs) have been shown to be involved in PCD during vegetative development as executors for the last step in the process. The Arabidopsis genome encodes three KDEL-CysEPs: AtCEP1, AtCEP2 and AtCEP3. With the help of fluorescent fusion reporter lines, we report here a detailed expression analysis of KDEL-CysEP (pro)proteins during reproductive processes, including flower organ and germline development, fertilization and seed development. AtCEP1 is highly expressed in different reproductive tissues including nucellus cells of mature ovule and the connecting edge of anther and filament. After fertilization, AtCEP1 marks integument cell layers of the seeds coat as well as suspensor and columella cells of the developing embryo. Promoter activity of AtCEP2 is detected in the style of immature and mature pistils, in other floral organs including anther, sepal and petal. AtCEP2 mainly localizes to parenchyma cells next to xylem vessels. Although there is no experimental evidence to demonstrate that KDEL-CysEPs are involved in PCD during fertilization, the expression pattern of AtCEPs, which were previously shown to represent cell death markers during vegetative development, opens up new avenues to investigate PCD in plant reproduction.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany
| | - Timo Höwing
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85350, Freising, Germany
| | - Benedikt Müller
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany
| | - Ulrich Z Hammes
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany
| | - Christine Gietl
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl für Botanik, Technische Universität München, Emil-Ramann-Str. 4, 85350, Freising, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
144
|
Salvesen GS, Hempel A, Coll NS. Protease signaling in animal and plant-regulated cell death. FEBS J 2016; 283:2577-98. [PMID: 26648190 PMCID: PMC5606204 DOI: 10.1111/febs.13616] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022]
Abstract
This review aims to highlight the proteases required for regulated cell death mechanisms in animals and plants. The aim is to be incisive, and not inclusive of all the animal proteases that have been implicated in various publications. The review also aims to focus on instances when several publications from disparate groups have demonstrated the involvement of an animal protease, and also when there is substantial biochemical, mechanistic and genetic evidence. In doing so, the literature can be culled to a handful of proteases, covering most of the known regulated cell death mechanisms: apoptosis, regulated necrosis, necroptosis, pyroptosis and NETosis in animals. In plants, the literature is younger and not as extensive as for mammals, although the molecular drivers of vacuolar death, necrosis and the hypersensitive response in plants are becoming clearer. Each of these death mechanisms has at least one proteolytic component that plays a major role in controlling the pathway, and sometimes they combine in networks to regulate cell death/survival decision nodes. Some similarities are found among animal and plant cell death proteases but, overall, the pathways that they govern are kingdom-specific with very little overlap.
Collapse
Affiliation(s)
- Guy S. Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anne Hempel
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nuria Sanchez Coll
- Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
145
|
Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and Regulation of Programmed Cell Death in Plant Development. Annu Rev Cell Dev Biol 2016; 32:441-468. [PMID: 27298090 DOI: 10.1146/annurev-cellbio-111315-124915] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.
Collapse
Affiliation(s)
- Anna Daneva
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhen Gao
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Matthias Van Durme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
146
|
Winiarczyk K, Gębura J. Activity of selected hydrolytic enzymes in Allium sativum L. anthers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:37-42. [PMID: 26901781 DOI: 10.1016/j.plaphy.2016.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant.
Collapse
Affiliation(s)
- Krystyna Winiarczyk
- Department of Plant Anatomy and Cytology, Maria Curie - Skłodowska University, Akademicka 19, 20033 Lublin, Poland.
| | - Joanna Gębura
- Department of Plant Anatomy and Cytology, Maria Curie - Skłodowska University, Akademicka 19, 20033 Lublin, Poland
| |
Collapse
|
147
|
Van Durme M, Nowack MK. Mechanisms of developmentally controlled cell death in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:29-37. [PMID: 26658336 DOI: 10.1016/j.pbi.2015.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 05/22/2023]
Abstract
During plant development various forms of programmed cell death (PCD) are implemented by a number of cell types as inherent part of their differentiation programmes. Differentiation-induced developmental PCD is gradually prepared in concert with the other cell differentiation processes. As precocious or delayed PCD can have detrimental consequences for plant development, the actual execution of PCD has to be tightly controlled. Once triggered, PCD is irrevocably and rapidly executed accompanied by the breakdown of cellular compartments. In most developmental PCD forms, cell death is followed by cell corpse clearance. Devoid of phagocytic mechanisms, dying plant cells have to prepare their own demise in a cell-autonomous fashion before their deaths, ensuring the completion of cell clearance post mortem. Depending on the cell type, cell clearance can be complete or rather selective, and persistent corpses of particular cells accomplish vital functions in the plant body. The present review attempts to give an update on the molecular mechanisms that coordinate differentiation-induced PCD as vital part of plant development.
Collapse
Affiliation(s)
- Matthias Van Durme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
148
|
Rejón JD, Delalande F, Schaeffer-Reiss C, Alché JDD, Rodríguez-García MI, Van Dorsselaer A, Castro AJ. The Pollen Coat Proteome: At the Cutting Edge of Plant Reproduction. Proteomes 2016; 4:E5. [PMID: 28248215 PMCID: PMC5217362 DOI: 10.3390/proteomes4010005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 01/09/2023] Open
Abstract
The tapetum is a single layer of secretory cells which encloses the anther locule and sustains pollen development and maturation. Upon apoptosis, the remnants of the tapetal cells, consisting mostly of lipids and proteins, fill the pits of the sculpted exine to form the bulk of the pollen coat. This extracellular matrix forms an impermeable barrier that protects the male gametophyte from water loss and UV light. It also aids pollen adhesion and hydration and retains small signaling compounds involved in pollen-stigma communication. In this study, we have updated the list of the pollen coat's protein components and also discussed their functions in the context of sexual reproduction.
Collapse
Affiliation(s)
- Juan David Rejón
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - François Delalande
- Bio-Organic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
- IPHC, Centre National de la Recherche Scientifique (CNRS), UMR7178, 67087 Strasbourg, France.
| | - Christine Schaeffer-Reiss
- Bio-Organic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
- IPHC, Centre National de la Recherche Scientifique (CNRS), UMR7178, 67087 Strasbourg, France.
| | - Juan de Dios Alché
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - María Isabel Rodríguez-García
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - Alain Van Dorsselaer
- Bio-Organic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
- IPHC, Centre National de la Recherche Scientifique (CNRS), UMR7178, 67087 Strasbourg, France.
| | - Antonio Jesús Castro
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
149
|
Fan F, Ding G, Wen X. Proteomic analyses provide new insights into the responses of Pinus massoniana seedlings to phosphorus deficiency. Proteomics 2016; 16:504-15. [PMID: 26603831 DOI: 10.1002/pmic.201500140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/02/2015] [Accepted: 11/17/2015] [Indexed: 02/04/2023]
Abstract
Phosphorus is an essential macronutrient for plant growth and development. Plants can respond defensively to phosphorus deficiency by modifying their morphology and metabolic pathways via the differential expression of low phosphate responsive genes. To better understand the mechanisms by which the Masson pine (Pinus massoniana) adapts to phosphorus deficiency, we conducted comparative proteomic analysis using an elite line exhibiting high tolerance to phosphorus deficiency. The selected seedlings were treated with 0.5 mM KH2PO4 (control), 0.01 mM KH2PO4 (P1), or 0.06 mM KH2PO4 (P2) for 48 days. Total protein samples were separated via 2DE. A total of 98 differentially expressed proteins, which displayed at least 1.7-fold change expression compared to the control levels (p ≤ 0.05), were identified by MALDI-TOF/TOF MS. These phosphate starvation responsive proteins were implicated in photosynthesis, defense, cellular organization, biosynthesis, energy metabolism, secondary metabolism, signal transduction etc. Therefore, these proteins might play important roles in facilitating internal phosphorus homeostasis. Additionally, the obtained data may be useful for the further characterization of gene function and may provide a foundation for a more comprehensive understanding of the adaptations of the Masson pine to phosphorus-deficient conditions.
Collapse
Affiliation(s)
- Fuhua Fan
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou, P. R. China.,Research Center for Forest Resources and Environment of Guizhou Province, Guizhou University, Guiyang, Guizhou, P. R. China
| | - Guijie Ding
- Research Center for Forest Resources and Environment of Guizhou Province, Guizhou University, Guiyang, Guizhou, P. R. China
| | - Xiaopeng Wen
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou, P. R. China.,Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICEAB), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, P. R. China
| |
Collapse
|
150
|
Deng Z, Li X, Wang Z, Jiang Y, Wan L, Dong F, Chen F, Hong D, Yang G. Map-based cloning reveals the complex organization of the BnRf locus and leads to the identification of BnRf(b), a male sterility gene, in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:53-64. [PMID: 26433826 DOI: 10.1007/s00122-015-2608-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/18/2015] [Indexed: 05/28/2023]
Abstract
Sequencing of BAC clones reveals the complex organization of the BnRf locus and allowed us to clone BnRf (b) , which encodes a nucleus-localized chimeric protein BnaA7.mtHSP70-1-like. The male sterility in an extensively used genic male sterility (GMS) line (9012A) in Brassica napus was regarded to be conferred by BnMs3/Bnms3 and the multiallelic BnRf locus including three alleles. We previously mapped BnRf to a 13.8 kb DNA fragment on the B. napus chromosome A7. In the present study, we isolated bacterial artificial chromosome clones individually covering the restorer allele BnRf (a) and the male-sterile allele BnRf (b) , and revealed that the candidate regions of BnRf (a) and BnRf (b) show complex structural variations relative to the maintainer allele BnRf (c). By analyzing the recombination events and the newly developed markers, we delimited BnRf (a) to a 35.9 kb DNA fragment that contained seven predicted open-reading frames (ORFs). However, genetic transformation of the ORF G14 from both the male-sterile and restorer lines into wild-type Arabidopsis plants led to a stable male-sterile phenotype matching a 9012A-derived GMS line (RG206A); moreover, the male sterility caused by G14 could be fully recovered by the restorer gene BnMs3. These facts indicate that BnRf (b) corresponds to G14 while BnRf (a) likely associates with another flanking ORF. G14 encodes a nucleus-localized chimeric protein designated as BnaA7.mtHSP70-1-like. Ectopic expression of G14 in Arabidopsis negatively regulates some vital genes responsible for tapetum degeneration, and delayed programmed cell death of tapetum and led to the developmental arrest of tetrads. Our work not only presents new insights on the hereditary model of sterility control but also lays a solid foundation for dissecting the molecular basis underlying male sterility and restoration in 9012A.
Collapse
Affiliation(s)
- Zonghan Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zengzeng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingfen Jiang
- Institute of Crop Science, Anhui Academy of Agricultural Science, Hefei, 230031, China
| | - Lili Wan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fengxiang Chen
- Institute of Crop Science, Anhui Academy of Agricultural Science, Hefei, 230031, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|