101
|
Senior NJ, Titball RW. Isolation and primary culture of Galleria mellonella hemocytes for infection studies. F1000Res 2020; 9:1392. [PMID: 33520196 PMCID: PMC7818094 DOI: 10.12688/f1000research.27504.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 10/10/2023] Open
Abstract
Galleria mellonella larvae are increasingly used to study the mechanisms of virulence of microbial pathogens and to assess the efficacy of antimicrobials. The G. mellonella model can faithfully reproduce many aspects of microbial disease which are seen in mammals, and therefore allows a reduction in the use of mammals. The model is now being widely used by researchers in universities, research institutes and industry. An attraction of the model is the interaction between pathogen and host. Hemocytes are specialised phagocytic cells which resemble neutrophils in mammals and play a major role in the response of the larvae to infection. However, the detailed interactions of hemocytes with pathogens is poorly understood, and is complicated by the presence of different sub-populations of cells. We report here a method for the isolation of hemocytes from Galleria mellonella. A needle-stick injury of larvae, before harvesting, markedly increased the recovery of hemocytes in the hemolymph. The majority of the hemocytes recovered were granulocyte-like cells. The hemocytes survived for at least 7 days in culture at either 28°C or 37°C. Pre-treatment of larvae with antibiotics did not enhance the survival of the cultured hemocytes. Our studies highlight the importance of including sham injected, rather than un-injected, controls when the G. mellonella model is used to test antimicrobial compounds. Our method will now allow investigations of the interactions of microbial pathogens with insect hemocytes enhancing the value of G. mellonella as an alternative model to replace the use of mammals, and for studies on hemocyte biology.
Collapse
Affiliation(s)
- Nicola J. Senior
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Richard W. Titball
- College of Life and Environmental Sciences - Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK
| |
Collapse
|
102
|
Kirubakar G, Schäfer H, Rickerts V, Schwarz C, Lewin A. Mutation on lysX from Mycobacterium avium hominissuis impacts the host-pathogen interaction and virulence phenotype. Virulence 2020; 11:132-144. [PMID: 31996090 PMCID: PMC6999840 DOI: 10.1080/21505594.2020.1713690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/18/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
The lysX gene from Mycobacterium avium hominissuis (MAH) is not only involved in cationic antimicrobial resistance but also regulates metabolic activity. An MAH lysX deficient mutant was shown to exhibit a metabolic shift at the extracellular state preadapting the bacteria to the conditions inside host-cells. It further showed stronger growth in human monocytes. In the present study, the LysX activity on host-pathogen interactions were analyzed. The lysX mutant from MAH proved to be more sensitive toward host-mediated stresses such as reactive oxygen species. Further, the lysX mutant exhibited increased inflammatory response in PBMC and multinucleated giant cell (MGC) formation in human macrophages during infection studies. Coincidentally, the lysX mutant strain revealed to be more reproductive in the Galleria mellonella infection model. Together, these data demonstrate that LysX plays a role in regulating the bacillary load in host organisms and the lack of lysX gene facilitates MAH adaptation to intracellular host-habitat, thereby suggesting an essential role of LysX in the modulation of host-pathogen interaction.
Collapse
Affiliation(s)
- Greana Kirubakar
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Hubert Schäfer
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Volker Rickerts
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Carsten Schwarz
- Pediatric Pneumology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Astrid Lewin
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
103
|
Zhao X, Chlebowicz-Flissikowska MA, Wang M, Vera Murguia E, de Jong A, Becher D, Maaß S, Buist G, van Dijl JM. Exoproteomic profiling uncovers critical determinants for virulence of livestock-associated and human-originated Staphylococcus aureus ST398 strains. Virulence 2020; 11:947-963. [PMID: 32726182 PMCID: PMC7550020 DOI: 10.1080/21505594.2020.1793525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus: with the sequence type (ST) 398 was previously associated with livestock carriage. However, in recent years livestock-independent S. aureus ST398 has emerged, representing a potential health risk for humans especially in nosocomial settings. Judged by whole-genome sequencing analyses, the livestock- and human originated strains belong to two different S. aureus ST398 clades but, to date, it was not known to what extent these clades differ in terms of actual virulence. Therefore, the objective of this study was to profile the exoproteomes of 30 representative S. aureus ST398 strains by mass spectrometry, to assess clade-specific differences in virulence factor secretion, and to correlate the identified proteins and their relative abundance to the strains' actual virulence. Although the human-originated strains are more heterogeneous at the genome level, our observations show that they are more homogeneous in terms of virulence factor production than the livestock-associated strains. To assess differences in virulence, infection models based on larvae of the wax moth Galleria mellonella and the human HeLa cell line were applied. Correlation of the exoproteome data to larval killing and toxicity toward HeLa cells uncovered critical roles of the staphylococcal Sbi, SpA, SCIN and CHIPS proteins in virulence. These findings were validated by showing that sbi or spa mutant bacteria are attenuated in G. mellonella and that the purified SCIN and CHIPS proteins are toxic for HeLa cells. Altogether, we show that exoproteome profiling allows the identification of critical determinants for virulence of livestock-associated and human-originated S. aureus ST398 strains.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
104
|
Wojda I, Staniec B, Sułek M, Kordaczuk J. The greater wax moth Galleria mellonella: biology and use in immune studies. Pathog Dis 2020; 78:ftaa057. [PMID: 32970818 PMCID: PMC7683414 DOI: 10.1093/femspd/ftaa057] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
The greater wax moth Galleria mellonella is an invertebrate that is increasingly being used in scientific research. Its ease of reproduction, numerous offspring, short development cycle, and finally, its known genome and immune-related transcriptome provide a convenient research model for investigation of insect immunity at biochemical and molecular levels. Galleria immunity, consisting of only innate mechanisms, shows adaptive plasticity, which has recently become the subject of intensive scientific research. This insect serves as a mini host in studies of the pathogenicity of microorganisms and in vivo tests of the effectiveness of single virulence factors as well as new antimicrobial compounds. Certainly, the Galleria mellonella species deserves our attention and appreciation for its contribution to the development of research on innate immune mechanisms. In this review article, we describe the biology of the greater wax moth, summarise the main advantages of using it as a model organism and present some of the main techniques facilitating work with this insect.
Collapse
Affiliation(s)
- Iwona Wojda
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, 20-033 Lublin, Poland
| | - Bernard Staniec
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Zoology and Nature Protection, Akademicka 19, 20-033 Lublin, Poland
| | - Michał Sułek
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, 20-033 Lublin, Poland
| | - Jakub Kordaczuk
- Maria Curie Sklodowska University, Institute of Biological Sciences, Department of Immunobiology, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
105
|
Monitoring Gene Expression during a Galleria mellonella Bacterial Infection. Microorganisms 2020; 8:microorganisms8111798. [PMID: 33207842 PMCID: PMC7697238 DOI: 10.3390/microorganisms8111798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/05/2022] Open
Abstract
Galleria mellonella larvae are an alternative in vivo model that has been extensively used to study the virulence and pathogenicity of different bacteria due to its practicality and lack of ethical constraints. However, the larvae possess intrinsic autofluorescence that obstructs the use of fluorescent proteins to study bacterial infections, hence better methodologies are needed. Here, we report the construction of a promoter probe vector with bioluminescence expression as well as the optimization of a total bacterial RNA extraction protocol to enhance the monitoring of in vivo infections. By employing the vector to construct different gene promoter fusions, variable gene expression levels were efficiently measured in G. mellonella larvae at various time points during the course of infection and without much manipulation of the larvae. Additionally, our optimized RNA extraction protocol facilitates the study of transcriptional gene levels during an in vivo infection. The proposed methodologies will greatly benefit bacterial infection studies as they can contribute to a better understanding of the in vivo infection processes and pathogen–mammalian host interactions.
Collapse
|
106
|
Thomaz L, Gustavo de Almeida L, Silva FRO, Cortez M, Taborda CP, Spira B. In vivo Activity of Silver Nanoparticles Against Pseudomonas aeruginosa Infection in Galleria mellonella. Front Microbiol 2020; 11:582107. [PMID: 33240236 PMCID: PMC7680755 DOI: 10.3389/fmicb.2020.582107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 01/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen associated with life-threatening nosocomial and community-acquired infections. Antibiotic resistance is an immediate threat to public health and demands an urgent action to discovering new antimicrobial agents. One of the best alternatives for pre-clinical tests with animal models is the greater wax moth Galleria mellonella. Here, we evaluated the antipseudomonal activity of silver nanoparticles (AgNPs) against P. aeruginosa strain UCBPP-PA14 using G. mellonella larvae. The AgNPs were synthesized through a non-toxic biogenic process involving microorganism fermentation. The effect of AgNPs was assessed through characterization and quantification of the hemocytic response, nodulation and phenoloxidase cascade. On average, 80% of the larvae infected with P. aeruginosa and prophylactically treated with nanoparticles survived. Both the specific and total larvae hemocyte counts were restored in the treated group. In addition, the nodulation process and the phenoloxidase cascade were less exacerbated when the larvae were exposed to the silver nanoparticles. AgNPs protect the larvae from P. aeruginosa infection by directly killing the bacteria and indirectly by preventing an exacerbated immunological response against the pathogen. Our results suggest that the prophylactic use of AgNPs has a strong protective activity against P. aeruginosa infection.
Collapse
Affiliation(s)
- Luciana Thomaz
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Luiz Gustavo de Almeida
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carlos P. Taborda
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Laboratory of Medical Mycology/LIM53, Faculty of Medicine, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
107
|
Petronio Petronio G, Cutuli MA, Magnifico I, Venditti N, Pietrangelo L, Vergalito F, Pane A, Scapagnini G, Di Marco R. In Vitro and In Vivo Biological Activity of Berberine Chloride against Uropathogenic E. coli Strains Using Galleria mellonella as a Host Model. Molecules 2020; 25:E5010. [PMID: 33137930 PMCID: PMC7662377 DOI: 10.3390/molecules25215010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Berberine is an alkaloid of the protoberberine type used in traditional oriental medicine. Its biological activities include documented antibacterial properties against a wide variety of microorganisms; nonetheless, its use against Escherichia coli strains isolated from urinary infections has not yet been widely investigated in vivo. The emergence of antimicrobial resistance requires new therapeutic approaches to ensure the continued effectiveness of antibiotics for the treatment and prevention of urinary infections. Moreover, uropathogenic Escherichia coli (UPEC) has developed several virulence factors and resistance to routine antibiotic therapy. To this end, several in vitro and in vivo tests were conducted to assess the activity of berberine on uropathogenic E. coli strains. Galleria mellonella as an infection model was employed to confirm the in vivo translatability of in vitro data on berberine activity and its influence on adhesion and invasion proprieties of E. coli on human bladder cells. In vitro pre-treatment with berberine was able to decrease the adhesive and invasive UPEC ability. In vivo treatment increased the larvae survival infected with UPEC strains and reduced the number of circulating pathogens in larvae hemolymph. These preliminary findings demonstrated the efficacy and reliability of G. mellonella as in vivo model for pre-clinical studies of natural substances.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Health and Medical Sciences “V. Tiberio”, University of Molise Via de Sanctis 3, III Ed. Polifunzionale, 86100 Campobasso (CB) Molise, Italy; (G.P.P.); (I.M.); (N.V.); (L.P.); (G.S.); (R.D.M.)
| | - Marco Alfio Cutuli
- Department of Health and Medical Sciences “V. Tiberio”, University of Molise Via de Sanctis 3, III Ed. Polifunzionale, 86100 Campobasso (CB) Molise, Italy; (G.P.P.); (I.M.); (N.V.); (L.P.); (G.S.); (R.D.M.)
| | - Irene Magnifico
- Department of Health and Medical Sciences “V. Tiberio”, University of Molise Via de Sanctis 3, III Ed. Polifunzionale, 86100 Campobasso (CB) Molise, Italy; (G.P.P.); (I.M.); (N.V.); (L.P.); (G.S.); (R.D.M.)
| | - Noemi Venditti
- Department of Health and Medical Sciences “V. Tiberio”, University of Molise Via de Sanctis 3, III Ed. Polifunzionale, 86100 Campobasso (CB) Molise, Italy; (G.P.P.); (I.M.); (N.V.); (L.P.); (G.S.); (R.D.M.)
| | - Laura Pietrangelo
- Department of Health and Medical Sciences “V. Tiberio”, University of Molise Via de Sanctis 3, III Ed. Polifunzionale, 86100 Campobasso (CB) Molise, Italy; (G.P.P.); (I.M.); (N.V.); (L.P.); (G.S.); (R.D.M.)
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis 3, III Ed. Polifunzionale, 86100 Campobasso, Italy;
| | - Antonella Pane
- Department of Agricultural, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy;
| | - Giovanni Scapagnini
- Department of Health and Medical Sciences “V. Tiberio”, University of Molise Via de Sanctis 3, III Ed. Polifunzionale, 86100 Campobasso (CB) Molise, Italy; (G.P.P.); (I.M.); (N.V.); (L.P.); (G.S.); (R.D.M.)
| | - Roberto Di Marco
- Department of Health and Medical Sciences “V. Tiberio”, University of Molise Via de Sanctis 3, III Ed. Polifunzionale, 86100 Campobasso (CB) Molise, Italy; (G.P.P.); (I.M.); (N.V.); (L.P.); (G.S.); (R.D.M.)
| |
Collapse
|
108
|
The Alternative Sigma Factor SigB Is Required for the Pathogenicity of Bacillus thuringiensis. J Bacteriol 2020; 202:JB.00265-20. [PMID: 32817096 DOI: 10.1128/jb.00265-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
To adapt to changing and potentially hostile environments, bacteria can activate the transcription of genes under the control of alternative sigma factors, such as SigB, a master regulator of the general stress response in several Gram-positive species. Bacillus thuringiensis is a Gram-positive spore-forming invertebrate pathogen whose life cycle includes a variety of environments, including plants and the insect hemocoel or gut. Here, we assessed the role of SigB during the infectious cycle of B. thuringiensis in a Galleria mellonella insect model. We used a fluorescent reporter coupled to flow cytometry and showed that SigB was activated in vivo We also showed that the pathogenicity of the ΔsigB mutant was severely affected when inoculated via the oral route, suggesting that SigB is critical for B. thuringiensis adaptation to the gut environment of the insect. We could not detect an effect of the sigB deletion on the survival of the bacteria or on their sporulation efficiency in the cadavers. However, the gene encoding the pleiotropic regulator Spo0A was upregulated in the ΔsigB mutant cells during the infectious process.IMPORTANCE Pathogenic bacteria often need to transition between different ecosystems, and their ability to cope with such variations is critical for their survival. Several Gram-positive species have developed an adaptive response mediated by the general stress response alternative sigma factor SigB. In order to understand the ecophysiological role of this regulator in Bacillus thuringiensis, an entomopathogenic bacterium widely used as a biopesticide, we sought to examine the fate of a ΔsigB mutant during its life cycle in the natural setting of an insect larva. This allowed us, in particular, to show that SigB was activated during infection and that it was required for the pathogenicity of B. thuringiensis via the oral route of infection.
Collapse
|
109
|
Vertyporokh L, Hułas‐Stasiak M, Wojda I. Host-pathogen interaction after infection of Galleria mellonella with the filamentous fungus Beauveria bassiana. INSECT SCIENCE 2020; 27:1079-1089. [PMID: 31245909 PMCID: PMC7497211 DOI: 10.1111/1744-7917.12706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 06/01/2023]
Abstract
The filamentous fungus Beauveria bassiana is a natural pathogen of the greater wax moth Galleria mellonella. Infection with this fungus triggered systemic immune response in G. mellonella; nevertheless, the infection was lethal if spores entered the insect hemocel. We observed melanin deposition in the insect cuticle and walls of air bags, while the invading fungus interrupted tissue continuity. We have shown colonization of muscles, air bags, and finally colonization and complete destruction of the fat body-the main organ responsible for the synthesis of defense molecules in response to infection. This destruction was probably not caused by simple fungal growth, because the fat body was not destroyed during colonization with a human opportunistic pathogen Candida albicans. This may mean that the infecting fungus is able to destroy actively the insect's fat body as part of its virulence mechanism. Finally, we were unable to reduce the extremely high virulence of B. bassiana against G. mellonella by priming of larvae with thermally inactivated fungal spores.
Collapse
Affiliation(s)
- Lidiia Vertyporokh
- Faculty of Biology and Biotechnology, Department of Immunobiology, Institute of Biology and BiochemistryMaria Curie‐Sklodowska UniversityAkademicka 19LublinPoland
| | - Monika Hułas‐Stasiak
- Faculty of Biology and Biotechnology, Department of Comparative Anatomy and Anthropology, Institute of Biology and BiochemistryMaria Curie‐Sklodowska UniversityAkademicka 19LublinPoland
| | - Iwona Wojda
- Faculty of Biology and Biotechnology, Department of Immunobiology, Institute of Biology and BiochemistryMaria Curie‐Sklodowska UniversityAkademicka 19LublinPoland
| |
Collapse
|
110
|
Abstract
Porphyromonas gingivalis is a key pathogen of periodontitis, a polymicrobial disease characterized by a chronic inflammation that destroys the tissues supporting the teeth. Thus, understanding the virulence potential of P. gingivalis is essential to maintaining a healthy oral microbiome. In nonoral organisms, CRISPR-Cas systems have been shown to modulate a variety of microbial processes, including protection from exogenous nucleic acids, and, more recently, have been implicated in bacterial virulence. Previously, our clinical findings identified activation of the CRISPR-Cas system in patient samples at the transition to disease; however, the mechanism of contribution to disease remained unknown. The importance of the present study resides in that it is becoming increasingly clear that CRISPR-associated proteins have broader functions than initially thought and that those functions now include their role in the virulence of periodontal pathogens. Studying a P. gingivaliscas3 mutant, we demonstrate that at least one of the CRISPR-Cas systems is involved in the regulation of virulence during infection. The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas system is a unique genomic entity that provides prokaryotic cells with adaptive and heritable immunity. Initial studies identified CRISPRs as central elements used by bacteria to protect against foreign nucleic acids; however, emerging evidence points to CRISPR involvement in bacterial virulence. The present study aimed to identify the participation of one CRISPR-Cas protein, Cas3, in the virulence of the oral pathogen Porphyromonas gingivalis, an organism highly associated with periodontitis. Our results show that compared to the wild type, a mutant with a deletion of the Cas3 gene, an essential nuclease part of the class 1 type I CRISPR-Cas system, increased the virulence of P. gingivalis. In vitro infection modeling revealed only mildly enhanced production of proinflammatory cytokines by THP-1 cells when infected with the mutant strain. Dual transcriptome sequencing (RNA-seq) analysis of infected THP-1 cells showed an increase in expression of genes associated with pathogenesis in response to Δcas3 mutant infection, with the target of Cas3 activities in neutrophil chemotaxis and gene silencing. The importance of cas3 in controlling virulence was corroborated in a Galleria mellonella infection model, where the presence of the Δcas3 mutant resulted in a statistically significant increase in mortality of G. mellonella. A time-series analysis of transcription patterning during infection showed that G. mellonella elicited very different immune responses to the wild-type and the Δcas3 mutant strains and revealed a rearrangement of association in coexpression networks. Together, these observations show for the first time that Cas3 plays a significant role in regulating the virulence of P. gingivalis. IMPORTANCEPorphyromonas gingivalis is a key pathogen of periodontitis, a polymicrobial disease characterized by a chronic inflammation that destroys the tissues supporting the teeth. Thus, understanding the virulence potential of P. gingivalis is essential to maintaining a healthy oral microbiome. In nonoral organisms, CRISPR-Cas systems have been shown to modulate a variety of microbial processes, including protection from exogenous nucleic acids, and, more recently, have been implicated in bacterial virulence. Previously, our clinical findings identified activation of the CRISPR-Cas system in patient samples at the transition to disease; however, the mechanism of contribution to disease remained unknown. The importance of the present study resides in that it is becoming increasingly clear that CRISPR-associated proteins have broader functions than initially thought and that those functions now include their role in the virulence of periodontal pathogens. Studying a P. gingivaliscas3 mutant, we demonstrate that at least one of the CRISPR-Cas systems is involved in the regulation of virulence during infection.
Collapse
|
111
|
Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB. Exploiting Lactoferricin (17-30) as a Potential Antimicrobial and Antibiofilm Candidate Against Multi-Drug-Resistant Enteroaggregative Escherichia coli. Front Microbiol 2020; 11:575917. [PMID: 33072040 PMCID: PMC7531601 DOI: 10.3389/fmicb.2020.575917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
The study evaluated the in vitro antimicrobial and antibiofilm efficacy of an antimicrobial peptide (AMP), lactoferricin (17–30) [Lfcin (17–30)], against biofilm-forming multi-drug-resistant (MDR) strains of enteroaggregative Escherichia coli (EAEC), and subsequently, the in vivo antimicrobial efficacy was assessed in a Galleria mellonella larval model. Initially, minimum inhibitory concentration (MIC; 32 μM), minimum bactericidal concentration (MBC; 32 μM), and minimum biofilm eradication concentration (MBEC; 32 μM) of Lfcin (17–30) were determined against MDR-EAEC field isolates (n = 3). Lfcin (17–30) was tested stable against high-end temperatures (70 and 90°C), physiological concentration of cationic salts (150 mM NaCl and 2 mM MgCl2), and proteases (proteinase-K and lysozyme). Further, at lower MIC, Lfcin (17–30) proved to be safe for sheep RBCs, secondary cell lines (HEp-2 and RAW 264.7), and beneficial gut lactobacilli. In the in vitro time-kill assay, Lfcin (17–30) inhibited the MDR-EAEC strains 3 h post-incubation, and the antibacterial effect was due to membrane permeation of Lfcin (17–30) in the inner and outer membranes of MDR-EAEC. Furthermore, in the in vivo experiments, G. mellonella larvae treated with Lfcin (17–30) exhibited an increased survival rate, lower MDR-EAEC counts (P < 0.001), mild to moderate histopathological changes, and enhanced immunomodulatory effect and were safe to larval cells when compared with infection control. Besides, Lfcin (17–30) proved to be an effective antibiofilm agent, as it inhibited and eradicated the preformed biofilm formed by MDR-EAEC strains in a significant (P < 0.05) manner both by microtiter plate assay and live/dead bacterial quantification-based confocal microscopy. We recommend further investigation of Lfcin (17–30) in an appropriate animal model before its application in target host against MDR-EAEC strains.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sunitha Ramanjaneya
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | | | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Izatnagar, India.,ICAR-National Research Centre on Meat, Hyderabad, India
| |
Collapse
|
112
|
Kryukov VY, Kosman E, Tomilova O, Polenogova O, Rotskaya U, Tyurin M, Alikina T, Yaroslavtseva O, Kabilov M, Glupov V. Interplay between Fungal Infection and Bacterial Associates in the Wax Moth Galleria mellonella under Different Temperature Conditions. J Fungi (Basel) 2020; 6:E170. [PMID: 32927906 PMCID: PMC7558722 DOI: 10.3390/jof6030170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Various insect bacterial associates are involved in pathogeneses caused by entomopathogenic fungi. The outcome of infection (fungal growth or decomposition) may depend on environmental factors such as temperature. The aim of this study was to analyze the bacterial communities and immune response of Galleria mellonella larvae injected with Cordyceps militaris and incubated at 15 °C and 25 °C. We examined changes in the bacterial CFUs, bacterial communities (Illumina MiSeq 16S rRNA gene sequencing) and expression of immune, apoptosis, ROS and stress-related genes (qPCR) in larval tissues in response to fungal infection at the mentioned temperatures. Increased survival of larvae after C. militaris injection was observed at 25 °C, although more frequent episodes of spontaneous bacteriosis were observed at this temperature compared to 15 °C. We revealed an increase in the abundance of enterococci and enterobacteria in the midgut and hemolymph in response to infection at 25 °C, which was not observed at 15 °C. Antifungal peptide genes showed the highest expression at 25 °C, while antibacterial peptides and inhibitor of apoptosis genes were strongly expressed at 15 °C. Cultivable bacteria significantly suppressed the growth of C. militaris. We suggest that fungi such as C. militaris may need low temperatures to avoid competition with host bacterial associates.
Collapse
Affiliation(s)
- Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Elena Kosman
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Oksana Tomilova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Olga Polenogova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Ulyana Rotskaya
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Maksim Tyurin
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (T.A.); (M.K.)
| | - Olga Yaroslavtseva
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (T.A.); (M.K.)
| | - Viktor Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, 630091 Novosibirsk, Russia; (E.K.); (O.T.); (O.P.); (U.R.); (M.T.); (O.Y.); (V.G.)
| |
Collapse
|
113
|
Sarvari M, Mikani A, Mehrabadi M. The innate immune gene Relish and Caudal jointly contribute to the gut immune homeostasis by regulating antimicrobial peptides in Galleria mellonella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103732. [PMID: 32423863 DOI: 10.1016/j.dci.2020.103732] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Gut microbiota modulates various physiologic processes in insects, such as nutrition, metabolic homeostasis, and pathogen exclusion. Maintaining a normal microbiome is an essential element of the gut homeostasis, requiring an extensive network of regulatory immune responses. The molecular mechanisms driving these various effects and the events leading to the establishment of a normal microbiota in insects are still largely unknown. In this study, the NF-kB (IMD and Toll) signaling pathways in the gut of Galleria mellonella and their roles in the regulation of its gut microbes were assessed. For this, the transcript levels of the IMD pathway (Imd and Relish) and the Toll pathway (Spätzle and Dif/Dorsal) genes were analyzed and the results showed that all the genes were expressed in the gut of G. mellonella. Silencing of Relish resulted in reduced expression levels of the IMD pathway genes and antimicrobial peptides (AMPs) followed by overpopulation of gut bacteria. Antibiotics-treated larvae showed lower expression levels of the IMD and Toll pathway genes followed by lower AMPs expression levels. The expression level of caudal decreased in the antibiotics-treated larvae compared with the controls. Together, these data suggest that the IMD and Toll pathways are active in the gut of G. mellonella. The IMD pathway gene, relish functions in the regulation of gut microbes in this insect model.
Collapse
Affiliation(s)
- Mehdi Sarvari
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
114
|
Torres M, de Cock H, Celis Ramírez AM. In Vitro or In Vivo Models, the Next Frontier for Unraveling Interactions between Malassezia spp. and Hosts. How Much Do We Know? J Fungi (Basel) 2020; 6:jof6030155. [PMID: 32872112 PMCID: PMC7558575 DOI: 10.3390/jof6030155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host-microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models. In this mini review, we present different models that have been implemented in fungal infections studies with greater attention to Malassezia spp. infections. These models range from in vitro (cell cultures and ex vivo tissue), to in vivo (murine models, rabbits, guinea pigs, insects, nematodes, and amoebas). We additionally highlight the alternative models that reduce the use of mammals as model organisms, which have been gaining importance in the study of fungal host-microbe interactions. This is due to the fact that these systems have been shown to have reliable results, which correlate with those obtained from mammalian models. Examples of alternative models are Caenorhabditis elegans, Drosophila melanogaster, Tenebrio molitor, and Galleria mellonella. These are invertebrates that have been implemented in the study of Malassezia spp. infections in order to identify differences in virulence between Malassezia species.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
| | - Hans de Cock
- Microbiology, Department of Biology, Faculty of Science, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
- Correspondence:
| |
Collapse
|
115
|
Palusińska-Szysz M, Zdybicka-Barabas A, Frąc M, Gruszecki WI, Wdowiak-Wróbel S, Reszczyńska E, Skorupska D, Mak P, Cytryńska M. Identification and characterization of Staphylococcus spp. and their susceptibility to insect apolipophorin III. Future Microbiol 2020; 15:1015-1032. [PMID: 32811181 DOI: 10.2217/fmb-2019-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigated the effect of an insect antimicrobial protein, apolipophorin III (apoLp-III), against two newly isolated, identified and characterized clinical strains of Staphylococcus spp. Materials & methods: Both strains were identified by 16S rRNA sequencing and metabolic and phenotypic profiling. The antibacterial activity of apoLp-III was tested using a colony counting assay. ApoLp-III interaction with bacterial cell surface was analyzed by Fourier transform IR spectroscopy. Results: Staphylococcus epidermidis and Staphylococcus capitis were identified. ApoLp-III exerted a dose-dependent bactericidal effect on the tested strains. The differences in the Staphylococcus spp. surface components may contribute to the various sensitivities of these strains to apoLp-III. Conclusion: ApoLp-III may provide a baseline for development of antibacterial preparations against Staphylococcus spp. involved in dermatological problems.
Collapse
Affiliation(s)
- Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology & Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology & Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4 St., 20-290 Lublin, Poland
| | - Wiesław I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Square 1, 20-031 Lublin, Poland
| | - Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology & Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Emilia Reszczyńska
- Department of Plant Physiology & Biophysics, Institute of Biological Sciences, Faculty of Biology & Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | | | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics & Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology & Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
116
|
Rossoni RD, de Barros PP, Mendonça IDC, Medina RP, Silva DHS, Fuchs BB, Junqueira JC, Mylonakis E. The Postbiotic Activity of Lactobacillus paracasei 28.4 Against Candida auris. Front Cell Infect Microbiol 2020; 10:397. [PMID: 32850495 PMCID: PMC7417517 DOI: 10.3389/fcimb.2020.00397] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Candida auris has emerged as a medically important pathogen with considerable resistance to antifungal agents. The ability to produce biofilms is an important pathogenicity feature of this species that aids escape of host immune responses and antimicrobial agents. The objective of this study was to verify antifungal action using in vitro and in vivo models of the Lactobacillus paracasei 28.4 probiotic cells and postbiotic activity of crude extract (LPCE) and fraction 1 (LPF1), derived from L. paracasei 28.4 supernatant. Both live cells and cells free supernatant of L. paracasei 28.4 inhibited C. auris suggesting probiotic and postbiotic effects. The minimum inhibitory concentration (MIC) for LPCE was 15 mg/mL and ranges from 3.75 to 7.5 mg/mL for LPF1. Killing kinetics determined that after 24 h treatment with LPCE or LPF1 there was a complete reduction of viable C. auris cells compared to fluconazole, which decreased the initial inoculum by 1-logCFU during the same time period. LPCE and LPF1 significantly reduced the biomass (p = 0.0001) and the metabolic activity (p = 0.0001) of C. auris biofilm. There was also a total reduction (~108 CFU/mL) in viability of persister C. auris cells after treatment with postbiotic elements (p < 0.0001). In an in vivo study, injection of LPCE and LPF1 into G. mellonella larvae infected with C. auris prolonged survival of these insects compared to a control group (p < 0.05) and elicited immune responses by increasing the number of circulating hemocytes and gene expression of antimicrobial peptide galiomicin. We concluded that the L. paracasei 28.4 cells and postbiotic elements (LPCE and LPF1) have antifungal activity against planktonic cells, biofilms, and persister cells of C. auris. Postbiotic supplementation derived from L. paracasei 28.4 protected G. mellonella infected with C. auris and enhanced its immune status indicating a dual function in modulating a host immune response.
Collapse
Affiliation(s)
- Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil.,Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Iatã do Carmo Mendonça
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Rebeca Previate Medina
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Dulce Helena Siqueira Silva
- Department of Organic Chemistry, Center for Bioassays, Biosynthesis and Ecophysiology of Natural Products, Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
117
|
Weidensdorfer M, Ishikawa M, Hori K, Linke D, Djahanschiri B, Iruegas R, Ebersberger I, Riedel-Christ S, Enders G, Leukert L, Kraiczy P, Rothweiler F, Cinatl J, Berger J, Hipp K, Kempf VAJ, Göttig S. The Acinetobacter trimeric autotransporter adhesin Ata controls key virulence traits of Acinetobacter baumannii. Virulence 2020; 10:68-81. [PMID: 31874074 PMCID: PMC6363060 DOI: 10.1080/21505594.2018.1558693] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen that causes a multitude of nosocomial infections. The Acinetobacter trimeric autotransporter adhesin (Ata) belongs to the superfamily of trimeric autotransporter adhesins which are important virulence factors in many Gram-negative species. Phylogenetic profiling revealed that ata is present in 78% of all sequenced A. baumannii isolates but only in 2% of the closely related species A. calcoaceticus and A. pittii. Employing a markerless ata deletion mutant of A. baumannii ATCC 19606 we show that adhesion to and invasion into human endothelial and epithelial cells depend on Ata. Infection of primary human umbilical cord vein endothelial cells (HUVECs) with A. baumannii led to the secretion of interleukin (IL)-6 and IL-8 in a time- and Ata-dependent manner. Furthermore, infection of HUVECs by WT A. baumannii was associated with higher rates of apoptosis via activation of caspases-3 and caspase-7, but not necrosis, in comparison to ∆ata. Ata deletion mutants were furthermore attenuated in their ability to kill larvae of Galleria mellonella and to survive in larvae when injected at sublethal doses. This indicates that Ata is an important multifunctional virulence factor in A. baumannii that mediates adhesion and invasion, induces apoptosis and contributes to pathogenicity in vivo.
Collapse
Affiliation(s)
- Marko Weidensdorfer
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Masahito Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Katsutoshi Hori
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Bardya Djahanschiri
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Ruben Iruegas
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre Frankfurt (BIK-F), Frankfurt, Germany
| | - Sara Riedel-Christ
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Giulia Enders
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Laura Leukert
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Florian Rothweiler
- Institute of Medical Virology, University Hospital, Goethe University, Frankfurt, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital, Goethe University, Frankfurt, Germany
| | - Jürgen Berger
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
118
|
Grizanova EV, Coates CJ, Dubovskiy IM, Butt TM. Metarhizium brunneum infection dynamics differ at the cuticle interface of susceptible and tolerant morphs of Galleria mellonella. Virulence 2020; 10:999-1012. [PMID: 31724467 PMCID: PMC8647853 DOI: 10.1080/21505594.2019.1693230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In order for entomopathogenic fungi to colonize an insect host, they must first attach to, and penetrate, the cuticle layers of the integument. Herein, we explored the interactions between the fungal pathogen Metarhizium brunneum ARSEF 4556 and two immunologically distinct morphs, melanic (M) and non-melanic (NM), of the greater wax moth Galleria mellonella. We first interrogated the cuticular compositions of both insect morphs to reveal substantial differences in their physiochemical properties. Enhanced melanin accumulation, fewer hydrocarbons, and higher L-dihydroxyphenylalanine (DOPA) decarboxylase activity were evident in the cuticle of the M larvae. This “hostile” terrain proved challenging for M. brunneum – reflected in poor conidial attachment and germination, and elevated expression of stress-associated genes (e.g., Hsp30, Hsp70). Lack of adherence to the cuticle impacted negatively on the speed of kill and overall host mortality; a dose of 107 conidia killed ~30% of M larvae over a 12-day period, whereas a 100-fold lower dose (105 conidia) achieved a similar result for NM larvae. Candidate gene expression patterns between the insect morphs indicated that M larvae are primed to “switch-on” immunity-associated genes (e.g., phenoloxidase) within 6–12 h of conidia exposure and can sustain a “defense” response. Critically, M. brunneum responds to the distinct physiochemical cues of both hosts and adjusts the expression of pathogenicity-related genes accordingly (e.g., Pr2, Mad1, Mad2). We reveal previously uncharacterized mechanisms of attack and defence in fungal-insect antibiosis.
Collapse
Affiliation(s)
- Ekaterina V Grizanova
- Laboratory of Biological Plant Protection and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, Russia
| | | | - Ivan M Dubovskiy
- Laboratory of Biological Plant Protection and Biotechnology, Novosibirsk State Agrarian University, Novosibirsk, Russia.,Siberian Federal Scientific Centre of Agro-BioTechnologies, Russian Academy of Sciences, Krasnoobsk, Russia
| | - Tariq M Butt
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
119
|
Silva L, Rigo G, Silva D, Carollo C, Trentin D, Silva M, Tasca T, Macedo A. Hydrolyzable tannins from Poincianella (Caesalpinia) microphylla fruits: Metabolite profiling and anti-Trichomonas vaginalis activity. Food Res Int 2020; 134:109236. [DOI: 10.1016/j.foodres.2020.109236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023]
|
120
|
Ma L, Liu L, Zhao Y, Yang L, Chen C, Li Z, Lu Z. JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. PLoS Pathog 2020; 16:e1008627. [PMID: 32584915 PMCID: PMC7343183 DOI: 10.1371/journal.ppat.1008627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Different from holometabolous insects, the hemipteran species such as pea aphid Acyrthosiphon pisum exhibit reduced immune responses with the absence of the genes coding for antimicrobial peptide (AMP), immune deficiency (IMD), peptidoglycan recognition proteins (PGRPs), and other immune-related molecules. Prior studies have proved that phenoloxidase (PO)-mediated melanization, hemocyte-mediated phagocytosis, and reactive oxygen species (ROS) participate in pea aphid defense against bacterial infection. Also, the conserved signaling, Jun N-terminal kinase (JNK) pathway, has been suggested to be involved in pea aphid immune defense. However, the precise role of the JNK signaling, its interplay with other immune responses and its regulation in pea aphid are largely unknown. In this study, using in vitro biochemical assays and in vivo bioassays, we demonstrated that the JNK pathway regulated hemolymph PO activity, hydrogen peroxide concentration and hemocyte phagocytosis in bacteria infected pea aphids, suggesting that the JNK pathway plays a central role in regulating immune responses in pea aphid. We further revealed the JNK pathway is regulated by microRNA-184 in response to bacterial infection. It is possible that in common the JNK pathway plays a key role in immune system of hemipteran insects and microRNA-184 regulates the JNK pathway in animals.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Zhao
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Yang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Caihua Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
121
|
Maslova E, Shi Y, Sjöberg F, Azevedo HS, Wareham DW, McCarthy RR. An Invertebrate Burn Wound Model That Recapitulates the Hallmarks of Burn Trauma and Infection Seen in Mammalian Models. Front Microbiol 2020; 11:998. [PMID: 32582051 PMCID: PMC7283582 DOI: 10.3389/fmicb.2020.00998] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
The primary reason for skin graft failure and the mortality of burn wound patients, particularly those in burn intensive care centers, is bacterial infection. Several animal models exist to study burn wound pathogens. The most commonly used model is the mouse, which can be used to study virulence determinants and pathogenicity of a wide range of clinically relevant burn wound pathogens. However, animal models of burn wound pathogenicity are governed by strict ethical guidelines and hindered by high levels of animal suffering and the high level of training that is required to achieve consistent reproducible results. In this study, we describe for the first time an invertebrate model of burn trauma and concomitant wound infection. We demonstrate that this model recapitulates many of the hallmarks of burn trauma and wound infection seen in mammalian models and in human patients. We outline how this model can be used to discriminate between high and low pathogenicity strains of two of the most common burn wound colonizers Pseudomonas aeruginosa and Staphylococcus aureus, and multi-drug resistant Acinetobacter baumannii. This model is less ethically challenging than traditional vertebrate burn wound models and has the capacity to enable experiments such as high throughput screening of both anti-infective compounds and genetic mutant libraries.
Collapse
Affiliation(s)
- Evgenia Maslova
- Division of Biosciences, Centre for Inflammation Research and Translational Medicine, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Yejiao Shi
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, London, United Kingdom
| | - Folke Sjöberg
- The Burn Centre, Department of Hand and Plastic Surgery, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, London, United Kingdom
| | - David W Wareham
- Antimicrobial Research Group, Blizard Institute, Queen Mary, University of London, London, United Kingdom
| | - Ronan R McCarthy
- Division of Biosciences, Centre for Inflammation Research and Translational Medicine, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
122
|
Torres M, Pinzón EN, Rey FM, Martinez H, Parra Giraldo CM, Celis Ramírez AM. Galleria mellonella as a Novelty in vivo Model of Host-Pathogen Interaction for Malassezia furfur CBS 1878 and Malassezia pachydermatis CBS 1879. Front Cell Infect Microbiol 2020; 10:199. [PMID: 32432057 PMCID: PMC7214729 DOI: 10.3389/fcimb.2020.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Malassezia furfur and Malassezia pachydermatis are lipophilic and lipid dependent yeasts, associated with the skin microbiota in humans and domestic animals, respectively. Although they are commensals, under specific conditions they become pathogens, causing skin conditions, such as pityriasis versicolor, dandruff/seborrheic dermatitis, folliculitis in humans, and dermatitis and otitis in dogs. Additionally, these species are associated with fungemia in immunocompromised patients and low-weight neonates in intensive care units with intravenous catheters or with parenteral nutrition and that are under-treatment of broad-spectrum antibiotics. The host-pathogen interaction mechanism in these yeasts is still unclear; for this reason, it is necessary to implement suitable new host systems, such as Galleria mellonella. This infection model has been widely used to assess virulence, host-pathogen interaction, and antimicrobial activity in bacteria and fungi. Some advantages of the G. mellonella model are: (1) the immune response has phagocytic cells and antimicrobial peptides that are similar to those in the innate immune response of human beings; (2) no ethical implications; (3) low cost; and (4) easy to handle and inoculate. This study aims to establish G. mellonella as an in vivo infection model for M. furfur and M. pachydermatis. To achieve this objective, first, G. mellonella larvae were first inoculated with different inoculum concentrations of these two Malassezia species, 1.5 × 106 CFU/mL, 1.5 × 107 CFU/mL, 1.5 × 108 CFU/mL, and 11.5 × 109 CFU/mL, and incubated at 33 and 37°C. Then, for 15 days, the mortality and melanization were evaluated daily. Finally, the characterization of hemocytes and fungal burden assessment were as carried out. It was found that at 33 and 37°C both M. furfur and M. pachydermatis successfully established a systemic infection in G. mellonella. M. pachydermatis proved to be slightly more virulent than M. furfur at a temperature of 37°C. The results suggest that larvae mortality and melanization is dependent on the specie of Malassezia, the inoculum concentration and the temperature. According to the findings, G. mellonella can be used as an in vivo model of infection to conduct easy and reliable approaches to boost our knowledge of the Malassezia genus.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Elkin Nicolás Pinzón
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Flor Maria Rey
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Heydys Martinez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Claudia Marcela Parra Giraldo
- Unidad de Investigación en Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
123
|
Meilhac O, Tanaka S, Couret D. High-Density Lipoproteins Are Bug Scavengers. Biomolecules 2020; 10:biom10040598. [PMID: 32290632 PMCID: PMC7226336 DOI: 10.3390/biom10040598] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Lipoproteins were initially defined according to their composition (lipids and proteins) and classified according to their density (from very low- to high-density lipoproteins—HDLs). Whereas their capacity to transport hydrophobic lipids in a hydrophilic environment (plasma) is not questionable, their primitive function of cholesterol transporter could be challenged. All lipoproteins are reported to bind and potentially neutralize bacterial lipopolysaccharides (LPS); this is particularly true for HDL particles. In addition, HDL levels are drastically decreased under infectious conditions such as sepsis, suggesting a potential role in the clearance of bacterial material and, particularly, LPS. Moreover, "omics" technologies have unveiled significant changes in HDL composition in different inflammatory states, ranging from acute inflammation occurring during septic shock to low-grade inflammation associated with moderate endotoxemia such as periodontal disease or obesity. In this review, we will discuss HDL modifications associated with exposure to pathogens including bacteria, viruses and parasites, with a special focus on sepsis and the potential of HDL therapy in this context. Low-grade inflammation associated with atherosclerosis, periodontitis or metabolic syndrome may also highlight the protective role of HDLs in theses pathologies by other mechanisms than the reverse transport of cholesterol.
Collapse
Affiliation(s)
- Olivier Meilhac
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), F-97490 Sainte-Clotilde, France; (S.T.); (D.C.)
- CHU de La Réunion, Centre d’Investigations Clinique 1410, 97410 Saint-Pierre, France
- Correspondence: ; Tel.: +33-262-93-88-11
| | - Sébastien Tanaka
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), F-97490 Sainte-Clotilde, France; (S.T.); (D.C.)
- AP-HP, Service d’Anesthésie-Réanimation, CHU Bichat-Claude Bernard, 75018 Paris, France
| | - David Couret
- Université de la Réunion, Inserm, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), F-97490 Sainte-Clotilde, France; (S.T.); (D.C.)
- CHU de La Réunion, Neurocritical Care Unit, 97410 Saint-Pierre, France
| |
Collapse
|
124
|
Sheehan G, Konings M, Lim W, Fahal A, Kavanagh K, van de Sande WWJ. Proteomic analysis of the processes leading to Madurella mycetomatis grain formation in Galleria mellonella larvae. PLoS Negl Trop Dis 2020; 14:e0008190. [PMID: 32267851 PMCID: PMC7141616 DOI: 10.1371/journal.pntd.0008190] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mycetoma is a neglected chronic and granulomatous infection primarily associated with the fungal pathogen Madurella mycetomatis. Characteristic of this infection is the formation of grains. However, the processes leading to grain formation are not known. In this study, we employed a proteomic approach to characterise M. mycetomatis grain formation in Galleria mellonella larvae and map the processes leading to grain formation over time. For this, at 1 day, 3 days and 7 days post-inoculation, proteins from grains and hemolymph were extracted and analysed by label-free mass spectrometry. A total of 87, 51 and 48 M. mycetomatis proteins and 713, 997, 18 G. mellonella proteins were found in grains on day 1, 3 and 7 post-inoculation respectively. M. mycetomatis proteins were mainly involved in cellular metabolic processes and numerous enzymes were encountered. G. mellonella proteins were primarily involved in the nodulation process. The proteins identified were linked to nodulation and grain formation and four steps of grain formation were identified. The results of this proteomic approach could in the future be used to design novel strategies to interfere with mycetoma grain formation and to combat this difficult to treat infection. Although grain formation is the hallmark of mycetoma, so far the pathways leading to grain formation were not studied. Since our hypothesis is that both host and pathogen play a role in this process, we aimed to study this process in a model system. Grains can be formed in the invertebrate Galleria mellonella and different stages of grain formation can be noted within the larvae. We therefore infected G. mellonella with the mycetoma causative agent Madurella mycetomatis, and monitored grain formation over time. At day 1, day 3 and day 7 post-inoculation, grains and hemolymph were obtained from infected larvae. Proteins were isolated and identified by label-free mass spectrometry. By analyzing the proteins found in both host and pathogen on the different time points, we were able to develop a grain model over time. This grain model can in the future be used to identify novel treatments for this difficult to treat infection.
Collapse
Affiliation(s)
- Gerard Sheehan
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Mickey Konings
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wilson Lim
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Kevin Kavanagh
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Wendy W. J. van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
125
|
Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020. [DOI: 10.3390/microorganisms8030390
expr 890942362 + 917555800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
|
126
|
Jemel S, Guillot J, Kallel K, Botterel F, Dannaoui E. Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020; 8:microorganisms8030390. [PMID: 32168839 PMCID: PMC7142887 DOI: 10.3390/microorganisms8030390] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/26/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
Affiliation(s)
- Sana Jemel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Jacques Guillot
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Kalthoum Kallel
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Françoise Botterel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Eric Dannaoui
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Hôpital Européen Georges Pompidou, APHP, Unité de Parasitologie-Mycologie, Service de Microbiologie, 75015 Paris, France
- Université René Descartes, Faculté de médecine, 75006 Paris, France
- Correspondence: ; Tel.: +33-1-56-09-39-48; Fax: +33-1-56-09-24-46
| |
Collapse
|
127
|
Impact of polyethylene on salivary glands proteome in Galleria melonella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100678. [PMID: 32163748 DOI: 10.1016/j.cbd.2020.100678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/23/2022]
Abstract
Polyethylene pollutions are considered inert in nature and adversely affect the entire ecosystem. Larvae of greater wax moth (Galleria mellonella) have the ability to masticate and potentially biodegrade polyethylene films at elevated rates. The wax moth has been thought to metabolize PE independently of gut flora, however the role of the microbiome is poorly understood and degradation by the wax moth might be involved. To determine whether the salivary glands of the wax moth were potentially involved in the PE degradation, it was investigated how surface changes of polyethylene were affected by mastication and consumption. Formation of pitting and degradation intermediates including carbonyl groups, indicated that salivary glands could assist in polyethylene degradation. We investigated the biochemical effect of exposure by PE on the composition of the salivary gland proteome. The expression of salivary proteins was found to be affected by PE exposure. The proteins that were significantly affected by the exposure to PE revealed that the wax moth are undergoing general changes in energy levels, also enzymatic pathways associated to fatty acid beta oxidation during consumption to PE were induced.
Collapse
|
128
|
Sheehan G, Tully L, Kavanagh KA. Candida albicans increases the pathogenicity of Staphylococcus aureus during polymicrobial infection of Galleria mellonella larvae. MICROBIOLOGY-SGM 2020; 166:375-385. [PMID: 32068530 PMCID: PMC7377259 DOI: 10.1099/mic.0.000892] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study detailed the responses of Galleria mellonella larvae to disseminated infection caused by co-infection with Candida albicans and Staphylococcus aureus. Doses of C. albicans (1×105 larva-1) and S. aureus (1×104 larva-1) were non-lethal in mono-infection but when combined significantly (P<0.05) reduced larval survival at 24, 48 and 72 h relative to larvae receiving S. aureus (2×104 larva-1) alone. Co-infected larvae displayed a significantly higher density of S. aureus larva-1 compared to larvae infected solely with S. aureus. Co-infection resulted in dissemination throughout the host and the appearance of large nodules. Co-infection of larvae with C. albicans and S. aureus (2×104 larva-1) resulted in an increase in the density of circulating haemocytes compared to that in larvae infected with only S. aureus. Proteomic analysis of co-infected larval haemolymph revealed increased abundance of proteins associated with immune responses to bacterial and fungal infection such as cecropin-A (+45.4-fold), recognition proteins [e.g. peptidoglycan-recognition protein LB (+14-fold)] and proteins associated with nodule formation [e.g. Hdd11 (+33.3-fold)]. A range of proteins were also decreased in abundance following co-infection, including apolipophorin (-62.4-fold), alpha-esterase 45 (-7.7-fold) and serine proteinase (-6.2-fold). Co-infection of larvae resulted in enhanced proliferation of S. aureus compared to mono-infection and an immune response showing many similarities to the innate immune response of mammals to infection. The utility of G. mellonella larvae for studying polymicrobial infection is highlighted.
Collapse
Affiliation(s)
- Gerard Sheehan
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Tully
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin A Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
129
|
Staniszewska M, Sobiepanek A, Gizińska M, Peña-Cabrera E, Arroyo-Córdoba IJ, Kazek M, Kuryk Ł, Wieczorek M, Koronkiewicz M, Kobiela T, Ochal Z. Sulfone derivatives enter the cytoplasm of Candida albicans sessile cells. Eur J Med Chem 2020; 191:112139. [PMID: 32109777 DOI: 10.1016/j.ejmech.2020.112139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/20/2020] [Accepted: 02/09/2020] [Indexed: 01/28/2023]
Abstract
Since our study showed that sulfone derivatives' action mode creates a lesser risk of inducing widespread resistance among Candida spp., we continued verifying sulfones' antifungal activity using the following newly synthesized derivatives: bromodichloromethy-4-hydrazinyl-3-nitrophenyl sulfone (S1), difluoroiodomethyl-4-hydrazinyl-3-nitrophenyl sulfone (S2), and chlorodifluoromethyl-4-hydrazinyl-3-nitrophenyl sulfone (S3). As the mechanism by which sulfones gain access to the cytoplasm has not been elucidated yet, in order to track S1-3, we coupled their hydrazine group with BODIPY (final S1-3 BODIPY-labelled were named SB1-3). This approach allowed us to follow the vital internalization and endocytic routing of SB1-3, while BODIPY interacts primarily with fungal surfaces, thus confirming that S1-3 and their counterparts SB1-2 behaved as non-typical agents by damaging the cell membrane and wall after being endocytosed (SB1-3 fluorescence visible inside the unlysed sessile cells). Thus greatly decreasing the likelihood of the appearance of strains resistance. Core sulfones S1-3 are a promising alternative not only to treat planktonic C. albicans but also biofilm-embedded cells. In the flow cytometric analysis, the planktonic cell surface was digested by S1-3, which made the externalized PS accessible to AnnexinV binding and PI input (accidental cell death ACD). The occurrence of ACD as well as apoptosis (crescent-shaped nuclei) and anoikis of sessile cells (regulated cell death by 100%-reduction in attachment to epithelium) was assessed through monitoring the AO/PI/HO342 markers. CLSM revealed the invasion of S1-3 and SB1-3 in C. albicans without inducing cell lysis. This was a novel approach in which QCM-D was used for real-time in situ detection of viscoelastic changes in the C. albicans biofilm, and its interaction with S1 as a representative of the sulfones tested. S1 (not toxic in vivo) is a potent fungicidal agent against C. albicans and could be administered to treat invasive candidiasis as a monotherapy or in combination with antifungal agents of reference to treat C. albicans infections.
Collapse
Affiliation(s)
- Monika Staniszewska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - Anna Sobiepanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | | | - Eduardo Peña-Cabrera
- Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato, Guanajuato, 36050, Mexico
| | - Ismael J Arroyo-Córdoba
- Departamento de Química, Universidad de Guanajuato, Noria Alta S/N, Guanajuato, Guanajuato, 36050, Mexico
| | - Michalina Kazek
- Laboratory of Physiology, The Witold Stefański Institute of Parasitology, Polish Academy of Science, Twarda 51/55, 00-818, Warsaw, Poland
| | - Łukasz Kuryk
- National Institute of Public Health-National Institute of Hygiene, 00-791, Warsaw, Poland
| | - Magdalena Wieczorek
- National Institute of Public Health-National Institute of Hygiene, 00-791, Warsaw, Poland
| | - Mirosława Koronkiewicz
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, Warsaw, 00-725, Poland
| | - Tomasz Kobiela
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Zbigniew Ochal
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland.
| |
Collapse
|
130
|
Wrońska AK, Boguś MI. Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (Lepidoptera) hemolymph are affected by infection with Conidiobolus coronatus (Entomophthorales). PLoS One 2020; 15:e0228556. [PMID: 32027696 PMCID: PMC7004346 DOI: 10.1371/journal.pone.0228556] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022] Open
Abstract
Invertebrates are becoming more popular models for research on the immune system. The innate immunity possessed by insects shows both structural and functional similarity to the resistance displayed by mammals, and many processes occurring in insect hemocytes are similar to those that occur in mammals. The humoral immune response in insects acts by melanization, clotting and the production of reactive oxygen species and antimicrobial peptides, while the cellular immunity system is based on nodulation, encapsulation and phagocytosis. An increasingly popular insect model in biological research is Galleria mellonella, whose larvae are sensitive to infection by the entomopathogenic fungus Conidiobolus coronatus, which can also be dangerous to humans. One group of factors that modulate the response of the immune system during infection in mammals are heat shock proteins (HSPs). The aim of this study was to investigate whether infection by C. coronatus in G. mellonella hemolymph is accompanied by an increase of HSP90, HSP70, HSP60 and HSP27. Larvae (five-day-old last instar) were exposed for 24 hours to fully-grown and sporulating fungus. Hemolymph was collected either immediately after termination of exposure (F24) or 24 hours later (F48). The concentration of the HSPs in hemolymph was determined using ELISA. Immunolocalization in hemocytes was performed using fluorescence microscopy and flow cytometry. HSP90, HSP70, HSP60 and HSP27 were found to be present in the G. mellonella hemocytes. HSP60 and HSP90 predominated in healthy insects, with HSP70 and HSP27 being found in trace amounts; HSP60 and HSP27 were elevated in F24 and F48, and HSP90 was elevated in F48. The fungal infection had no effect on HSP70 levels. These findings shed light on the mechanisms underlying the interaction between the innate insect immune response and entomopathogen infection. The results of this innovative study may have a considerable impact on research concerning innate immunology and insect physiology.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Polish Academy of Sciences, Witold Stefański Institute of Parasitology, Warsaw, Poland
- * E-mail:
| | - Mieczysława Irena Boguś
- Polish Academy of Sciences, Witold Stefański Institute of Parasitology, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| |
Collapse
|
131
|
Vertyporokh L, Wojda I. Immune response of Galleria mellonella after injection with non-lethal and lethal dosages of Candida albicans. J Invertebr Pathol 2020; 170:107327. [PMID: 31945326 DOI: 10.1016/j.jip.2020.107327] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
The immune response of Galleria mellonella to injection with non-lethal and lethal dosages of Candida albicans was compared. Larvae infected with the non-lethal dosage (2 × 104 cells/larva) did not show significant morphological changes, while those infected with the lethal dosage (2 × 105 cells/larva) showed inhibition of motility and cocoon formation and became darker around the area of injection after 24 h. While the administration of the lower dosage caused approx. 5- and 20-fold induction of genes for gallerimycin and galiomycin, respectively, the injection with the higher dosage induced approx. 25 and 120-fold expression of the respective genes. Similar differences were obtained for the insect metalloproteinase inhibitor (IMPI) and hemolin gene transcripts. The relatively low level of immune gene expression was confirmed by an assay of hemolymph antifungal activity, which was detected only in larvae infected with lethal dosage of C. albicans. Furthermore, greater amounts of immune-inducible peptides were detected in the hemolymph extracts in the same group of larvae. The stronger humoral immune response was not correlated with survival. Phenol oxidase (PO) activity was induced only in the hemolymph of larvae infected with the non-lethal dose; injection of the lethal dose resulted in strong inhibition of this enzyme after 24 h. We showed that PO is susceptible to regulation by immune priming with the non-lethal dose of C. albicans. The activity of this enzyme was enhanced in primed larvae at the time of re-injection. When both primed and non-primed larvae received 2 × 105 cells, the inhibition of PO was stronger in the primed group. G. mellonella infected with the lethal dose of C. albicans died despite the strong induction of humoral defence mechanisms. The priming-enhanced activity of PO was correlated with increased resistance to subsequent infection.
Collapse
Affiliation(s)
- Lidiia Vertyporokh
- Maria Curie Skłodowska University, Institute of Biological Sciences, Department of Immunobiology, Lublin, Poland
| | - Iwona Wojda
- Maria Curie Skłodowska University, Institute of Biological Sciences, Department of Immunobiology, Lublin, Poland.
| |
Collapse
|
132
|
Shaik HA, Mishra A, Sehadová H, Kodrík D. Responses of sericotropin to toxic and pathogenic challenges: possible role in defense of the wax moth Galleria mellonella. Comp Biochem Physiol C Toxicol Pharmacol 2020; 227:108633. [PMID: 31644954 DOI: 10.1016/j.cbpc.2019.108633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022]
Abstract
This study describes defense functions of the insect neuropeptide sericotropin, which is recognized as an agent that stimulates silk production in some lepidopteran larvae. Sericotropin, expressed in brain tissue of the wax moth Galleria mellonella in all developmental stages, is not expressed in silk glands, indicating its tissue specificity. Fluorescence microscopy confirmed the presence of sericotropin in the brain-subesophageal complex being predominantly and densely distributed under the plasmatic membrane and in axonal parts of neurons. Injection of venom from Habrobracon hebetor and topical application of the entomopathogenic nematode (EPN) Steinernema carpocapsae with symbiotic bacteria Xenorhabdus spp. into or onto G. mellonella larvae resulted in upregulation of the sericotropin gene and peptide, suggesting a role for sericotropin in defense and immunity. Accordingly, two synthetic fragments of sericotropin killed entomotoxic Xenorhabdus spp. bacteria in a disc diffusion antimicrobial test. Further, total metabolism, monitored by carbon dioxide production, significantly decreased after application of either venom or EPN, probably because of muscle impairment by the venom and serious cell damage caused by EPN, especially in the midgut. Both venom and EPN upregulated expression of genes encoding antimicrobial peptides gallerimycin and galiomicin in Galleria brain; however, they downregulated prophenoloxidase and phenoloxidase activity in hemolymph. These results suggest that sericotropin is a multifunctional peptide that plays an important role in G. mellonella defense and immunity.
Collapse
Affiliation(s)
- Haq Abdul Shaik
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Archana Mishra
- Institute of Molecular Biology of Plants, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Hana Sehadová
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
133
|
Abstract
The composition of insect hemolymph can change depending on many factors, e.g. access to nutrients, stress conditions, and current needs of the insect. In this chapter, insect immune-related polypeptides, which can be permanently or occasionally present in the hemolymph, are described. Their division into peptides or low-molecular weight proteins is not always determined by the length or secondary structure of a given molecule but also depends on the mode of action in insect immunity and, therefore, it is rather arbitrary. Antimicrobial peptides (AMPs) with their role in immunity, modes of action, and classification are presented in the chapter, followed by a short description of some examples: cecropins, moricins, defensins, proline- and glycine-rich peptides. Further, we will describe selected immune-related proteins that may participate in immune recognition, may possess direct antimicrobial properties, or can be involved in the modulation of insect immunity by both abiotic and biotic factors. We briefly cover Fibrinogen-Related Proteins (FREPs), Down Syndrome Cell Adhesion Molecules (Dscam), Hemolin, Lipophorins, Lysozyme, Insect Metalloproteinase Inhibitor (IMPI), and Heat Shock Proteins. The reader will obtain a partial picture presenting molecules participating in one of the most efficient immune strategies found in the animal world, which allow insects to inhabit all ecological land niches in the world.
Collapse
Affiliation(s)
- Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jakub Kordaczuk
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
134
|
Cutuli MA, Petronio Petronio G, Vergalito F, Magnifico I, Pietrangelo L, Venditti N, Di Marco R. Galleria mellonella as a consolidated in vivo model hosts: New developments in antibacterial strategies and novel drug testing. Virulence 2019; 10:527-541. [PMID: 31142220 PMCID: PMC6550544 DOI: 10.1080/21505594.2019.1621649] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
A greater ethical conscience, new global rules and a modified perception of ethical consciousness entail a more rigorous control on utilizations of vertebrates for in vivo studies. To cope with this new scenario, numerous alternatives to rodents have been proposed. Among these, the greater wax moth Galleria mellonella had a preponderant role, especially in the microbiological field, as demonstrated by the growing number of recent scientific publications. The reasons for its success must be sought in its peculiar characteristics such as the innate immune response mechanisms and the ability to grow at a temperature of 37°C. This review aims to describe the most relevant features of G. mellonella in microbiology, highlighting the most recent and relevant research on antibacterial strategies, novel drug tests and toxicological studies. Although solutions for some limitations are required, G. mellonella has all the necessary host features to be a consolidated in vivo model host.
Collapse
Affiliation(s)
- Marco Alfio Cutuli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Franca Vergalito
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise Italy - III Ed Polifunzionale, Campobasso, Italy
| |
Collapse
|
135
|
Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB. Antimicrobial Efficacy of Indolicidin Against Multi-Drug Resistant Enteroaggregative Escherichia coli in a Galleria mellonella Model. Front Microbiol 2019; 10:2723. [PMID: 31849877 PMCID: PMC6895141 DOI: 10.3389/fmicb.2019.02723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance against enteroaggregative Escherichia coli (EAEC), an emerging food-borne pathogen, has been observed in an increasing trend recently. In the recent wake of antimicrobial resistance, alternate strategies especially, cationic antimicrobial peptides (AMPs) have attracted considerable attention to source antimicrobial technology solutions. This study evaluated the in vitro antimicrobial efficacy of Indolicidin against multi-drug resistant enteroaggregative Escherichia coli (MDR-EAEC) strains and further to assess its in vivo antimicrobial efficacy in Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 32 μM) and minimum bactericidal concentration (MBC; 64 μM) of Indolicidin against MDR-EAEC was determined by micro broth dilution method. Indolicidin was also tested for its stability (high-end temperatures, physiological concentration of salts and proteases); safety (sheep RBCs; HEp-2 and RAW 264.7 cell lines); effect on beneficial microflora (Lactobacillus rhamnosus and Lactobacillus acidophilus) and its mode of action (flow cytometry; nitrocefin and ONPG uptake). In vitro time-kill kinetic assay of MDR-EAEC treated with Indolicidin was performed. Further, survival rate, MDR-EAEC count, melanization rate, hemocyte enumeration, cytotoxicity assay and histopathological examination were carried out in G. mellonella model to assess in vivo antimicrobial efficacy of Indolicidin against MDR-EAEC strains. Indolicidin was tested stable at high temperatures (70°C; 90°C), physiological concentration of cationic salts (NaCl; MgCl2) and proteases, except for trypsin and tested safe with sheep RBCs and cell lines (RAW 264.7; HEp-2) at MIC (1X and 2X); the beneficial flora was not inhibited. Indolicidin exhibited outer membrane permeabilization in a concentration- and time-dependent manner. In vitro time-kill assay revealed concentration-cum-time dependent clearance of MDR-EAEC in Indolicidin-treated groups at 120 min, while, in G. mellonella, the infected group treated with Indolicidin revealed an increased survival rate, immunomodulatory effect, reduced MDR-EAEC counts and were tested safe to the larval cells which was concurred histopathologically. To conclude, the results suggests Indolicidin as an effective antimicrobial candidate against MDR-EAEC and we recommend its further investigation in appropriate animal models (mice/piglets) before its application in the target host.
Collapse
Affiliation(s)
- Jess Vergis
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Richa Pathak
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manesh Kumar
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sunitha Ramanjaneya
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | | | - Deepak Bhiwa Rawool
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
136
|
Qi C, Xu S, Wu M, Zhu S, Liu Y, Huang H, Zhang G, Li J, Huang X. Pharmacodynamics Of Linezolid-Plus-Fosfomycin Against Vancomycin-Susceptible And -Resistant Enterococci In Vitro And In Vivo Of A Galleria mellonella Larval Infection Model. Infect Drug Resist 2019; 12:3497-3505. [PMID: 31814738 PMCID: PMC6858807 DOI: 10.2147/idr.s219117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Objectives To explore the in vitro and in vivo antibacterial activity of linezolid/fosfomycin combination against vancomycin-susceptible and -resistant enterococci (VSE and VRE), and provide a theoretical basis for the treatment of VRE. Methods The checkerboard method and time-kill curve study were used to evaluate the efficacy of linezolid combined with fosfomycin against VSE and VRE. The transmission electron microscopy (TEM) was employed to observe the cell morphology of bacteria treated with each drug alone or in combination, which further elucidate the mechanism of action of antibiotic combination therapy. The Galleria mellonella infection model was constructed to demonstrate the in vivo efficacy of linezolid plus fosfomycin for VSE and VRE infection. Results The fractional inhibitory concentration index (FICI) values of all strains suggested that linezolid showed synergy or additivity in combination with fosfomycin against five of the six strains. Time-kill experiments demonstrated that the combination of linezolid-fosfomycin at 1×MIC or 2×MIC led to higher degree of bacterial killing without regrowth for all isolates tested than each monotherapy. TEM images showed that the combination treatment damaged the bacterial cell morphology more obviously than each drug alone. In the Galleria mellonella infection model, the enhanced survival rate of the combination treatment compared with linezolid monotherapy (P<0.05) was revealed. Conclusion Our data manifested that the combination of linezolid and fosfomycin was a potential therapeutic regimen for VRE infection. The combination displayed excellent bacterial killing and inhibited amplification of fosfomycin-resistant subpopulations.
Collapse
Affiliation(s)
- Caifen Qi
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China.,Department of Pharmacy, The Anqing Affiliated Hospital of Anhui Medical University, Anqing, Anhui, People's Republic of China
| | - Shuangli Xu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Maomao Wu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shuo Zhu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hong Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Guijun Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
137
|
Campos-Silva R, Brust FR, Trentin DS, Macedo AJ. Alternative method in Galleria mellonella larvae to study biofilm infection and treatment. Microb Pathog 2019; 137:103756. [PMID: 31546000 DOI: 10.1016/j.micpath.2019.103756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 09/20/2019] [Indexed: 01/28/2023]
Abstract
In vivo studies are crucial decision-maker step in order to translate in vitro data to an applied therapy. Considering this we describe a simple method that analyzes and quantifies biofilm formation inside the Galleria mellonella larvae. Toothbrush bristles were employed as an abiotic surface to mimic a medical device. A standardized inoculum of Staphylococcus aureus was systemically injected in the larvae together with the insertion of a bristle in the last proleg pair. After incubation adhered cells were detached from bristles and quantified by colony-forming units (CFU) counting using staphylococci-selective medium. About 3 × 106 CFU of S. aureus were recovered from bristles and scanning electron microscopy (SEM) images confirmed biofilm formation. Control group did not show adherent bacteria, as demonstrated by absence of CFU counting and SEM images, indicating that the insertion procedure is free of bacterial contamination. We present a feasible method to evaluate bacterial biofilm formation in vivo that in the near future can be used to evaluate antibiofilm compounds.
Collapse
Affiliation(s)
- Rodrigo Campos-Silva
- Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Flávia Roberta Brust
- Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Danielle Silva Trentin
- Programa de Pós-Graduação em Biociências, Departamento de Ciências Básicas da Saúde, Universidade de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
138
|
Phenotypic switching in Candida tropicalis alters host-pathogen interactions in a Galleria mellonella infection model. Sci Rep 2019; 9:12555. [PMID: 31467372 PMCID: PMC6715636 DOI: 10.1038/s41598-019-49080-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/16/2019] [Indexed: 11/08/2022] Open
Abstract
Candida tropicalis is a human pathogen associated with high mortality rates. We have reported a switching system in C. tropicalis consisting of five morphotypes – the parental, switch variant (crepe and rough), and revertant (crepe and rough) strains, which exhibited altered virulence in a Galleria mellonella model. Here, we evaluate whether switching events may alter host-pathogen interactions by comparing the attributes of the innate responses to the various states. All switched strains induced higher melanization in G. mellonella larvae than that induced by the parental strain. The galiomicin expression was higher in the larvae infected with the crepe and rough morphotypes than that in the larvae infected with the parental strain. Hemocytes preferentially phagocytosed crepe variant cells over parental cells in vitro. In contrast, the rough variant cells were less phagocytosed than the parental strain. The hemocyte density was decreased in the larvae infected with the crepe variant compared to that in the larvae infected with the parental strain. Interestingly, larvae infected with the revertant of crepe restored the hemocyte density levels that to those observed for larvae infected with the parental strain. Most of the switched strains were more resistant to hemocyte candidacidal activity than the parental strain. These results indicate that the switch states exhibit similarities as well as important differences during infection in a G. mellonella model.
Collapse
|
139
|
Gwokyalya R, Altuntaş H. Boric acid-induced immunotoxicity and genotoxicity in model insect Galleria mellonella L. (Lepidoptera: Pyralidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21588. [PMID: 31180585 DOI: 10.1002/arch.21588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Boric acid (BA) is widely used in various industrial process and can be accessed to nontarget organisms. This study aimed to investigate the insecticidal effects of BA and its toxic activities with respect to immunologic and genotoxic effects using Galleria mellonella larvae as a model. BA concentrations (78.125-10,000 ppm) were administrated to the larvae using the feeding method. Concentration-dependent mortality was observed in all larval groups. Probit analysis revealed LC30 , LC50 , and LC70 values to be 112.4, 320.1, and 911.4 ppm, respectively. These concentrations were used in all bioassays. Drastic reductions in total hemocyte counts along with changes in differential hemocyte counts were observed following BA treatment. Cell viability assays showed dose-dependent reductions in viable cells and an increase in the necrotic and apoptotic ratios after BA treatment. However, mitotic indices of larval hemocytes did not change at all BA concentrations. The cytotoxic effect of BA led to a significant reduction in cellular immune responses such as encapsulation, melanization, and nodulation activities of treated larvae. While BA increased micronucleus ratios at the highest concentration, comet parameters indicating DNA damage increased in G. mellonella larval hemocytes at all concentrations. These report that BA suppresses the immune system of G. mellonella and also poses risks of genotoxicity at high concentrations.
Collapse
Affiliation(s)
- Rehemah Gwokyalya
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey
| | - Hülya Altuntaş
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey
| |
Collapse
|
140
|
Vertyporokh L, Kordaczuk J, Mak P, Hułas-Stasiak M, Wojda I. Host-pathogen interactions upon the first and subsequent infection of Galleria mellonella with Candida albicans. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103903. [PMID: 31233768 DOI: 10.1016/j.jinsphys.2019.103903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Insects are able to develop enhanced resistance in response to repeated infection. This phenomenon is called immune priming. In this work, so-called "primed" Galleria mellonella larvae were re-infected with a lethal dose of Candida albicans 48 h after injection of a non-lethal dose, while "non-primed" larvae were infected only with a lethal dose. The increased resistance of the primed larvae correlated with a slower rate of body colonisation by the fungus. Changes in the protein profiles were detected in the whole hemolymph of the primed insects. The analysis of low-molecular weight proteins and peptides obtained with the use of three different organic solvents and comparative quantitative HPLC analysis thereof showed that the primed larvae did not have higher amounts of any infection-inducible polypeptides than the non-primed larvae. Moreover, electrophoresis of low-molecular weight polypeptides revealed an even lower level of immune-induced peptides in the primed larvae than in the non-primed ones. Furthermore, the defence activity of larval hemolymph, i.e. the antifungal, antibacterial, and lysozyme-type activity, was up-regulated in the primed larvae at the time of re-infection and, consequently, at the early time points after the infection with the lethal dose. Twenty four hours after the infection, these parameters were equally high in the non-primed and primed larvae. Accordingly, at the time of the injection of the lethal dose, certain immune-inducible genes were up-regulated. However, 24 h after the infection with the lethal dose, their expression in both groups was incomparably higher than at the time of the infection and, in most cases, it was as high in the primed larvae as in the non-primed ones. We found that only anti yeast-like activity was enhanced 24 h after the re-infection. This correlated with results obtained by testing the priming effect in heterologous systems: the primed animals did not exhibit higher resistance to the other pathogens tested.
Collapse
Affiliation(s)
- Lidiia Vertyporokh
- Maria Curie-Sklodowska University, Faculty of Biology and Biotechnology, Department of Immunobiology, Lublin, Poland
| | - Jakub Kordaczuk
- Maria Curie-Sklodowska University, Faculty of Biology and Biotechnology, Department of Immunobiology, Lublin, Poland
| | - Paweł Mak
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Analytical Biochemistry, Kraków, Poland
| | - Monika Hułas-Stasiak
- Maria Curie-Sklodowska University, Faculty of Biology and Biotechnology, Department of Comparative Anatomy and Anthropology, Lublin, Poland
| | - Iwona Wojda
- Maria Curie-Sklodowska University, Faculty of Biology and Biotechnology, Department of Immunobiology, Lublin, Poland.
| |
Collapse
|
141
|
Efficacy of oritavancin alone and in combination against vancomycin-susceptible and -resistant enterococci in an in-vivo Galleria mellonella survival model. Int J Antimicrob Agents 2019; 54:197-201. [DOI: 10.1016/j.ijantimicag.2019.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 11/19/2022]
|
142
|
Antifungal Metabolites from Marine-Derived Streptomyces sp. AMA49 against Pyricularia oryzae. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
143
|
Zhao X, Palma Medina LM, Stobernack T, Glasner C, de Jong A, Utari P, Setroikromo R, Quax WJ, Otto A, Becher D, Buist G, van Dijl JM. Exoproteome Heterogeneity among Closely Related Staphylococcus aureus t437 Isolates and Possible Implications for Virulence. J Proteome Res 2019; 18:2859-2874. [PMID: 31119940 PMCID: PMC6617432 DOI: 10.1021/acs.jproteome.9b00179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus with spa-type t437 has been identified as a predominant community-associated methicillin-resistant S. aureus clone from Asia, which is also encountered in Europe. Molecular typing has previously shown that t437 isolates are highly similar regardless of geographical regions or host environments. The present study was aimed at assessing to what extent this high similarity is actually reflected in the production of secreted virulence factors. We therefore profiled the extracellular proteome, representing the main reservoir of virulence factors, of 20 representative clinical isolates by mass spectrometry. The results show that these isolates can be divided into three groups and nine subgroups based on exoproteome abundance signatures. This implies that S. aureus t437 isolates show substantial exoproteome heterogeneity. Nonetheless, 30 highly conserved extracellular proteins, of which about 50% have a predicted role in pathogenesis, were dominantly identified. To approximate the virulence of the 20 investigated isolates, we employed infection models based on Galleria mellonella and HeLa cells. The results show that the grouping of clinical isolates based on their exoproteome profile can be related to virulence. We consider this outcome important as our approach provides a tool to pinpoint differences in virulence among seemingly highly similar clinical isolates of S. aureus.
Collapse
Affiliation(s)
- Xin Zhao
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Laura M Palma Medina
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Tim Stobernack
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Corinna Glasner
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Anne de Jong
- University of Groningen , Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics , 9747 AG Groningen , The Netherlands
| | - Putri Utari
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Rita Setroikromo
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Wim J Quax
- University of Groningen , Groningen Research Institute of Pharmacy, Department of Chemical and Pharmaceutical Biology , A. Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Andreas Otto
- Institut für Mikrobiologie , University of Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Dörte Becher
- Institut für Mikrobiologie , University of Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Girbe Buist
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| | - Jan Maarten van Dijl
- University of Groningen , University Medical Center Groningen, Department of Medical Microbiology , Hanzeplein 1 , P.O. Box 30001, 9700 RB Groningen , The Netherlands
| |
Collapse
|
144
|
Barros PPD, Rossoni RD, Ribeiro FDC, Silva MP, Souza CMD, Jorge AOC, Junqueira JC. Two sporulated Bacillus enhance immunity in Galleria mellonella protecting against Candida albicans. Microb Pathog 2019; 132:335-342. [PMID: 31100407 DOI: 10.1016/j.micpath.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the effects of Bacillus subtilis and Bacillus atrophaeus on Galleria mellonella immunity challenged by Candida albicans. Firstly, we analyzed the susceptibility of G. mellonella to bacilli (vegetative and sporulating forms). It was found that both vegetative and sporulating forms were not pathogenic to G. mellonella at a concentration of 1 × 104 cells/larva. Next, larvae were pretreated with two species of Bacillus, in the vegetative and sporulating forms, and then challenged with C. albicans. In addition, the gene expression of antimicrobial peptides (AMPs) such as Gallerimycin, Gloverin, Cecropin-D and Galiomicin was investigated. Survival rates increased in the Bacillus treated larvae compared with control larvae inoculated with C. albicans only. Cells and spores of Bacillus spp. upregulated Gloverin, Galiomicin and Gallerimycin genes in relation to the control group (PBS + PBS). When these larvae were infected with C. albicans, the group pretreated with spores of B. atrophaeus and B. subtilis showed a greater increase in expression of Galiomycin (49.08-fold and 13.50-fold) and Gallerimycin (27.88-fold and 68.15-fold), respectively, compared to the group infected with C. albicans only (p = 0.0001). After that, we investigated the effects of B. subtilis and B. atrophaeus on immune system of G. mellonella evaluating the number of hemocytes, quantification of melanization, cocoon formation and colony forming units (CFU) count. Hemocyte count increased in response to stimulation by Bacillus, and a higher increase was achieved when larvae were inoculated with B. subtilis spores (p = 0.0011). In the melanization assay, all groups tested demonstrated lower production of melanin compared to that in the phosphate-buffered saline (PBS) group. In addition, full cocoon formation was observed in all groups analyzed, which corresponded to a healthier wax worm. Hemolymph culture revealed higher growth of B. atrophaeus and B. subtilis in the groups inoculated with spores. We concluded that spores and cells of B. atrophaeus and B. subtilis stimulated the immune system of G. mellonella larvae and protected them of C. albicans infection.
Collapse
Affiliation(s)
- Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Michelle Peneluppi Silva
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Cheyenne Marçal de Souza
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Avenida Engenheiro Francisco José Longo 777, São Dimsas, São José dos Campos, CEP: 12245-000, SP, Brazil.
| |
Collapse
|
145
|
Buisson C, Gohar M, Huillet E, Nielsen-LeRoux C. Bacillus thuringiensis Spores and Vegetative Bacteria: Infection Capacity and Role of the Virulence Regulon PlcR Following Intrahaemocoel Injection of Galleria mellonella. INSECTS 2019; 10:insects10050129. [PMID: 31060274 PMCID: PMC6571593 DOI: 10.3390/insects10050129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022]
Abstract
Bacillus thuringiensis is an invertebrate pathogen that produces insecticidal crystal toxins acting on the intestinal barrier. In the Galleria mellonella larvae infection model, toxins from the PlcR virulence regulon contribute to pathogenicity by the oral route. While B. thuringiensis is principally an oral pathogen, bacteria may also reach the insect haemocoel following injury of the cuticle. Here, we address the question of spore virulence as compared to vegetative cells when the wild-type Bt407cry- strain and its isogenic ∆plcR mutant are inoculated directly into G. mellonella haemocoel. Mortality dose-response curves were constructed at 25 and 37 °C using spores or vegetative cell inocula, and the 50% lethal dose (LD50) in all infection conditions was determined after 48 h of infection. Our findings show that (i) the LD50 is lower for spores than for vegetative cells for both strains, while the temperature has no significant influence, and (ii) the ∆plcR mutant is four to six times less virulent than the wild-type strain in all infection conditions. Our results suggest that the environmental resistant spores are the most infecting form in haemocoel and that the PlcR virulence regulon plays an important role in toxicity when reaching the haemocoel from the cuticle and not only following ingestion.
Collapse
Affiliation(s)
- Christophe Buisson
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Michel Gohar
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Eugénie Huillet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | |
Collapse
|
146
|
Rossoni RD, Ribeiro FDC, dos Santos HFS, dos Santos JD, Oliveira NDS, Dutra MTDS, de Lapena SAB, Junqueira JC. Galleria mellonella as an experimental model to study human oral pathogens. Arch Oral Biol 2019; 101:13-22. [DOI: 10.1016/j.archoralbio.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 12/28/2022]
|
147
|
Sheehan G, Garvey A, Croke M, Kavanagh K. Innate humoral immune defences in mammals and insects: The same, with differences ? Virulence 2019; 9:1625-1639. [PMID: 30257608 PMCID: PMC7000196 DOI: 10.1080/21505594.2018.1526531] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The insect immune response demonstrates many similarities to the innate immune response of mammals and a wide range of insects is now employed to assess the virulence of pathogens and produce results comparable to those obtained using mammals. Many of the humoral responses in insects and mammals are similar (e.g. insect transglutaminases and human clotting factor XIIIa) however a number show distinct differences. For example in mammals, melanization plays a role in protection from solar radiation and in skin and hair pigmentation. In contrast, insect melanization acts as a defence mechanism in which the proPO system is activated upon pathogen invasion. Human and insect antimicrobial peptides share distinct structural and functional similarities, insects produce the majority of their AMPs from the fat body while mammals rely on production locally at the site of infection by epithelial/mucosal cells. Understanding the structure and function of the insect immune system and the similarities with the innate immune response of mammals will increase the attractiveness of using insects as in vivo models for studying host – pathogen interactions.
Collapse
Affiliation(s)
- Gerard Sheehan
- a Department of Biology , Maynooth University , Maynooth , Ireland
| | - Amy Garvey
- a Department of Biology , Maynooth University , Maynooth , Ireland
| | - Michael Croke
- a Department of Biology , Maynooth University , Maynooth , Ireland
| | - Kevin Kavanagh
- a Department of Biology , Maynooth University , Maynooth , Ireland
| |
Collapse
|
148
|
Hernández-Chávez MJ, Franco B, Clavijo-Giraldo DM, Hernández NV, Estrada-Mata E, Mora-Montes HM. Role of protein phosphomannosylation in the Candida tropicalis-macrophage interaction. FEMS Yeast Res 2019; 18:4989128. [PMID: 29718196 DOI: 10.1093/femsyr/foy053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Candida tropicalis is an opportunistic fungal pathogen responsible for mucosal and systemic infections. The cell wall is the initial contact point between a fungal cell and the host immune system, and mannoproteins are important components that play key roles when interacting with host cells. In Candida albicans, mannans are modified by mannosyl-phosphate moieties, named phosphomannans, which can work as molecular scaffolds to synthesize β1,2-mannooligosaccharides, and MNN4 is a positive regulator of the phosphomannosylation pathway. Here, we showed that C. tropicalis also displays phosphomannans on the cell surface, but the amount of this cell wall component varies depending on the fungal strain. We also identified a functional ortholog of CaMNN4 in C. tropicalis. Disruption of this gene caused depletion of phosphomannan content. The C. tropicalis mnn4Δ did not show defects in the ability to stimulate cytokine production by human mononuclear cells but displayed virulence attenuation in an insect model of candidiasis. When the mnn4Δ-macrophage interaction was analyzed, results showed that presence of cell wall phosphomannan was critical for C. tropicalis phagocytosis. Finally, our results strongly suggest a differential role for phosphomannans during phagocytosis of C. albicans and C. tropicalis.
Collapse
Affiliation(s)
- Marco J Hernández-Chávez
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Bernardo Franco
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Diana M Clavijo-Giraldo
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Nahúm V Hernández
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Eine Estrada-Mata
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| | - Héctor Manuel Mora-Montes
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050, Guanajuato, Gto., México
| |
Collapse
|
149
|
|
150
|
2-Hydroxylation of Acinetobacter baumannii Lipid A Contributes to Virulence. Infect Immun 2019; 87:IAI.00066-19. [PMID: 30745327 PMCID: PMC6434125 DOI: 10.1128/iai.00066-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Acinetobacter baumannii causes a wide range of nosocomial infections. This pathogen is considered a threat to human health due to the increasingly frequent isolation of multidrug-resistant strains. Acinetobacter baumannii causes a wide range of nosocomial infections. This pathogen is considered a threat to human health due to the increasingly frequent isolation of multidrug-resistant strains. There is a major gap in knowledge on the infection biology of A. baumannii, and only a few virulence factors have been characterized, including lipopolysaccharide. The lipid A expressed by A. baumannii is hepta-acylated and contains 2-hydroxylaurate. The late acyltransferases controlling the acylation of lipid A have been already characterized. Here, we report the characterization of A. baumannii LpxO, which encodes the enzyme responsible for the 2-hydroxylation of lipid A. By genetic methods and mass spectrometry, we demonstrate that LpxO catalyzes the 2-hydroxylation of the laurate transferred by A. baumannii LpxL. LpxO-dependent lipid A 2-hydroxylation protects A. baumannii from polymyxin B, colistin, and human β-defensin 3. LpxO contributes to the survival of A. baumannii in human whole blood and is required for pathogen survival in the waxmoth Galleria mellonella. LpxO also protects Acinetobacter from G. mellonella antimicrobial peptides and limits their expression. Further demonstrating the importance of LpxO-dependent modification in immune evasion, 2-hydroxylation of lipid A limits the activation of the mitogen-activated protein kinase Jun N-terminal protein kinase to attenuate inflammatory responses. In addition, LpxO-controlled lipid A modification mediates the production of the anti-inflammatory cytokine interleukin-10 (IL-10) via the activation of the transcriptional factor CREB. IL-10 in turn limits the production of inflammatory cytokines following A. baumannii infection. Altogether, our studies suggest that LpxO is a candidate for the development of anti-A. baumannii drugs.
Collapse
|