101
|
Relationship between NaCl- and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis. PLoS One 2013; 8:e76130. [PMID: 24124535 PMCID: PMC3790670 DOI: 10.1371/journal.pone.0076130] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 08/27/2013] [Indexed: 02/04/2023] Open
Abstract
Salinity is among the environmental factors that affect plant growth and development and constrain agricultural productivity. Salinity stress triggers increases in cytosolic free Ca2+ concentration ([Ca2+]i) via Ca2+ influx across the plasma membrane. Salinity stress, as well as other stresses, induces the production of reactive oxygen species (ROS). It is well established that ROS also triggers increases in [Ca2+]i. However, the relationship and interaction between salinity stress-induced [Ca2+]i increases and ROS-induced [Ca2+]i increases remain poorly understood. Using an aequorin-based Ca2+ imaging assay we have analyzed [Ca2+]i changes in response to NaCl and H2O2 treatments in Arabidopsis thaliana. We found that NaCl and H2O2 together induced larger increases in [Ca2+]i in Arabidopsis seedlings than either NaCl or H2O2 alone, suggesting an additive effect on [Ca2+]i increases. Following a pre-treatment with either NaCl or H2O2, the subsequent elevation of [Ca2+]i in response to a second treatment with either NaCl or H2O2 was significantly reduced. Furthermore, the NaCl pre-treatment suppressed the elevation of [Ca2+]i seen with a second NaCl treatment more than that seen with a second treatment of H2O2. A similar response was seen when the initial treatment was with H2O2; subsequent addition of H2O2 led to less of an increase in [Ca2+]i than did addition of NaCl. These results imply that NaCl-gated Ca2+ channels and H2O2-gated Ca2+ channels may differ, and also suggest that NaCl- and H2O2-evoked [Ca2+]i may reduce the potency of both NaCl and H2O2 in triggering [Ca2+]i increases, highlighting a feedback mechanism. Alternatively, NaCl and H2O2 may activate the same Ca2+ permeable channel, which is expressed in different types of cells and/or activated via different signaling pathways.
Collapse
|
102
|
Takáč T, Pechan T, Samajová O, Samaj J. Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis. J Proteome Res 2013; 12:4435-48. [PMID: 23931732 DOI: 10.1021/pr400466x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
LY294002 is a synthetic quercetin-like compound, which, unlike wortmannin, is more specific inhibitor of phosphatidylinositol 3-kinase (PI3K). It inhibits endocytosis and vacuolar transport. We report here on the proteome-wide effects of LY294002 on Arabidopsis roots focusing on proteins involved in vesicular trafficking and stress response. At the subcellular level, LY294002 caused swelling and clustering of late endosomes leading to inhibition of vacuolar transport. At the proteome level, this compound caused changes in abundances of proteins categorized to 10 functional classes. Among proteins involved in vesicular trafficking, a small GTPase ARFA1f was more abundant, indicating its possible contribution to the aggregation and fusion of late endosomes triggered by LY294002. Our study provides new information on storage proteins and vacuolar hydrolases in vegetative tissues treated by LY294002. Vacuolar hydrolases were downregulated, while storage proteins were more abundant, suggesting that storage proteins were protected from degradation in swollen multivesicular bodies upon LY294002 treatment. Upregulation of 2S albumin was validated by immunoblotting and immunolabeling analyses. Our study also pointed to the control of antioxidant enzyme machinery by PI3K because LY294002 downregulated two isozymes of superoxide dismutase. This most likely occurred via PI3K-mediated downregulation of protein AtDJ1A. Finally, we discuss specificity differences of LY294002 and wortmannin against PI3K, which are reflected at the proteome level. Compared with wortmannin, LY294002 showed more narrow and perhaps also more specific effects on proteins, as suggested by gene ontology functional annotation.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University , Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | |
Collapse
|
103
|
McDowell SC, López-Marqués RL, Poulsen LR, Palmgren MG, Harper JF. Loss of the Arabidopsis thaliana P₄-ATPase ALA3 reduces adaptability to temperature stresses and impairs vegetative, pollen, and ovule development. PLoS One 2013; 8:e62577. [PMID: 23667493 PMCID: PMC3646830 DOI: 10.1371/journal.pone.0062577] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/20/2013] [Indexed: 12/28/2022] Open
Abstract
Members of the P4 subfamily of P-type ATPases are thought to help create asymmetry in lipid bilayers by flipping specific lipids between the leaflets of a membrane. This asymmetry is believed to be central to the formation of vesicles in the secretory and endocytic pathways. In Arabidopsis thaliana, a P4-ATPase associated with the trans-Golgi network (ALA3) was previously reported to be important for vegetative growth and reproductive success. Here we show that multiple phenotypes for ala3 knockouts are sensitive to growth conditions. For example, ala3 rosette size was observed to be dependent upon both temperature and soil, and varied between 40% and 80% that of wild-type under different conditions. We also demonstrate that ala3 mutants have reduced fecundity resulting from a combination of decreased ovule production and pollen tube growth defects. In-vitro pollen tube growth assays showed that ala3 pollen germinated ∼2 h slower than wild-type and had approximately 2-fold reductions in both maximal growth rate and overall length. In genetic crosses under conditions of hot days and cold nights, pollen fitness was reduced by at least 90-fold; from ∼18% transmission efficiency (unstressed) to less than 0.2% (stressed). Together, these results support a model in which ALA3 functions to modify endomembranes in multiple cell types, enabling structural changes, or signaling functions that are critical in plants for normal development and adaptation to varied growth environments.
Collapse
Affiliation(s)
- Stephen C. McDowell
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Rosa L. López-Marqués
- Department of Plant Biology and Biotechnology, Centre for Membrane Pumps in Cells and Disease (PUMPKIN), University of Copenhagen, Danish National Research Foundation, Frederiksberg, Denmark
| | - Lisbeth R. Poulsen
- Department of Plant Biology and Biotechnology, Centre for Membrane Pumps in Cells and Disease (PUMPKIN), University of Copenhagen, Danish National Research Foundation, Frederiksberg, Denmark
| | - Michael G. Palmgren
- Department of Plant Biology and Biotechnology, Centre for Membrane Pumps in Cells and Disease (PUMPKIN), University of Copenhagen, Danish National Research Foundation, Frederiksberg, Denmark
| | - Jeffrey F. Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
104
|
Liu X, Zhai S, Zhao Y, Sun B, Liu C, Yang A, Zhang J. Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize. PLANT, CELL & ENVIRONMENT 2013; 36:1037-55. [PMID: 23152961 DOI: 10.1111/pce.12040] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/29/2012] [Accepted: 11/07/2012] [Indexed: 05/18/2023]
Abstract
Phosphatidylinositol (PtdIns) synthase is a key enzyme in the phospholipid pathway and catalyses the formation of PtdIns. PtdIns is not only a structural component of cell membranes, but also the precursor of the phospholipid signal molecules that regulate plant response to environment stresses. Here, we obtained transgenic maize constitutively overexpressing or underexpressing PIS from maize (ZmPIS) under the control of a maize ubiquitin promoter. Transgenic plants were confirmed by PCR, Southern blotting analysis and real-time RT-PCR assay. The electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based lipid profiling analysis showed that, under drought stress conditions, the overexpression of ZmPIS in maize resulted in significantly elevated levels of most phospholipids and galactolipids in leaves compared with those in wild type (WT). At the same time, the expression of some genes involved in the phospholipid metabolism pathway and the abscisic acid (ABA) biosynthesis pathway including ZmPLC, ZmPLD, ZmDGK1, ZmDGK3, ZmPIP5K9, ZmABA1, ZmNCED, ZmAAO1, ZmAAO2 and ZmSCA1 was markedly up-regulated in the overexpression lines after drought stress. Consistent with these results, the drought stress tolerance of the ZmPIS sense transgenic plants was enhanced significantly at the pre-flowering stages compared with WT maize plants. These results imply that ZmPIS regulates the plant response to drought stress through altering membrane lipid composition and increasing ABA synthesis in maize.
Collapse
MESH Headings
- Abscisic Acid/biosynthesis
- Adaptation, Biological
- CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/genetics
- CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/metabolism
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Crops, Agricultural/genetics
- Crops, Agricultural/metabolism
- Crops, Agricultural/physiology
- Droughts
- Flowers/genetics
- Flowers/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant
- Membrane Lipids/genetics
- Membrane Lipids/metabolism
- Phospholipids/genetics
- Phospholipids/metabolism
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plant Leaves/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Signal Transduction
- Spectrometry, Mass, Electrospray Ionization
- Stress, Physiological
- Zea mays/enzymology
- Zea mays/genetics
- Zea mays/physiology
Collapse
Affiliation(s)
- Xiuxia Liu
- School of Life Science, Shandong University, 27 Shanda South Road, Jinan 250100, China
| | | | | | | | | | | | | |
Collapse
|
105
|
Aggarwal C, Łabuz J, Gabryś H. Phosphoinositides play differential roles in regulating phototropin1- and phototropin2-mediated chloroplast movements in Arabidopsis. PLoS One 2013; 8:e55393. [PMID: 23405144 PMCID: PMC3566141 DOI: 10.1371/journal.pone.0055393] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/24/2012] [Indexed: 01/06/2023] Open
Abstract
Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca2+(c) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca2+(c) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca2+ signaling during movements.
Collapse
Affiliation(s)
- Chhavi Aggarwal
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
106
|
EHD1 functions in endosomal recycling and confers salt tolerance. PLoS One 2013; 8:e54533. [PMID: 23342166 PMCID: PMC3544766 DOI: 10.1371/journal.pone.0054533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/13/2012] [Indexed: 01/13/2023] Open
Abstract
Endocytosis is a crucial process in all eukaryotic organisms including plants. We have previously shown that two Arabidopsis proteins, AtEHD1 and AtEHD2, are involved in endocytosis in plant systems. Knock-down of EHD1 was shown to have a delayed recycling phenotype in mammalians. There are many works in mammalian systems detailing the importance of the various domains in EHDs but, to date, the domains of plant EHD1 that are required for its activity have not been characterized. In this work we demonstrate that knock-down of EHD1 causes a delayed recycling phenotype and reduces Brefeldin A sensitivity in Arabidopsis seedlings. The EH domain of EHD1 was found to be crucial for the localization of EHD1 to endosomal structures. Mutant EHD1 lacking the EH domain did not localize to endosomal structures and showed a phenotype similar to that of EHD1 knock-down seedlings. Mutants lacking the coiled-coil domain, however, showed a phenotype similar to wild-type or EHD1 overexpression seedlings. Salinity stress is a major problem in current agriculture. Microarray data demonstrated that salinity stress enhances the expression of EHD1, and this was confirmed by semi quantitative RT-PCR. We demonstrate herein that transgenic plants over expressing EHD1 possess enhanced tolerance to salt stress, a property which also requires an intact EH domain.
Collapse
|
107
|
Karali D, Oxley D, Runions J, Ktistakis N, Farmaki T. The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3,5)P2 and affects germination under osmotic stress. PLoS One 2012; 7:e48241. [PMID: 23133621 PMCID: PMC3487907 DOI: 10.1371/journal.pone.0048241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/21/2012] [Indexed: 01/03/2023] Open
Abstract
A direct interaction of the Arabidopsis thaliana immunophilin ROF1 with phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate was identified using a phosphatidylinositol-phosphate affinity chromatography of cell suspension extracts, combined with a mass spectrometry (nano LC ESI-MS/MS) analysis. The first FK506 binding domain was shown sufficient to bind to both phosphatidylinositol-phosphate stereoisomers. GFP-tagged ROF1 under the control of a 35S promoter was localised in the cytoplasm and the cell periphery of Nicotiana tabacum leaf explants. Immunofluorescence microscopy of Arabidopsis thaliana root tips verified its cytoplasmic localization and membrane association and showed ROF1 localization in the elongation zone which was expanded to the meristematic zone in plants grown on high salt media. Endogenous ROF1 was shown to accumulate in response to high salt treatment in Arabidopsis thaliana young leaves as well as in seedlings germinated on high salt media (0.15 and 0.2 M NaCl) at both an mRNA and protein level. Plants over-expressing ROF1, (WSROF1OE), exhibited enhanced germination under salinity stress which was significantly reduced in the rof1(-) knock out mutants and abolished in the double mutants of ROF1 and of its interacting homologue ROF2 (WSrof1(-)/2(-)). Our results show that ROF1 plays an important role in the osmotic/salt stress responses of germinating Arabidopsis thaliana seedlings and suggest its involvement in salinity stress responses through a phosphatidylinositol-phosphate related protein quality control pathway.
Collapse
Affiliation(s)
- Debora Karali
- Institute of Applied Biosciences, Centre for Research and Technology – Hellas, Thermi, Thessaloniki, Greece
| | - David Oxley
- The Mass Spectrometry Group, Babraham Institute, Cambridge, United Kingdom
| | - John Runions
- School of Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Theodora Farmaki
- Institute of Applied Biosciences, Centre for Research and Technology – Hellas, Thermi, Thessaloniki, Greece
| |
Collapse
|
108
|
ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J 2012; 31:4359-70. [PMID: 23064146 PMCID: PMC3501220 DOI: 10.1038/emboj.2012.273] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/12/2012] [Indexed: 01/12/2023] Open
Abstract
Sodium (Na) is ubiquitous in soils, and is transported to plant shoots via transpiration through xylem elements in the vascular tissue. However, excess Na is damaging. Accordingly, control of xylem-sap Na concentration is important for maintenance of shoot Na homeostasis, especially under Na stress conditions. Here we report that shoot Na homeostasis of Arabidopsis thaliana plants grown in saline soils is conferred by reactive oxygen species (ROS) regulation of xylem-sap Na concentrations. We show that lack of A. thaliana respiratory burst oxidase protein F (AtrbohF; an NADPH oxidase catalysing ROS production) causes hypersensitivity of shoots to soil salinity. Lack of AtrbohF-dependent salinity-induced vascular ROS accumulation leads to increased Na concentrations in root vasculature cells and in xylem sap, thus causing delivery of damaging amounts of Na to the shoot. We also show that the excess shoot Na delivery caused by lack of AtrbohF is dependent upon transpiration. We conclude that AtrbohF increases ROS levels in wild-type root vasculature in response to raised soil salinity, thereby limiting Na concentrations in xylem sap, and in turn protecting shoot cells from transpiration-dependent delivery of excess Na.
Collapse
|
109
|
Heilmann I. Towards understanding the function of stress-inducible PtdIns(4,5)P(2) in plants. Commun Integr Biol 2012; 1:204-6. [PMID: 19513260 DOI: 10.4161/cib.1.2.7226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 01/25/2023] Open
Abstract
The phosphoinositide (PI) system has been conserved in evolution between all eukaryotic kingdoms. Studies on mammalian and yeast cells indicate that cellular functions regulated by PIs include the production of soluble inositolpolyphosphates with signaling functions as well as recruitment of proteins required for endo- or exocytosis. In contrast to other models, knowledge on PI functions in plants is limited and, despite of reports of transient PI-increases upon stress-treatments, plant cellular processes involving changes in PI-levels have remained unclear. In previous studies various groups have proposed that PI-increases upon hyperosmotic stress support the generation of soluble second messengers with possible roles in stress adaptation. Based on a combination of biochemical analysis and imaging of fluorescent reporters we have now demonstrated that intact phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) associates with clathrin-coated vesicles (CCVs) in a stress-inducible manner in plant cells. In analogy to previous studies on other models, association with CCVs suggests a role for PtdIns(4,5)P(2) in the recruitment of vesicle coat proteins and in membrane internalization that is alternative to functions in second messenger production. The determination of subcellular sites of PtdIns(4,5)P(2) increases, thus, opens new avenues of investigation in the plant PI-field and allows development of testable hypotheses to delineate PI-functions in plants.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Plant Biochemistry; Albrecht-von-Haller-Institute for Plant Sciences; Georg-August-University Göttingen; Göttingen Germany
| |
Collapse
|
110
|
Im JH, Lee H, Kim J, Kim HB, An CS. Soybean MAPK, GMK1 is dually regulated by phosphatidic acid and hydrogen peroxide and translocated to nucleus during salt stress. Mol Cells 2012; 34:271-8. [PMID: 22886763 PMCID: PMC3887844 DOI: 10.1007/s10059-012-0092-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/07/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) is activated by various biotic and abiotic stresses. Salt stress induces two well-characterized MAPK activating signaling molecules, phosphatidic acid (PA) via phospholipase D and phospholipase C, and reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase. In our previous study, the activity of soybean MAPK, GMK1 was strongly induced within 5 min of 300 mM NaCl treatment and this early activity was regulated by PA. In this study, we focused on the regulation of GMK1 at the later stage of the salt stress, because its activity was strongly persistent for up to 30 min. H(2)O(2) activated GMK1 even in the presence of PA generation inhibitors, but GMK1 activity was greatly decreased in the presence of diphenyleneiodonium, an inhibitor of NADPH-oxidase after 5 min of the treatment. On the contrary, the n-butanol and neomycin reduced GMK1 activity within 5 min of the treatment. Thus, GMK1 activity may be sustained by H(2)O(2) 10 min after the treatment. Further, GMK1 was translocated into the nucleus 60 min after NaCl treatment. In the relationship between GMK1 and ROS generation, ROS generation was reduced by SB202190, a MAPK inhibitor, but was increased in protoplast overexpressing TESD-GMKK1. However, these effects were occurred at prolonged time of NaCl treatment. These data suggest that GMK1 indirectly regulates ROS generation. Taken together, we propose that soybean GMK1 is dually regulated by PA and H(2)O(2) at a time dependant manner and translocated to the nucleus by the salt stress signal.
Collapse
Affiliation(s)
- Jong Hee Im
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| | - Hyoungseok Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Division of Life Sciences, Korea Polar Research Institute (KOPRI), Songdo Techno Park, Incheon 406-840,
Korea
| | - Jitae Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Department of Plant Biology, Cornell University, Ithaca, New York, 14853,
USA
| | - Ho Bang Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Life Sciences Research Institute, Biomedic Co. Ltd., Bucheon 420-852,
Korea
| | - Chung Sun An
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| |
Collapse
|
111
|
Cui W, Li L, Gao Z, Wu H, Xie Y, Shen W. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5521-34. [PMID: 22915740 PMCID: PMC3444266 DOI: 10.1093/jxb/ers201] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl(2) exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)(+), and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis.
Collapse
Affiliation(s)
- Weiti Cui
- These authors contributed equally to this work
| | - Le Li
- These authors contributed equally to this work
| | | | | | | | - Wenbiao Shen
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
112
|
Li F, Vierstra RD. Autophagy: a multifaceted intracellular system for bulk and selective recycling. TRENDS IN PLANT SCIENCE 2012; 17:526-37. [PMID: 22694835 DOI: 10.1016/j.tplants.2012.05.006] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 05/18/2023]
Abstract
Plants have evolved sophisticated mechanisms to recycle intracellular constituents. One gaining in appreciation is autophagy, which involves specialized vesicles engulfing and delivering unwanted cytoplasmic material to the vacuole for breakdown. Central to this process is the ubiquitin-fold protein autophagy (ATG)-8, which becomes tethered to the developing autophagic membranes by lipidation. Here, we review data showing that the ATG8 moiety provides a docking site not only for proteins that help shape the enclosing vesicles and promote their fusion with the tonoplast, but also for a host of receptors that recruit appropriate autophagic cargo. The identity of these receptors has dramatically altered the view of autophagy as being a relatively nonspecific mechanism to one that may selectively sequester aggregated proteins, protein complexes, organelles, and even invading pathogens.
Collapse
Affiliation(s)
- Faqiang Li
- Department of Genetics, 425-G Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
113
|
PARK YANGGYU, JEONG JAEKYO, MOON MYUNGHEE, LEE JUHEE, LEE YOUJIN, SEOL JAEWON, KIM SHANGJIN, KANG SEOGJIN, PARK SANGYOUEL. Insulin-like growth factor-1 protects against prion peptide-induced cell death in neuronal cells via inhibition of Bax translocation. Int J Mol Med 2012; 30:1069-74. [DOI: 10.3892/ijmm.2012.1087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/28/2012] [Indexed: 11/05/2022] Open
|
114
|
Liu SG, Zhu DZ, Chen GH, Gao XQ, Zhang XS. Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress. PLANT CELL REPORTS 2012; 31:1219-26. [PMID: 22383108 DOI: 10.1007/s00299-012-1242-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/02/2012] [Accepted: 02/17/2012] [Indexed: 05/11/2023]
Abstract
UNLABELLED Changes in actin dynamics represent the primary response of the plant cell to extracellular signaling. Recent studies have now revealed that actin remodeling is involved in abiotic stress tolerance in plants. In our current study, the relationship between the changes in actin dynamics and the reactive oxygen species (ROS) level at the initial stages of salt stress was investigated in the elongation zone of the Arabidopsis root tip. We found that a 200 mM NaCl treatment disrupted the dynamics of the actin filaments within 10 min and increased the ROS levels in the elongation zone cells of the Arabidopsis root tip. We further found that the NADPH oxidase activity inhibitor, diphenyleneiodonium, treatment blocked this ROS increase under salt stress conditions. The roles of actin dynamics and the NADPH oxidases in ROS generation were further analyzed using the actin-specific agents, latrunculin B (Lat-B) and jasplakinolide (Jasp), and mutants of Arabidopsis NADPH oxidase AtrbohC. Lat-B and Jasp promote actin depolymerization and polymerization, respectively, and both were found to enhance the ROS levels following NaCl treatment. However, this response was abolished in the atrbohC mutants. Our present results thus demonstrate that actin dynamics are involved in regulating the ROS level in Arabidopsis root under salt stress conditions. KEY MESSAGE Salt stress disrupts the dynamics of the actin filaments in Arabidopsis in the short term which are involved in regulating the ROS levels that arise under salt stress conditions via the actions of the AtrbohC.
Collapse
Affiliation(s)
- Shang Gang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, Shandong, China
| | | | | | | | | |
Collapse
|
115
|
Takáč T, Pechan T, Samajová O, Ovečka M, Richter H, Eck C, Niehaus K, Samaj J. Wortmannin treatment induces changes in Arabidopsis root proteome and post-Golgi compartments. J Proteome Res 2012; 11:3127-42. [PMID: 22524784 DOI: 10.1021/pr201111n] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wortmannin is a widely used pharmaceutical compound which is employed to define vesicular trafficking routes of particular proteins or cellular compounds. It targets phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinases in a dose-dependent manner leading to the inhibition of protein vacuolar sorting and endocytosis. Combined proteomics and cell biological approaches have been used in this study to explore the effects of wortmannin on Arabidopsis root cells, especially on proteome and endomembrane trafficking. On the subcellular level, wortmannin caused clustering, fusion, and swelling of trans-Golgi network (TGN) vesicles and multivesicular bodies (MVBs) leading to the formation of wortmannin-induced multivesicular compartments. Appearance of wortmannin-induced compartments was associated with depletion of TGN as revealed by electron microscopy. On the proteome level, wortmannin induced massive changes in protein abundance profiles. Wortmannin-sensitive proteins belonged to various functional classes. An inhibition of vacuolar trafficking by wortmannin was related to the downregulation of proteins targeted to the vacuole, as showed for vacuolar proteases. A small GTPase, RabA1d, which regulates vesicular trafficking at TGN, was identified as a new protein negatively affected by wortmannin. In addition, Sec14 was upregulated and PLD1 alpha was downregulated by wortmannin.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University , Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Gao C, Wang C, Zheng L, Wang L, Wang Y. A LEA gene regulates Cadmium tolerance by mediating physiological responses. Int J Mol Sci 2012; 13:5468-5481. [PMID: 22754308 PMCID: PMC3382805 DOI: 10.3390/ijms13055468] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/22/2012] [Accepted: 04/26/2012] [Indexed: 12/02/2022] Open
Abstract
In this study, the function of a LEA gene (TaLEA1) from Tamrix androssowii in response to heavy metal stress was characterized. Time-course expression analyses showed that NaCl, ZnCl2, CuSO4, and CdCl2 considerably increased the expression levels of the TaLEA1 gene, thereby suggesting that this gene plays a role in the responses to these test stressors. To analyze the heavy metal stress-tolerance mechanism regulated by TaLEA1, TaLEA1-overexpressing transgenic poplar plants (Populus davidiana Dode × P. bollena Lauche) were generated. Significant differences were not observed between the proline content of the transgenic and wild-type (WT) plants before and after CdCl2 stress. However, in comparison with the WT plants, the TaLEA1-transformed poplar plants had significantly higher superoxide dismutase (SOD) and peroxidase (POD) activities, and lower malondialdehyde (MDA) levels under CdCl2 stress. Further, the transgenic plants showed better growth than the WT plants did, indicating that TaLEA1 provides tolerance to cadmium stress. These results suggest that TaLEA1 confers tolerance to cadmium stress by enhancing reactive oxygen species (ROS)-scavenging ability and decreasing lipid peroxidation. Subcellular-localization analysis showed that the TaLEA1 protein was distributed in the cytoplasm and nucleus.
Collapse
Affiliation(s)
| | | | | | | | - Yucheng Wang
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-451-82190607-12; Fax: +86-451-82190607-11
| |
Collapse
|
117
|
Gil M, Pontin M, Berli F, Bottini R, Piccoli P. Metabolism of terpenes in the response of grape (Vitis vinifera L.) leaf tissues to UV-B radiation. PHYTOCHEMISTRY 2012; 77:89-98. [PMID: 22277733 DOI: 10.1016/j.phytochem.2011.12.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 11/28/2011] [Accepted: 12/14/2011] [Indexed: 05/04/2023]
Abstract
This study investigated the terpene profiles as determined by GC-EIMS analysis of in vitro cultured plants of Vitis vinifera exposed to a "field-like" dose of UV-B (4.75 kJ m(-2)d(-1)) administered at two different fluence rates (low, 16 h at 8.25 μW cm(-2), and high 4 h at 33 μW cm(-2)). Low UV-B treatment increased levels of the membrane-related triterpenes sitosterol, stigmasterol and lupeol, more notable in young leaves, suggesting elicitation of a mechanism for grapevine acclimation. By contrast, accumulation of compounds with antioxidant properties, diterpenes α and γ tocopherol and phytol, the sesquiterpene E-nerolidol and the monoterpenes carene, α-pinene and terpinolene had maximum accumulation under high UV-B, which was accentuated in mature leaves. Also the levels of the sesquiterpenic stress-related hormone abscisic acid (ABA) increased under high UV-B, although 24 h post irradiation ABA concentrations decreased. Such increments of antioxidant terpenes along with ABA suggest elicitation of mechanism of defense. The adaptative responses induced by relatively low UV-B irradiations as suggested by synthesis of terpenes related with membrane stability correlated with augments in terpene synthase activity.
Collapse
Affiliation(s)
- Mariana Gil
- Laboratorio de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Tecnológicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | | | | | | | | |
Collapse
|
118
|
Martinière A, Li X, Runions J, Lin J, Maurel C, Luu DT. Salt stress triggers enhanced cycling of Arabidopsis root plasma-membrane aquaporins. PLANT SIGNALING & BEHAVIOR 2012; 7:529-32. [PMID: 22499180 PMCID: PMC3419046 DOI: 10.4161/psb.19350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aquaporins of the plasma membrane intrinsic protein (PIP) subfamily are channels which facilitate the diffusion of water across the plant plasma membrane (PM). Although PIPs have been considered as canonical protein markers of this compartment, their endomembrane trafficking is still not well documented. We recently obtained insights into the constitutive cycling of PIPs in Arabidopsis root cells by means of fluorescence recovery after photobleaching (FRAP). This work also uncovered the behavior of the model isoform AtPIP2;1 in response to NaCl. The present addendum connects these findings to another recent work which describes the dynamic properties of AtPIP2;1 in the PM in normal and salt stress conditions by means of single particle tracking (SPT) and fluorescence correlation spectroscopy (FCS). The results suggest that membrane rafts play an important role in the partitioning of AtPIP2;1 in normal conditions and that clathrin-mediated endocytosis is predominant. In salt stress conditions, the rate of AtPIP2;1 cycling was enhanced and endocytosis was cooperated by a membrane raft-associated salt-induced pathway and a clathrin-dependent pathway.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences; Oxford Brookes University; Oxford, UK
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| | - Xiaojuan Li
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, China
| | - John Runions
- Department of Biological and Medical Sciences; Oxford Brookes University; Oxford, UK
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, China
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| |
Collapse
|
119
|
Liu J, Zhou J, Xing D. Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity. PLoS One 2012; 7:e33817. [PMID: 22448275 PMCID: PMC3309022 DOI: 10.1371/journal.pone.0033817] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 02/17/2012] [Indexed: 12/30/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination.
Collapse
Affiliation(s)
| | | | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- * E-mail:
| |
Collapse
|
120
|
Luu DT, Martinière A, Sorieul M, Runions J, Maurel C. Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:894-905. [PMID: 22050464 DOI: 10.1111/j.1365-313x.2011.04841.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The constitutive cycling of plant plasma membrane (PM) proteins is an essential component of their function and regulation under resting or stress conditions. Transgenic Arabidopsis plants that express GFP fusions with AtPIP1;2 and AtPIP2;1, two prototypic PM aquaporins, were used to develop a fluorescence recovery after photobleaching (FRAP) approach. This technique was used to discriminate between PM and endosomal pools of the aquaporin constructs, and to estimate their cycling between intracellular compartments and the cell surface. The membrane trafficking inhibitors tyrphostin A23, naphthalene-1-acetic acid and brefeldin A blocked the latter process. By contrast, a salt treatment (100 mm NaCl for 30 min) markedly enhanced the cycling of the aquaporin constructs and modified their pharmacological inhibition profile. Two distinct models for PM aquaporin cycling in resting or salt-stressed root cells are discussed.
Collapse
Affiliation(s)
- Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, Montpellier Cedex 2, France.
| | | | | | | | | |
Collapse
|
121
|
A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid. Biochem J 2012; 441:161-71. [PMID: 21864294 DOI: 10.1042/bj20110776] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PTEN (phosphatase and tensin homologue deleted on chromosome ten) proteins are dual phosphatases with both protein and phosphoinositide phosphatase activity. They modulate signalling pathways controlling growth, metabolism and apoptosis in animals and are implied in several human diseases. In the present paper we describe a novel class of PTEN pro-teins in plants, termed PTEN2, which comprises the AtPTEN (Arabidopsis PTEN) 2a and AtPTEN2b proteins in Arabidopsis. Both display low in vitro tyrosine phosphatase activity. In addition, AtPTEN2a actively dephosphorylates in vitro the 3' phosphate group of PI3P (phosphatidylinositol 3-phosphate), PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate) and PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate). In contrast with animal PTENs, PI(3,4,5)P3 (phosphatidylinositol 3,4,5-trisphosphate) is a poor substrate. Site-directed mutagenesis of AtPTEN2a and molecular modelling of protein-phosphoinositide interactions indicated that substitutions at the PTEN2 core catalytic site of the Lys267 and Gly268 residues found in animals, which are critical for animal PTEN activity, by Met267 and Ala268 found in the eudicot PTEN2 are responsible for changes in substrate specificity. Remarkably, the AtPTEN2a protein also displays strong binding activity for PA (phosphatidic acid), a major lipid second messenger in plants. Promoter::GUS (β-glucuronidase) fusion, transcript and protein analyses further showed the transcriptional regulation of the ubiquitously expressed AtPTEN2a and AtPTEN2b by salt and osmotic stress. The results of the present study suggest a function for this novel class of plant PTEN proteins as an effector of lipid signalling in plants.
Collapse
|
122
|
Gao XQ, Zhang XS. Metabolism and roles of phosphatidylinositol 3-phosphate in pollen development and pollen tube growth in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:165-9. [PMID: 22307045 PMCID: PMC3405687 DOI: 10.4161/psb.18743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phosphoinositides play important roles in eukaryotic cells, although they constitute a minor fraction of total cellular lipids. Specific kinases and phosphatases function on the regulation of phosphoinositide levels. Phosphatidylinositol 3-phosphate (PtdIns3P), a molecule of phosphoinositides regulates multiple aspects of plant growth and development. In this mini-review, we introduce and discuss the kinases and phosphatases involved in PtdIns3P metabolism and their roles in pollen development and pollen tube growth in Arabidopsis.
Collapse
|
123
|
Wang C, Zhang DW, Wang YC, Zheng L, Yang CP. A glycine-rich RNA-binding protein can mediate physiological responses in transgenic plants under salt stress. Mol Biol Rep 2012; 39:1047-53. [PMID: 21573794 DOI: 10.1007/s11033-011-0830-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
Abstract
Glycine-rich RNA-binding proteins (GRPs) are involved in post-transcriptional regulation of genes, which have been found to play a role in stress response. However, whether GRPs can mediate some physiological responses related to salt stress tolerance is still not known. In the present study, we investigated the role of GRPs in salt stress-induced physiological responses by generating transgenic tobacco lines overexpressing a GRP (LbGRP1) gene from Limonium bicolor (Bunge) Kuntze. Compared with wild type (WT) tobacco, the transgenic plants showed significantly improved superoxide dismutase and catalase activities under salt stress conditions. Levels of proline in the transgenic plants were significantly higher than those in the WT plants grown under NaCl stress conditions. Furthermore, Na(+) content and Na(+)/K(+) ratio in the transgenic plants were lower than those in the WT plants under both normal growth and stress conditions. These results suggested that overexpression of the LbGRP1 gene can affect some physiological processes associated with salt tolerance of plants. Therefore, we hypothesize that LbGST1 can enhance stress resistance by mediating some physiological pathways.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Forest Tree Genetic Improvement and Biotechnology, Northeast Forestry University, Ministry of Education, 26 Hexing Road, Harbin 150040, China
| | | | | | | | | |
Collapse
|
124
|
Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na⁺/K⁺homeostasis in Arabidopsis under salt stress. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:305-17. [PMID: 21984648 DOI: 10.1093/jxb/err280] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Maintaining cellular Na(+)/K(+) homeostasis is pivotal for plant survival in saline environments. However, knowledge about the molecular regulatory mechanisms of Na(+)/K(+) homeostasis in plants under salt stress is largely lacking. In this report, the Arabidopsis double mutants atrbohD1/F1 and atrbohD2/F2, in which the AtrbohD and AtrbohF genes are disrupted and generation of reactive oxygen species (ROS) is pronouncedly inhibited, were found to be much more sensitive to NaCl treatments than wild-type (WT) and the single null mutant atrbohD1 and atrbohF1 plants. Furthermore, the two double mutant seedlings had significantly higher Na(+) contents, lower K(+) contents, and resultant greater Na(+)/K(+) ratios than the WT, atrbohD1, and atrbohF1 under salt stress. Exogenous H(2)O(2) can partially reverse the increased effects of NaCl on Na(+)/K(+) ratios in the double mutant plants. Pre-treatments with diphenylene iodonium chloride, a widely used inhibitor of NADPH oxidase, clearly enhanced the Na(+)/K(+) ratios in WT seedlings under salt stress. Moreover, NaCl-inhibited inward K(+) currents were arrested, and NaCl-promoted increases in cytosolic Ca(2+) and plasma membrane Ca(2+) influx currents were markedly attenuated in atrbohD1/F1 plants. No significant differences in the sensitivity to osmotic or oxidative stress among the WT, atrbohD1, atrbohF1, atrbohD1/F1, and atrbohD2/F2 were observed. Taken together, these results strongly suggest that ROS produced by both AtrbohD and AtrbohF function as signal molecules to regulate Na(+)/K(+) homeostasis, thus improving the salt tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Liya Ma
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng 475004, China
| | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Plants have developed sophisticated mechanisms to survive when in unfavorable environments. Autophagy is a macromolecule degradation pathway that recycles damaged or unwanted cell materials upon encountering stress conditions or during specific developmental processes. Over the past decade, our molecular and physiological understanding of plant autophagy has greatly increased. Most of the essential machinery required for autophagy seems to be conserved from yeast to plants. Plant autophagy has been shown to function in various stress responses, pathogen defense, and senescence. Some of its potential upstream regulators have also been identified. Here, we describe recent advances in our understanding of autophagy in plants, discuss areas of controversy, and highlight potential future directions in autophagy research.
Collapse
Affiliation(s)
- Yimo Liu
- Department of Genetics, Development, and Cell Biology and Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
126
|
Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:26-36. [PMID: 21883553 DOI: 10.1111/j.1365-313x.2011.04766.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) regulate the downstream components in calcium signaling pathways. We investigated the effects of overexpression and disruption of an Oryza sativa (rice) CDPK (OsCPK12) on the plant's response to abiotic and biotic stresses. OsCPK12-overexpressing (OsCPK12-OX) plants exhibited increased tolerance to salt stress. The accumulation of hydrogen peroxide (H(2) O(2) ) in the leaves was less in OsCPK12-OX plants than in wild-type (WT) plants. Genes encoding reactive oxygen species (ROS) scavenging enzymes (OsAPx2 and OsAPx8) were more highly expressed in OsCPK12-OX plants than in WT plants, whereas the expression of the NADPH oxidase gene, OsrbohI, was decreased in OsCPK12-OX plants compared with WT plants. Conversely, a retrotransposon (Tos17) insertion mutant, oscpk12, and plants transformed with an OsCPK12 RNA interference (RNAi) construct were more sensitive to high salinity than were WT plants. The level of H(2) O(2) accumulation was greater in oscpk12 and OsCPK12 RNAi plants than in the WT. These results suggest that OsCPK12 promotes tolerance to salt stress by reducing the accumulation of ROS. We also observed that OsCPK12-OX seedlings had increased sensitivity to abscisic acid (ABA) and increased susceptibility to blast fungus, probably resulting from the repression of ROS production and/or the involvement of OsCPK12 in the ABA signaling pathway. Collectively, our results suggest that OsCPK12 functions in multiple signaling pathways, positively regulating salt tolerance and negatively modulating blast resistance.
Collapse
Affiliation(s)
- Takayuki Asano
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Zhang Y, Li S, Zhou LZ, Fox E, Pao J, Sun W, Zhou C, McCormick S. Overexpression of Arabidopsis thaliana PTEN caused accumulation of autophagic bodies in pollen tubes by disrupting phosphatidylinositol 3-phosphate dynamics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:1081-92. [PMID: 21883549 DOI: 10.1111/j.1365-313x.2011.04761.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Autophagy is a pathway in eukaryotes by which nutrient remobilization occurs through bulk protein and organelle turnover. Autophagy not only aides cells in coping with harsh environments but also plays a key role in many physiological processes that include pollen germination and tube growth. Most autophagic components are conserved among eukaryotes, but phylum-specific molecular components also exist. We show here that Arabidopsis thaliana PTEN, a protein and lipid dual phosphatase homologous to animal PTENs (phosphatase and tensin homologs deleted on chromosome 10), regulates autophagy in pollen tubes by disrupting the dynamics of phosphatidylinositol 3-phosphate (PI3P). The pollen-specific PTEN bound PI3P in vitro and was localized at PI3P-positive vesicles. Overexpression of PTEN caused accumulation of autophagic bodies and resulted in gametophytic male sterility. Such an overexpression effect was dependent upon its lipid phosphatase activity and was inhibited by exogenous PI3P or by expression of a class III phosphatidylinositol 3-kinase (PI3K) that produced PI3P. Overexpression of PTEN disrupted the dynamics of autophagosomes and a subpopulation of endosomes, as shown by altered localization patterns of respective fluorescent markers. Treatment with wortmannin, an inhibitor of class III PI3K, mimicked the effects by PTEN overexpression, which implied a critical role for PI3P dynamics in these processes. Despite sharing evolutionarily conserved catalytic domains, plant PTENs contain regulatory sequences that are distinct from those of animal PTENs, which might underlie their differing membrane association and thereby function. Our results show that PTEN regulates autophagy through phylum-specific molecular mechanisms.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R. Respiratory burst oxidases: the engines of ROS signaling. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:691-9. [PMID: 21862390 DOI: 10.1016/j.pbi.2011.07.014] [Citation(s) in RCA: 584] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) play a key signal transduction role in cells. They are involved in the regulation of growth, development, responses to environmental stimuli and cell death. The level of ROS in cells is determined by interplay between ROS producing pathways and ROS scavenging mechanisms, part of the ROS gene network of plants. Recent studies identified respiratory burst oxidase homologues (RBOHs) as key signaling nodes in the ROS gene network of plants integrating a multitude of signal transduction pathways with ROS signaling. The ability of RBOHs to integrate calcium signaling and protein phosphorylation with ROS production, coupled with genetic studies demonstrating their involvement in many different biological processes in cells, places RBOHs at the center of the ROS network of cells and demonstrate their important function in plants.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA
| | | | | | | | | | | |
Collapse
|
129
|
Xu N, Gao XQ, Zhao XY, Zhu DZ, Zhou LZ, Zhang XS. Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation. PLANT MOLECULAR BIOLOGY 2011; 77:251-60. [PMID: 21833541 PMCID: PMC3171654 DOI: 10.1007/s11103-011-9806-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/05/2011] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana phosphatidylinositol 3-kinase (AtVPS34) functions in the development and germination of pollen by catalyzing the biosynthesis of phosphatidylinositol 3-phosphate (PI3P). In yeast, Vps15p is required for the membrane targeting and activity of Vps34. The expression of Arabidopsis thaliana VPS15 (AtVPS15), an ortholog of yeast Vps15, is mainly detected in pollen grains and pollen tubes. To determine its role in pollen development and pollen tube growth, we attempted to isolate the T-DNA insertion mutants of AtVPS15; however, homozygous lines of atvps15 were not obtained from the progeny of atvps15/+ heterozygotes. Genetic analysis revealed that the abnormal segregation is due to the failure of transmission of the atvps15 allele through pollen. Most pollen grains from the atvps15/+ genotype are viable, with normal exine structure and nuclei, but some mature pollen grains are characterized with unusual large vacuoles that are not observed in pollen grains from the wild AtVPS15 genotype. The germination ratio of pollen from the atvps15/+ genotype is about half when compared to that from the wild AtVPS15 genotype. When supplied with PI3P, in vitro pollen germination of the atvps15/+ genotype is greatly improved. Presumably, AtVPS15 functions in pollen development and germination by regulating PI3P biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Na Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xin Ying Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Dong Zi Zhu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Liang Zi Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
130
|
Kaye Y, Golani Y, Singer Y, Leshem Y, Cohen G, Ercetin M, Gillaspy G, Levine A. Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:229-41. [PMID: 21677096 PMCID: PMC3165872 DOI: 10.1104/pp.111.176883] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants possess remarkable ability to adapt to adverse environmental conditions. The adaptation process involves the removal of many molecules from organelles, especially membranes, and replacing them with new ones. The process is mediated by an intracellular vesicle-trafficking system regulated by phosphatidylinositol (PtdIns) kinases and phosphatases. Although PtdIns comprise a fraction of membrane lipids, they function as major regulators of stress signaling. We analyzed the role of PtdIns 5-phosphatases (5PTases) in plant salt tolerance. The Arabidopsis (Arabidopsis thaliana) genome contains 15 At5PTases. We analyzed salt sensitivity in nine At5ptase mutants and identified one (At5ptase7) that showed increased sensitivity, which was improved by overexpression. At5ptase7 mutants demonstrated reduced production of reactive oxygen species (ROS). Supplementation of mutants with exogenous PtdIns dephosphorylated at the D5' position restored ROS production, while PtdIns(4,5)P(2), PtdIns(3,5)P(2), or PtdIns(3,4,5)P(3) were ineffective. Compromised salt tolerance was also observed in mutant NADPH Oxidase, in agreement with the low ROS production and salt sensitivity of PtdIns 3-kinase mutants and with the inhibition of NADPH oxidase activity in wild-type plants. Localization of green fluorescent protein-labeled At5PTase7 occurred in the plasma membrane and nucleus, places that coincided with ROS production. Analysis of salt-responsive gene expression showed that mutants failed to induce the RD29A and RD22 genes, which contain several ROS-dependent elements in their promoters. Inhibition of ROS production by diphenylene iodonium suppressed gene induction. In summary, our results show a nonredundant function of At5PTase7 in salt stress response by regulating ROS production and gene expression.
Collapse
|
131
|
Xie Y, Cui W, Yuan X, Shen W, Yang Q. Heme oxygenase-1 is associated with wheat salinity acclimation by modulating reactive oxygen species homeostasis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:653-70. [PMID: 21564546 DOI: 10.1111/j.1744-7909.2011.01052.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Heme oxygenase-1 (HO-1) has been recently identified as an endogenous signaling system in animals. In this study, HO-1 upregulation and its role in acquired salt tolerance (salinity acclimation) were investigated in wheat plants. We discovered that pretreatment with a low concentration of NaCl (25 mmol/L) not only led to the induction of HO-1 protein and gene expression, as well as enhanced HO activity, but also to a salinity acclimatory response thereafter. The effect is specific for HO-1, since the potent HO-1 inhibitor zinc protoporphyrin IX blocks the above cytoprotective actions, and the cytotoxic responses conferred by 200 mmol/L NaCl are reversed partially when HO-1 inducer hemin is added. Heme oxygenase catalytic product, carbon monoxide (CO) aqueous solution pretreatment, mimicked the salinity acclimatory responses. Meanwhile, the CO-triggered re-establishment of reactive oxygen species (ROS) homeostasis was mainly guaranteed by the induction of total and isozymatic activities, or corresponding transcripts of superoxide dismutase, ascorbate peroxidase, and cytosolic peroxidase (POD), as well as the downregulation of NADPH oxidase expression and cell-wall POD activity. A requirement of hydrogen peroxide homeostasis for HO-1-mediated salinity acclimation was also discovered. Taken together, the above results suggest that the upregulation of HO-1 expression was responsible for the observed salinity acclimation through the regulation of ROS homeostasis.
Collapse
Affiliation(s)
- Yanjie Xie
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University and Beckman Coulter Ltd. Co., Nanjing Agricultural University, China
| | | | | | | | | |
Collapse
|
132
|
Fan JL, Wei XZ, Wan LC, Zhang LY, Zhao XQ, Liu WZ, Hao HQ, Zhang HY. Disarrangement of actin filaments and Ca²⁺ gradient by CdCl₂ alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1157-67. [PMID: 21497412 DOI: 10.1016/j.jplph.2011.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/03/2011] [Accepted: 01/27/2011] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd), one of the most toxic heavy metals, inhibits many cellular and physiological processes in plants. Here, the involvement of cytoplasmic Ca²⁺ gradient and actin filaments (AFs) in vesicular trafficking, cell wall deposition and tip growth was investigated during root (hair) development of Arabidopsis thaliana in response to CdCl₂ treatment. Seed germination and root elongation were prevented in a dose- and time-dependent manner by CdCl₂ treatment. Fluorescence labelling and non-invasive detection showed that CdCl₂ inhibited extracellular Ca²⁺ influx, promoted intracellular Ca²⁺ efflux, and disturbed the cytoplasmic tip-focused Ca²⁺ gradient. In vivo labelling revealed that CdCl₂ modified actin organization, which subsequently contributed to vesicle trafficking. Transmission electron microscopy revealed that CdCl₂ induced cytoplasmic vacuolization and was detrimental to organelles such as mitochondria and endoplasmic reticulum (ER). Finally, immunofluorescent labelling and Fourier transform infrared (FTIR) analysis indicated that configuration/distribution of cell wall components such as pectins and cellulose was significantly altered in response to CdCl₂. Our results indicate that CdCl₂ induces disruption of Ca²⁺ gradient and AFs affects the distribution of cell wall components in root hairs by disturbing vesicular trafficking in A. thaliana.
Collapse
Affiliation(s)
- Jun-Ling Fan
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Gémes K, Poór P, Horváth E, Kolbert Z, Szopkó D, Szepesi A, Tari I. Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. PHYSIOLOGIA PLANTARUM 2011; 142:179-92. [PMID: 21338371 DOI: 10.1111/j.1399-3054.2011.01461.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogen peroxide (H₂O₂) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross-tolerance to various stressors. SA-stimulated pre-adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole-plant level, SA-induced massive H₂O₂ accumulation only at high concentrations (10⁻³-10⁻² M), which later caused the death of plants. The excess accumulation of H₂O₂ as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre-treatments. In the root tips, 10⁻³-10⁻² M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre-adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt-treated samples. This suggests that, the cross-talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1-aminocyclopropane-1-carboxylic acid, the compounds accumulating in pre-treated plants, enhanced the diphenylene iodonium-sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.
Collapse
Affiliation(s)
- Katalin Gémes
- Department of Plant Biology, University of Szeged, PO Box 654, H-6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
134
|
Kim SJ, Bassham DC. TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:514-26. [PMID: 21521696 PMCID: PMC3177255 DOI: 10.1104/pp.110.168963] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/26/2011] [Indexed: 05/19/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) soluble N-ethylmaleimide-sensitive factor attachment protein receptor SYP41 is involved in vesicle fusion at the trans-Golgi network (TGN) and interacts with AtVPS45, SYP61, and VTI12. These proteins are involved in diverse cellular processes, including vacuole biogenesis and stress tolerance. A previously uncharacterized protein, named TNO1 (for TGN-localized SYP41-interacting protein), was identified by coimmunoprecipitation as a SYP41-interacting protein. TNO1 was found to localize to the TGN by immunofluorescence microscopy. A tno1 mutant showed increased sensitivity to high concentrations of NaCl, KCl, and LiCl and also to mannitol-induced osmotic stress. Localization of SYP61, which is involved in the salt stress response, was disrupted in the tno1 mutant. Vacuolar proteins were partially secreted to the apoplast in the tno1 mutant, suggesting that TNO1 is required for efficient protein trafficking to the vacuole. The tno1 mutant had delayed formation of the brefeldin A (BFA) compartment in cotyledons upon application of BFA, suggesting less efficient membrane fusion processes in the mutant. Unlike most TGN proteins, TNO1 does not relocate to the BFA compartment upon BFA treatment. These data demonstrate that TNO1 is involved in vacuolar trafficking and salt tolerance, potentially via roles in vesicle fusion and in maintaining TGN structure or identity.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Department of Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
135
|
Xie YJ, Xu S, Han B, Wu MZ, Yuan XX, Han Y, Gu Q, Xu DK, Yang Q, Shen WB. Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:280-92. [PMID: 21205037 DOI: 10.1111/j.1365-313x.2011.04488.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, a family of four genes (HY1, HO2, HO3 and HO4) encode haem oxygenase (HO), and play a major role in phytochrome chromophore biosynthesis. To characterize the contribution of the various haem oxygenase isoforms involved in salt acclimation, the effects of NaCl on seed germination and primary root growth in Arabidopsis wild-type and four HO mutants (hy1-100, ho2, ho3 and ho4) were compared. Among the four HO mutants, hy1-100 displayed maximal sensitivity to salinity and showed no acclimation response, whereas plants over-expressing HY1 (35S:HY1) exhibited tolerance characteristics. Mild salt stress stimulated biphasic increases in RbohD transcripts and production of reactive oxygen species (ROS) (peaks I and II) in wild-type. ROS peak I-mediated HY1 induction and subsequent salt acclimation were observed, but only ROS peak I was seen in the hy1-100 mutant. A subsequent test confirmed the causal relationship of salt acclimation with haemin-induced HY1 expression and RbohD-derived ROS peak II formation. In atrbohD mutants, haemin pre-treatment resulted in induction of HY1 expression, but no similar response was seen in hy1-100, and no ROS peak II or subsequent salt acclimatory responses were observed. Together, the above findings suggest that HY1 plays an important role in salt acclimation signalling, and requires participation of RbohD-derived ROS peak II.
Collapse
Affiliation(s)
- Yan-Jie Xie
- College of Life Sciences, Cooperative Demonstration Laboratory of Centrifuge Technique, Nanjing Agricultural University, and Beckman Coulter Ltd, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Balestrazzi A, Macovei A, Tava A, Avato P, Raimondi E, Carbonera D. Unraveling the response of plant cells to cytotoxic saponins: role of metallothionein and nitric oxide. PLANT SIGNALING & BEHAVIOR 2011; 6:516-9. [PMID: 21673512 PMCID: PMC3142379 DOI: 10.4161/psb.6.4.14746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A wide range of pharmacological properties are ascribed to natural saponins, in addition to their biological activities against herbivores, plant soil-borne pathogens and pests. As for animal cells, the cytotoxicity and the chemopreventive role of saponins are mediated by a complex network of signal transduction pathways which include reactive oxygen species (ROS) and nitric oxide (NO). The involvement of other relevant components of the saponin-related signaling routes, such as the Tumor Necrosis Factor(TNF)-α, the interleukin(IL)-6 and the Nuclear Transcription Factor-kB (NF-κB), has been highlighted in animal cells. By contrast, information concerning the response of plant cells to saponins and the related signal transduction pathways is almost missing. To date, there are only a few common features which link plant and animal cells in their response to saponins, such as the early burst in ROS and NO production and the induction of metallothioneins (MTs), small cysteine-rich, metal-binding proteins. This aspect is discussed in the present paper in view of the recent hypothesis that MTs and NO are part of a novel signal transduction pathway participating in the cell response to oxidative stress.
Collapse
Affiliation(s)
- Alma Balestrazzi
- Dipartimento di Genetica e Microbiologia; Università di Pavia; Pavia
| | - Anca Macovei
- Dipartimento di Genetica e Microbiologia; Università di Pavia; Pavia
| | - Aldo Tava
- C.R.A.-Centro di Ricerca per le Produzioni Foraggere e Lattiero Casearie (C.R.A.-F.L.C.); Lodi
| | - Pinarosa Avato
- Dipartimento Farmaco-Chimico; Università di Bari Aldo Moro; Bari, Italy
| | - Elena Raimondi
- Dipartimento di Genetica e Microbiologia; Università di Pavia; Pavia
| | - Daniela Carbonera
- Dipartimento di Genetica e Microbiologia; Università di Pavia; Pavia
| |
Collapse
|
137
|
Choi W, Baek D, Oh DH, Park J, Hong H, Kim WY, Bohnert HJ, Bressan RA, Park HC, Yun DJ. NKS1, Na(+)- and K(+)-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis. PHYTOCHEMISTRY 2011; 72:330-6. [PMID: 21227472 DOI: 10.1016/j.phytochem.2010.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 05/30/2023]
Abstract
An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or null alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na(+) than wild type and K(+)/Na(+) homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway.
Collapse
Affiliation(s)
- Wonkyun Choi
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Hoepflinger MC, Pieslinger AM, Tenhaken R. Investigations on N-rich protein (NRP) of Arabidopsis thaliana under different stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:293-302. [PMID: 21277785 DOI: 10.1016/j.plaphy.2011.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 12/20/2010] [Accepted: 01/02/2011] [Indexed: 05/22/2023]
Abstract
Stress response and adaptation are important physiological mechanisms in plants. As plants are not able to avoid stressful environments by moving away, as animals, they have developed diverse mechanisms to respond to stressful situations. One of the genes involved in these mechanisms is NRP (Asparagine-rich protein or N-rich protein). In this study, NRP expression, protein localization and nrp knockout plants were investigated for further understanding of NRP function. NaCl-induced salt stress, oxidative stress (ozone exposure) and mechanical perturbation (touch treatment) were used to induce abiotic stress. NRP expression was up-regulated in the early phase of stress response to all three elicitors. Stressed nrp knockout seedlings revealed a more pronounced growth inhibition compared to wildtype (salt and osmotic stress). Seedlings showed NRP-GFP expression in the apical meristem, leaf veins, central cylinder, root hair zone and root tip. Analyses of NRP-GFP localization in root cells and protoplasts revealed cytosolic distribution under non-stress conditions and translocation of NRP-GFP to mitochondria due to stress response. Summarizing, our findings point to a contribution of NRP in signal transduction of the initial phase of general stress response in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Marion Christine Hoepflinger
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, Austria
| | | | | |
Collapse
|
139
|
Swanson SJ, Choi WG, Chanoca A, Gilroy S. In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:273-97. [PMID: 21370977 DOI: 10.1146/annurev-arplant-042110-103832] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Changes in the levels of Ca(2+), pH, and reactive oxygen species (ROS) are recognized as key cellular regulators involved in diverse physiological and developmental processes in plants. Critical to understanding how they exert such widespread control is an appreciation of their spatial and temporal dynamics at levels from organ to organelle and from seconds to many hours. With appropriate controls, fluorescent sensors can provide a robust approach with which to quantify such changes in Ca(2+), pH, and ROS in real time, in vivo. The fluorescent cellular probes available for visualization split into two broad classes: (a) dyes and (b) an increasingly diverse set of genetically encoded sensors based around green fluorescent proteins (GFPs). The GFP probes in particular can be targeted to well-defined subcellular locales, offering the possibility of high-resolution mapping of these signals within the cell.
Collapse
Affiliation(s)
- Sarah J Swanson
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
140
|
Plant Aquaporins: Roles in Water Homeostasis, Nutrition, and Signaling Processes. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
141
|
Wywial E, Singh SM. Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana. BMC PLANT BIOLOGY 2010; 10:157. [PMID: 20678208 PMCID: PMC3017826 DOI: 10.1186/1471-2229-10-157] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 08/02/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND FYVE domains have emerged as membrane-targeting domains highly specific for phosphatidylinositol 3-phosphate (PtdIns(3)P). They are predominantly found in proteins involved in various trafficking pathways. Although FYVE domains may function as individual modules, dimers or in partnership with other proteins, structurally, all FYVE domains share a fold comprising two small characteristic double-stranded beta-sheets, and a C-terminal alpha-helix, which houses eight conserved Zn2+ ion-binding cysteines. To date, the structural, biochemical, and biophysical mechanisms for subcellular targeting of FYVE domains for proteins from various model organisms have been worked out but plant FYVE domains remain noticeably under-investigated. RESULTS We carried out an extensive examination of all Arabidopsis FYVE domains, including their identification, classification, molecular modeling and biophysical characterization using computational approaches. Our classification of fifteen Arabidopsis FYVE proteins at the outset reveals unique domain architectures for FYVE containing proteins, which are not paralleled in other organisms. Detailed sequence analysis and biophysical characterization of the structural models are used to predict membrane interaction mechanisms previously described for other FYVE domains and their subtle variations as well as novel mechanisms that seem to be specific to plants. CONCLUSIONS Our study contributes to the understanding of the molecular basis of FYVE-based membrane targeting in plants on a genomic scale. The results show that FYVE domain containing proteins in plants have evolved to incorporate significant differences from those in other organisms implying that they play a unique role in plant signaling pathways and/or play similar/parallel roles in signaling to other organisms but use different protein players/signaling mechanisms.
Collapse
Affiliation(s)
- Ewa Wywial
- Department of Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Shaneen M Singh
- Department of Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| |
Collapse
|
142
|
Wi SJ, Jang SJ, Park KY. Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol Cells 2010; 30:37-49. [PMID: 20652494 DOI: 10.1007/s10059-010-0086-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/03/2023] Open
Abstract
Reactive oxygen species (ROS), such as H(2)O(2), are important plant cell signaling molecules involved in responses to biotic and abiotic stresses and in developmental and physiological processes. Despite the well-known physiological functions of ethylene production and stress signaling via ROS during stresses, whether ethylene acts alone or in conjunction with ROS has not yet been fully elucidated. Therefore, we investigated the relationship between ethylene production and ROS accumulation during the response to abiotic stress. We used three independent transgenic tobacco lines, CAS-AS-2, -3 and -4, in which an antisense transcript of the senescence-related ACC synthase (ACS) gene from carnation flower (CARACC, Gen-Bank accession No. M66619) was expressed heterologously. Biphasic ethylene biosynthesis was reduced significantly in these transgenic plants, with or without H(2)O(2) treatment. These plants exhibited significantly reduced H(2)O(2)-induced gene-specific expression of ACS members, which were regulated in a time-dependent manner. The higher levels of NtACS1 expression in wild-type plants led to a second peak in ethylene production, which resulted in a more severe level of necrosis and cell death, as determined by trypan blue staining. In the transgenic lines, upregulated transcription of CAB, POR1 and RbcS resulted in increased photosynthetic performance following salt stress. This stress tolerance of H(2)O(2)-treated transgenic plants resulted from reduced ethylene biosynthesis, which decreased ROS accumulation via increased gene expression and activity of ROS-detoxifying enzymes, including MnSOD, CuZnSOD, and catalase. Therefore, it is suggested that ethylene plays a potentially critical role as an amplifier for ROS accumulation, implying a synergistic effect between biosynthesis of ROS and ethylene.
Collapse
Affiliation(s)
- Soo Jin Wi
- Korea Basic Science Institute, Sunchon Branch, Sunchon National University, Sunchon 540-742, Korea
| | | | | |
Collapse
|
143
|
Leshem Y, Golani Y, Kaye Y, Levine A. Reduced expression of the v-SNAREs AtVAMP71/AtVAMP7C gene family in Arabidopsis reduces drought tolerance by suppression of abscisic acid-dependent stomatal closure. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2615-22. [PMID: 20423938 PMCID: PMC2882261 DOI: 10.1093/jxb/erq099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 05/17/2023]
Abstract
Stomatal closure during water stress is a major plant mechanism for reducing the loss of water through leaves. The opening and closure of stomata are mediated by endomembrane trafficking. The role of the vacuolar trafficking pathway, that involves v-SNAREs of the AtVAMP71 family (formerly called AtVAMP7C) in stomatal movements, was analysed. Expression of AtVAMP711-14 genes was manipulated in Arabidopsis plants with sense or antisense constructs by transformation of the AtVAMP711 gene. Antisense plants exhibited decreased stomatal closure during drought or after treatment with abscisic acid (ABA), resulting in the rapid loss of leaf water and tissue collapse. No improvement was seen in plants overexpressing the AtVAMP711 gene, suggesting that wild-type levels of AtVAMP711 expression are sufficient. ABA treatment induced the production of reactive oxygen species (ROS) in guard cells of both wild-type and antisense plants, indicating that correct hormone sensing is maintained. ROS were detected in nuclei, chloroplasts, and vacuoles. ABA treatment caused a significant increase in ROS-containing small vacuoles and also in plastids and nuclei of neighbouring epidermal and mesophyll cells. Taken together, our results show that VAMP71 proteins play an important role in the localization of ROS, and in the regulation of stomatal closure by ABA treatment. The paper also describes a novel aspect of ROS signalling in plants: that of ROS production in small vacuoles that are dispersed in the cytoplasm.
Collapse
Affiliation(s)
| | | | | | - Alex Levine
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
144
|
Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL. H2O2 and cytosolic Ca2+ signals triggered by the PM H-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. PLANT, CELL & ENVIRONMENT 2010; 33:943-58. [PMID: 20082667 DOI: 10.1111/j.1365-3040.2010.02118.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Using confocal microscopy, X-ray microanalysis and the scanning ion-selective electrode technique, we investigated the signalling of H(2)O(2), cytosolic Ca(2+) ([Ca(2+)](cyt)) and the PM H(+)-coupled transport system in K(+)/Na(+) homeostasis control in NaCl-stressed calluses of Populus euphratica. An obvious Na(+)/H(+) antiport was seen in salinized cells; however, NaCl stress caused a net K(+) efflux, because of the salt-induced membrane depolarization. H(2)O(2) levels, regulated upwards by salinity, contributed to ionic homeostasis, because H(2)O(2) restrictions by DPI or DMTU caused enhanced K(+) efflux and decreased Na(+)/H(+) antiport activity. NaCl induced a net Ca(2+) influx and a subsequent rise of [Ca(2+)](cyt), which is involved in H(2)O(2)-mediated K(+)/Na(+) homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na(+)/H(+) antiport system, the NaCl-induced elevation of H(2)O(2) and [Ca(2+)](cyt) was correspondingly restricted, leading to a greater K(+) efflux and a more pronounced reduction in Na(+)/H(+) antiport activity. Results suggest that the PM H(+)-coupled transport system mediates H(+) translocation and triggers the stress signalling of H(2)O(2) and Ca(2+), which results in a K(+)/Na(+) homeostasis via mediations of K(+) channels and the Na(+)/H(+) antiport system in the PM of NaCl-stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.
Collapse
Affiliation(s)
- Jian Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Leprince AS, Savouré A. [Lipid signaling pathways in plants and their roles in response to water constraints]. Biol Aujourdhui 2010; 204:11-19. [PMID: 20950571 DOI: 10.1051/jbio/2009045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plants are sessile organisms that have developed the capacity to detect slight variations of their environment. They are able to perceive these environmental signals and to transduce them by signaling pathways in order to trigger adaptative responses. Lipid signaling elements play a central role in these pathways in plants. A key element is phosphatidic acid (PA), which can be produced by two pathways. In the first one, phospholipids are hydrolysed by phospholipase D (PLD) to release PA. In the second one, PA is produced through the activity of phospholipase C (PLC) to produce diacylglycerol (DAG) which is then phosphorylated by DAG kinase (DAGK). The amount of PA in the cell is regulated by PA kinase, which phosphorylates PA to produce diacylglycerolpyrophosphate (DGPP), considered as a second messenger as well. PLCs play a dual role in cell signaling by regulating the amount of intracellular Ca(2+), another essential second messenger. Phosphoinositides, such as PI3P, PI4P and PI(4,5)P(2), are substrates of PLCs and PLDs and are considered as second messengers also. In this review, we present recent data regarding the specific features of these lipid signaling pathways in plant compared with other eukaryotes.
Collapse
Affiliation(s)
- Anne-Sophie Leprince
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, UR5 UPMC, EAC7180 CNRS, Université Pierre et Marie Curie P6, 4 place Jussieu, case 156, Paris Cedex 05, France.
| | | |
Collapse
|
146
|
Morita YS, Yamaryo-Botte Y, Miyanagi K, Callaghan JM, Patterson JH, Crellin PK, Coppel RL, Billman-Jacobe H, Kinoshita T, McConville MJ. Stress-induced synthesis of phosphatidylinositol 3-phosphate in mycobacteria. J Biol Chem 2010; 285:16643-50. [PMID: 20364020 DOI: 10.1074/jbc.m110.119263] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phosphoinositides play key roles in regulating membrane dynamics and intracellular signaling in eukaryotic cells. However, comparable lipid-based signaling pathways have not been identified in bacteria. Here we show that Mycobacterium smegmatis and other Actinomycetes bacteria can synthesize the phosphoinositide, phosphatidylinositol 3-phosphate (PI3P). This lipid was transiently labeled with [(3)H]inositol. Sensitivity of the purified lipid to alkaline phosphatase, headgroup analysis by high-pressure liquid chromatography, and mass spectrometry demonstrated that it had the structure 1,2-[tuberculostearoyl, octadecenoyl]-sn-glycero 3-phosphoinositol 3-phosphate. Synthesis of PI3P was elevated by salt stress but not by exposure to high concentrations of non-ionic solutes. Synthesis of PI3P in a cell-free system was stimulated by the synthesis of CDP-diacylglycerol, a lipid substrate for phosphatidylinositol (PI) biosynthesis, suggesting that efficient cell-free PI3P synthesis is dependent on de novo PI synthesis. In vitro experiments further indicated that the rapid turnover of this lipid was mediated, at least in part, by a vanadate-sensitive phosphatase. This is the first example of de novo synthesis of PI3P in bacteria, and the transient synthesis in response to environmental stimuli suggests that some bacteria may have evolved similar lipid-mediated signaling pathways to those observed in eukaryotic cells.
Collapse
Affiliation(s)
- Yasu S Morita
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. PLANT, CELL & ENVIRONMENT 2010; 33:453-67. [PMID: 19712065 DOI: 10.1111/j.1365-3040.2009.02041.x] [Citation(s) in RCA: 1814] [Impact Index Per Article: 120.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Water deficit and salinity, especially under high light intensity or in combination with other stresses, disrupt photosynthesis and increase photorespiration, altering the normal homeostasis of cells and cause an increased production of reactive oxygen species (ROS). ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules. In this review, we provide an overview of ROS homeostasis and signalling in response to drought and salt stresses and discuss the current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses.
Collapse
Affiliation(s)
- Gad Miller
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 89557, USA
| | | | | | | |
Collapse
|
148
|
Ischebeck T, Seiler S, Heilmann I. At the poles across kingdoms: phosphoinositides and polar tip growth. PROTOPLASMA 2010; 240:13-31. [PMID: 20091065 PMCID: PMC2841259 DOI: 10.1007/s00709-009-0093-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 05/20/2023]
Abstract
Phosphoinositides (PIs) are minor, but essential phospholipid constituents of eukaryotic membranes, and are involved in the regulation of various physiological processes. Recent genetic and cell biological advances indicate that PIs play important roles in the control of polar tip growth in plant cells. In root hairs and pollen tubes, PIs control directional membrane trafficking required for the delivery of cell wall material and membrane area to the growing tip. So far, the exact mechanisms by which PIs control polarity and tip growth are unresolved. However, data gained from the analysis of plant, fungal and animal systems implicate PIs in the control of cytoskeletal dynamics, ion channel activity as well as vesicle trafficking. The present review aims at giving an overview of PI roles in eukaryotic cells with a special focus on functions pertaining to the control of cell polarity. Comparative screening of plant and fungal genomes suggests diversification of the PI system with increasing organismic complexity. The evolutionary conservation of the PI system among eukaryotic cells suggests a role for PIs in tip growing cells in models where PIs so far have not been a focus of attention, such as fungal hyphae.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Stephan Seiler
- Department of Microbiology and Genetics; and DFG Research Center Molecular Physiology of the Brain (CMPB), Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
149
|
Abstract
Reactive oxygen species (ROS) are known to accumulate during abiotic stresses, and different cellular compartments respond to them by distinctive profiles of ROS formation. In contrast to earlier views, it is becoming increasingly evident that even during stress, ROS production is not necessarily a symptom of cellular dysfunction but might represent a necessary signal in adjusting the cellular machinery to the altered conditions. ROS can modulate many signal transduction pathways, such as mitogen-activated protein kinase cascades, and ultimately influence the activity of transcription factors. However, the picture of ROS-mediated signaling is still fragmentary and the issues of ROS perception as well as the signaling specificity remain open. Here, we review some of the recent advances in plant abiotic stress signaling with emphasis on processes known to be affected heavily by ROS.
Collapse
Affiliation(s)
- Pinja Jaspers
- Department of Biological and Environmental Sciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FIN-00014 Helsinki, Finland
| | | |
Collapse
|
150
|
Baena-González E. Energy signaling in the regulation of gene expression during stress. MOLECULAR PLANT 2010; 3:300-13. [PMID: 20080814 DOI: 10.1093/mp/ssp113] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprogramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.
Collapse
Affiliation(s)
- Elena Baena-González
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|