101
|
Ramesh SV, Ratnaparkhe MB, Kumawat G, Gupta GK, Husain SM. Plant miRNAome and antiviral resistance: a retrospective view and prospective challenges. Virus Genes 2014; 48:1-14. [PMID: 24445902 DOI: 10.1007/s11262-014-1038-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/12/2014] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that play a defining role in post-transcriptional gene silencing of eukaryotes by either mRNA cleavage or translational inhibition. Plant miRNAs have been implicated in innumerable growth and developmental processes that extend beyond their ability to respond to biotic and abiotic stresses. Active in an organism's immune defence response, host miRNAs display a propensity to target viral genomes. During viral invasion, these virus-targeting miRNAs can be identified by their altered expression. All the while, pathogenic viruses, as a result of their long-term interaction with plants, have been evolving viral suppressors of RNA silencing (VSRs), as well as viral-encoded miRNAs as a counter-defence strategy. However, the gene silencing attribute of miRNAs has been ingeniously manipulated to down-regulate the expression of any gene of interest, including VSRs, in artificial miRNA (amiRNA)-based transgenics. Since we currently have a better understanding of the intricacies of miRNA-mediated gene regulation in plant-virus interactions, the majority of miRNAs manipulated to confer antiviral resistance to date are in plants. This review will share the insights gained from the studies of plant-virus combat and from the endeavour to manipulate miRNAs, including prospective challenges in the context of the evolutionary dynamics of the viral genome. Next generation sequencing technologies and bioinformatics analysis will further delineate the molecular details of host-virus interactions. The need for appropriate environmental risk assessment principles specific to amiRNA-based virus resistance is also discussed.
Collapse
Affiliation(s)
- Shunmugiah Veluchamy Ramesh
- Directorate of Soybean Research, Indian Council of Agricultural Research (ICAR), Khandwa Road, Indore, 452001, Madhya Pradesh, India,
| | | | | | | | | |
Collapse
|
102
|
Abstract
Abscisic acid (ABA) is one of the major phytohormones and regulates various processes in the plant life cycle, for example, seed development and abiotic/biotic stress responses. Recent studies have made significant progress in elucidating ABA signaling and established a simple ABA signaling model consisting of three core components: PYR/PYL/RCAR receptors, 2C-type protein phosphatases, and SnRK2 protein kinases. This model highlights the importance of protein phosphorylation mediated by SnRK2, but the downstream substrates of SnRK2 remain to be determined to complete the model. Previous studies have identified several SnRK2 substrates involving transcription factors and ion channels. Recently, SnRK2 substrates have been further surveyed by a phosphoproteomic approach, giving new insights on the SnRK2 downstream pathway. Other protein kinases, e.g., Ca(2+)-dependent protein kinase (CDPK) and mitogen-activated protein kinase (MAPK), have been identified as ABA signaling factors. Some evidence suggests that the SnRK2 pathway partially interacts with CDPK or MAPK pathways. In this chapter, recent advances in ABA signaling study are summarized, primarily focusing on two major protein kinases, SnRK2 and MAPK. Challenges for further study of the ABA-dependent protein phosphorylation network are also discussed.
Collapse
Affiliation(s)
- Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.
| |
Collapse
|
103
|
Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM. miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC PLANT BIOLOGY 2013; 13:210. [PMID: 24330668 PMCID: PMC3870963 DOI: 10.1186/1471-2229-13-210] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/05/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a class of short, endogenous non-coding small RNAs that have ability to base pair with their target mRNAs to induce their degradation in plants. miR394a/b are conserved small RNAs and its target gene LCR (LEAF CURLING RESPONSIVENESS) encodes an F-box protein (SKP1-Cullin/CDC53-F-box) but whether miR394a/b and its target gene LCR are involved in regulation of plant response to abscisic acid (ABA) and abiotic stresses is unknown. RESULTS Mature miR394 and precursor miR394a/b are shown to be slightly induced by ABA. By contrast, LCR expression is depressed by ABA. Analysis of LCR and its promoter (pLCR::GUS) revealed that LCR is expressed at all development stages. MIR394a/b over-expression (35S::MIR394a/b) and lcr (LCR loss of function) mutant plants are hypersensitive to salt stress, but LCR over-expressing (35S::m5LCR) plants display the salt-tolerant phenotype. Both 35S::MIR394a/b and lcr plants are highly tolerant to severe drought stress compared with wild-type, but 35S::m5LCR plants are susceptible to water deficiency. Over-expression of MIR394a/b led to ABA hypersensitivity and ABA-associated phenotypes, whereas 35S::m5LCR plants show ABA resistance phenotypes. Moreover, 35S::MIR394a/b plants accumulated higher levels of ABA-induced hydrogen peroxide and superoxide anion radicals than wild-type and 35S::m5LCR plants. Expressions of ABA- and stress-responsive genes, ABI3, ABI4, ABI5, ABF3, and ABF4 are up-regulated in MIR394a/b over-expressing plants but down-regulated in 35S::m5LCR plants. Over-expression of MIR394a in abi4-1 or abi5-1 background resulted in loss of ABA-sensitivity in 35S::MIR394a plants. CONCLUSIONS The silencing of LCR mRNA by miR394 is essential to maintain a certain phenotype favorable for the adaptive response to abiotic stresses. The contrasting phenotypes of salt and drought responses may be mediated by a functional balance between miR394 and LCR. If the balance is perturbed in case of the abiotic stress, an identical phenotype related to the stress response occurs, resulting in either ABA sensitive or insensitive response. Thus, miR394-regulated LCR abundance may allow plants to fine-tune their responses to ABA and abiotic stress.
Collapse
Affiliation(s)
- Jian Bo Song
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Gao
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Sun
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Li
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xia Xia Shu
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Weigang No. 1, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
104
|
Zhang J, Zhang S, Han S, Li X, Tong Z, Qi L. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in Larches (Larix leptolepis). PLoS One 2013; 8:e81452. [PMID: 24339932 PMCID: PMC3858266 DOI: 10.1371/journal.pone.0081452] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022] Open
Abstract
Small RNAs (sRNAs), as a key component of molecular biology, play essential roles in plant development, hormone signaling, and stress response. However, little is known about the relationships among sRNAs, hormone signaling, and dormancy regulation in gymnosperm embryos. To investigate the roles of sRNAs in embryo dormancy maintenance and release in Larix leptolepis, we deciphered the endogenous “sRNAome” in dormant and germinated embryos. High-throughput sequencing of sRNA libraries showed that dormant embryos exhibited a length bias toward 24-nt while germinated embryos showed a bias toward 21-nt lengths. This might be associated with distinct levels of RNA-dependent RNA polymerase2 (RDR2) and/or RDR6, which is regulated by hormones. Proportions of miRNAs to nonredundant and redundant sRNAs were higher in germinated embryos than in dormant embryos, while the ratio of unknown sRNAs was higher in dormant embryos than in germinated embryos. We identified a total of 160 conserved miRNAs from 38 families, 3 novel miRNAs, and 16 plausible miRNA candidates, of which many were upregulated in germinated embryos relative to dormant embryos. These findings indicate that larches and possibly other gymnosperms have complex mechanisms of gene regulation involving miRNAs and other sRNAs operating transcriptionally and posttranscriptionally during embryo dormancy and germination. We propose that abscisic acid modulates embryo dormancy and germination at least in part through regulation of the expression level of sRNA-biogenesis genes, thus changing the sRNA components.
Collapse
Affiliation(s)
- Junhong Zhang
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, Zhejiang, P.R. China
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Shougong Zhang
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
| | - Suying Han
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, P.R. China
| | - Xinmin Li
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zaikang Tong
- Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, Zhejiang, P.R. China
- * E-mail: (ZT); (LQ)
| | - Liwang Qi
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
- * E-mail: (ZT); (LQ)
| |
Collapse
|
105
|
Duarte GT, Matiolli CC, Pant BD, Schlereth A, Scheible WR, Stitt M, Vicentini R, Vincentz M. Involvement of microRNA-related regulatory pathways in the glucose-mediated control of Arabidopsis early seedling development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4301-12. [PMID: 23997203 PMCID: PMC3808316 DOI: 10.1093/jxb/ert239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In plants, sugars such as glucose act as signalling molecules that promote changes in gene expression programmes that impact on growth and development. Recent evidence has revealed the potential importance of controlling mRNA decay in some aspects of glucose-mediated regulatory responses suggesting a role of microRNAs (miRNAs) in these responses. In order to get a better understanding of glucose-mediated development modulation involving miRNA-related regulatory pathways, early seedling development of mutants impaired in miRNA biogenesis (hyl1-2 and dcl1-11) and miRNA activity (ago1-25) was evaluated. All mutants exhibited a glucose hyposensitive phenotype from germination up to seedling establishment, indicating that miRNA regulatory pathways are involved in the glucose-mediated delay of early seedling development. The expression profile of 200 miRNA primary transcripts (pri-miRs) was evaluated by large-scale quantitative real-time PCR profiling, which revealed that 38 pri-miRs were regulated by glucose. For several of them, the corresponding mature miRNAs are known to participate directly or indirectly in plant development, and their accumulation was shown to be co-regulated with the pri-miR by glucose. Furthermore, the expression of several miRNA target genes was found to be deregulated in response to glucose in the miRNA machinery mutants ago1-25, dcl1-11, and hyl1-2. Also, in these mutants, glucose promoted misexpression of genes for the three abscisic acid signalling elements ABI3, ABI4, and ABI5. Thus, miRNA regulatory pathways play a role in the adjustments of growth and development triggered by glucose signalling.
Collapse
Affiliation(s)
- Gustavo Turqueto Duarte
- Laboratório de Genética de Plantas, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, CEP 13083-875, CP 6010; Campinas, São Paulo, Brazil
| | - Cleverson Carlos Matiolli
- Laboratório de Genética de Plantas, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, CEP 13083-875, CP 6010; Campinas, São Paulo, Brazil
| | - Bikram Datt Pant
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Armin Schlereth
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Wolf-Rüdiger Scheible
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Mark Stitt
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Renato Vicentini
- Laboratório de Bioinformática e Biologia de Sistemas, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, CEP 13083-875, CP 6010; Campinas, São Paulo, Brazil
| | - Michel Vincentz
- Laboratório de Genética de Plantas, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, CEP 13083-875, CP 6010; Campinas, São Paulo, Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, CEP 13083-875, CP 6009; Campinas, São Paulo, Brazil
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
106
|
Zhang S, Xie M, Ren G, Yu B. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc Natl Acad Sci U S A 2013; 110:17588-93. [PMID: 24101471 PMCID: PMC3808604 DOI: 10.1073/pnas.1310644110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CDC5 is a MYB-related protein that exists in plants, animals, and fungi. In Arabidopsis, CDC5 regulates both growth and immunity through unknown mechanisms. Here, we show that CDC5 from Arabidopsis positively regulates the accumulation of microRNAs (miRNAs), which control many biological processes including development and adaptations to environments in plants. CDC5 interacts with both the promoters of genes encoding miRNAs (MIR) and the DNA-dependent RNA polymerase II. As a consequence, lack of CDC5 reduces the occupancy of polymerase II at MIR promoters, as well as MIR promoter activities. In addition, CDC5 is associated with the DICER-LIKE1 complex, which generates miRNAs from their primary transcripts and is required for efficient miRNA production. These results suggest that CDC5 may have dual roles in miRNA biogenesis: functioning as a positive transcription factor of MIR and/or acting as a component of the DICER-LIKE1 complex to enhance primary miRNA processing.
Collapse
Affiliation(s)
- Shuxin Zhang
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588
| | - Meng Xie
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588
| | - Guodong Ren
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588
| | - Bin Yu
- Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588
| |
Collapse
|
107
|
Raczynska KD, Stepien A, Kierzkowski D, Kalak M, Bajczyk M, McNicol J, Simpson CG, Szweykowska-Kulinska Z, Brown JWS, Jarmolowski A. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 2013; 42:1224-44. [PMID: 24137006 PMCID: PMC3902902 DOI: 10.1093/nar/gkt894] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
How alternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcriptase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 5′ splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not correspond to the changes observed in the se-1 mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1 and DCL1, and is similar to the regulation of AS in which CBC is involved.
Collapse
Affiliation(s)
- Katarzyna Dorota Raczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland, Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland, Max Planck Institute for Plant Breading Research, 50829, Germany, Biomathematics and Statistics Scotland (BioSS), James Hutton Institute, Dundee DD2 5DA, Scotland, UK, Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, UK and Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Jeong IS, Aksoy E, Fukudome A, Akhter S, Hiraguri A, Fukuhara T, Bahk JD, Koiwa H. Arabidopsis C-terminal domain phosphatase-like 1 functions in miRNA accumulation and DNA methylation. PLoS One 2013; 8:e74739. [PMID: 24058624 PMCID: PMC3776750 DOI: 10.1371/journal.pone.0074739] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis CTD-PHOSPHATASE-LIKE 1 (CPL1) is a protein phosphatase that can dephosphorylate RNA polymerase II C-terminal domain (CTD). Unlike typical CTD-phosphatases, CPL1 contains a double-stranded (ds) RNA-binding motif (dsRBM) and has been implicated for gene regulation mediated by dsRNA-dependent pathways. We investigated the role of CPL1 and its dsRBMs in various gene silencing pathways. Genetic interaction analyses revealed that cpl1 was able to partially suppress transcriptional gene silencing and DNA hypermethylation phenotype of ros1 suggesting CPL1 is involved in the RNA-directed DNA methylation pathway without reducing siRNA production. By contrast, cpl1 reduced some miRNA levels at the level of processing. Indeed, CPL1 protein interacted with proteins important for miRNA biogenesis, suggesting that CPL1 regulates miRNA processing. These results suggest that CPL1 regulates DNA methylation via a miRNA-dependent pathway.
Collapse
Affiliation(s)
- In Sil Jeong
- Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, Gyeongsangnam-do, Korea
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Emre Aksoy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Akihito Fukudome
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Salina Akhter
- Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, Gyeongsangnam-do, Korea
| | - Akihiro Hiraguri
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Jeong Dong Bahk
- Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju, Gyeongsangnam-do, Korea
- * E-mail: (HK); (JDB)
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (HK); (JDB)
| |
Collapse
|
109
|
Guo W, Liew JY, Yuan YA. Structural insights into the arms race between host and virus along RNA silencing pathways inArabidopsis thaliana. Biol Rev Camb Philos Soc 2013; 89:337-55. [DOI: 10.1111/brv.12057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Guo
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Jia Yee Liew
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Y. Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- National University of Singapore (Suzhou) Research Institute; Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
110
|
Liu Q, Yan Q, Liu Y, Hong F, Sun Z, Shi L, Huang Y, Fang Y. Complementation of HYPONASTIC LEAVES1 by double-strand RNA-binding domains of DICER-LIKE1 in nuclear dicing bodies. PLANT PHYSIOLOGY 2013; 163:108-117. [PMID: 23886622 PMCID: PMC3762634 DOI: 10.1104/pp.113.219071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/18/2013] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNAs that are found in almost all of the eukaryotes. Arabidopsis (Arabidopsis thaliana) miRNAs are processed from primary miRNAs (pri-miRNAs), mainly by the ribonuclease III-like enzyme DICER-LIKE1 (DCL1) and its specific partner, HYPONASTIC LEAVES1 (HYL1), a double-strand RNA-binding protein, both of which contain two double-strand RNA-binding domains (dsRBDs). These dsRBDs are essential for miRNA processing, but the functions of them are not clear. Here, we report that the two dsRBDs of DCL1 (DCL1-D1D2), and to some extent the second dsRBD (DCL1-D2), complement the hyl1 mutant, but not the first dsRBD of DCL1 (DCL1-D1). DCL1-D1 is diffusely distributed throughout the nucleoplasm, whereas DCL1-D2 and DCL1-D1D2 concentrate in nuclear dicing bodies in which DCL1 and HYL1 colocalize. We show further that protein-protein interaction is mainly mediated by DCL1-D2, while DCL1-D1 plays a major role in binding of pri-miRNAs. These results suggest parallel roles between C-terminal dsRBDs of DCL1 and N-terminal dsRBDs of HYL1 and support a model in which Arabidopsis pri-miRNAs are recruited to dicing bodies through functionally divergent dsRBDs of microprocessor for accurate processing of plant pri-miRNAs.
Collapse
|
111
|
Lian H, Li X, Liu Z, He Y. HYL1 is required for establishment of stamen architecture with four microsporangia in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3397-410. [PMID: 23918970 PMCID: PMC3733155 DOI: 10.1093/jxb/ert178] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The stamen produces pollen grains for pollination in higher plants. Coordinated development of four microsporangia in the stamen is essential for normal fertility. The roles of miR165/166-directed pathways in the establishment of adaxial-abaxial polarity have been well defined in leaves. However, the molecular mechanism underlying the adaxial-abaxial polarity of the stamen is elusive. Here it is reported that HYPONASTIC LEAVES1 (HYL1), a general regulator of microRNA (miRNA) biogenesis, plays an essential role in establishing the stamen architecture of the four microsporangia in Arabidopsis thaliana. In stamens, HYL1 and miR165/6 expression are progressively restricted to the lateral region, microsporangia, microspore mother cells, and microspores, whereas HD-ZIP III genes are preferentially expressed in the middle region, vascular bundle, and stomium. Loss of HYL1 leads to the formation of two rather than four microsporangia in each stamen. In the stamen of the hyl1 mutant, miR165/6 accumulation is reduced, whereas miR165/6-targeted HD-ZIP III genes are up-regulated and FILAMENTOUS FLOWER (FIL) is down-regulated; and, specifically, REVOLUTA (REV) is overexpressed in the adaxial region and FIL is underexpressed in the abaxial regions, concomitant with the aberrance of the two inner microsporangia and partial adaxialization of the connectives. Genetic analysis reveals that FIL works downstream of HYL1, and the defects in hyl1 stamens are partially rescued by rev-9 or phv-5 phb-6 alleles. These results suggest that HYL1 modulates inner microsporangia and stamen architecture by repression of HD-ZIP III genes and promotion of the FIL gene through miR165/6. Thus, the role of HYL1 in establishment of stamen architecture provides insight into the molecular mechanism of male fertility.
Collapse
Affiliation(s)
- Heng Lian
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of the Chinese Academy of Sciences, Shanghai 200032, China
- * These authors contributed equally to this work
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- * These authors contributed equally to this work
| | - Zhongyuan Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Graduate School of the Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
112
|
Ding Y, Tao Y, Zhu C. Emerging roles of microRNAs in the mediation of drought stress response in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3077-86. [PMID: 23814278 DOI: 10.1093/jxb/ert164] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Drought is a major environmental stress factor that limits agricultural production worldwide. Plants employ complex mechanisms of gene regulation in response to drought stress. MicroRNAs (miRNAs) are a class of small RNAs that are increasingly being recognized as important modulators of gene expression at the post-transcriptional level. Many miRNAs have been shown to be involved in drought stress responses, including ABA response, auxin signalling, osmoprotection, and antioxidant defence, by downregulating the respective target genes encoding regulatory and functional proteins. This review summarizes recent molecular studies on the miRNAs involved in the regulation of drought-responsive genes, with emphasis on miRNA-associated regulatory networks involved in drought stress response.
Collapse
Affiliation(s)
- Yanfei Ding
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | | | | |
Collapse
|
113
|
Towards the identification of new genes involved in ABA-dependent abiotic stresses using Arabidopsis suppressor mutants of abh1 hypersensitivity to ABA during seed germination. Int J Mol Sci 2013; 14:13403-32. [PMID: 23807502 PMCID: PMC3742194 DOI: 10.3390/ijms140713403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/20/2013] [Accepted: 06/06/2013] [Indexed: 01/23/2023] Open
Abstract
Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1) insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2) and soa3 (suppressor of abh1 hypersensitivity to ABA 3). Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1) in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.
Collapse
|
114
|
Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci U S A 2013; 110:11205-10. [PMID: 23776212 DOI: 10.1073/pnas.1308974110] [Citation(s) in RCA: 351] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sucrose nonfermenting 1 (SNF1)-related protein kinase 2s (SnRK2s) are central components of abscisic acid (ABA) signaling pathways. The snrk2.2/2.3/2.6 triple-mutant plants are nearly completely insensitive to ABA, suggesting that most of the molecular actions of ABA are triggered by the SnRK2s-mediated phosphorylation of substrate proteins. Only a few substrate proteins of the SnRK2s are known. To identify additional substrate proteins of the SnRK2s and provide insight into the molecular actions of ABA, we used quantitative phosphoproteomics to compare the global changes in phosphopeptides in WT and snrk2.2/2.3/2.6 triple mutant seedlings in response to ABA treatment. Among the 5,386 unique phosphorylated peptides identified in this study, we found that ABA can increase the phosphorylation of 166 peptides and decrease the phosphorylation of 117 peptides in WT seedlings. In the snrk2.2/2.3/2.6 triple mutant, 84 of the 166 peptides, representing 58 proteins, could not be phosphorylated, or phosphorylation was not increased under ABA treatment. In vitro kinase assays suggest that most of the 58 proteins can serve as substrates of the SnRK2s. The SnRK2 substrates include proteins involved in flowering time regulation, RNA and DNA binding, miRNA and epigenetic regulation, signal transduction, chloroplast function, and many other cellular processes. Consistent with the SnRK2 phosphorylation of flowering time regulators, the snrk2.2/2.3/2.6 triple mutant flowered significantly earlier than WT. These results shed new light on the role of the SnRK2 protein kinases and on the downstream effectors of ABA action, and improve our understanding of plant responses to adverse environments.
Collapse
|
115
|
Jia F, Rock CD. Jacalin lectin At5g28520 is regulated by ABA and miR846. PLANT SIGNALING & BEHAVIOR 2013; 8:e24563. [PMID: 23603955 PMCID: PMC3909087 DOI: 10.4161/psb.24563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant microRNAs (miRNAs) are important regulators of development and stress responses and are oftentimes under transcriptional regulation by stresses and plant hormones. We recently showed that polycistronic MIR842 and MIR846 are expressed from the same primary transcript which is subject to alternative splicing. ABA treatment affects the alternative splicing of the primary cistronic transcript which results in differential expression of the two miRNAs that are predicted to target the same family of jacalin lectin genes. One variant of miR846 in roots can direct the cleavage of AT5G28520, which is also highly upregulated by ABA in roots. In this addendum, we present additional results further supporting the regulation of AT5G28520 by MIR846 using a T-DNA insertion line mapping upstream of MIR842 and MIR846. We also show that AT5G28520 is transcriptionally induced by ABA and this induction is subject to ABA signaling effectors in seedlings. Based on previous results and data presented in this paper, we propose an interaction loop between MIR846, AT5G28520 and ABA in roots.
Collapse
|
116
|
Plant microRNAs and development. J Genet Genomics 2013; 40:217-30. [PMID: 23706297 DOI: 10.1016/j.jgg.2013.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of about 20-24 nt small non-coding RNAs that can regulate their target gene expression transcriptionally and posttranscriptionally. There are an increasing number of studies describing the identification of new components and regulatory mechanisms involved in the miRNA biogenesis and effector pathway as well as new functions of miRNAs in plant development. This review mainly focuses on the components involved in this pathway, and the developmental defects associated with the corresponding mutations. Some functions of important miRNAs in plant development, together with the modes of miRNA action, are also discussed in this review to describe the recent advance in this area.
Collapse
|
117
|
Mutum RD, Balyan SC, Kansal S, Agarwal P, Kumar S, Kumar M, Raghuvanshi S. Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J 2013; 280:1717-30. [PMID: 23399101 DOI: 10.1111/febs.12186] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/16/2013] [Accepted: 02/04/2013] [Indexed: 01/25/2023]
Abstract
Evolution of differential regulatory mechanisms can lead to quite distinct physiological attributes. In the present study, we have identified one such regulatory schema that regulates osa-miR408 and responds differentially in drought-sensitive and -tolerant indica rice varieties. A comparison of the drought stress response in drought-sensitive (Pusa Basmati 1 and IR64) and drought-tolerant (Nagina 22 and Vandana) indica rice varieties revealed that, during drought stress, levels of miR408 transcript decrease significantly in sensitive cultivars, whereas they remain elevated in the tolerant cultivars. The trend is reflected in young seedlings, as well as in flag leaf and spikelets of adult plants (heading stage). Members of the plastocyanin-like protein family targeted by miR408 also show the inverse expression profile and thus accumulate at a lower level in tolerant cultivars during drought. Interestingly, some members of this family are implicated in maintaining the cellular redox state and spikelet fertility in Arabidopsis. An investigation of miR408 loci (including promoter) in all four cultivars did not reveal any significant sequence variation indicating an involvement of the upstream regulatory schema. Indeed, a similar variety-specific stress response was found in the Oryza sativa squamosa promoter-binding-like 9 transcription factor that regulates miR408 expression. We further demonstrate that drought-mediated induction of miR408 in Nagina 22 is regulated by [Ca(2+)]cyt levels. However, [Ca(2+)]cyt does not appear to regulate miR408 levels in Pusa Basmati 1, suggesting a variety-specific evolution of regulatory schema in rice.
Collapse
Affiliation(s)
- Roseeta D Mutum
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
118
|
Jia F, Rock CD. MIR846 and MIR842 comprise a cistronic MIRNA pair that is regulated by abscisic acid by alternative splicing in roots of Arabidopsis. PLANT MOLECULAR BIOLOGY 2013; 81:447-60. [PMID: 23341152 PMCID: PMC3581712 DOI: 10.1007/s11103-013-0015-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/15/2013] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are ~21-nucleotide long endogenous small RNAs that regulate gene expression through post-transcriptional or transcriptional gene silencing and/or translational inhibition. miRNAs can arise from the "exon" of a MIRNA gene, from an intron (e.g. mirtrons in animals), or from the antisense strand of a protein coding gene (natural antisense microRNAs, nat-miRNAs). Here we demonstrate that two functionally related miRNAs, miR842 and miR846, arise from the same transcription unit but from alternate splicing isoforms. miR846 is expressed only from Isoform1 while in Isoforms2 and -3, a part of pre-miR846 containing the miRNA* sequence is included in the intron. The splicing of the intron truncates the pre-MIRNA and disrupts the expression of the mature miR846. We name this novel phenomenon splicing-regulated miRNA. Abscisic acid (ABA) is shown to mediate the alternative splicing event by reducing the functional Isoform1 and increasing the non-functional Isoform3, thus repressing the expression of miR846 concomitant with accumulation of an ABA-inducible target jacalin At5g28520 mRNA, whose cleavage was shown by modified 5'-RACE. This regulation shows the functional importance of splicing-regulated miRNA and suggests possible mechanisms for altered ABA response phenotypes of miRNA biogenesis mutants. Arabidopsis lyrata-MIR842 and Aly-MIR846 have conserved genomic arrangements with A. thaliana and candidate target jacalins, similar primary transcript structures and intron processing, and better miRNA-miRNA* pairings, suggesting that the interactions between ABA, MIR842, MIR846 and jacalins are similar in A. lyrata. Together, splicing-regulated miRNAs, nat-miRNAs/inc-miRNAs and mirtrons illustrate the complexity of MIRNA genes, the importance of introns in the biogenesis and regulation of miRNAs, and raise questions about the processes and molecular mechanisms that drive MIRNA evolution.
Collapse
|
119
|
|
120
|
Wang L, Song X, Gu L, Li X, Cao S, Chu C, Cui X, Chen X, Cao X. NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. THE PLANT CELL 2013; 25:715-27. [PMID: 23424246 PMCID: PMC3608788 DOI: 10.1105/tpc.112.105882] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/13/2013] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) play key regulatory roles in numerous developmental and physiological processes in animals and plants. The elaborate mechanism of miRNA biogenesis involves transcription and multiple processing steps. Here, we report the identification of a pair of evolutionarily conserved NOT2_3_5 domain-containing-proteins, NOT2a and NOT2b (previously known as At-Negative on TATA less2 [NOT2] and VIRE2-INTERACTING PROTEIN2, respectively), as components involved in Arabidopsis thaliana miRNA biogenesis. NOT2 was identified by its interaction with the Piwi/Ago/Zwille domain of DICER-LIKE1 (DCL1), an interaction that is conserved between rice (Oryza sativa) and Arabidopsis thaliana. Inactivation of both NOT2 genes in Arabidopsis caused severe defects in male gametophytes, and weak lines show pleiotropic defects reminiscent of miRNA pathway mutants. Impairment of NOT2s decreases the accumulation of primary miRNAs and mature miRNAs and affects DCL1 but not HYPONASTIC LEAVES1 (HYL1) localization in vivo. In addition, NOT2b protein interacts with polymerase II and other miRNA processing factors, including two cap binding proteins, CBP80/ABH1, CBP20, and SERRATE (SE). Finally, we found that the mRNA levels of some protein coding genes were also affected. Therefore, these results suggest that NOT2 proteins act as general factors to promote the transcription of protein coding as well as miRNA genes and facilitate efficient DCL1 recruitment in miRNA biogenesis.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lianfeng Gu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouyun Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Cui
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuemei Chen
- Howard Hughes Medical Institute, Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
121
|
Confraria A, Martinho C, Elias A, Rubio-Somoza I, Baena-González E. miRNAs mediate SnRK1-dependent energy signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:197. [PMID: 23802004 PMCID: PMC3687772 DOI: 10.3389/fpls.2013.00197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/27/2013] [Indexed: 05/17/2023]
Abstract
The SnRK1 protein kinase, the plant ortholog of mammalian AMPK and yeast Snf1, is activated by the energy depletion caused by adverse environmental conditions. Upon activation, SnRK1 triggers extensive transcriptional changes to restore homeostasis and promote stress tolerance and survival partly through the inhibition of anabolism and the activation of catabolism. Despite the identification of a few bZIP transcription factors as downstream effectors, the mechanisms underlying gene regulation, and in particular gene repression by SnRK1, remain mostly unknown. microRNAs (miRNAs) are 20-24 nt RNAs that regulate gene expression post-transcriptionally by driving the cleavage and/or translation attenuation of complementary mRNA targets. In addition to their role in plant development, mounting evidence implicates miRNAs in the response to environmental stress. Given the involvement of miRNAs in stress responses and the fact that some of the SnRK1-regulated genes are miRNA targets, we postulated that miRNAs drive part of the transcriptional reprogramming triggered by SnRK1. By comparing the transcriptional response to energy deprivation between WT and dcl1-9, a mutant deficient in miRNA biogenesis, we identified 831 starvation genes misregulated in the dcl1-9 mutant, out of which 155 are validated or predicted miRNA targets. Functional clustering analysis revealed that the main cellular processes potentially co-regulated by SnRK1 and miRNAs are translation and organelle function and uncover TCP transcription factors as one of the most highly enriched functional clusters. TCP repression during energy deprivation was impaired in miR319 knockdown (MIM319) plants, demonstrating the involvement of miR319 in the stress-dependent regulation of TCPs. Altogether, our data indicates that miRNAs are components of the SnRK1 signaling cascade contributing to the regulation of specific mRNA targets and possibly tuning down particular cellular processes during the stress response.
Collapse
Affiliation(s)
- Ana Confraria
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Cláudia Martinho
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Alexandre Elias
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingen, Germany
| | - Elena Baena-González
- Plant Stress Signaling, Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
122
|
Daszkowska-Golec A, Wojnar W, Rosikiewicz M, Szarejko I, Maluszynski M, Szweykowska-Kulinska Z, Jarmolowski A. Arabidopsis suppressor mutant of abh1 shows a new face of the already known players: ABH1 (CBP80) and ABI4-in response to ABA and abiotic stresses during seed germination. PLANT MOLECULAR BIOLOGY 2013; 81. [PMID: 23196831 PMCID: PMC3527740 DOI: 10.1007/s11103-012-9991-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although the importance of abscisic acid (ABA) in plant development and response to abiotic and biotic stresses is well recognized, the molecular basis of the signaling pathway has not been fully elucidated. Mutants in genes related to ABA are widely used as a tool for gaining insight into the mechanisms of ABA signal transduction and ABA-dependent stress response. We used a genetic approach of a suppressor screening in order to decipher the interaction between ABH1 (CBP80) and other components of ABA signaling. ABH1 (CBP80) encodes a large subunit of CBC (CAP BINDING COMPLEX) and the abh1 mutant is drought-tolerant and hypersensitive to ABA during seed germination. The suppressor mutants of abh1 were generated after chemical mutagenesis. The mutant named soa1 (suppressor of abh1 hypersensitivity to ABA 1) displayed an ABA-insensitive phenotype during seed germination. The genetic analysis showed that the soa1 phenotype is dominant in relation to abh1 and segregates as a single locus. Based on soa1's response to a wide spectrum of physiological assays during different stages of development, we used the candidate-genes approach in order to identify a suppressor gene. The molecular analysis revealed that mutation causing the phenotype of soa1 occurred in the ABI4 (ABA insensitive 4) gene. Analysis of pre-miR159 expression, whose processing depends on CBC, as well as targets of miR159: MYB33 and MYB101, which are positive regulators of ABA signaling, revealed a possible link between CBP80 (ABH1) and ABI4 presented here.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Abscisic acid (ABA) is one of the "classical" plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence.
Collapse
Affiliation(s)
- Ruth Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106 Address
- correspondence to e-mail:
| |
Collapse
|
124
|
Gan ES, Huang J, Ito T. Functional Roles of Histone Modification, Chromatin Remodeling and MicroRNAs in Arabidopsis Flower Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:115-61. [DOI: 10.1016/b978-0-12-407695-2.00003-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
125
|
Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park JH, Kim SY, Zhu JK, Yang SW, Lee BH. STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 2012; 41:1984-97. [PMID: 23268445 PMCID: PMC3561960 DOI: 10.1093/nar/gks1309] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that have important regulatory roles in numerous developmental and metabolic processes in most eukaryotes. In Arabidopsis, DICER-LIKE1 (DCL1), HYPONASTIC LEAVES 1, SERRATE, HUA ENHANCER1 and HASTY are involved in processing of primary miRNAs (pri-miRNAs) to yield precursor miRNAs (pre-miRNAs) and eventually miRNAs. In addition to these components, mRNA cap-binding proteins, CBP80/ABA HYPERSENSITIVE1 and CBP20, also participate in miRNA biogenesis. Here, we show that STABILIZED1 (STA1), an Arabidopsis pre-mRNA processing factor 6 homolog, is also involved in the biogenesis of miRNAs. Similar to other miRNA biogenesis-defective mutants, sta1-1 accumulated significantly lower levels of mature miRNAs and concurrently higher levels of pri-miRNAs than wild type. The dramatic reductions of mature miRNAs were associated with the accumulation of their target gene transcripts and developmental defects. Furthermore, sta1-1 impaired splicing of intron containing pri-miRNAs and decreased transcript levels of DCL1. These results suggest that STA1 is involved in miRNA biogenesis directly by functioning in pri-miRNA splicing and indirectly by modulating the DCL1 transcript level.
Collapse
Affiliation(s)
- Samir Ben Chaabane
- Department of Plant Biology and Biotechnology, Faculty of Life Science, University of Copenhagen, Thovanlsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Burdisso P, Suarez IP, Bologna NG, Palatnik JF, Bersch B, Rasia RM. Second double-stranded RNA binding domain of dicer-like ribonuclease 1: structural and biochemical characterization. Biochemistry 2012. [PMID: 23194006 DOI: 10.1021/bi301247r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dicer-like ribonuclease III enzymes are involved in different paths related to RNA silencing in plants. Little is known about the structural aspects of these processes. Here we present a structural characterization of the second double-stranded RNA binding domain (dsRBD) of DCL1, which is presumed to participate in pri-micro-RNA recognition and subcellular localization of this protein. We determined the solution structure and found that it has a canonical fold but bears some variation with respect to other homologous domains. We also found that this domain binds both double-stranded RNA and double-stranded DNA, in contrast to most dsRBDs. Our characterization shows that this domain likely has functions other than substrate recognition and binding.
Collapse
Affiliation(s)
- Paula Burdisso
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|
127
|
Bologna NG, Schapire AL, Palatnik JF. Processing of plant microRNA precursors. Brief Funct Genomics 2012; 12:37-45. [DOI: 10.1093/bfgp/els050] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
128
|
Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 2012; 151:859-870. [PMID: 23141542 DOI: 10.1016/j.cell.2012.09.039] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/08/2012] [Accepted: 09/30/2012] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are processed from primary transcripts that contain partially self-complementary foldbacks. As in animals, the core microprocessor in plants is a Dicer protein, DICER-LIKE1 (DCL1). Processing accuracy and strand selection is greatly enhanced through the RNA binding protein HYPONASTIC LEAVES 1 (HYL1) and the zinc finger protein SERRATE (SE). We have combined a luciferase-based genetic screen with whole-genome sequencing for rapid identification of new regulators of miRNA biogenesis and action. Among the first six mutants analyzed were three alleles of C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1)/FIERY2 (FRY2). In the miRNA processing complex, SE functions as a scaffold to mediate CPL1 interaction with HYL1, which needs to be dephosphorylated for optimal activity. In the absence of CPL1, HYL1 dephosphorylation and hence accurate processing and strand selection from miRNA duplexes are compromised. Our findings thus define a new regulatory step in plant miRNA biogenesis.
Collapse
Affiliation(s)
- Pablo A Manavella
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Felix Ott
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Sascha Laubinger
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Mirita Franz
- Proteome Center, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Boris Macek
- Proteome Center, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
129
|
Ren G, Yu B. Critical roles of RNA-binding proteins in miRNA biogenesis in Arabidopsis. RNA Biol 2012; 9:1424-8. [PMID: 23135480 DOI: 10.4161/rna.22740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression and play critical roles in modulating metabolism, development and physiology in animals and plants. miRNA levels are transcriptionally and post-transcriptionally controlled for their proper function. Recent studies have shown that RNA-binding proteins play important roles in producing miRNAs by affecting the accurate and/or efficient processing of precursors of miRNAs. Many of these RNA-binding proteins also have roles in general RNA metabolism, indicating potential connections between miRNA biogenesis and other RNA metabolism. Here, we focus on the function of several RNA-binding proteins in miRNA biogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Guodong Ren
- Center for Plant Science Innovation & School of Biological Sciences; University of Nebraska; Lincoln, NE USA
| | | |
Collapse
|
130
|
Wang Y, Sun F, Cao H, Peng H, Ni Z, Sun Q, Yao Y. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One 2012; 7:e48445. [PMID: 23133634 PMCID: PMC3486836 DOI: 10.1371/journal.pone.0048445] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 09/26/2012] [Indexed: 12/22/2022] Open
Abstract
In Arabidopsis and rice, miR159-regulated GAMYB-like family transcription factors function in flower development and gibberellin (GA) signaling in cereal aleurone cells. In this study, the involvement of miR159 in the regulation of its putative target TaGAMYB and its relationship to wheat development were investigated. First, we demonstrated that cleavage of TaGAMYB1 and TaGAMYB2 was directed by miR159 using 5′-RACE and a transient expression system. Second, we overexpressed TamiR159, TaGAMYB1 and mTaGAMYB1 (impaired in the miR159 binding site) in transgenic rice, revealing that the accumulation in rice of mature miR159 derived from the precursor of wheat resulted in delayed heading time and male sterility. In addition, the number of tillers and primary branches in rice overexpressing mTaGAMYB1 increased relative to the wild type. Our previous study reported that TamiR159 was downregulated after two hours of heat stress treatment in wheat (Triticum aestivum L.). Most notably, the TamiR159 overexpression rice lines were more sensitive to heat stress relative to the wild type, indicating that the downregulation of TamiR159 in wheat after heat stress might participate in a heat stress-related signaling pathway, in turn contributing to heat stress tolerance.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
| | - Fenglong Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
| | - Hua Cao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis, Utilization (MOE) and Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
131
|
Matsoukas IG, Massiah AJ, Thomas B. Florigenic and antiflorigenic signaling in plants. PLANT & CELL PHYSIOLOGY 2012; 53:1827-42. [PMID: 23008422 DOI: 10.1093/pcp/pcs130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The evidence that FLOWERING LOCUS T (FT) protein, and its paralog TWIN SISTER OF FT, act as the long-distance floral stimulus, or at least that they are part of it in diverse plant species, has attracted much attention in recent years. Studies to understand the physiological and molecular apparatuses that integrate spatial and temporal signals to regulate developmental transitions in plants have occupied countless scientists and have resulted in an unmanageably large amount of research data. Analysis of these data has helped to identify multiple systemic florigenic and antiflorigenic regulators. This study gives an overview of the recent research on gene products, phytohormones and other metabolites that have been demonstrated to have florigenic or antiflorigenic functions in plants.
Collapse
Affiliation(s)
- Ianis G Matsoukas
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|
132
|
Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci U S A 2012; 109:18198-203. [PMID: 23071326 DOI: 10.1073/pnas.1216199109] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are important for plant development and stress responses. However, factors regulating miRNA metabolism are not completely understood. SICKLE (SIC), a proline-rich protein critical for development and abiotic stress tolerance of Arabidopsis, was identified in this study. Loss-of-function sic-1 mutant plants exhibited a serrated, sickle-like leaf margin, reduced height, delayed flowering, and abnormal inflorescence phyllotaxy, which are common characteristics of mutants involved in miRNA biogenesis. The sic-1 mutant plants accumulated lower levels of a subset of miRNAs and transacting siRNAs but higher levels of corresponding primary miRNAs than the WT. The SIC protein colocalizes with the miRNA biogenesis component HYL1 in distinct subnuclear bodies. sic-1 mutant plants also accumulated higher levels of introns from hundreds of loci. In addition, sic-1 mutant plants are hypersensitive to chilling and salt stresses. These results suggest that SIC is a unique factor required for the biogenesis of some miRNAs and degradation of some spliced introns and important for plant development and abiotic stress responses.
Collapse
|
133
|
Contreras-Cubas C, Palomar M, Arteaga-Vázquez M, Reyes JL, Covarrubias AA. Non-coding RNAs in the plant response to abiotic stress. PLANTA 2012; 236:943-958. [PMID: 22761008 DOI: 10.1007/s00425-012-1693-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/07/2012] [Indexed: 05/27/2023]
Abstract
As sessile organisms, plants have to cope with the ever-changing environment as well as with numerous forms of stress. To react to these external cues, plants have evolved a suite of response mechanisms operating at many different levels, ranging from physiological to molecular processes that provide the organism with a wide phenotypic plasticity, allowing for fine tuning of the reactions to these adverse circumstances. During the past decade, non-coding RNAs (ncRNAs) have emerged as key regulatory molecules, which contribute to a significant portion of the transcriptome in eukaryotes and are involved in the control of transcriptional and post-transcriptional gene regulatory pathways. Although accumulated evidence supports an important role for ncRNAs in plant response and adaptation to abiotic stress, their mechanism(s) of action still remains obscure and a functional characterization of the ncRNA repertoire in plants is still needed. Moreover, common features in the biogenesis of different small ncRNAs, and in some cases, cross talk between different gene regulatory pathways may add to the complexity of these pathways and could play important roles in modulating stress responses. Here we review the various ncRNAs that have been reported to participate in the response to abiotic stress in plants, focusing on their importance in plant adaptation and evolution. Understanding how ncRNAs work may reveal novel mechanisms involved in the plant responses to the environment.
Collapse
Affiliation(s)
- Cecilia Contreras-Cubas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, 62250 Cuernavaca, Mor, Mexico
| | | | | | | | | |
Collapse
|
134
|
Lee DH, Kim DS, Hwang BK. The pepper RNA-binding protein CaRBP1 functions in hypersensitive cell death and defense signaling in the cytoplasm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:235-248. [PMID: 22640562 DOI: 10.1111/j.1365-313x.2012.05063.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regulation of gene expression via post-transcriptional modification by RNA-binding proteins is crucial for plant disease and innate immunity. Here, we report the identification of the pepper (Capsicum annuum) RNA-binding protein1 gene (CaRBP1) as essential for hypersensitive cell death and defense signaling in the cytoplasm. CaRBP1 contains an RNA recognition motif and is rapidly and strongly induced in pepper by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaRBP1 displays in vitro RNA- and DNA-binding activity and in planta nucleocytoplasmic localization. Transient expression of CaRBP1 in pepper leaves triggers cell-death and defense responses. Notably, cytoplasmic localization of CaRBP1, mediated by the N-terminal region of CaRBP1, is essential for the hypersensitive cell-death response. Silencing of CaRBP1 in pepper plants significantly enhances susceptibility to avirulent Xcv infection. This is accompanied by compromised hypersensitive cell death, production of reactive oxygen species in oxidative bursts, expression of defense marker genes and accumulation of endogenous salicylic acid and jasmonic acid. Over-expression of CaRBP1 in Arabidopsis confers reduced susceptibility to infection by the biotrophic oomycete Hyaloperonospora arabidopsidis. Together, these results suggest that cytoplasmic localization of CaRBP1 is required for plant signaling of hypersensitive cell-death and defense responses.
Collapse
Affiliation(s)
- Dong Hyuk Lee
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | | | |
Collapse
|
135
|
Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. THE PLANT CELL 2012; 24:3590-602. [PMID: 22960911 PMCID: PMC3480289 DOI: 10.1105/tpc.112.097006] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biological Evolution
- Droughts
- Gene Expression Profiling
- Gene Expression Regulation, Plant/genetics
- High-Throughput Nucleotide Sequencing
- Hydroponics
- Indoleacetic Acids/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Oligonucleotide Array Sequence Analysis
- Osmosis
- Phenotype
- Plant Growth Regulators/metabolism
- Plant Leaves/genetics
- Plant Leaves/growth & development
- Plant Leaves/physiology
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Analysis, DNA
- Stress, Physiological/genetics
Collapse
Affiliation(s)
- Natsuko Kinoshita
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:12817-21. [PMID: 22802657 DOI: 10.1073/pnas.1204915109] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are regulators of gene expression in plants and animals. The biogenesis of miRNAs is precisely controlled to secure normal development of organisms. Here we report that TOUGH (TGH) is a component of the DCL1-HYL1-SERRATE complex that processes primary transcripts of miRNAs [i.e., primary miRNAs (pri-miRNAs)] into miRNAs in Arabidopsis. Lack of TGH impairs multiple DCL activities in vitro and reduces the accumulation of miRNAs and siRNAs in vivo. TGH is an RNA-binding protein, binds pri-miRNAs and precursor miRNAs in vivo, and contributes to pri-miRNA-HYL1 interaction. These results indicate that TGH might regulate abundance of miRNAs through promoting DCL1 cleavage efficiency and/or recruitment of pri-miRNAs.
Collapse
|
137
|
Liang D, White RG, Waterhouse PM. Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement. PLANT PHYSIOLOGY 2012; 159:984-1000. [PMID: 22582134 PMCID: PMC3387722 DOI: 10.1104/pp.112.197129] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/10/2012] [Indexed: 05/18/2023]
Abstract
Upward long-distance mobile silencing has been shown to be phloem mediated in several different solanaceous species. We show that the Arabidopsis (Arabidopsis thaliana) seedling grafting system and a counterpart inducible system generate upwardly spreading long-distance silencing that travels not in the phloem but by template-dependent reiterated short-distance cell-to-cell spread through the cells of the central stele. Examining the movement of the silencing front revealed a largely unrecognized zone of tissue, below the apical meristem, that is resistant to the silencing signal and that may provide a gating or protective barrier against small RNA signals. Using a range of auxin and actin transport inhibitors revealed that, in this zone, alteration of vesicular transport together with cytoskeleton dynamics prevented or retarded the spread of the silencing signal. This suggests that small RNAs are transported from cell to cell via plasmodesmata rather than diffusing from their source in the phloem.
Collapse
Affiliation(s)
- Dacheng Liang
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| | | | | |
Collapse
|
138
|
Won SY, Li S, Zheng B, Zhao Y, Li D, Zhao X, Yi H, Gao L, Dinh TT, Chen X. Development of a luciferase-based reporter of transcriptional gene silencing that enables bidirectional mutant screening in Arabidopsis thaliana. SILENCE 2012; 3:6. [PMID: 22676624 PMCID: PMC3548752 DOI: 10.1186/1758-907x-3-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/18/2012] [Indexed: 12/30/2022]
Abstract
Background Cytosine methylation is an important chromatin modification that maintains genome integrity and regulates gene expression through transcriptional gene silencing. Major players in de novo methylation guided by siRNAs (known as RNA-directed DNA methylation, or RdDM), maintenance methylation, and active demethylation have been identified in Arabidopsis. However, active demethylation only occurs at a subset of RdDM loci, raising the question of how the homeostasis of DNA methylation is achieved at most RdDM loci. To identify factors that regulate the levels of cytosine methylation, we aimed to establish a transgenic reporter system that allows for forward genetic screens in Arabidopsis. Results We introduced a dual 35 S promoter (d35S) driven luciferase reporter, LUCH, into Arabidopsis and isolated a line with a moderate level of luciferase activity. LUCH produced transgene-specific 24 nucleotide siRNAs and its d35S contained methylated cytosine in CG, CHG and CHH contexts. Treatment of the transgenic line with an inhibitor of cytosine methylation de-repressed luciferase activity. Mutations in several components of the RdDM pathway but not the maintenance methylation genes resulted in reduced d35S methylation, especially CHH methylation, and de-repression of luciferase activity. A mutation in MOM1, which is known to cooperate with RdDM to silence transposons, reduced d35S DNA methylation and de-repressed LUCH expression. A mutation in ROS1, a cytosine demethylation enzyme, increased d35S methylation and reduced LUCH expression. Conclusion We developed a luciferase-based reporter, LUCH, which reports both DNA methylation directed by small RNAs and active demethylation by ROS1 in Arabidopsis. The moderate basal level of LUCH expression allows for bi-directional genetic screens that dissect the mechanisms of DNA methylation as well as demethylation.
Collapse
Affiliation(s)
- So Youn Won
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Liu C, Axtell MJ, Fedoroff NV. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during microRNA biogenesis. PLANT PHYSIOLOGY 2012; 159:748-58. [PMID: 22474216 PMCID: PMC3406889 DOI: 10.1104/pp.112.193508] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/30/2012] [Indexed: 05/18/2023]
Abstract
Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 null mutants accumulate low levels of miRNAs and display pleiotropic developmental phenotypes. We report the identification of five new hyl1 suppressor mutants, all of which are alleles of DCL1. These new alleles affect either the helicase or the RNaseIIIa domains of DCL1, highlighting the critical functions of these domains. Biochemical analysis of the DCL1 suppressor variants reveals that they process the primary transcript (pri-miRNA) more efficiently than wild-type DCL1, with both higher K(cat) and lower K(m) values. The DCL1 variants largely rescue wild-type miRNA accumulation levels in vivo, but do not rescue the MIRNA processing precision defects of the hyl1 null mutant. In vitro, the helicase domain confers ATP dependence on DCL1-catalyzed MIRNA processing, attenuates DCL1 cleavage activity, and is required for precise MIRNA processing of some substrates.
Collapse
|
140
|
Jover-Gil S, Candela H, Robles P, Aguilera V, Barrero JM, Micol JL, Ponce MR. The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis. ACTA ACUST UNITED AC 2012; 53:1322-33. [DOI: 10.1093/pcp/pcs077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
141
|
Chen X. Small RNAs in development - insights from plants. Curr Opin Genet Dev 2012; 22:361-7. [PMID: 22578318 DOI: 10.1016/j.gde.2012.04.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
microRNAs (miRNAs) and small interfering RNAs (siRNAs), which constitute two major classes of endogenous small RNAs in plants, impact a multitude of developmental and physiological processes by imparting sequence specificity to gene and genome regulation. Although lacking the third major class of small RNAs found in animals, Piwi-interacting RNAs (piRNAs), plants have expanded their repertoire of endogenous siRNAs, some of which fulfill similar molecular and developmental functions as piRNAs in animals. Research on plant miRNAs and siRNAs has contributed invaluable insights into small RNA biology, thanks to the highly conserved molecular logic behind the biogenesis and actions of small RNAs. Here, I review progress in the plant small RNA field in the past two years, with an emphasis on recent findings related to plant development. I do not recount the numerous developmental processes regulated by small RNAs; instead, I focus on major principles that have been derived from recent studies and draw parallels, when applicable, between plants and animals.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
142
|
Eamens AL, Kim KW, Curtin SJ, Waterhouse PM. DRB2 is required for microRNA biogenesis in Arabidopsis thaliana. PLoS One 2012; 7:e35933. [PMID: 22545148 PMCID: PMC3335824 DOI: 10.1371/journal.pone.0035933] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/27/2012] [Indexed: 11/18/2022] Open
Abstract
Background The Arabidopsis thaliana (Arabidopsis) DOUBLE-STRANDED RNA BINDING (DRB) protein family consists of five members, DRB1 to DRB5. The biogenesis of two developmentally important small RNA (sRNA) species, the microRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) by DICER-LIKE (DCL) endonucleases requires the assistance of DRB1 and DRB4 respectively. The importance of miRNA-directed target gene expression in plant development is exemplified by the phenotypic consequence of loss of DRB1 activity (drb1 plants). Principal Findings Here we report that the developmental phenotype of the drb235 triple mutant plant is the result of deregulated miRNA biogenesis in the shoot apical meristem (SAM) region. The expression of DRB2, DRB3 and DRB5 in wild-type seedlings is restricted to the SAM region. Small RNA sequencing of the corresponding tissue of drb235 plants revealed altered miRNA accumulation. Approximately half of the miRNAs detected remained at levels equivalent to those of wild-type plants. However, the accumulation of the remaining miRNAs was either elevated or reduced in the triple mutant. Examination of different single and multiple drb mutants revealed a clear association between the loss of DRB2 activity and altered accumulation for both the elevated and reduced miRNA classes. Furthermore, we show that the constitutive over-expression of DRB2 outside of its wild-type expression domain can compensate for the loss of DRB1 activity in drb1 plants. Conclusions/Significance Our results suggest that in the SAM region, DRB2 is both antagonistic and synergistic to the role of DRB1 in miRNA biogenesis, adding an additional layer of gene regulatory complexity in this developmentally important tissue.
Collapse
Affiliation(s)
- Andrew L. Eamens
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (ALE); (PMW)
| | - Ki Wook Kim
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Shaun J. Curtin
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Peter M. Waterhouse
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
- School of Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
- CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
- * E-mail: (ALE); (PMW)
| |
Collapse
|
143
|
Sunkar R, Li YF, Jagadeeswaran G. Functions of microRNAs in plant stress responses. TRENDS IN PLANT SCIENCE 2012; 17:196-203. [PMID: 22365280 DOI: 10.1016/j.tplants.2012.01.010] [Citation(s) in RCA: 576] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/21/2012] [Accepted: 01/25/2012] [Indexed: 05/18/2023]
Abstract
The discovery of microRNAs (miRNAs) as gene regulators has led to a paradigm shift in the understanding of post-transcriptional gene regulation in plants and animals. miRNAs have emerged as master regulators of plant growth and development. Evidence suggesting that miRNAs play a role in plant stress responses arises from the discovery that miR398 targets genes with known roles in stress tolerance. In addition, the expression profiles of most miRNAs that are implicated in plant growth and development are significantly altered during stress. These later findings imply that attenuated plant growth and development under stress may be under the control of stress-responsive miRNAs. Here we review recent progress in the understanding of miRNA-mediated plant stress tolerance.
Collapse
Affiliation(s)
- Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | |
Collapse
|
144
|
Li S, Yang X, Wu F, He Y. HYL1 controls the miR156-mediated juvenile phase of vegetative growth. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2787-98. [PMID: 22268150 PMCID: PMC3346236 DOI: 10.1093/jxb/err465] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/23/2011] [Accepted: 12/27/2011] [Indexed: 05/18/2023]
Abstract
HYL1 is an important regulator of microRNA (miRNA) biogenesis. A loss-of-function mutation of HYL1 causes the reduced accumulation of some miRNAs but fails to display the miRNA-deficient phenotypes of these miRNAs. In Arabidopsis, miR156 mediates phase transition through repression of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) genes. However, it remains unknown whether, and if so how, HYL1 enables phase transition through miR156. This study showed that a loss-of-function mutation of the HYL1 gene caused defects in the timing of the juvenile phase. In the primary leaves of hyl1-2 mutants, abaxial trichomes were generated prematurely, the leaf blades elongated, and the blade base angles enlarged, as is observed for adult leaves. In hyl1-2 p35S::miR156a and hyl1-2 spl9-4 spl15-1 plants, increased accumulation of miR156a and repressed expression of the SPL genes were concomitant with a complete or partial rescue of the hyl1-2 phenotype in phase defects. In contrast, overexpression of the SPL9 gene in hyl1-2 mutants led to total disappearance of the juvenile phase. Moreover, HYL1 prevented the premature accumulation of adult-related transcripts in the primary leaves. Taken together, these results suggest that HYL1 controls the expression levels of miR156-targeted SPL genes and enables plants to undergo the juvenile phase, an important and critical step during plant development to ensure maximum growth and productivity.
Collapse
Affiliation(s)
| | | | | | - Yuke He
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
145
|
Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. PLANT PHYSIOLOGY 2012; 158:1279-92. [PMID: 22247272 PMCID: PMC3291255 DOI: 10.1104/pp.111.188789] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/12/2012] [Indexed: 05/18/2023]
Abstract
The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants.
Collapse
|
146
|
Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 21605713 DOI: 10.1016/j.bbagrm.2011.05.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Basel Khraiwesh
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|
147
|
Chen L, Wang T, Zhao M, Tian Q, Zhang WH. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. PLANTA 2012; 235:375-86. [PMID: 21909758 DOI: 10.1007/s00425-011-1514-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/26/2011] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) play important roles in response of plants to biotic and abiotic stresses. Aluminum (Al) toxicity is a major factor limiting plant growth in acidic soils. However, there has been limited report on the involvement of miRNAs in response of plants to toxic Al(3+). To identify Al(3+)-responsive miRNAs at whole-genome level, high-throughput sequencing technology was used to sequence libraries constructed from root apices of the model legume plant Medicago truncatula treated with and without Al(3+). High-throughput sequencing of the control and two Al(3+)-treated libraries led to generation of 17.1, 14.1 and 17.4 M primary reads, respectively. We identified 326 known miRNAs and 21 new miRNAs. Among the miRNAs, expression of 23 miRNAs was responsive to Al(3+), and the majority of Al(3+)-responsive mRNAs was down-regulated. We further classified the Al(3+)-responsive miRNAs into three groups based on their expression patterns: rapid-responsive, late-responsive and sustained-responsive miRNAs. The majority of Al(3+)-responsive miRNAs belonged to the 'rapid-responsive' category, i.e. they were responsive to short-term, but not long-term Al(3+) treatment. The Al(3+)-responsive miRNAs were also verified by quantitative real-time PCR. The potential targets of the 21 new miRNAs were predicted to be involved in diverse cellular processes in plants, and their potential roles in Al(3+)-induced inhibition of root growth were discussed. These findings provide valuable information for functional characterization of miRNAs in Al(3+) toxicity and tolerance.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | | | | | | | | |
Collapse
|
148
|
Katiyar A, Smita S, Chinnusamy V, Pandey DM, Bansal K. Identification of miRNAs in sorghum by using bioinformatics approach. PLANT SIGNALING & BEHAVIOR 2012; 7:246-59. [PMID: 22415044 PMCID: PMC3405690 DOI: 10.4161/psb.18914] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression mainly by post-transcriptional gene silencing (PTGS) and in some cases by transcriptional genes silencing (TGS). miRNAs play critical roles in developmental processes, nutrient homeostasis, abiotic stress and pathogen responses of plants. In contrast to the large number of miRNAs predicted in cereal model plant rice, only 148 miRNAs were predicted in sorghum till date (miRBase release 17). This suggested that miRNAs identified in sorghum is far from saturation. Hence, we developed a bioinformatics pipeline using an in-house PERL script and publicly available structure prediction tools to identify miRNAs and their target genes from publically available Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS). About 1379 known and unique plant miRNAs from 33 different crops were used to predict new miRNAs in sorghum. We identified 31 new miRNAs belonging to 10 different miRNA families. We predicted 72 potential target genes for 31 miRNAs, and most of these target genes are predicted to be involved in plant growth and development.These newly identified miRNAs add to the growing database of miRNA and lay the foundation for further understanding of miRNA function in sorghum plant development.
Collapse
Affiliation(s)
- Amit Katiyar
- National Research Centre on Plant Biotechnology; Indian Agricultural Research Institute Campus; New Delhi, India
| | - Shuchi Smita
- National Research Centre on Plant Biotechnology; Indian Agricultural Research Institute Campus; New Delhi, India
| | | | - Dev Mani Pandey
- Department of Biotechnology; Birla Institute of Technology; Mesra; Ranchi; Jharkhand, India
| | - Kailash Bansal
- National Research Centre on Plant Biotechnology; Indian Agricultural Research Institute Campus; New Delhi, India
- Correspondence to: Kailash Bansal,
| |
Collapse
|
149
|
Ambrosone A, Costa A, Leone A, Grillo S. Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:12-8. [PMID: 22118611 DOI: 10.1016/j.plantsci.2011.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 05/20/2023]
Abstract
RNA-binding proteins (RBPs) govern many aspects of RNA metabolism, including pre-mRNA processing, transport, stability/decay and translation. Although relatively few plant RNA-binding proteins have been characterized genetically and biochemically, more than 200 RBP genes have been predicted in Arabidopsis and rice genomes, suggesting that they might serve specific plant functions. Besides their role in normal cellular functions, RBPs are emerging also as an interesting class of proteins involved in a wide range of post-transcriptional regulatory events that are important in providing plants with the ability to respond rapidly to changes in environmental conditions. Here, we review the most recent results and evidence on the functional role of RBPs in plant adaptation to various unfavourable environmental conditions and their contribution to enhance plant tolerance to abiotic stresses, with special emphasis on osmotic and temperature stress.
Collapse
Affiliation(s)
- Alfredo Ambrosone
- National Research Council of Italy-Institute of Plant Genetics (CNR-IGV), Via Università 133, 80055 Portici, Naples, Italy
| | | | | | | |
Collapse
|
150
|
Genetic and Molecular Approaches to Assess MicroRNA Function. MICRORNAS IN PLANT DEVELOPMENT AND STRESS RESPONSES 2012. [DOI: 10.1007/978-3-642-27384-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|