101
|
van Esse GW, Ten Hove CA, Guzzonato F, van Esse HP, Boekschoten M, Ridder L, Vervoort J, de Vries SC. Transcriptional Analysis of serk1 and serk3 Coreceptor Mutants. PLANT PHYSIOLOGY 2016; 172:2516-2529. [PMID: 27803191 PMCID: PMC5129729 DOI: 10.1104/pp.16.01478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/28/2016] [Indexed: 05/15/2023]
Abstract
Somatic embryogenesis receptor kinases (SERKs) are ligand-binding coreceptors that are able to combine with different ligand-perceiving receptors such as BRASSINOSTEROID INSENSITIVE1 (BRI1) and FLAGELLIN-SENSITIVE2. Phenotypical analysis of serk single mutants is not straightforward because multiple pathways can be affected, while redundancy is observed for a single phenotype. For example, serk1serk3 double mutant roots are insensitive toward brassinosteroids but have a phenotype different from bri1 mutant roots. To decipher these effects, 4-d-old Arabidopsis (Arabidopsis thaliana) roots were studied using microarray analysis. A total of 698 genes, involved in multiple biological processes, were found to be differentially regulated in serk1-3serk3-2 double mutants. About half of these are related to brassinosteroid signaling. The remainder appear to be unlinked to brassinosteroids and related to primary and secondary metabolism. In addition, methionine-derived glucosinolate biosynthesis genes are up-regulated, which was verified by metabolite profiling. The results also show that the gene expression pattern in serk3-2 mutant roots is similar to that of the serk1-3serk3-2 double mutant roots. This confirms the existence of partial redundancy between SERK3 and SERK1 as well as the promoting or repressive activity of a single coreceptor in multiple simultaneously active pathways.
Collapse
Affiliation(s)
- G Wilma van Esse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Colette A Ten Hove
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Francesco Guzzonato
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - H Peter van Esse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Mark Boekschoten
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Lars Ridder
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Sacco C de Vries
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
102
|
Pinel-Galzi A, Dubreuil-Tranchant C, Hébrard E, Mariac C, Ghesquière A, Albar L. Mutations in Rice yellow mottle virus Polyprotein P2a Involved in RYMV2 Gene Resistance Breakdown. FRONTIERS IN PLANT SCIENCE 2016; 7:1779. [PMID: 27965688 PMCID: PMC5125353 DOI: 10.3389/fpls.2016.01779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 05/09/2023]
Abstract
Rice yellow mottle virus (RYMV) is one of the major diseases of rice in Africa. The high resistance of the Oryza glaberrima Tog7291 accession involves a null allele of the RYMV2 gene, whose ortholog in Arabidopsis, CPR5, is a transmembrane nucleoporin involved in effector-triggered immunity. To optimize field deployment of the RYMV2 gene and improve its durability, which is often a weak point in varietal resistance, we analyzed its efficiency toward RYMV isolates representing the genetic diversity of the virus and the molecular basis of resistance breakdown. Tog7291 resistance efficiency was highly variable depending on the isolate used, with infection rates ranging from 0 to 98% of plants. Back-inoculation experiments indicated that infection cases were not due to an incomplete resistance phenotype but to the emergence of resistance-breaking (RB) variants. Interestingly, the capacity of the virus to overcome Tog7291 resistance is associated with a polymorphism at amino-acid 49 of the VPg protein which also affects capacity to overcome the previously studied RYMV1 resistance gene. This polymorphism appeared to be a main determinant of the emergence of RB variants. It acts independently of the resistance gene and rather reflects inter-species adaptation with potential consequences for the durability of resistance. RB mutations were identified by full-length or partial sequencing of the RYMV genome in infected Tog7291 plants and were validated by directed mutagenesis of an infectious viral clone. We found that Tog7291 resistance breakdown involved mutations in the putative membrane anchor domain of the polyprotein P2a. Although the precise effect of these mutations on rice/RYMV interaction is still unknown, our results offer a new perspective for the understanding of RYMV2 mediated resistance mechanisms. Interestingly, in the susceptible IR64 variety, RB variants showed low infectivity and frequent reversion to the wild-type genotype, suggesting that Tog7291 resistance breakdown is associated with a major loss of viral fitness in normally susceptible O. sativa varieties. Despite the high frequency of resistance breakdown in controlled conditions, this loss of fitness is an encouraging element with regards to RYMV2 resistance durability.
Collapse
Affiliation(s)
- Agnès Pinel-Galzi
- Interactions Plantes Microorganismes Environnement, Institut de Recherche pour le Développement – Centre de Coopération Internationale en Recherche Agronomique pour le Développement – Université de MontpellierMontpellier, France
| | - Christine Dubreuil-Tranchant
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Eugénie Hébrard
- Interactions Plantes Microorganismes Environnement, Institut de Recherche pour le Développement – Centre de Coopération Internationale en Recherche Agronomique pour le Développement – Université de MontpellierMontpellier, France
| | - Cédric Mariac
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Alain Ghesquière
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| | - Laurence Albar
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement – Université de MontpellierMontpellier, France
| |
Collapse
|
103
|
Rong D, Luo N, Mollet JC, Liu X, Yang Z. Salicylic Acid Regulates Pollen Tip Growth through an NPR3/NPR4-Independent Pathway. MOLECULAR PLANT 2016; 9:1478-1491. [PMID: 27575693 PMCID: PMC7513929 DOI: 10.1016/j.molp.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 05/03/2023]
Abstract
Tip growth is a common strategy for the rapid elongation of cells to forage the environment and/or to target to long-distance destinations. In the model tip growth system of Arabidopsis pollen tubes, several small-molecule hormones regulate their elongation, but how these rapidly diffusing molecules control extremely localized growth remains mysterious. Here we show that the interconvertible salicylic acid (SA) and methylated SA (MeSA), well characterized for their roles in plant defense, oppositely regulate Arabidopsis pollen tip growth with SA being inhibitory and MeSA stimulatory. The effect of SA and MeSA was independent of known NPR3/NPR4 SA receptor-mediated signaling pathways. SA inhibited clathrin-mediated endocytosis in pollen tubes associated with an increased accumulation of less stretchable demethylated pectin in the apical wall, whereas MeSA did the opposite. Furthermore, SA and MeSA alter the apical activation of ROP1 GTPase, a key regulator of tip growth in pollen tubes, in an opposite manner. Interestingly, both MeSA methylesterase and SA methyltransferase, which catalyze the interconversion between SA and MeSA, are localized at the apical region of pollen tubes, indicating of the tip-localized production of SA and MeSA and consistent with their effects on the apical cellular activities. These findings suggest that local generation of a highly diffusible signal can regulate polarized cell growth, providing a novel mechanism of cell polarity control apart from the one involving protein and mRNA polarization.
Collapse
Affiliation(s)
- Duoyan Rong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China; Department of Botany and Plant Sciences, and Center for Plant Cell Biology, Institute of Integrated Genome Biology University of California, Riverside, CA 92521, USA
| | - Nan Luo
- Department of Botany and Plant Sciences, and Center for Plant Cell Biology, Institute of Integrated Genome Biology University of California, Riverside, CA 92521, USA
| | - Jean Claude Mollet
- Normandie Univ, UniRouen, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Institute for Research and Innovation in Biomedicine, Végétal, Agronomie, Sol, et Innovation, 76821 Mont-Saint-Aignan, France
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences, and Center for Plant Cell Biology, Institute of Integrated Genome Biology University of California, Riverside, CA 92521, USA.
| |
Collapse
|
104
|
Mohan R, Tai T, Chen A, Arnoff T, Fu ZQ. Overexpression of Arabidopsis NIMIN1 results in salicylate intolerance. PLANT SIGNALING & BEHAVIOR 2016; 11:e1211222. [PMID: 27429420 PMCID: PMC5117087 DOI: 10.1080/15592324.2016.1211222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The transcriptional regulator NPR1 mediates salicylic acid (SA)-induced plant immunity. NPR1 is also required for tolerance to high concentrations of SA. NPR1-interacting protein, NIMIN1, represses immune response by interacting with and negating NPR1. We tested the salicylic acid tolerance of transgenic plants overexpressing NIMIN1 and found that these plants displayed SA intolerance, similar to the npr1 mutant, due to sequestration of NPR1 by NIMIN1. Plants overexpressing mutated NIMIN1 that cannot interact with NPR1 showed no SA tolerance defect. Gene expression analysis showed that NPR1 is required for SA-stress induced as well as pathogen-induced NIMIN1 expression. These results indicate that over-accumulation of a negative regulator renders plants hypersensitive to SA by limiting NPR1 function. Furthermore, NPR1 activates negative regulators such as NIMIN1 for feedback inhibition of SA signaling to maintain immune homeostasis.
Collapse
Affiliation(s)
- Rajinikanth Mohan
- Department of Biology, Hamilton College, Clinton, NY, USA
- CONTACT Rajinikanth Mohan Department of Biology, Hamilton College, Clinton, NY 13323 USA
| | - Thomson Tai
- Department of Biology, Hamilton College, Clinton, NY, USA
| | - Andy Chen
- Department of Biology, Hamilton College, Clinton, NY, USA
| | - Taylor Arnoff
- Department of Biology, Hamilton College, Clinton, NY, USA
| | - Zheng-Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
105
|
Ma H, Song T, Wang T, Wang S. Influence of Human p53 on Plant Development. PLoS One 2016; 11:e0162840. [PMID: 27648563 PMCID: PMC5029891 DOI: 10.1371/journal.pone.0162840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
Mammalian p53 is a super tumor suppressor and plays a key role in guarding genome from DNA damage. However, p53 has not been found in plants which do not bear cancer although they constantly expose to ionizing radiation of ultraviolet light. Here we introduced p53 into the model plant Arabidopsis and examined p53-conferred phenotype in plant. Most strikingly, p53 caused early senescence and fasciation. In plants, fasciation has been shown as a result of the elevated homologous DNA recombination. Consistently, a reporter with overlapping segments of the GUS gene (1445) showed that the frequency of homologous recombination was highly induced in p53-transgenic plants. In contrast to p53, SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), as a negative regulator of homologous recombination in plants, is not present in mammals. Comet assay and clonogenic survival assay demonstrated that SNI1 inhibited DNA damage repair caused by either ionizing radiation or hydroxyurea in human osteosarcoma U2OS cancer cells. RAD51D is a recombinase in homologous recombination and functions downstream of SNI1 in plants. Interestingly, p53 rendered the sni1 mutants madly branching of inflorescence, a phenotype of fasciation, whereas rad51d mutant fully suppressed the p53-induced phenotype, indicating that human p53 action in plant is mediated by the SNI1-RAD51D signaling pathway. The reciprocal species-swap tests of p53 and SNI1 in human and Arabidopsis manifest that these species-specific proteins play a common role in homologous recombination across kingdoms of animals and plants.
Collapse
Affiliation(s)
- Huimin Ma
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Teng Song
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tianhua Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shui Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
- * E-mail:
| |
Collapse
|
106
|
Molla KA, Karmakar S, Chanda PK, Sarkar SN, Datta SK, Datta K. Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:105-114. [PMID: 27457988 DOI: 10.1016/j.plantsci.2016.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 05/20/2023]
Abstract
Rice sheath blight disease, caused by the fungus Rhizoctonia solani, is considered the second most important disease of rice after blast. NPR1 (non expressor of PR1) is the central regulator of systemic acquired resistance (SAR) conferring broad spectrum resistance to various pathogens. Previous reports have indicated that constitutive expression of the Arabidopsis thaliana NPR1 (AtNPR1) gene results in disease resistance in rice but has a negative impact on growth and agronomic traits. Here, we report that green tissue-specific expression of AtNPR1 in rice confers resistance to the sheath blight pathogen, with no concomitant abnormalities in plant growth and yield parameters. Elevated levels of NPR1 activated the defence pathway in the transgenic plants by inducing expression of endogenous genes such as PR1b, RC24, and PR10A. Enhanced sheath blight resistance of the transgenic plants was evaluated using three different bioassay systems. A partially isolated toxin from R. solani was used in the bioassays to measure the resistance level. Studies of the phenotype and yield showed that the transgenic plants did not exhibit any kind of phenotypic imbalances. Our results demonstrate that green tissue-specific expression of AtNPR1 is an effective strategy for controlling the sheath blight pathogen. The present work in rice can be extended to other crop plants severely damaged by the pathogen.
Collapse
Affiliation(s)
- Kutubuddin Ali Molla
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - Subhasis Karmakar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Palas Kumar Chanda
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Center for Diabetes Research, The Methodist Hospital Research Institute, 6670 Bertner, Houston, TX 77030, USA
| | - Sailendra Nath Sarkar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Swapan Kumar Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India; Visva Bharati University, Santiniketan, India
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
107
|
Gu Y, Zebell SG, Liang Z, Wang S, Kang BH, Dong X. Nuclear Pore Permeabilization Is a Convergent Signaling Event in Effector-Triggered Immunity. Cell 2016; 166:1526-1538.e11. [PMID: 27569911 DOI: 10.1016/j.cell.2016.07.042] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/15/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023]
Abstract
Nuclear transport of immune receptors, signal transducers, and transcription factors is an essential regulatory mechanism for immune activation. Whether and how this process is regulated at the level of the nuclear pore complex (NPC) remains unclear. Here, we report that CPR5, which plays a key inhibitory role in effector-triggered immunity (ETI) and programmed cell death (PCD) in plants, is a novel transmembrane nucleoporin. CPR5 associates with anchors of the NPC selective barrier to constrain nuclear access of signaling cargos and sequesters cyclin-dependent kinase inhibitors (CKIs) involved in ETI signal transduction. Upon activation by immunoreceptors, CPR5 undergoes an oligomer to monomer conformational switch, which coordinates CKI release for ETI signaling and reconfigures the selective barrier to allow significant influx of nuclear signaling cargos through the NPC. Consequently, these coordinated NPC actions result in simultaneous activation of diverse stress-related signaling pathways and constitute an essential regulatory mechanism specific for ETI/PCD induction.
Collapse
Affiliation(s)
- Yangnan Gu
- Department of Biology, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, P.O. Box 90338, Duke University, Durham, NC 27708, USA
| | - Sophia G Zebell
- Department of Biology, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, P.O. Box 90338, Duke University, Durham, NC 27708, USA
| | - Zizhen Liang
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shui Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Byung-Ho Kang
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinnian Dong
- Department of Biology, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, P.O. Box 90338, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
108
|
Choi DS, Lim CW, Hwang BK. Proteomics and functional analyses of Arabidopsis nitrilases involved in the defense response to microbial pathogens. PLANTA 2016; 244:449-465. [PMID: 27095107 DOI: 10.1007/s00425-016-2525-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
Proteomics and functional analyses of the Arabidopsis - Pseudomonas syringae pv. tomato interactions reveal that Arabidopsis nitrilases are required for plant defense and R gene-mediated resistant responses to microbial pathogens. A high-throughput in planta proteome screen has identified Arabidopsis nitrilase 2 (AtNIT2), which was de novo-induced by Pseudomonas syringae pv. tomato (Pst) infection. The AtNIT2, AtNIT3, and AtNIT4 genes, but not AtNIT1, were distinctly induced in Arabidopsis leaves by Pst infection. Notably, avirulent Pst DC3000 (avrRpt2) infection led to significant induction of AtNIT2 and AtNIT4 in leaves. Pst DC3000 and Pst DC3000 (avrRpt2) significantly grew well in leaves of nitrilase transgenic (nit2i-2) and mutant (nit1-1 and nit3-1) lines compared to the wild-type leaves. In contrast, NIT2 overexpression in nit2 mutants led to significantly high growth of the two Pst strains in leaves. The nitrilase transgenic and mutant lines exhibited enhanced susceptibility to Hyaloperonospora arabidopsidis infection. The nit2 mutation enhanced Pst DC3000 (avrRpt2) growth in salicylic acid (SA)-deficient NahG transgenic and sid2 and npr1 mutant lines. Infection with Pst DC3000 or Pst DC3000 (avrRpt2) induced lower levels of indole-3-acetic acid (IAA) in nit2i and nit2i NahG plants than in wild-type plants, but did not alter the IAA level in NahG transgenic plants. This suggests that Arabidopsis nitrilase 2 is involved in IAA signaling of defense and R gene-mediated resistance responses to Pst infection. Quantification of SA in these transgenic and mutant plants demonstrates that Arabidopsis nitrilase 2 is not required for SA-mediated defense response to the virulent Pst DC3000 but regulates SA-mediated resistance to the avirulent Pst DC3000 (avrRpt2). These results collectively suggest that Arabidopsis nitrilase genes are involved in plant defense and R gene-mediated resistant responses to microbial pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, CA, 92521, USA
| | - Chae Woo Lim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea.
| |
Collapse
|
109
|
Bektas Y, Rodriguez-Salus M, Schroeder M, Gomez A, Kaloshian I, Eulgem T. The Synthetic Elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol) Triggers Strong Immunity in Arabidopsis thaliana and Tomato. Sci Rep 2016; 6:29554. [PMID: 27412821 PMCID: PMC4944173 DOI: 10.1038/srep29554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022] Open
Abstract
Synthetic elicitors are drug-like compounds that are structurally distinct from natural defense elicitors. They can protect plants from diseases by activating host immune responses and can serve as tools for the dissection of the plant immune system as well as leads for the development of environmentally-safe pesticide alternatives. By high-throughput screening, we previously identified 114 synthetic elicitors that activate expression of the pathogen-responsive CaBP22−333::GUS reporter gene in Arabidopsis thaliana (Arabidopsis), 33 of which are [(phenylimino)methyl]phenol (PMP) derivatives or PMP-related compounds. Here we report on the characterization of one of these compounds, 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP). DPMP strongly triggers disease resistance of Arabidopsis against bacterial and oomycete pathogens. By mRNA-seq analysis we found transcriptional profiles triggered by DPMP to resemble typical defense-related responses.
Collapse
Affiliation(s)
- Yasemin Bektas
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA
| | - Melinda Rodriguez-Salus
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA.,ChemGen Intergrative Graduate Education and Research Traineeship program, program, University of California at Riverside, CA 92521, USA
| | - Mercedes Schroeder
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA.,ChemGen Intergrative Graduate Education and Research Traineeship program, program, University of California at Riverside, CA 92521, USA
| | - Adilene Gomez
- Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA
| | - Isgouhi Kaloshian
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Nematology, University of California at Riverside, CA 92521, USA
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California at Riverside, CA 92521, USA.,Department of Botany and Plant Sciences, University of California at Riverside, CA 92521, USA.,ChemGen Intergrative Graduate Education and Research Traineeship program, program, University of California at Riverside, CA 92521, USA
| |
Collapse
|
110
|
De Guglielmo C ZM, Fernandez Da Silva R. Principales promotores utilizados en la transformación genética de plantas. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n2.61529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El conocimiento pleno de los promotores determina el éxito en la obtención de nuevos cultivares de plantas a través de técnicas biotecnológicas, ya que dicha secuencia del ADN regula la transcripción de otras regiones adyacentes o cercanas, encontrándose los siguientes promotores: constitutivos, tejido-específicos o estadio-específicos, inducibles y sintéticos. En esta revisión se resume de manera precisa los conceptos, ventajas y limitaciones de los distintos tipos de promotores, con ejemplos claros de ello.Palabras clave: promotor, biotecnología vegetal, transcripción genética.
Collapse
|
111
|
Ruhe J, Agler MT, Placzek A, Kramer K, Finkemeier I, Kemen EM. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors. FRONTIERS IN PLANT SCIENCE 2016; 7:820. [PMID: 27379119 PMCID: PMC4913113 DOI: 10.3389/fpls.2016.00820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/25/2016] [Indexed: 05/23/2023]
Abstract
Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche dominance. Adaptation to host immune responses while maintaining a partially active host immunity seems advantageous against competitors. We suggest a model for future research that considers not only host-microbe but in addition microbe-microbe and microbe-host environment factors.
Collapse
Affiliation(s)
- Jonas Ruhe
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Matthew T. Agler
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | | | - Katharina Kramer
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Iris Finkemeier
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Institute of Plant Biology and Biotechnology, University of MuensterMünster, Germany
| | - Eric M. Kemen
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
112
|
Reimer-Michalski EM, Conrath U. Innate immune memory in plants. Semin Immunol 2016; 28:319-27. [PMID: 27264335 DOI: 10.1016/j.smim.2016.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
Abstract
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.
Collapse
Affiliation(s)
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen 52056, Germany.
| |
Collapse
|
113
|
Sun K, Wolters AMA, Vossen JH, Rouwet ME, Loonen AEHM, Jacobsen E, Visser RGF, Bai Y. Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Res 2016; 25:731-42. [PMID: 27233778 PMCID: PMC5023794 DOI: 10.1007/s11248-016-9964-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/21/2016] [Indexed: 01/01/2023]
Abstract
Phytophthora infestans, the causal agent of late blight, is a major threat to commercial potato production worldwide. Significant costs are required for crop protection to secure yield. Many dominant genes for resistance (R-genes) to potato late blight have been identified, and some of these R-genes have been applied in potato breeding. However, the P. infestans population rapidly accumulates new virulent strains that render R-genes ineffective. Here we introduce a new class of resistance which is based on the loss-of-function of a susceptibility gene (S-gene) encoding a product exploited by pathogens during infection and colonization. Impaired S-genes primarily result in recessive resistance traits in contrast to recognition-based resistance that is governed by dominant R-genes. In Arabidopsis thaliana, many S-genes have been detected in screens of mutant populations. In the present study, we selected 11 A. thalianaS-genes and silenced orthologous genes in the potato cultivar Desiree, which is highly susceptible to late blight. The silencing of five genes resulted in complete resistance to the P. infestans isolate Pic99189, and the silencing of a sixth S-gene resulted in reduced susceptibility. The application of S-genes to potato breeding for resistance to late blight is further discussed.
Collapse
Affiliation(s)
- Kaile Sun
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Anne-Marie A Wolters
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maarten E Rouwet
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Annelies E H M Loonen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
114
|
Thatcher LF, Cevik V, Grant M, Zhai B, Jones JDG, Manners JM, Kazan K. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2367-86. [PMID: 26896849 PMCID: PMC4809290 DOI: 10.1093/jxb/erw040] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Murray Grant
- College of Life and Environmental Sciences, University of Exeter, UK
| | - Bing Zhai
- College of Biological Sciences, China Agricultural University, Beijing 100093, China
| | | | - John M Manners
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia
| | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, Queensland 4067, Australia The Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, Brisbane, Queensland 4072, Australia
| |
Collapse
|
115
|
Jiang Y, Guo L, Liu R, Jiao B, Zhao X, Ling Z, Luo K. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling. PLoS One 2016; 11:e0149137. [PMID: 27019084 PMCID: PMC4809744 DOI: 10.1371/journal.pone.0149137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022] Open
Abstract
The plant hormones jasmonic acid (JA) and salicylic acid (SA) play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89) was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR) analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.
Collapse
Affiliation(s)
- Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
- State Key Laboratory of Forest Genetics and Tree Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Li Guo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Rui Liu
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Bo Jiao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xin Zhao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhengyi Ling
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Institute of Resources Botany, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, China
| |
Collapse
|
116
|
Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures. PLoS One 2016; 11:e0151067. [PMID: 26943362 PMCID: PMC4778906 DOI: 10.1371/journal.pone.0151067] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/23/2016] [Indexed: 12/28/2022] Open
Abstract
Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.
Collapse
Affiliation(s)
- Zhengkun Qiu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xiaoxuan Wang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jianchang Gao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yanmei Guo
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zejun Huang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yongchen Du
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
117
|
Quentin M, Baurès I, Hoefle C, Caillaud MC, Allasia V, Panabières F, Abad P, Hückelhoven R, Keller H, Favery B. The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1731-43. [PMID: 26798028 DOI: 10.1093/jxb/erv564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oomycete Hyaloperonospora arabidopsidis and the ascomycete Erysiphe cruciferarum are obligate biotrophic pathogens causing downy mildew and powdery mildew, respectively, on Arabidopsis. Upon infection, the filamentous pathogens induce the formation of intracellular bulbous structures called haustoria, which are required for the biotrophic lifestyle. We previously showed that the microtubule-associated protein AtMAP65-3 plays a critical role in organizing cytoskeleton microtubule arrays during mitosis and cytokinesis. This renders the protein essential for the development of giant cells, which are the feeding sites induced by root knot nematodes. Here, we show that AtMAP65-3 expression is also induced in leaves upon infection by the downy mildew oomycete and the powdery mildew fungus. Loss of AtMAP65-3 function in the map65-3 mutant dramatically reduced infection by both pathogens, predominantly at the stages of leaf penetration. Whole-transcriptome analysis showed an over-represented, constitutive activation of genes involved in salicylic acid (SA) biosynthesis, signaling, and defense execution in map65-3, whereas jasmonic acid (JA)-mediated signaling was down-regulated. Preventing SA synthesis and accumulation in map65-3 rescued plant susceptibility to pathogens, but not the developmental phenotype caused by cytoskeleton defaults. AtMAP65-3 thus has a dual role. It positively regulates cytokinesis, thus plant growth and development, and negatively interferes with plant defense against filamentous biotrophs. Our data suggest that downy mildew and powdery mildew stimulate AtMAP65-3 expression to down-regulate SA signaling for infection.
Collapse
Affiliation(s)
- Michaël Quentin
- INRA, Université de Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Isabelle Baurès
- INRA, Université de Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Caroline Hoefle
- Lehrstuhl für Phytopathologie, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | - Marie-Cécile Caillaud
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Valérie Allasia
- INRA, Université de Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Franck Panabières
- INRA, Université de Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Pierre Abad
- INRA, Université de Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | - Harald Keller
- INRA, Université de Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Bruno Favery
- INRA, Université de Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| |
Collapse
|
118
|
Zhang Z, Zhao J, Ding L, Zou L, Li Y, Chen G, Zhang T. Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton. Sci Rep 2016; 6:20773. [PMID: 26856318 PMCID: PMC4746735 DOI: 10.1038/srep20773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022] Open
Abstract
Fusarium and Verticillium wilts, two of the most important diseases in cotton, pose serious threats to cotton production. Here we introduced a novel antimicrobial protein Hcm1, which comprised harpin protein from Xanthomonas oryzae pv. oryzicola (Xoc), and the chimeric protein, cecropin A-melittin, into cotton. The transgenic cotton lines with stable Hcm1 expression showed a higher resistance to Verticillium and Fusarium wilts both in greenhouse and field trials compared to controls. Hcm1 enabled the transgenic cotton to produced a microscopic hypersensitive response (micro-HR), reactive oxygen species (ROS) burst, and caused the activation of pathogenesis-related (PR) genes in response to biotic stress, indicating that the transgenic cotton was in a primed state and ready to protect the host from pathogenic infection. Simultaneously, Hcm1 protein inhibited the growth of Verticillium dahliae (V. dahliae) and Fusarium oxysporum (F. oxysporum) in vitro. The spread of fungal biomass was also inhibited in vivo since the V. dahliae biomass was decreased dramatically in transgenic cotton plants after inoculation with V. dahliae. Together, these results demonstrate that Hcm1 could activate innate immunity and inhibit the growth of V. dahliae and F. oxysporum to protect cotton against Verticillium and Fusarium wilts.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jun Zhao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lingyun Ding
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lifang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Yurong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
119
|
Yu J, Zhang Y, Di C, Zhang Q, Zhang K, Wang C, You Q, Yan H, Dai SY, Yuan JS, Xu W, Su Z. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:751-62. [PMID: 26547795 PMCID: PMC4737072 DOI: 10.1093/jxb/erv487] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
JASMONATE ZIM-domain (JAZ) proteins play important roles in plant defence and growth by regulating jasmonate signalling. Through data mining, we discovered that the JAZ7 gene was up-regulated in darkness. In the dark, the jaz7 mutant displayed more severe leaf yellowing, quicker chlorophyll degradation, and higher hydrogen peroxide accumulation compared with wild-type (WT) plants. The mutant phenotype of dark-induced leaf senescence could be rescued in the JAZ7-complemented and -overexpression lines. Moreover, the double mutants of jaz7 myc2 and jaz7 coi1 exhibited delayed leaf senescence. We further employed GeneChip analysis to study the molecular mechanism. Some key genes down-regulated in the triple mutant myc2 myc3 myc4 were up-regulated in the jaz7 mutant under darkness. The Gene Ontology terms 'leaf senescence' and 'cell death' were significantly enriched in the differentially expressed genes. Combining the genetic and transcriptomic analyses together, we proposed a model whereby darkness can induce JAZ7, which might further block MYC2 to suppress dark-induced leaf senescence. In darkness, the mutation of JAZ7 might partially liberate MYC2/MYC3/MYC4 from suppression, leading the MYC proteins to bind to the G-box/G-box-like motifs in the promoters, resulting in the up-regulation of the downstream genes related to indole-glucosinolate biosynthesis, sulphate metabolism, callose deposition, and JA-mediated signalling pathways. In summary, our genetic and transcriptomic studies established the JAZ7 protein as an important regulator in dark-induced leaf senescence.
Collapse
Affiliation(s)
- Juan Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yixiang Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Chao Di
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qunlian Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Hong Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Susie Y Dai
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
120
|
Hamdoun S, Zhang C, Gill M, Kumar N, Churchman M, Larkin JC, Kwon A, Lu H. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:515-27. [PMID: 26561564 PMCID: PMC4704592 DOI: 10.1104/pp.15.01466] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/06/2015] [Indexed: 05/03/2023]
Abstract
Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions.
Collapse
Affiliation(s)
- Safae Hamdoun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Manroop Gill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Narender Kumar
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Michelle Churchman
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - John C Larkin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Ashley Kwon
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| |
Collapse
|
121
|
Rodriguez-Salus M, Bektas Y, Schroeder M, Knoth C, Vu T, Roberts P, Kaloshian I, Eulgem T. The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis. PLANT PHYSIOLOGY 2016; 170:444-58. [PMID: 26530314 PMCID: PMC4704575 DOI: 10.1104/pp.15.01058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/28/2015] [Indexed: 05/03/2023]
Abstract
Synthetic elicitors are drug-like compounds that induce plant immune responses but are structurally distinct from natural defense elicitors. Using high-throughput screening, we previously identified 114 synthetic elicitors that activate the expression of a pathogen-responsive reporter gene in Arabidopsis (Arabidopsis thaliana). Here, we report on the characterization of one of these compounds, 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid (BHTC). BHTC induces disease resistance of plants against bacterial, oomycete, and fungal pathogens and has a unique mode of action and structure. Surprisingly, we found that low doses of BHTC enhanced root growth in Arabidopsis, while high doses of this compound inhibited root growth, besides inducing defense. These effects are reminiscent of the hormetic response, which is characterized by low-dose stimulatory effects of a wide range of agents that are toxic or inhibitory at higher doses. Like its effects on defense, BHTC-induced hormesis in Arabidopsis roots is partially dependent on the WRKY70 transcription factor. Interestingly, BHTC-induced root hormesis is also affected in the auxin-response mutants axr1-3 and slr-1. By messenger RNA sequencing, we uncovered a dramatic difference between transcriptional profiles triggered by low and high doses of BHTC. Only high levels of BHTC induce typical defense-related transcriptional changes. Instead, low BHTC levels trigger a coordinated intercompartmental transcriptional response manifested in the suppression of photosynthesis- and respiration-related genes in the nucleus, chloroplasts, and mitochondria as well as the induction of development-related nuclear genes. Taken together, our functional characterization of BHTC links defense regulation to hormesis and provides a hypothetical transcriptional scenario for the induction of hormetic root growth.
Collapse
Affiliation(s)
- Melinda Rodriguez-Salus
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Yasemin Bektas
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Mercedes Schroeder
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Colleen Knoth
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Trang Vu
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Philip Roberts
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Isgouhi Kaloshian
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| | - Thomas Eulgem
- ChemGen Integrative Graduate Education and Research Traineeship Program (M.R.-S., M.S., C.K., T.E.), Center for Plant Cell Biology, Institute for Integrative Genome Biology (M.R.-S., Y.B., M.S., C.K., I.K., T.E.), Department of Botany and Plant Sciences (M.R.-S., Y.B., M.S., C.K., T.V., T.E.), and Department of Nematology (P.R., I.K.), University of California, Riverside, California 92521
| |
Collapse
|
122
|
Bernsdorff F, Döring AC, Gruner K, Schuck S, Bräutigam A, Zeier J. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. THE PLANT CELL 2016; 28:102-29. [PMID: 26672068 PMCID: PMC4746677 DOI: 10.1105/tpc.15.00496] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/30/2015] [Accepted: 12/13/2015] [Indexed: 05/18/2023]
Abstract
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants.
Collapse
Affiliation(s)
- Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Anne-Christin Döring
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute for Plant Biochemistry, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
123
|
Lemarié S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Jubault M, Manzanares-Dauleux MJ, Gravot A. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:2158-68. [PMID: 26363358 DOI: 10.1093/pcp/pcv127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 05/18/2023]
Abstract
The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.
Collapse
Affiliation(s)
| | | | | | | | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2) Centre de Recherche Angers Nantes BIA, INRA de Rennes, F-35653 Le Rheu, France
| | | | | | - Antoine Gravot
- Université Rennes 1, UMR1349 IGEPP, F-35000 Rennes, France
| |
Collapse
|
124
|
Kato H, Komeda Y, Saito T, Ito H, Kato A. Role of the ACL2 locus in flower stalk elongation in Arabidopsis thaliana. Genes Genet Syst 2015; 90:163-74. [PMID: 26510571 DOI: 10.1266/ggs.90.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The acaulis2 (acl2) mutant of Arabidopsis thaliana shows a defect in flower stalk elongation. We identified the mutation point of acl2 by map-based cloning. The ACL2 locus is located within an approximately 320-kb region at around 100 map units on chromosome 1. One nucleotide substitution was detected in this region in the acl2 mutant, but no significant open reading frames were found around this mutation point. When wild-type DNA fragments containing the mutation point were introduced into acl2 mutant plants, some transgenic plants partially or almost completely recovered from the defect in flower stalk elongation. 3'-RACE experiments showed that bidirectional transcripts containing the acl2 mutation point were expressed, and the Plant MPSS database revealed that several small RNAs were produced from this region. Microarray analysis showed that transcription of many genes is activated in flower stalks of acl2 mutant plants. Overexpression of some of these genes caused a dwarf phenotype in wild-type plants. These results suggest the following novel mechanism for control of the elongation of flower stalks. Bidirectional non-coding RNAs are transcribed from the ACL2 locus, and small RNAs are generated from them in flower stalks. These small RNAs repress the transcription of a set of genes whose expression represses flower stalk elongation, and flower stalks are therefore fully elongated.
Collapse
Affiliation(s)
- Hiroaki Kato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University
| | | | | | | | | |
Collapse
|
125
|
Liu J, Yang H, Bao F, Ao K, Zhang X, Zhang Y, Yang S. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis. PLoS Genet 2015; 11:e1005584. [PMID: 26451844 PMCID: PMC4599859 DOI: 10.1371/journal.pgen.1005584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR)-type resistance (R) protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains) domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5), which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1) to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1), RPS4 (Resistance to P. syringae 4) and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1). Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses. Resistance (R) genes play central roles in recognizing pathogens and triggering plant defense responses. CHS3 encodes a TIR-NB-LRR-type R protein harboring a C-terminal LIM domain. A point mutation in CHS3 activates the defense response under chilling stress. Here we identified and characterized ibr5-7, a mutant that suppresses the chilling-induced defense responses of chs3-1. We observed that the enhanced defense responses and cell death in the chs3-1 mutant are synergistically dependent on IBR5 and HSP90. IBR5 physically interacts with CHS3, forming a complex with SGT1b/ HSP90. Moreover, IBR5 is also involved in the R-gene resistance mediated by SNC1, RPS4 and RPM1. Thus, IBR5 plays key roles in regulating defense responses mediated by multiple R proteins.
Collapse
Affiliation(s)
- Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Haibian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Fei Bao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Kevin Ao
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shuhua Yang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
126
|
Singhal P, Jan AT, Azam M, Haq QMR. Plant abiotic stress: a prospective strategy of exploiting promoters as alternative to overcome the escalating burden. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1077478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
127
|
Assembly and Analysis of Differential Transcriptome Responses of Hevea brasiliensis on Interaction with Microcyclus ulei. PLoS One 2015; 10:e0134837. [PMID: 26287380 PMCID: PMC4564276 DOI: 10.1371/journal.pone.0134837] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Natural rubber (Hevea brasiliensis) is a tropical tree used commercially for the production of latex, from which 40,000 products are generated. The fungus Microcyclus ulei infects this tree, causing South American leaf blight (SALB) disease. This disease causes developmental delays and significant crop losses, thereby decreasing the production of latex. Currently several groups are working on obtaining clones of rubber tree with durable resistance to SALB through the use of extensive molecular biology techniques. In this study, we used a secondary clone that was resistant to M. ulei isolate GCL012. This clone, FX 3864 was obtained by crossing between clones PB 86 and B 38 (H. brasiliensis x H. brasiliensis). RNA-Seq high-throughput sequencing technology was used to analyze the differential expression of the FX 3864 clone transcriptome at 0 and 48 h post infection (hpi) with the M. ulei isolate GCL012. A total of 158,134,220 reads were assembled using the de novo assembly strategy to generate 90,775 contigs with an N50 of 1672. Using a reference-based assembly, 76,278 contigs were generated with an N50 of 1324. We identified 86 differentially expressed genes associated with the defense response of FX 3864 to GCL012. Seven putative genes members of the AP2/ERF ethylene (ET)-dependent superfamily were found to be down-regulated. An increase in salicylic acid (SA) was associated with the up-regulation of three genes involved in cell wall synthesis and remodeling, as well as in the down-regulation of the putative gene CPR5. The defense response of FX 3864 against the GCL012 isolate was associated with the antagonistic SA, ET and jasmonic acid (JA) pathways. These responses are characteristic of plant resistance to biotrophic pathogens.
Collapse
|
128
|
Naseem M, Kaltdorf M, Dandekar T. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4885-96. [PMID: 26109575 DOI: 10.1093/jxb/erv297] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants deploy a finely tuned balance between growth and defence responses for better fitness. Crosstalk between defence signalling hormones such as salicylic acid (SA) and jasmonates (JAs) as well as growth regulators plays a significant role in mediating the trade-off between growth and defence in plants. Here, we specifically discuss how the mutual antagonism between the signalling of auxin and SA impacts on plant growth and defence. Furthermore, the synergism between auxin and JA benefits a class of plant pathogens. JA signalling also poses growth cuts through auxin. We discuss how the effect of cytokinins (CKs) is multifaceted and is effective against a broad range of pathogens in mediating immunity. The synergism between CKs and SA promotes defence against biotrophs. Reciprocally, SA inhibits CK-mediated growth responses. Recent reports show that CKs promote JA responses; however, in a feedback loop, JA suppresses CK responses. We also highlight crosstalk between auxin and CKs and discuss their antagonistic effects on plant immunity. Efforts to minimize the negative effects of auxin on immunity and a reduction in SA- and JA-mediated growth losses should lead to better sustainable plant protection strategies.
Collapse
Affiliation(s)
- Muhammad Naseem
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany
| | - Martin Kaltdorf
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany
| |
Collapse
|
129
|
Bao Z, Hua J. Linking the Cell Cycle with Innate Immunity in Arabidopsis. MOLECULAR PLANT 2015; 8:980-2. [PMID: 25843011 DOI: 10.1016/j.molp.2015.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/22/2015] [Accepted: 03/30/2015] [Indexed: 05/05/2023]
Affiliation(s)
- Zhilong Bao
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
130
|
Duan Y, Jiang Y, Ye S, Karim A, Ling Z, He Y, Yang S, Luo K. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. PLANT CELL REPORTS 2015; 34:831-41. [PMID: 25627252 PMCID: PMC4405351 DOI: 10.1007/s00299-015-1745-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/28/2014] [Accepted: 01/12/2015] [Indexed: 05/18/2023]
Abstract
A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.
Collapse
Affiliation(s)
- Yanjiao Duan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Shenglong Ye
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Abdul Karim
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Zhengyi Ling
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Yunqiu He
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Siqi Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, School of Life Sciences, Institute of Resources Botany, Southwest University, No. 1, Tiansheng Road, Beibei, 400715 Chongqing China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008 China
| |
Collapse
|
131
|
Hao J, Wu W, Wang Y, Yang Z, Liu Y, Lv Y, Zhai Y, Yang J, Liang Z, Huang K, Xu W. Arabidopsis thaliana defense response to the ochratoxin A-producing strain (Aspergillus ochraceus 3.4412). PLANT CELL REPORTS 2015; 34:705-19. [PMID: 25666274 DOI: 10.1007/s00299-014-1731-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/29/2014] [Accepted: 12/05/2014] [Indexed: 05/20/2023]
Abstract
OTA-producing strain Aspergillus ochraceus induced necrotic lesions, ROS accumulation and defense responses in Arabidopsis . Primary metabolic and defense-related proteins changed in proteomics. Ascorbate-glutathione cycle and voltage-dependent anion-selective channel proteins fluctuated. Mycotoxigenic fungi, as widespread contaminants by synthesizing mycotoxins in pre-/post-harvest infected plants and even stored commercial cereals, could usually induce plant-fungi defense responses. Notably, ochratoxin A (OTA) is a nephrotoxic, hepatotoxic, teratogenic, immunotoxic and phytotoxic mycotoxin. Herein, defense responses of model system Arabidopsis thaliana detached leaves to infection of Aspergillus ochraceus 3.4412, an OTA high-producing strain, were studied from physiological, proteomic and transcriptional perspectives. During the first 72 h after inoculation (hai), the newly formed hypersensitive responses-like lesions, decreased chlorophyll content, accumulated reactive oxygen species and upregulated defense genes expressions indicated the defense response was induced in the leaves with the possible earlier motivated jasmonic acid/ethylene signaling pathways and the later salicylic acid-related pathway. Moreover, proteomics using two-dimensional gel electrophoresis 72 hai showed 16 spots with significantly changed abundance and 13 spots corresponding to 12 unique proteins were successfully identified by MALDI-TOF/TOF MS/MS. Of these, six proteins were involved in basic metabolism and four in defense-related processes, which included glutathione-S-transferase F7, voltage-dependent anion-selective channel protein 3 (VDAC-3), osmotin-like protein OSM34 and blue copper-binding protein. Verified from proteomic and/or transcriptional perspectives, it is concluded that the primary metabolic pathways were suppressed with the ascorbate-glutathione cycle fluctuated in response to A. ochraceus and the modulation of VDACs suggested the possibility of structural damage and dysfunction of mitochondria in the process. Taken together, these findings exhibited a dynamic overview of the defense responses of A. thaliana to A. ochraceus and provided a better insight into the pathogen-resistance mechanisms in plants.
Collapse
Affiliation(s)
- Junran Hao
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Wu J, Sun Y, Zhao Y, Zhang J, Luo L, Li M, Wang J, Yu H, Liu G, Yang L, Xiong G, Zhou JM, Zuo J, Wang Y, Li J. Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Res 2015; 25:621-33. [PMID: 25906995 PMCID: PMC4423084 DOI: 10.1038/cr.2015.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/06/2015] [Accepted: 02/27/2015] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death (PCD) is of fundamental importance to development and defense in animals and plants. In plants, a well-recognized form of PCD is hypersensitive response (HR) triggered by pathogens, which involves the generation of reactive oxygen species (ROS) and other signaling molecules. While the mitochondrion is a master regulator of PCD in animals, the chloroplast is known to regulate PCD in plants. Arabidopsis Mosaic Death 1 (MOD1), an enoyl-acyl carrier protein (ACP) reductase essential for fatty acid biosynthesis in chloroplasts, negatively regulates PCD in Arabidopsis. Here we report that PCD in mod1 results from accumulated ROS and can be suppressed by mutations in mitochondrial complex I components, and that the suppression is confirmed by pharmaceutical inhibition of the complex I-generated ROS. We further show that intact mitochondria are required for full HR and optimum disease resistance to the Pseudomonas syringae bacteria. These findings strongly indicate that the ROS generated in the electron transport chain in mitochondria plays a key role in triggering plant PCD and highlight an important role of the communication between chloroplast and mitochondrion in the control of PCD in plants.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuefeng Sun
- 1] State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China [2] Current address: Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33612, USA
| | - Yannan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinlong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liusha Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
133
|
Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci U S A 2015; 112:5533-8. [PMID: 25870275 DOI: 10.1073/pnas.1504154112] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.
Collapse
|
134
|
Swain S, Singh N, Nandi AK. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant. J Biosci 2015; 40:137-46. [DOI: 10.1007/s12038-014-9498-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
135
|
Gargul JM, Mibus H, Serek M. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:51-61. [PMID: 25082411 DOI: 10.1111/pbi.12234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 05/02/2023]
Abstract
The establishment of alternative methods to chemical treatments for growth retardation and pathogen protection in ornamental plant production has become a major goal in recent breeding programmes. This study evaluates the effect of manipulating MAP kinase 4 nuclear substrate 1 (MKS1) expression in Kalanchoë blossfeldiana and Petunia hybrida. The Arabidopsis thaliana MKS1 gene was overexpressed in both species via Agrobacterium-mediated transformation, resulting in dwarfed phenotypes and delayed flowering in both species and increased tolerance to Pseudomonas syringae pv. tomato in transgenic Petunia plants. The lengths of the stems and internodes were decreased, while the number of nodes in the transgenic plants was similar to that of the control plants in both species. The transgenic Kalanchoë flowers had an increased anthocyanin concentration, and the length of the inflorescence stem was decreased. The morphology of transgenic Petunia flowers was not altered. The results of the Pseudomonas syringae tolerance test showed that Petunia plants with one copy of the transgene reacted similarly to the nontransgenic control plants; however, plants with four copies of the transgene exhibited considerably higher tolerance to bacterial attack. Transgene integration and expression was determined by Southern blot hybridization and RT-PCR analyses. MKS1 in wild-type Petunia plants was down-regulated through a virus-induced gene silencing (VIGS) method using tobacco rattle virus vectors. There were no significant phenotypic differences between the plants with silenced MKS1 genes and the controls. The relative concentration of the MKS1 transcript in VIGS-treated plants was estimated by quantitative RT-PCR.
Collapse
Affiliation(s)
- Joanna Maria Gargul
- Horticulture Production Systems, Section Floriculture, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | | | | |
Collapse
|
136
|
Bruggeman Q, Raynaud C, Benhamed M, Delarue M. To die or not to die? Lessons from lesion mimic mutants. FRONTIERS IN PLANT SCIENCE 2015; 6:24. [PMID: 25688254 PMCID: PMC4311611 DOI: 10.3389/fpls.2015.00024] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting in an activation of finely controlled signaling pathways that lead to cellular suicide. Although some aspects of PCD control appear evolutionary conserved between plants, animals and fungi, the extent of conservation remains controversial. Over the last decades, identification and characterization of several lesion mimic mutants (LMM) has been a powerful tool in the quest to unravel PCD pathways in plants. Thanks to progress in molecular genetics, mutations causing the phenotype of a large number of LMM and their related suppressors were mapped, and the identification of the mutated genes shed light on major pathways in the onset of plant PCD such as (i) the involvements of chloroplasts and light energy, (ii) the roles of sphingolipids and fatty acids, (iii) a signal perception at the plasma membrane that requires efficient membrane trafficking, (iv) secondary messengers such as ion fluxes and ROS and (v) the control of gene expression as the last integrator of the signaling pathways.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- *Correspondence: Marianne Delarue, Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant Sciences, Bâtiment 630, Route de Noetzlin, 91405 Orsay Cedex, France e-mail:
| |
Collapse
|
137
|
Wang S, Gu Y, Zebell SG, Anderson LK, Wang W, Mohan R, Dong X. A noncanonical role for the CKI-RB-E2F cell-cycle signaling pathway in plant effector-triggered immunity. Cell Host Microbe 2014; 16:787-94. [PMID: 25455564 DOI: 10.1016/j.chom.2014.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/22/2014] [Accepted: 10/03/2014] [Indexed: 11/26/2022]
Abstract
Effector-triggered immunity (ETI), the major host defense mechanism in plants, is often associated with programmed cell death (PCD). Plants lack close homologs of caspases, the key mediators of PCD in animals. So although the NB-LRR receptors involved in ETI are well studied, how they activate PCD and confer disease resistance remains elusive. We show that the Arabidopsis nuclear envelope protein, CPR5, negatively regulates ETI and the associated PCD through a physical interaction with cyclin-dependent kinase inhibitors (CKIs). Upon ETI induction, CKIs are released from CPR5 to cause overactivation of another core cell-cycle regulator, E2F. In cki and e2f mutants, ETI responses induced by both TIR-NB-LRR and CC-NB-LRR classes of immune receptors are compromised. We further show that E2F is deregulated during ETI, probably through CKI-mediated hyperphosphorylation of retinoblastoma-related 1 (RBR1). This study demonstrates that canonical cell-cycle regulators also play important noncanonical roles in plant immunity.
Collapse
Affiliation(s)
- Shui Wang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Department of Biology, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, P.O. Box 90338, Duke University, Durham, NC 27708, USA.
| | - Yangnan Gu
- Department of Biology, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, P.O. Box 90338, Duke University, Durham, NC 27708, USA
| | - Sophia G Zebell
- Department of Biology, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, P.O. Box 90338, Duke University, Durham, NC 27708, USA
| | - Lisa K Anderson
- Department of Biology, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, P.O. Box 90338, Duke University, Durham, NC 27708, USA
| | - Wei Wang
- Department of Biology, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, P.O. Box 90338, Duke University, Durham, NC 27708, USA
| | - Rajinikanth Mohan
- Department of Biology, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, P.O. Box 90338, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Department of Biology, Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, P.O. Box 90338, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
138
|
Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:16955-60. [PMID: 25368167 DOI: 10.1073/pnas.1410031111] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by a wide range of plant-associated microorganisms. They are best known for their cytotoxicity in dicot plants that leads to the induction of rapid tissue necrosis and plant immune responses. The biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis encodes 10 different noncytotoxic NLPs (HaNLPs) that do not cause necrosis. We discovered that these noncytotoxic NLPs, however, act as potent activators of the plant immune system in Arabidopsis thaliana. Ectopic expression of HaNLP3 in Arabidopsis triggered resistance to H. arabidopsidis, activated the expression of a large set of defense-related genes, and caused a reduction of plant growth that is typically associated with strongly enhanced immunity. N- and C-terminal deletions of HaNLP3, as well as amino acid substitutions, pinpointed to a small central region of the protein that is required to trigger immunity, indicating the protein acts as a microbe-associated molecular pattern (MAMP). This was confirmed in experiments with a synthetic peptide of 24 aa, derived from the central part of HaNLP3 and corresponding to a conserved region in type 1 NLPs that induces ethylene production, a well-known MAMP response. Strikingly, corresponding 24-aa peptides of fungal and bacterial type 1 NLPs were also able to trigger immunity in Arabidopsis. The widespread phylogenetic distribution of type 1 NLPs makes this protein family (to our knowledge) the first proteinaceous MAMP identified in three different kingdoms of life.
Collapse
|
139
|
Muralidharan S, Box MS, Sedivy EL, Wigge PA, Weigel D, Rowan BA. Different mechanisms for Arabidopsis thaliana hybrid necrosis cases inferred from temperature responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:1033-1041. [PMID: 24641593 DOI: 10.1111/plb.12164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Temperature is a major determinant of plant growth, development and success. Understanding how plants respond to temperature is particularly relevant in a warming climate. Plant immune responses are often suppressed above species-specific critical temperatures. This is also true for intraspecific hybrids of Arabidopsis thaliana that express hybrid necrosis due to inappropriate activation of the immune system caused by epistatic interactions between alleles from different genomes. The relationship between temperature and defence is unclear, largely due to a lack of studies that assess immune activation over a wide range of temperatures. To test whether the temperature-based suppression of ectopic immune activation in hybrids exhibits a linear or non-linear relationship, we characterised the molecular and morphological phenotypes of two different necrotic A. thaliana hybrids over a range of ecologically relevant temperatures. We found both linear and non-linear responses for expression of immunity markers and for morphological defects depending on the underlying genetic cause. This suggests that the influence of temperature on the trade-off between immunity and growth depends on the specific defence components involved.
Collapse
Affiliation(s)
- S Muralidharan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
140
|
Ye S, Jiang Y, Duan Y, Karim A, Fan D, Yang L, Zhao X, Yin J, Luo K. Constitutive expression of the poplar WRKY transcription factor PtoWRKY60 enhances resistance to Dothiorella gregaria Sacc. in transgenic plants. TREE PHYSIOLOGY 2014; 34:1118-29. [PMID: 25281841 DOI: 10.1093/treephys/tpu079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
WRKY proteins are involved in various physiological processes in plants, especially in coping with diverse biotic and abiotic stresses. However, limited information is available on the roles of specific WRKY transcription factors in poplar defense. In this study, we reported the characterization of PtoWRKY60, a Group IIa WRKY member, from Populus tomentosa Carr. The gene expression profile of PtoWRKY60 in various tissues showed that it significantly accumulated in old leaves. Phylogenetic analyses revealed that PtoWRKY60 had a close relationship with AtWRKY18, AtWRKY40 and AtWRKY60. PtoWRKY60 was induced mainly by salicylic acid (SA) and slightly by Dothiorella gregaria Sacc., jasmonic acid, wounding treatment, low temperature and salinity stresses. Overexpression of PtoWRKY60 in poplar resulted in increased resistance to D. gregaria. The defense-associated genes, such as PR5.1, PR5.2, PR5.4, PR5.5 and CPR5, were markedly up-regulated in transgenic plants overexpressing PtoWRKY60. These results indicate that PtoWRKY60 might be partly involved in the signal transduction pathway initiated by SA in Populus.
Collapse
Affiliation(s)
- Shenglong Ye
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Yuanzhong Jiang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Yanjiao Duan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Abdul Karim
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Di Fan
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Li Yang
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xin Zhao
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Jia Yin
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Keming Luo
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Transgenic Plant and Safety Control, Institute of Resources Botany, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
141
|
Hauser MT. Molecular basis of natural variation and environmental control of trichome patterning. FRONTIERS IN PLANT SCIENCE 2014; 5:320. [PMID: 25071803 PMCID: PMC4080826 DOI: 10.3389/fpls.2014.00320] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/17/2014] [Indexed: 05/17/2023]
Abstract
Trichomes are differentiated epidermal cells on above ground organs of nearly all land plants. They play important protective roles as structural defenses upon biotic attacks such as herbivory, oviposition and fungal infections, and against abiotic stressors such as drought, heat, freezing, excess of light, and UV radiation. The pattern and density of trichomes is highly variable within natural population suggesting tradeoffs between traits positively affecting fitness such as resistance and the costs of trichome production. The spatial distribution of trichomes is regulated through a combination of endogenous developmental programs and external signals. This review summarizes the current understanding on the molecular basis of the natural variation and the role of phytohormones and environmental stimuli on trichome patterning.
Collapse
Affiliation(s)
- Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| |
Collapse
|
142
|
Gawroński P, Witoń D, Vashutina K, Bederska M, Betliński B, Rusaczonek A, Karpiński S. Mitogen-activated protein kinase 4 is a salicylic acid-independent regulator of growth but not of photosynthesis in Arabidopsis. MOLECULAR PLANT 2014; 7:1151-66. [PMID: 24874867 DOI: 10.1093/mp/ssu060] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate signal transduction from different cellular compartments and from the extracellular environment to the nucleus in all eukaryotes. One of the best-characterized MAPKs in Arabidopsis thaliana is MPK4, which was shown to be a negative regulator of systemic-acquired resistance. The mpk4 mutant accumulates salicylic acid (SA), possesses constitutive expression of pathogenesis-related (PR) genes, and has an extremely dwarf phenotype. We show that suppression of SA and phylloquinone synthesis in chloroplasts by knocking down the ICS1 gene (by crossing it with the ics1 mutant) in the mpk4 mutant background did not revert mpk4-impaired growth. However, it did cause changes in the photosynthetic apparatus and severely impaired the quantum yield of photosystem II. Transmission microscopy analysis revealed that the chloroplasts' structure was strongly altered in the mpk4 and mpk4/ics1 double mutant. Analysis of reactive oxygen species (ROS)-scavenging enzymes expression showed that suppression of SA and phylloquinone synthesis in the chloroplasts of the mpk4 mutant caused imbalances in ROS homeostasis which were more pronounced in mpk4/ics1 than in mpk4. Taken together, the presented results strongly suggest that MPK4 is an ROS/hormonal rheostat hub that negatively, in an SA-dependent manner, regulates immune defenses, but at the same time positively regulates photosynthesis, ROS metabolism, and growth. Therefore, we concluded that MPK4 is a complex regulator of chloroplastic retrograde signaling for photosynthesis, growth, and immune defenses in Arabidopsis.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Kateryna Vashutina
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Magdalena Bederska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Błażej Betliński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| |
Collapse
|
143
|
Lai Y, Dang F, Lin J, Yu L, Lin J, Lei Y, Chen C, Liu Z, Qiu A, Mou S, Guan D, Wu Y, He S. Overexpression of a pepper CaERF5 gene in tobacco plants enhances resistance to Ralstonia solanacearum infection. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:758-767. [PMID: 32481030 DOI: 10.1071/fp13305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/13/2014] [Indexed: 05/11/2023]
Abstract
ETHYLENE RESPONSE FACTORs (ERF) transcription factors (TFs) constitute a large transcriptional regulator family belonging to the AP2/ERF superfamily and are implicated in a range of biological processes. However, the specific roles of individual ERF family members in biotic or abiotic stress responses and the underlying molecular mechanism still need to be elucidated. In the present study, a cDNA encoding a member of ethylene response factor (ERF) transcription factor, CaERF5, was isolated from pepper. Sequence analysis showed that CaERF5 contains a typical 59 amino acid AP2/ERF DNA-binding domain, two highly conserved amino acid residues (14th alanine (A) and 19th aspartic acid (D)), a putative nuclear localisation signal (NLS), a CMIX-2 motif in the N-terminal region and two putative MAP kinase phosphorylation site CMIX-5 and CMIX-6 motifs. It belongs to group IXb of the ERF subfamily. A CaERF5-green fluorescence protein (GFP) fusion transiently expressed in onion epidermal cells localised to the nucleus. CaERF5 transcripts were induced by Ralstonia solanacearum infection, salicylic acid (SA), methyl jasmonate (MeJA) and ethephon (ETH) treatments. Constitutive expression of the CaERF5 gene in tobacco plants upregulated transcript levels of a set of defence- related genes and enhanced resistance to R. solanacearum infection. Our results suggest that CaERF5 acts as a positive regulator in plant resistance to R. solanacearum infection and show that overexpression of this transcription factor can be used as a tool to enhance disease resistance in crop species.
Collapse
Affiliation(s)
- Yan Lai
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fengfeng Dang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jing Lin
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lu Yu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jinhui Lin
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yufen Lei
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chengcong Chen
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhiqin Liu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ailian Qiu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shaoliang Mou
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Deyi Guan
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yang Wu
- Jinggangshan University, Jian, Jiangxi 343009, China
| | - Shuilin He
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
144
|
Bao Z, Hua J. Interaction of CPR5 with cell cycle regulators UVI4 and OSD1 in Arabidopsis. PLoS One 2014; 9:e100347. [PMID: 24945150 PMCID: PMC4063785 DOI: 10.1371/journal.pone.0100347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 05/24/2014] [Indexed: 12/28/2022] Open
Abstract
The impact of cell cycle on plant immunity was indicated by the enhancement of disease resistance with overexpressing OSD1 and UVI4 genes that are negative regulators of cell cycle controller APC (anaphase promoting complex). CPR5 is another gene that is implicated in cell cycle regulation and plant immunity, but its mode of action is not known. Here we report the analysis of genetic requirement for the function of UVI4 and OSD1 in cell cycle progression control and in particular the involvement of CPR5 in this regulation. We show that the APC activator CCS52A1 partially mediates the function of OSD1 and UVI4 in female gametophyte development. We found that the cpr5 mutation suppresses the endoreduplication defect in the uvi4 single mutant and partially rescued the gametophyte development defect in the osd1 uvi4 double mutant while the uvi4 mutation enhances the cpr5 defects in trichome branching and plant disease resistance. In addition, cyclin B1 genes CYCB1;1, CYCB1;2, and CYCB1;4 are upregulated in cpr5. Therefore, CPR5 has a large role in cell cycle regulation and this role has a complex interaction with that of UVI4 and OSD1. This study further indicates an intrinsic link between plant defense responses and cell cycle progression.
Collapse
Affiliation(s)
- Zhilong Bao
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
145
|
Giri MK, Swain S, Gautam JK, Singh S, Singh N, Bhattacharjee L, Nandi AK. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:860-7. [PMID: 24612849 DOI: 10.1016/j.jplph.2013.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 05/09/2023]
Abstract
The Arabidopsis genome contains a large number of putative transcription factors, containing a DNA binding domain similar to APETALA2/ethylene response element binding protein (AP2/EREBP), for most of which a function is not known. Phylogenetic analysis divides the Apetala 2 (AP2) super-family into 5 major groups: AP2, RAV, ethylene response factor (ERF), dehydration response element binding protein (DREB) and At4g13040. Similar to ERF and DREB, the At4g13040 protein contains only one AP2 domain; however, its structural uniqueness places it into a distinct group. In this article, we report that At4g13040 (referred herein as Apetala 2 family protein involved in SA mediated disease defense 1 - APD1) is an important regulator for SA mediated plant defense. The APD1 gene is upregulated upon pathogen inoculation, exogenous SA application and in the mutant that constitutively activates SA signaling. The T-DNA insertion lines (inserted in the APD1 promoter), which fail to induce expression upon pathogen inoculation, are compromised for resistance against virulent bacterial pathogens and show reduced induction of pathogenesis related 1 gene. Our results suggest that APD1 functions downstream of PAD4 in Arabidopsis and promotes pathogen-induced SA accumulation. Exogenous SA application completely restores the loss-of-resistance phenotype of the apd1 mutant. Thus, APD1 is a positive regulator of disease defense that functions upstream of SA accumulation.
Collapse
Affiliation(s)
- Mrunmay Kumar Giri
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swadhin Swain
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Janesh Kumar Gautam
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Subaran Singh
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nidhi Singh
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Lipika Bhattacharjee
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashis Kumar Nandi
- Room #415, School of life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
146
|
Bruggeman Q, Garmier M, de Bont L, Soubigou-Taconnat L, Mazubert C, Benhamed M, Raynaud C, Bergounioux C, Delarue M. The Polyadenylation Factor Subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A Key Factor of Programmed Cell Death and a Regulator of Immunity in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:732-746. [PMID: 24706550 PMCID: PMC4044851 DOI: 10.1104/pp.114.236083] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/02/2014] [Indexed: 05/20/2023]
Abstract
Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. Indeed, incompatible plant-pathogen interactions are well known to induce the hypersensitive response, a localized cell death. Mutational analyses have identified several key PCD components, and we recently identified the mips1 mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for the key enzyme catalyzing the limiting step of myoinositol synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD, revealing roles for myoinositol or inositol derivatives in the regulation of PCD. Here, we identified a regulator of plant PCD by screening for mutants that display transcriptomic profiles opposing that of the mips1 mutant. Our screen identified the oxt6 mutant, which has been described previously as being tolerant to oxidative stress. In the oxt6 mutant, a transfer DNA is inserted in the CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30 (CPSF30) gene, which encodes a polyadenylation factor subunit homolog. We show that CPSF30 is required for lesion formation in mips1 via SA-dependent signaling, that the prodeath function of CPSF30 is not mediated by changes in the glutathione status, and that CPSF30 activity is required for Pseudomonas syringae resistance. We also show that the oxt6 mutation suppresses cell death in other lesion-mimic mutants, including lesion-simulating disease1, mitogen-activated protein kinase4, constitutive expressor of pathogenesis-related genes5, and catalase2, suggesting that CPSF30 and, thus, the control of messenger RNA 3' end processing, through the regulation of SA production, is a key component of plant immune responses.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Marie Garmier
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Linda de Bont
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Ludivine Soubigou-Taconnat
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Christelle Mazubert
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Moussa Benhamed
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Cécile Raynaud
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Catherine Bergounioux
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Marianne Delarue
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| |
Collapse
|
147
|
Song J, Bent AF. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLoS Pathog 2014; 10:e1004030. [PMID: 24699527 PMCID: PMC3974866 DOI: 10.1371/journal.ppat.1004030] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/12/2014] [Indexed: 02/08/2023] Open
Abstract
Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs) in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS) is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues. Multicellular organisms are continuously exposed to microbes and have developed sophisticated defense mechanisms to counter attack by microbial pathogens. Organisms also encounter many types of DNA damage and have evolved multiple mechanisms to maintain their genomic integrity. Even though these two fundamental responses have been characterized extensively, the relationship between them remains largely unclear. Our study demonstrates that microbial plant pathogens with diverse life styles, including bacteria, oomycete and fungal pathogens, induce double-strand breaks (DSBs) in the genomes of infected host plant cells. DSB induction is apparently a common feature during plant-pathogen interactions. DSBs are the most deleterious form of DNA damage and can lead to chromosomal aberrations and gene mutations. In response to pathogen infection, plant immune responses are activated and contribute to suppressing pathogen-induced DSBs, thereby maintaining better genome integrity and stability. The findings identify important ways that the plant immune and DNA damage repair responses are interconnected. Awareness of the above phenomena may foster future development of disease management approaches that improve crop productivity under biotic stress.
Collapse
Affiliation(s)
- Junqi Song
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Andrew F. Bent
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
148
|
Hu M, Pei BL, Zhang LF, Li YZ. Histone H2B monoubiquitination is involved in regulating the dynamics of microtubules during the defense response to Verticillium dahliae toxins in Arabidopsis. PLANT PHYSIOLOGY 2014; 164:1857-65. [PMID: 24567190 PMCID: PMC3982748 DOI: 10.1104/pp.113.234567] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/21/2014] [Indexed: 05/17/2023]
Abstract
Histone H2B monoubiquitination (H2Bub) is being recognized as a regulatory mechanism that controls a range of cellular processes in plants, but the molecular mechanisms of H2Bub that are involved in responses to biotic stress are largely unknown. In this study, we used wild-type and H2Bub loss-of-function mutations of Arabidopsis (Arabidopsis thaliana) to elucidate which of its mechanisms are involved in the regulation of the plant's defense response to Verticillium dahliae (Vd) toxins. We demonstrate that the depolymerization of the cortical microtubules (MTs) was different in the wild type and the mutants in the response to Vd toxins. The loss-of-function alleles of HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 mutations present a weaker depolymerization of the MTs, and protein tyrosine phosphorylation plays a critical role in the regulation of the dynamics of MTs. Moreover, H2Bub is a positive regulator of the gene expression of protein tyrosine phosphatases. These findings provide direct evidence for H2Bub as an important modification with regulatory roles in the defense against Vd toxins and demonstrate that H2Bub is involved in modulating the dynamics of MTs, likely through the protein tyrosine phosphatase-mediated signaling pathway.
Collapse
|
149
|
Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 24575102 DOI: 10.3389/fpls.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.
Collapse
Affiliation(s)
- Clemencia M Rojas
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA
| | - Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA ; National Institute of Plant Genome Research, Jawaharlal Nehru University Campus New Delhi, India
| | - Vered Tzin
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA ; Boyce Thompson Institute for Plant Research Ithaca, NY, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation Ardmore, OK, USA
| |
Collapse
|
150
|
Höwing T, Huesmann C, Hoefle C, Nagel MK, Isono E, Hückelhoven R, Gietl C. Endoplasmic reticulum KDEL-tailed cysteine endopeptidase 1 of Arabidopsis (AtCEP1) is involved in pathogen defense. FRONTIERS IN PLANT SCIENCE 2014; 5:58. [PMID: 24605116 PMCID: PMC3932416 DOI: 10.3389/fpls.2014.00058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/05/2014] [Indexed: 05/20/2023]
Abstract
Programmed cell death (PCD) is a genetically determined process in all multicellular organisms. Plant PCD is effected by a unique group of papain-type cysteine endopeptidases (CysEP) with a C-terminal KDEL endoplasmic reticulum (ER) retention signal (KDEL CysEP). KDEL CysEPs can be stored as pro-enzymes in ER-derived endomembrane compartments and are released as mature CysEPs in the final stages of organelle disintegration. KDEL CysEPs accept a wide variety of amino acids at the active site, including the glycosylated hydroxyprolines of the extensins that form the basic scaffold of the cell wall. In Arabidopsis, three KDEL CysEPs (AtCEP1, AtCEP2, and AtCEP3) are expressed. Cell- and tissue-specific activities of these three genes suggest that KDEL CysEPs participate in the abscission of flower organs and in the collapse of tissues in the final stage of PCD as well as in developmental tissue remodeling. We observed that AtCEP1 is expressed in response to biotic stress stimuli in the leaf. atcep1 knockout mutants showed enhanced susceptibility to powdery mildew caused by the biotrophic ascomycete Erysiphe cruciferarum. A translational fusion protein of AtCEP1 with a three-fold hemaglutinin-tag and the green fluorescent protein under control of the endogenous AtCEP1 promoter (PCEP1::pre-pro-3xHA-EGFP-AtCEP1-KDEL) rescued the pathogenesis phenotype demonstrating the function of AtCEP1 in restriction of powdery mildew. The spatiotemporal AtCEP1-reporter expression during fungal infection together with microscopic inspection of the interaction phenotype suggested a function of AtCEP1 in controlling late stages of compatible interaction including late epidermal cell death. Additionally, expression of stress response genes appeared to be deregulated in the interaction of atcep1 mutants and E. cruciferarum. Possible functions of AtCEP1 in restricting parasitic success of the obligate biotrophic powdery mildew fungus are discussed.
Collapse
Affiliation(s)
- Timo Höwing
- Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Christina Huesmann
- Lehrstuhl für Phytopathologie, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Caroline Hoefle
- Lehrstuhl für Phytopathologie, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Marie-Kristin Nagel
- Department of Plant Systems Biology, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Erika Isono
- Department of Plant Systems Biology, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Christine Gietl
- Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
- *Correspondence: Christine Gietl, Lehrstuhl für Botanik, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, D-85350 Freising, Germany e-mail:
| |
Collapse
|