101
|
White B, Howard S, Cohen S, Cohen J. The hydrophobic photoreagent 3-(trifluoromethyl)-3-m-([125I] iodophenyl) diazirine is a novel noncompetitive antagonist of the nicotinic acetylcholine receptor. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54680-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
102
|
Action of anticholinergic receptor antibodies on the frog heart. Bull Exp Biol Med 1991. [DOI: 10.1007/bf00839560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
103
|
Middleton RE, Cohen JB. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label. Biochemistry 1991; 30:6987-97. [PMID: 2069955 DOI: 10.1021/bi00242a026] [Citation(s) in RCA: 164] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The agonist [3H]nicotine was used as a photoaffinity label for the acetylcholine binding sites on the Torpedo nicotinic acetylcholine receptor (AChR). [3H]nicotine binds at equilibrium with Keq = 0.6 microM to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with [3H]nicotine resulted in covalent incorporation into the alpha- and gamma-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the alpha-subunit was labeled via both agonist sites but the gamma-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Within the alpha-subunit, 93% of the labeling was contained within a 20-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Ser-173. Sequence analysis of this peptide indicated that approximately 80% of the incorporation was into Tyr-198, approximately 13% was into Cys-192, and approximately 7% was into Tyr-190. Chymotryptic digestion of the alpha-subunit confirmed that Tyr-198 was the principal amino acid labeled by [3H]nicotine. This confirmation required a novel radio-sequencing strategy employing omicron-phthalaldehyde, since the efficiency of photolabeling was low (approximately 1.0%) and the labeled chymotryptic peptide was not isolated in sufficient quantity to be identified by mass. [3H]Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.
Collapse
Affiliation(s)
- R E Middleton
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
104
|
Affiliation(s)
- S C Froehner
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| |
Collapse
|
105
|
Jasmin BJ, Changeux JP, Cartaud J. Organization and dynamics of microtubules in Torpedo marmorata electrocyte: selective association with specialized domains of the postsynaptic membrane. Neuroscience 1991; 43:151-62. [PMID: 1922764 DOI: 10.1016/0306-4522(91)90424-m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The distribution and subcellular organization of two components of the secretory pathway, the Golgi apparatus and microtubules, have been investigated in Torpedo marmorata electrocyte. This highly polarized syncytium, embryologically derived from skeletal muscle cells, displays distinct plasma membrane domains on its innervated and non-innervated faces, and it played a critical role in the identification of the acetylcholine receptor. By immunocytochemical analysis, we show that in the electrocyte, numerous focal Golgi bodies are dispersed throughout the cytoplasm in frequent association with nuclei. Under experimental conditions known to stabilize microtubules, we reveal an elaborate network composed of two populations of microtubules exhibiting different dynamic properties as evaluated by cold-stability, resistance to nocodazole and post-translational modification. This network appears organized from several nucleating centers located in the medial plane of the cell that are devoided of centrioles. The network displays an asymmetric distribution with individual microtubules converging towards the troughs of the postsynaptic membrane folds. In these particular regions, we consistently observed clusters of non-coated vesicles in association with the microtubules. The organization of the microtubules in the electrocyte may thus result in a functional polarization of the cytoplasm. In other polarized cells, the particular organization of the secretory pathway accounts for the intracellular routing of membrane proteins. The organization that we have observed in the electrocyte may thus lead to the vectorial delivery of synaptic proteins to the innervated plasma membrane. Furthermore, the abundance of synaptic proteins makes the electrocyte a unique model with which to decipher the mechanisms involved in the sorting and targeting of these glycoproteins.
Collapse
Affiliation(s)
- B J Jasmin
- Biologie Cellulaire des Membranes, Institut Jacques Monod, CNRS, Université Paris 7, France
| | | | | |
Collapse
|
106
|
Khurana TS, Watkins SC, Chafey P, Chelly J, Tomé FM, Fardeau M, Kaplan JC, Kunkel LM. Immunolocalization and developmental expression of dystrophin related protein in skeletal muscle. Neuromuscul Disord 1991; 1:185-94. [PMID: 1822793 DOI: 10.1016/0960-8966(91)90023-l] [Citation(s) in RCA: 218] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dystrophin Related Protein is the recently identified protein product of a large autosomal transcript, showing significant similarity to dystrophin at the carboxyl terminus. Dystrophin related protein and dystrophin share a similar abundance and molecular weight, however, they differ both in their tissue distribution and expression in Duchenne/Becker muscular dystrophy. Here we define the immunolocalization of dystrophin related protein to neuromuscular and myotendinous junctions, along with peripheral nerves and vasculature of skeletal muscle. Groups of regenerating muscle fibres as well as embryonic and neonatal muscle express far greater amounts of dystrophin related protein compared with adult mdx mice. These findings may explain the paradoxical labelling seen using dystrophin antibodies in Duchenne patients and dystrophin deficient mdx mice. Finally, no abnormalities of dystrophin related protein expression were detected in three patients with Duchenne-like autosomal recessive muscular dystrophy.
Collapse
Affiliation(s)
- T S Khurana
- Program of Neuroscience, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Oshima M, Ashizawa T, Pollack MS, Atassi MZ. Autoimmune T cell recognition of human acetylcholine receptor: the sites of T cell recognition in myasthenia gravis on the extracellular part of the alpha subunit. Eur J Immunol 1990; 20:2563-9. [PMID: 2269324 DOI: 10.1002/eji.1830201206] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Autoimmune T cell lines were prepared from peripheral blood lymphocytes of five myasthenia gravis patients by passage in vitro with an equimolar mixture of 18 overlapping synthetic peptides corresponding to the entire extracellular region (residues alpha 1-210) of the alpha subunit of human acetylcholine receptor (AChR). The proliferative responses of the human AChR-specific T cell lines to each of the individual peptides were determined. It was found that the profiles of the peptides recognized by the T cells were different among the five T cell lines, consistent with genetic control operating at the recognition site level. However, other regulatory influences may play important roles in the triggering of the autoimmune responses. These results suggest that the pathogenesis of this autoimmune disease is variable at the cellular-molecular level.
Collapse
Affiliation(s)
- M Oshima
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030
| | | | | | | |
Collapse
|
108
|
Froehner SC, Luetje CW, Scotland PB, Patrick J. The postsynaptic 43K protein clusters muscle nicotinic acetylcholine receptors in Xenopus oocytes. Neuron 1990; 5:403-10. [PMID: 1698395 DOI: 10.1016/0896-6273(90)90079-u] [Citation(s) in RCA: 202] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nicotinic acetylcholine receptors (AChRs) are localized at high concentrations in the postsynaptic membrane of the neuromuscular junction. A peripheral membrane protein of Mr 43,000 (43K protein) is closely associated with AChRs and has been proposed to anchor receptors at postsynaptic sites. We have used the Xenopus oocyte expression system to test the idea that the 43K protein clusters AChRs. Mouse muscle AChRs expressed in oocytes after injection of RNA encoding receptor subunits are uniformly distributed in the surface membrane. Coinjection of AChR RNA and RNA encoding the mouse muscle 43K protein causes AChRs to form clusters of 0.5-1.5 microns diameter. AChR clustering is not a consequence of increased receptor expression in the surface membrane or nonspecific clustering of all membrane proteins. The 43K protein is colocalized with AChRs in clusters when the two proteins are expressed together and forms clusters of similar size even in the absence of AChRs. These results provide direct evidence that the 43K protein causes clustering of AChRs and suggest that regulation of 43K protein clustering may be a key step in neuromuscular synaptogenesis.
Collapse
Affiliation(s)
- S C Froehner
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | | | | | |
Collapse
|
109
|
Négrerie M, Gròf P, Bouet F, Ménez A, Aslanian D. Structure and chemical modifications of neurotoxin from Naja nigricollis studied by Raman spectroscopy. Biochemistry 1990; 29:8258-65. [PMID: 2252887 DOI: 10.1021/bi00488a009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Raman spectroscopy was used to determine structural features of the native toxin alpha from Naja nigricollis, which contains only one Trp and one Tyr, and of chemically modified toxins having chromophores added to these two conserved aromatic amino acids. The percentages of secondary structure were determined by using amide I polypeptidic vibration analysis and are in agreement with X-ray structure [Low et al. (1976) Proc. Natl. Acad Sci. U.S.A. 73, 2991-2994] as well as with the geometry of the disulfide bridges estimated by using the v(S-S) vibrations. In the native toxin alpha, the single invariant tyrosine 25 appears to be buried in the structure and involved in a strong hydrogen bond. We have chemically modified these two invariant aromatic side chains by addition of chromophores. The presence of a (nitrophenyl)sulfenyl (NPS) chromophore bound to the Trp does not perturb the secondary structure of the toxin as shown by the analysis of the polypeptidic amide I vibrations; however, the environment of this Trp and the geometry of a disulfide bridge seem to be modified. The secondary structure is not affected by the presence of the NPS chromophore; therefore, the decrease in binding affinity observed after modification of Trp-29 by the reagent NPS-Cl [Faure et al. (1983) Biochemistry 22, 2068-2076] is due to an alteration of the environment of this aromatic amino acid and/or a steric hindrance and not to an overall modification of the toxin structure. The binding assays of [nitrotyrosyl]toxin show that after nitration the affinity toward the monoclonal antibody M alpha 1 is unchanged and that the affinity toward the cholinergic receptor (AcChR) from Torpedo marmorata remains high. We concluded that the structure of toxin alpha after adding the NO2 chromophore to Tyr-25 is the same as it is in native toxin.
Collapse
Affiliation(s)
- M Négrerie
- Laboratoire de Physique des Solides, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
110
|
Ruan KH, Spurlino J, Quiocho FA, Atassi MZ. Acetylcholine receptor-alpha-bungarotoxin interactions: determination of the region-to-region contacts by peptide-peptide interactions and molecular modeling of the receptor cavity. Proc Natl Acad Sci U S A 1990; 87:6156-60. [PMID: 2385590 PMCID: PMC54491 DOI: 10.1073/pnas.87.16.6156] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In previous studies from this laboratory, the binding regions of alpha-neurotoxins on human and Torpedo acetylcholine (AcCho) receptors (AcChoRs) and the binding regions for the receptor on the toxin were characterized with synthetic peptides of the respective molecules. In the present work, peptides representing the active regions of one molecule are each allowed to bind to each of the active-region peptides of the other molecule. Thus, the interaction of three alpha-bungarotoxin (alpha-BTX) synthetic loop peptides with four synthetic peptides representing the toxin-binding regions on human AcChoR permitted the determination of the region-region interactions between alpha-BTX and the human receptor. Based on the known three-dimensional structure of the toxin, the active peptides of the receptor were then assembled to their appropriate toxin-contact regions by computer model building and energy minimization. This allowed the three-dimensional construction of the toxin-binding cavity on human AcChoR. The cavity appears to be conical, 30.5 A in depth, involving several receptor regions that make contact with the alpha-BTX loop regions. One AcChoR region (within residues 125-136) involved in the binding to alpha-BTX also resides in a known AcCho-binding site, thus demonstrating in three dimensions a critical site involved in both AcCho activation and alpha-BTX blocking. The validity of this approach was first established for three of four peptides corresponding to regions on the beta chain of human hemoglobin involved in binding to the alpha chain. Thus, studying the interaction between peptides representing the binding regions of two protein molecules may provide an approach in molecular recognition by which the binding site on one protein can be described if the three-dimensional structure of the other protein is known.
Collapse
Affiliation(s)
- K H Ruan
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030
| | | | | | | |
Collapse
|
111
|
Adam LP, Henderson EG. Calcium channel effectors are potent non-competitive blockers of acetylcholine receptors. Pflugers Arch 1990; 416:586-93. [PMID: 2172919 DOI: 10.1007/bf00382694] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nicardipine and other calcium channel effectors (CCEs) were studied for their effects on nicotinic acetylcholine receptor (nAChR) activity. While CCEs had no effect on frog (Rana pipiens) skeletal muscle contractions resulting from nerve stimulation or direct stimulation of the muscle, nicotinic agonist-induced contractures were blocked. Nicardipine did not affect nAChR single-channel open time or amplitude, corroborating data from endplate currents (EPCs); EPC amplitudes and decays were unaffected. All the CCEs tested, however, non-competitively blocked nAChRs. The block of nAChRs resulted in a shortened agonist-induced depolarization and thus a diminished contracture response. An increase in cultured mouse skeletal muscle (C-2) cell single-channel closed times was observed with the intracellular addition of nicardipine, verifying a direct block of nAChRs. Using single-channel analysis, nicardipine's site of action, or at least access to its site of action, was determined to be at the intracellular side of the receptor. A direct action of the CCEs on the nAChR was also shown by their ability to block phencyclidine (PCP) binding to Torpedo nobiliana membranes. All the CCEs blocked specific binding of [3H]-PCP to its binding site on the nAChR-channel complex, with bepridil and nicardipine being the most potent. These data are compatible with a model in which nicardipine and other CCEs, at concentrations which do not alter nAChR channel open time or conductance, block the effects of superfused nicotinic agonist on nAChRs either by stabilizing the formation of the nAChR desensitized state or by effecting a slow channel block.
Collapse
Affiliation(s)
- L P Adam
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06032
| | | |
Collapse
|
112
|
Brooks EB, Pachner AR, Drachman DB, Kantor FS. A sensitive rosetting assay for detection of acetylcholine receptor antibodies using BC3H-1 cells: positive results in 'antibody-negative' myasthenia gravis. J Neuroimmunol 1990; 28:83-93. [PMID: 2341562 DOI: 10.1016/0165-5728(90)90043-m] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antibodies to acetylcholine receptor (AChR) were measured in a group of patients with myasthenia gravis (MG), some of whom had previously been classified as 'antibody negative' using the standard anti-AChR radioimmunoassay (RIA). AChR antibodies were measured using the rosetting assay, a new detection method which utilizes protein A-coated red blood cells and live BC3H-1 cells, a murine cell line which expresses muscle nicotinic AChR. The results of the rosetting assay were compared with those obtained in the anti-AChR RIA. 76% of all myasthenic sera tested showed rosetting at titers higher than any of the control sera (from patients with non-myasthenic neurologic disease and normal individuals). Of the myasthenic patients previously classified as 'antibody negative' in the RIA using human AChR, 71% demonstrated positive rosetting. There was no correlation between the anti-AChR antibody titer obtained in the rosetting assay and that obtained in the RIA using either human or denervated rat AChR. The results suggest that the rosetting assay may measure a subpopulation of antibodies that differs from those detected in the RIA.
Collapse
Affiliation(s)
- E B Brooks
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | | | | | | |
Collapse
|
113
|
Jasmin BJ, Cartaud A, Ludosky MA, Changeux JP, Cartaud J. Asymmetric distribution of dystrophin in developing and adult Torpedo marmorata electrocyte: evidence for its association with the acetylcholine receptor-rich membrane. Proc Natl Acad Sci U S A 1990; 87:3938-41. [PMID: 2187196 PMCID: PMC54019 DOI: 10.1073/pnas.87.10.3938] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dystrophin has been shown to occur in Torpedo electrocyte [Chang, H. W., Bock, E. & Bonilla, E. (1989) J. Biol. Chem. 264, 20831-20834], a highly polarized syncytium that is embryologically derived from skeletal muscle and displays functionally distinct plasma membrane domains on its innervated and noninnervated faces. In the present study, we investigated the subcellular distribution of dystrophin in the adult electrocyte from Torpedo marmorata and the evolution of its distribution during embryogenesis. Immunofluorescence experiments performed on adult electrocytes with a polyclonal antibody directed against chicken dystrophin revealed that dystrophin immunoreactivity codistributed exclusively with the acetylcholine receptor along the innervated membrane. At the ultrastructural level, dystrophin immunoreactivity appears confined to the face of the subsynaptic membrane exposed to the cytoplasm. In developing electrocytes (45-mm embryo), dystrophin is already detectable at the acetylcholine receptor-rich ventral pole of the cells before the entry of the electromotor axons. Furthermore, we show that dystrophin represents a major component of purified membrane fractions rich in acetylcholine receptor. A putative role of dystrophin in the organization and stabilization of the subsynaptic membrane domain of the electrocyte is discussed.
Collapse
Affiliation(s)
- B J Jasmin
- Biologie Cellulaire des Membranes, Institut Jacques Monod, Université Paris, France
| | | | | | | | | |
Collapse
|
114
|
Kapp EA, Whiteley CG. An improved procedure for the isolation and purification of nicotinic acetylcholine receptor from Torpedo fuscomaculata electric organ. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1034:29-38. [PMID: 2328259 DOI: 10.1016/0304-4165(90)90149-q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nicotinic acetylcholinergic receptor has been isolated and purified from extracts of the electric organ of the fish Torpedo fuscomaculata. The isolation procedure involves (a) a series of purification steps including preparation of membrane fragments, extraction of receptors with non-ionic detergents and chromatofocusing; (b) a novel fluorimetric titration assay. The purified receptor is isolated following a 9-fold purification with an overall yield of 12% and a specific activity of 4027 nM.g-1. Gel electrophoresis in the presence of sodium dodecylsulphate produced only one major band with molecular weight of 44,600 associated with the alpha-subunit. A comparison is made with other established procedures. Affinity chromatography on cobratoxin CNBr-Sepharose CL4B produced a 6.8-fold purification, 5% yield and 2900 nM.g-1 specific activity, while in ion-exchange chromatography on DEAE Sepharose 6B gave a 4.7-fold purification, 3% yield and specific activity of 1988 nM.g-1.
Collapse
Affiliation(s)
- E A Kapp
- Department of Chemistry and Biochemistry, Rhodes University, Grahamstown, Republic of South Africa
| | | |
Collapse
|
115
|
Pedersen SE, Cohen JB. d-Tubocurarine binding sites are located at alpha-gamma and alpha-delta subunit interfaces of the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 1990; 87:2785-9. [PMID: 2320589 PMCID: PMC53775 DOI: 10.1073/pnas.87.7.2785] [Citation(s) in RCA: 203] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The competitive nicotinic antagonist d-[3H]tubocurarine was used as a photoaffinity label for the acetylcholine binding sites on the nicotinic acetylcholine receptor (AcChoR) from Torpedo. Irradiation with 254-nm UV light of AcChoR-rich membranes equilibrated with d-[3H]tubocurarine resulted in covalent incorporation into the alpha, gamma, and delta subunits that could be blocked by alpha-bungarotoxin or by carbamoylcholine. The concentrations of d-[3H]tubocurarine required for half-maximal specific incorporation into the gamma and delta subunits were 40 nM and 0.9 microM, respectively, consistent with the dissociation constants for the high- and low-affinity binding sites (Kd = 35 nM and 1.2 microM). The concentration dependence of incorporation into alpha subunit was biphasic and consistent with labeling of both the high- and low-affinity d-tubocurarine binding sites. The specific photolabeling of each AcChoR subunit was inhibited by carbamoylcholine with appropriate dose dependence. These results establish that, in addition to the alpha subunits, the gamma and delta subunits also contribute directly to the acetylcholine binding sites and that each binding site is at an interface of subunits. Because the AcChoR subunits are homologous and are arranged pseudosymmetrically about a central axis, the photolabeling results are inconsistent with an arrangement of subunits in the AcChoR rosette of alpha beta alpha gamma delta and indicate that either the gamma or delta subunit resides between the alpha subunits.
Collapse
Affiliation(s)
- S E Pedersen
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110
| | | |
Collapse
|
116
|
Qu ZC, Moritz E, Huganir RL. Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromuscular junction. Neuron 1990; 4:367-78. [PMID: 1690564 DOI: 10.1016/0896-6273(90)90049-l] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) from the electric organ of T. californica is highly phosphorylated on tyrosine residues in vivo. In contrast, tyrosine phosphorylation of the AChR in rat myotube cultures is barely detectable. To determine whether this low level of tyrosine phosphorylation of the AChR in muscle cell cultures is due to a lack of neuronal innervation, we examined tyrosine phosphorylation of the AChR in rat diaphragm in vivo. Immunofluorescent double labeling of cryostat sections of rat diaphragm using antibodies specific for phosphotyrosine or the AChR showed a direct colocalization of phosphotyrosine with the AChR at the neuromuscular junction. Using anti-phosphotyrosine antibodies, immunoblots of AChR partially purified from rat diaphragm demonstrated that the rat AChR contains high levels of phosphotyrosine. Denervation of rat diaphragm induced a time-dependent decrease in tyrosine phosphorylation of the AChR, as measured by immunocytochemical and immunoblot techniques. Tyrosine phosphorylation of the AChR occurred late in the development of the neuromuscular junction, between postnatal days 7 and 14. These studies suggest that muscle innervation regulates tyrosine phosphorylation of the AChR and that tyrosine phosphorylation may play an important role in the developmental regulation of the AChR.
Collapse
Affiliation(s)
- Z C Qu
- Howard Hughes Medical Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
117
|
Conti-Tronconi BM, Tang F, Walgrave S, Gallagher W. Nonequivalence of alpha-bungarotoxin binding sites in the native nicotinic receptor molecule. Biochemistry 1990; 29:1046-54. [PMID: 2340276 DOI: 10.1021/bi00456a029] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the native, membrane-bound form of the nicotinic acetylcholine receptor (M-AcChR) the two sites for the cholinergic antagonist alpha-bungarotoxin (alpha-BGT) have different binding properties. One site has high affinity, and the M-AcChR/alpha-BGT complexes thus formed dissociate very slowly, similar to the complexes formed with detergent-solubilized AcChR (S-AcChR). The second site has much lower affinity (KD approximately 59 +/- 35 nM) and forms quickly reversible complexes. The nondenaturing detergent Triton X-100 is known to solubilize the AcChR in a form unable, upon binding of cholinergic ligands, to open the ion channel and to become desensitized. Solubilization of the AcChR in Triton X-100 affects the binding properties of this second site and converts it to a high-affinity, slowly reversible site. Prolonged incubation of M-AcChR at 4 degrees C converts the low-affinity site to a high-affinity site similar to those observed in the presence of Triton X-100. Although the two sites have similar properties when the AcChR is solubilized in Triton X-100, their nonequivalence can be demonstrated by the effect on alpha-BGT binding of concanavalin A, which strongly reduces the association rate of one site only. The Bmax of alpha-BGT to either Triton-solubilized AcChR or M-AcChR is not affected by the presence of concanavalin A. Occupancy of the high-affinity, slowly reversible site in M-AcChR inhibits the Triton X-100 induced conversion to irreversibility of the second site. At difference with alpha-BGT, the long alpha-neurotoxin from Naja naja siamensis venom (alpha-NTX) binds with high affinity and in a very slowly reversible fashion to two sites in the M-AcChR (Conti-Tronconi & Raftery, 1986). We confirm here that Triton-solubilized AcChR or M-AcChR binds in a very slowly reversible fashion the same amount of alpha-NTX.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B M Conti-Tronconi
- Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul 55108
| | | | | | | |
Collapse
|
118
|
Pedersen SE, Bridgman PC, Sharp SD, Cohen JB. Identification of a cytoplasmic region of the Torpedo nicotinic acetylcholine receptor alpha-subunit by epitope mapping. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40267-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
119
|
Nathanson JA, Kantham L, Hunnicutt EJ. Isolation and N-terminal amino acid sequence of an octopamine ligand binding protein. FEBS Lett 1989; 259:117-20. [PMID: 2513233 DOI: 10.1016/0014-5793(89)81508-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An octopamine receptor photoaffinity probe was used to label membranes from the light organs of Photinus pyralis, a tissue highly enriched in octopamine receptors. Labeling was concentrated in a glycoprotein of 75 +/- 2 kDa with lesser labeling of a 79 +/- 2 kDa component. Labeling could be displaced by prior incubation with octopamine, mianserin, cyproheptadine, phentolamine or propranolol, with a relative potency that correlated with the ability of these same agents to modulate light organ octopamine-sensitive adenylate cyclase. The 75 kDa binding protein was isolated and its N-terminal amino acid sequence was determined.
Collapse
Affiliation(s)
- J A Nathanson
- Dept. of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston 02114
| | | | | |
Collapse
|
120
|
Carr C, Fischbach GD, Cohen JB. A novel 87,000-Mr protein associated with acetylcholine receptors in Torpedo electric organ and vertebrate skeletal muscle. J Cell Biol 1989; 109:1753-64. [PMID: 2793938 PMCID: PMC2115790 DOI: 10.1083/jcb.109.4.1753] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To identify proteins associated with nicotinic postsynaptic membranes, mAbs have been prepared to proteins extracted by alkaline pH or lithium diiodosalicylate from acetylcholine receptor-rich (AChR) membranes of Torpedo electric organ. Antibodies were obtained that recognized two novel proteins of 87,000 Mr and a 210,000:220,000 doublet as well as previously described proteins of 43,000 Mr, 58,000 (51,000 in our gel system), 270,000, and 37,000 (calelectrin). The 87-kD protein copurified with acetylcholine receptors and with 43- and 51-kD proteins during equilibrium centrifugation on continuous sucrose gradients, whereas a large fraction of the 210/220-kD protein was separated from AChRs. The 87-kD protein remained associated with receptors and 43-kD protein during velocity sedimentation through shallow sucrose gradients, a procedure that separated a significant amount of 51-kD protein from AChRs. The 87- and 270-kD proteins were cleaved by Ca++-activated proteases present in crude preparations and also in highly purified postsynaptic membranes. With the exception of anti-37-kD antibodies, some of the monoclonals raised against Torpedo proteins also recognized determinants in frozen sections of chick and/or rat skeletal muscle fibers and in permeabilized chick myotubes grown in vitro. Anti-87-kD sites were concentrated at chick and rat endplates, but the antibodies also recognized determinants present at lower site density in the extrasynaptic membrane. Anti-210:220-kD labeled chick endplates, but studies of neuron-myotube cocultures showed that this antigen was located on neurites rather than the postsynaptic membrane. As reported in other species, 43-kD determinants were restricted to chick endplates and anti-51-kD and anti-270-kD labeled extrasynaptic as well as synaptic membranes. None of the cross reacting antibodies recognized determinants on intact (unpermeabilized) myotubes, so the antigens must be located on the cytoplasmic aspect of the surface membrane. The role that each intracellular determinant plays in AChR immobilization at developing and mature endplates remains to be investigated.
Collapse
Affiliation(s)
- C Carr
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
121
|
Burlakov GV. Pharmacologic properties of antiacetylcholine receptor antibodies. Bull Exp Biol Med 1989. [DOI: 10.1007/bf00839470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
122
|
LaRochelle WJ, Ralston E, Forsayeth JR, Froehner SC, Hall ZW. Clusters of 43-kDa protein are absent from genetic variants of C2 muscle cells with reduced acetylcholine receptor expression. Dev Biol 1989; 132:130-8. [PMID: 2645181 DOI: 10.1016/0012-1606(89)90211-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genetic variants of the C2 muscle cell line were used to investigate the relation between acetylcholine receptor (AChR) clustering and clustering of the 43-kDa protein. Two variants that express severely reduced amounts of the alpha subunit of the AChR and consequently lack AChR clusters were found also to lack clusters of the 43-kDa protein. The amount of 43-kDa protein in the variants measured by immunoassay was reduced to about one-third the levels found in wild-type cells. The beta subunit of the AChR was reduced to a similar extent. Northern blot analysis showed that neither the 43-kDa protein mRNA nor the beta subunit mRNA was reduced in the variants. Taken together, these results suggest that the amounts of beta subunit and 43-kDa protein may be regulated coordinately by a post-transcriptional mechanism.
Collapse
Affiliation(s)
- W J LaRochelle
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | | | | | | | |
Collapse
|
123
|
Laufer R, Changeux JP. Activity-dependent regulation of gene expression in muscle and neuronal cells. Mol Neurobiol 1989; 3:1-53. [PMID: 2679765 DOI: 10.1007/bf02935587] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In both the central and the peripheral nervous systems, impulse activity regulates the expression of a vast number of genes that code for synaptic proteins, including neuropeptides, enzymes involved in neurotransmitter biosynthesis and degradation, and membrane receptors. In recent years, the mechanisms involved in these regulations became amenable to investigation by the methods of recombinant DNA technology. The first part of this review focuses on the activity-dependent control of nicotinic acetylcholine receptor biosynthesis in vertebrate muscle, a model case for the regulation of synaptic protein biosynthesis at the postsynaptic level. The second part summarizes some examples of neuronal proteins whose biosynthesis is under the control of transsynaptic impulse activity. The first, second, and third intracellular messengers involved in membrane-to-gene signaling are discussed, as are possible posttranscriptional control mechanisms. Finally, models are proposed for a role of neuronal activity in the genesis and stabilization of the synapse.
Collapse
Affiliation(s)
- R Laufer
- URA, CNRS 0210 Département des Biotechnologies, Institut PASTEUR, Paris, France
| | | |
Collapse
|
124
|
Sealock R, Murnane AA, Paulin D, Froehner SC. Immunochemical identification of desmin in Torpedo postsynaptic membranes and at the rat neuromuscular junction. Synapse 1989; 3:315-24. [PMID: 2740991 DOI: 10.1002/syn.890030404] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Preparations of acetylcholine receptor-rich (AChR-rich) postsynaptic membranes from electric tissue of electric rays often contain an Mr 55,000 protein (55kD protein) that has not been previously characterized. Using a monoclonal antibody (MAb 1403) against the 55kD protein from Torpedo californica and a pan-specific, anti-intermediate filament antibody (Pruss et al., 1981; Cell 27:419-428), we show that the 55kD protein has the properties expected of Torpedo desmin. By the electron microscope immunogold method applied to perfusion-fixed electric tissue, MAb 1403 labeled only cytoplasmic filaments in the electroplax. These filaments were neither more concentrated nor arranged detectably differently in postsynaptic regions relative to nonpostsynaptic regions. The 55kD protein could also be fractionated away from isolated postsynaptic membranes by gradient centrifugation. The protein is thus a minor component of the postsynaptic membrane in situ and after isolation. On semithin cryosections of rat skeletal muscle, on the other hand, MAb 1403, which recognizes rat desmin but not rat vimentin, gave strong fluorescent labeling of the postsynaptic region, weaker labeling of the Z-line, and still weaker labeling of the cell surface immediately surrounding extra-junctional nuclei. The pattern of postsynaptic labeling suggests that desmin, presumably in the form of intermediate filaments, occurs near the AChR-rich crests of the junctional folds, but is particularly concentrated among and around the ends of the folds. Similar results were obtained with a second monoclonal antibody raised against authentic desmin. These results suggest that desmin intermediate filaments may have an important role in organization of the postsynaptic cytoplasm in rat muscle.
Collapse
Affiliation(s)
- R Sealock
- Department of Physiology, University of North Carolina, Chapel Hill 27599
| | | | | | | |
Collapse
|
125
|
Frail DE, Musil LS, Buonanno A, Merlie JP. Expression of RAPsyn (43K protein) and nicotinic acetylcholine receptor genes is not coordinately regulated in mouse muscle. Neuron 1989; 2:1077-86. [PMID: 2624742 DOI: 10.1016/0896-6273(89)90232-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RAPsyn (also known as 43K protein), a mouse muscle protein localized to the synaptic membrane, is thought to be involved in the localization of nicotinic acetylcholine receptors at the neuromuscular junction. We have characterized the transcriptional regulation of the RAPsyn gene and the synthesis of the RAPsyn protein during muscle cell differentiation. Nuclear run-on experiments and RNAase protection analyses showed that mRNA encoding RAPsyn, but not the acetylcholine receptor subunits, is present in undifferentiated muscle cells. The RAPsyn protein present in undifferentiated and differentiated muscle cells cannot be distinguished by peptide maps, turnover rates, cellular subfractionation, or ability to incorporate myristate. Whereas the amount of acetylcholine receptor subunit mRNA is increased approximately 100-fold after denervation, the amount of RAPsyn mRNA is increased just 2- to 3-fold. We conclude that the expression of RAPsyn and the acetylcholine receptor is not coordinately regulated in mouse muscle.
Collapse
Affiliation(s)
- D E Frail
- Department of Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
126
|
Kordeli E, Cartaud J, Nghiêm HO, Devillers-Thiéry A, Changeux JP. Asynchronous assembly of the acetylcholine receptor and of the 43-kD nu1 protein in the postsynaptic membrane of developing Torpedo marmorata electrocyte. J Cell Biol 1989; 108:127-39. [PMID: 2642909 PMCID: PMC2115356 DOI: 10.1083/jcb.108.1.127] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The assembly of the nicotinic acetylcholine receptor (AchR) and the 43-kD protein (v1), the two major components of the post synaptic membrane of the electromotor synapse, was followed in Torpedo marmorata electrocyte during embryonic development by immunocytochemical methods. At the first developmental stage investigated (45-mm embryos), accumulation of AchR at the ventral pole of the newly formed electrocyte was observed within columns before innervation could be detected. No concomitant accumulation of 43-kD immunoreactivity in AchR-rich membrane domains was observed at this stage, but a transient asymmetric distribution of the extracellular protein, laminin, which paralleled that of the AchR, was noticed. At the subsequent stage studied (80-mm embryos), codistribution of the two proteins was noticed on the ventral face of the cell. Intracellular pools of AchR and 43-kD protein were followed at the EM level in 80-mm electrocytes. AchR immunoreactivity was detected within membrane compartments, which include the perinuclear cisternae of the endoplasmic reticulum and the plasma membrane. On the other hand, 43-kD immunoreactivity was not found associated with the AchR in the intracellular compartments of the cell, but codistributed with the AchR at the level of the plasma membrane. The data reported in this study suggest that AchR clustering in vivo is not initially determined by the association of the AchR with the 43-kD protein, but rather relies on AchR interaction with extracellular components, for instance from the basement membrane, laid down in the tissue before the entry of the electromotor nerve endings.
Collapse
Affiliation(s)
- E Kordeli
- Microscopie Electronique et Biologie Cellulaire des Membranes, Institut Jacques Monod du Centre National de la Recherche Scientifique, Université Paris VII, France
| | | | | | | | | |
Collapse
|
127
|
White BH, Cohen JB. Photolabeling of membrane-bound Torpedo nicotinic acetylcholine receptor with the hydrophobic probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine. Biochemistry 1988; 27:8741-51. [PMID: 3242605 DOI: 10.1021/bi00424a009] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the gamma-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist alpha-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effects on [125I]TID labeling of the AChR. The regions of the AChR alpha-subunit that incorporate [125I]TID were mapped by Staphylococcus aureus V8 protease digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated [125I]TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the alpha-subunit amino terminus, incorporated no detectable [125I]TID. The mapping results place constraints on suggested models of AChR subunit topology.
Collapse
Affiliation(s)
- B H White
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
128
|
Frail DE, McLaughlin LL, Mudd J, Merlie JP. Identification of the mouse muscle 43,000-dalton acetylcholine receptor-associated protein (RAPsyn) by cDNA cloning. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)37631-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
129
|
Musil LS, Carr C, Cohen JB, Merlie JP. Acetylcholine receptor-associated 43K protein contains covalently bound myristate. J Cell Biol 1988; 107:1113-21. [PMID: 3417776 PMCID: PMC2115306 DOI: 10.1083/jcb.107.3.1113] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Torpedo electroplaque and vertebrate neuromuscular junctions contain high levels of a nonactin, 43,000-Mr peripheral membrane protein referred to as the 43K protein. 43K protein is associated with the cytoplasmic face of postsynaptic membranes at areas of high acetylcholine receptor density and has been implicated in the establishment and/or maintenance of these receptor clusters. Cloning of cDNAs encoding Torpedo 43K protein revealed that its amino terminus contains a consensus sequence sufficient for the covalent attachment of the rare fatty acid myristate. To examine whether 43K protein is, in fact, myristoylated, mouse muscle BC3H1 cells were metabolically labeled with either [35S]cysteine or [3H]myristate and immunoprecipitated with a monospecific antiserum raised against isolated Torpedo 43K protein. In cells incubated with either precursor, a single labeled species was specifically recovered that comigrated on SDS-PAGE with 43K protein purified from Torpedo electric organ. Approximately 95% of the 3H labeled material released from [3H]myristate-43K protein by acid methanolysis was extractable in organic solvents and eluted from a C18 reverse-phase HPLC column exclusively at the position of the methyl myristate internal standard. Thus, 43K protein contains authentic myristic acid rather than an amino or fatty acid metabolite of [3H]myristate. Myristate appears to be added to 43K protein cotranslationally and cannot be released from it by prolonged incubation in SDS, 2-mercaptoethanol, or hydroxylamine (pH 7.0 or 10.0), characteristics consistent with amino terminal myristoylation. Covalently linked myristate may be responsible for the high affinity of purified 43K protein for lipid bilayers despite the absence of a notably hydrophobic amino acid sequence.
Collapse
Affiliation(s)
- L S Musil
- Department of Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
130
|
Mulac-Jericevic B, Atassi MZ. Profile of the alpha-bungarotoxin-binding regions on the extracellular part of the alpha-chain of Torpedo californica acetylcholine receptor. Biochem J 1987; 248:847-52. [PMID: 3435488 PMCID: PMC1148626 DOI: 10.1042/bj2480847] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The continuous alpha-neurotoxin-binding regions on the extracellular part (residues 1-210) of the alpha-chain of Torpedo californica acetylcholine receptor were localized by reaction of 125I-labelled alpha-bungarotoxin with synthetic overlapping peptides spanning this entire part of the chain. The specificity of the binding was confirmed by inhibition with unlabelled toxin and, for appropriate peptides, with unlabelled anti-(acetylcholine receptor) antibodies. Five toxin-binding regions were localized within residues 1-10, 32-41, 100-115, 122-150 and 182-198. The third, fourth and fifth (and to a lesser extent the first and second) toxin-binding regions overlapped with regions recognized by anti-(acetylcholine receptor) antibodies. The five toxin-binding regions may be distinct sites or, alternatively, different 'faces' in one (or more) sites.
Collapse
Affiliation(s)
- B Mulac-Jericevic
- Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
131
|
α-Neurotoxin binding to acetylcholine receptor: Localization of the full profile of the cobratoxin-binding regions on the α-chain ofTorpedo californica acetylcholine receptor by a comprehensive synthetic strategy. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf02343335] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
132
|
Bridgman PC, Carr C, Pedersen SE, Cohen JB. Visualization of the cytoplasmic surface of Torpedo postsynaptic membranes by freeze-etch and immunoelectron microscopy. J Cell Biol 1987; 105:1829-46. [PMID: 3312239 PMCID: PMC2114641 DOI: 10.1083/jcb.105.4.1829] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The synapse-specific Mr 43,000 protein (43K protein) and the acetylcholine receptor were visualized by freeze-etch immunoelectron microscopy in preparations of purified Torpedo postsynaptic membranes. Vesicles were immobilized on glass and then sheared open by sonication to expose the cytoplasmic surface. Membranes were labeled with monoclonal antibodies to the 43K protein or the acetylcholine receptor. The cytoplasmic surface was devoid of filamentous structure, and the 43K protein and the cytoplasmic projection of the acetylcholine receptor were associated with prominent surface particles. Acetylcholine receptor and 43K protein, in membrane surfaces in direct contact with glass coated with polyornithine, segregated into dense particle aggregates separated by smooth membrane patches, whereas those in contact with glass coated with Alcian Blue underwent little or no detectable rearrangement. After treatment of vesicles at alkaline pH to remove the 43K protein, the cytoplasmic surfaces were still covered by a dense array of particles that were more uniform in shape and appeared slightly shorter than those seen on unextracted membranes, but similar in height to the extracellular projection. Monoclonal antibodies to the acetylcholine receptor labeled these particles, while antibodies to 43K protein did not. We conclude that the 43K protein is in direct association with the receptor and that complexes of the receptor and 43K protein can undergo surface-induced lateral redistribution. In addition, the cytoplasmic projection of the acetylcholine receptor is sufficiently large to be readily detected by freeze-etch electron microscopy and is similar in height to the extracellular projection.
Collapse
Affiliation(s)
- P C Bridgman
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
133
|
Frail DE, Mudd J, Shah V, Carr C, Cohen JB, Merlie JP. cDNAs for the postsynaptic 43-kDa protein of Torpedo electric organ encode two proteins with different carboxyl termini. Proc Natl Acad Sci U S A 1987; 84:6302-6. [PMID: 3476945 PMCID: PMC299059 DOI: 10.1073/pnas.84.17.6302] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Postsynaptic membranes isolated from Torpedo electric organ are highly enriched in the nicotinic acetylcholine receptor and a nonreceptor protein of 43 kDa; the distribution of the 43-kDa protein and the receptor is coextensive in the electrical membrane. As a first step in understanding the regulation of 43-kDa protein expression, we have isolated and characterized 43-kDa protein cDNAs. A lambda gt11 cDNA library was constructed from Torpedo californica electric organ mRNA and screened with a pool of 26-mer oligonucleotides encoding a short tryptic fragment of the 43-kDa synaptic protein. Positive clones were purified and sequenced; the amino acid sequences were deduced, and they matched chemically determined protein sequences of the 43-kDa protein. Two distinct classes of cDNAs were obtained; one class encoded a 43-kDa protein of 389 amino acids with a calculated molecular mass of 43,988 daltons, and another class encoded a second 43-kDa protein containing 23 additional amino acids at the C terminus. Therefore, it appears that two 43-kDa proteins with different carboxyl termini are encoded by separate mRNAs. Consistent with this idea, blot hybridization analysis revealed multiple polyadenylylated 43-kDa mRNAs in electric organ. One polyadenylylated mRNA of approximately equal to 2.0 kilobases in length was apparent in both embryonic day-11 chick muscle and the mouse muscle cell line BC3H1.
Collapse
|
134
|
Abstract
The cysteine-rich 43,000-dalton peripheral membrane protein, nu 1, is localized at the cytoplasmic face of electroplax and muscle cholinergic synapses, where it is thought to play an important role in the endplate supramolecular structure. The peripheral membrane protein properties of nu 1 are inferred by its removal from nicotinic cholinergic membranes by the action of mild alkali or lithium diiodosalicylate. An interesting property of nu 1 is its high concentration of free sulfhydryl groups, whose exact role in synaptic structure is still largely unknown. Alkylation of free sulfhydryls with N-ethylmaleimide (3 mM) has a profound effect on the association of nu 1 with synaptic membranes, rendering nu 1 unextractable by pH 11 treatment or by lithium diiodosalicylate and, concomitantly, decreasing nu 1's electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels. Iodoacetamide and iodoacetate have similar effects, but at concentrations 10- to 100-fold higher than required for N-ethylmaleimide. Furthermore, sulfhydryl modification also stabilizes the association of nicotinic receptor subunits with the detergent-insoluble cytoskeleton. N-Ethylmaleimide treatment increases the fraction of insoluble receptor molecules on extraction with Triton X-100, sodium cholate, or octylglucoside. These results suggest an important role of sulfhydryl groups in the structural stability of the postsynaptic cholinergic membrane.
Collapse
|
135
|
Froehner SC, Murnane AA, Tobler M, Peng HB, Sealock R. A postsynaptic Mr 58,000 (58K) protein concentrated at acetylcholine receptor-rich sites in Torpedo electroplaques and skeletal muscle. J Cell Biol 1987; 104:1633-46. [PMID: 3294859 PMCID: PMC2114519 DOI: 10.1083/jcb.104.6.1633] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the study of proteins that may participate in the events responsible for organization of macromolecules in the postsynaptic membrane, we have used a mAb to an Mr 58,000 protein (58K protein) found in purified acetylcholine receptor (AChR)-enriched membranes from Torpedo electrocytes. Immunogold labeling with the mAb shows that the 58K protein is located on the cytoplasmic side of Torpedo postsynaptic membranes and is most concentrated near the crests of the postjunctional folds, i.e., at sites of high AChR concentration. The mAb also recognizes a skeletal muscle protein with biochemical characteristics very similar to the electrocyte 58K protein. In immunofluorescence experiments on adult mammalian skeletal muscle, the 58K protein mAb labels endplates very intensely, but staining of extrasynaptic membrane is also seen. Endplate staining is not due entirely to membrane infoldings since a similar pattern is seen in neonatal rat diaphragm in which postjunctional folds are shallow and rudimentary, and in chicken muscle, which lacks folds entirely. Furthermore, clusters of AChR that occur spontaneously on cultured Xenopus myotomal cells and mouse muscle cells of the C2 line are also stained more intensely than the surrounding membrane with the 58K mAb. Denervation of adult rat diaphragm muscle for relatively long times causes a dramatic decrease in the endplate staining intensity. Thus, the concentration of this evolutionarily conserved protein at postsynaptic sites may be regulated by innervation or by muscle activity.
Collapse
|
136
|
Mulac-Jericević B, Kurisaki J, Atassi MZ. Profile of the continuous antigenic regions on the extracellular part of the alpha chain of an acetylcholine receptor. Proc Natl Acad Sci U S A 1987; 84:3633-7. [PMID: 2438685 PMCID: PMC304929 DOI: 10.1073/pnas.84.11.3633] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reaction of overlapping synthetic peptides spanning the extracellular part (residues 1-210) of the alpha chain of the Torpedo californica acetylcholine receptor (an alpha 2 beta gamma delta pentamer) with anti-receptor antibodies produced the profiles of the continuous antigenic regions of the correlate segment. Essentially similar profiles were recognized by rabbit and outbred mouse antibodies against isolated receptor or mouse antibodies against membrane-bound receptor. The antigenic sites reside within eight continuous regions: residues 1-14, 25-36, 41-53, 63-75, 102-114, 128-138, 172-182, and 188-198. Five of these regions (the second and the fifth through the eighth) appeared to be immunodominant. Significantly, two of these antigenic regions (i.e., those residing within residues 128-138 and 188-198) coincided with known toxin-binding regions. The antigenic profile suggests that recognition is directed to the intact molecule and only very slightly to the processed (fragmented) protein.
Collapse
|
137
|
Revah F, Mulle C, Pinset C, Audhya T, Goldstein G, Changeux JP. Calcium-dependent effect of the thymic polypeptide thymopoietin on the desensitization of the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 1987; 84:3477-81. [PMID: 2437580 PMCID: PMC304894 DOI: 10.1073/pnas.84.10.3477] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The effects of the thymic polypeptide thymopoietin (Tpo) on the properties of the nicotinic acetylcholine receptor (AcChoR) were investigated by patch clamp techniques on mouse C2 myotubes and by biochemical assays on AcChoR-rich membrane fragments purified from the Torpedo marmorata electric organ. At high concentrations (greater than 100 nM), Tpo inhibits the binding of cholinergic agonists to the AcChoR in a Ca2+-insensitive manner. At lower concentrations (2 nM), Tpo applied on C2 myotubes simultaneously with nondesensitizing concentrations of acetylcholine results in the appearance of long closed times separating groups of openings. This effect depends on the presence of Ca2+ in the external medium. Outside-out recordings, performed with various concentrations of EGTA in the intracellular medium, suggest that Ca2+ acts on the cytoplasmic face of the membrane after entry through acetylcholine-activated channels. Parallel studies with T. marmorata AcChoR-rich membranes show that in the presence of Ca2+ Tpo causes a decrease in the apparent equilibrium dissociation constant of the noncompetitive blocker [3H]phencyclidine, enhances, at low concentrations, the binding of [3H]acetylcholine, and also alters the binding kinetics of the fluorescent agonist 6-(5-dimethylamino-1-naphthalenesulfonamido)-n-hexanoic acid beta-(N-trimethylammonium bromide) ethyl ester to the AcChoR. It was concluded that, in the presence of Ca2+, Tpo displaces the conformational equilibrium of the AcChoR towards a high-affinity desensitized state and increases the transition rate towards the same state.
Collapse
|
138
|
Affiliation(s)
- A Klarsfeld
- Unité de Neurobiologie Moléculaire CNRS UA041149, Paris, France
| |
Collapse
|
139
|
Abstract
It has been reported that several bis-quaternary compounds not necessarily having an oxime function can be used to treat soman poisoning in mice. The mechanism for this protection is not clear, but it has been proposed that such compounds may act by blocking muscarinic or nicotinic acetylcholine receptors. We have tested thirty-four compounds for muscarinic binding activity, using displacement of tritiated 3-quinuclidinyl benzilate (QNB) as a criterion, and thirty-two compounds for nicotinic binding based on inhibition of alpha-bungarotoxin (BGT) binding. Only sixteen of these compounds were able to displace QNB from rat brain membranes, and only ten of them affected BGT binding. With one exception, all of the effective compounds belonged to a series of bis-pyridinium compounds that are similar in structure to SAD-128. The binding affinities to muscarinic receptors of all these compounds were low compared to atropine. Some of the compounds bound to nicotinic receptors with affinities approaching that of d-tubocurarine. However, there was not a direct correlation between binding affinity and their reported efficacy against soman.
Collapse
|
140
|
Woodruff ML, Theriot J, Burden SJ. 300-kD subsynaptic protein copurifies with acetylcholine receptor-rich membranes and is concentrated at neuromuscular synapses. J Cell Biol 1987; 104:939-46. [PMID: 3558487 PMCID: PMC2114440 DOI: 10.1083/jcb.104.4.939] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acetylcholine receptor-rich membranes from the electric organ of Torpedo californica are enriched in the four different subunits of the acetylcholine receptor and in two peripheral membrane proteins at 43 and 300 kD. We produced monoclonal antibodies against the 300-kD protein and have used these antibodies to determine the location of the protein, both in the electric organ and in skeletal muscle. Antibodies to the 300-kD protein were characterized by Western blots, binding assays to isolated membranes, and immunofluorescence on tissue. In Torpedo electric organ, antibodies to the 300-kD protein stain only the innervated face of the electrocytes. The 300-kD protein is on the intracellular surface of the postsynaptic membrane, since antibodies to the 300-kD protein bind more efficiently to saponin-permeabilized, right side out membranes than to intact membranes. Some antibodies against the Torpedo 300-kD protein cross-react with amphibian and mammalian neuromuscular synapses, and the cross-reacting protein is also highly concentrated on the intracellular surface of the post-synaptic membrane.
Collapse
|
141
|
Yokoi T, Mulac-Jericevic B, Atassi MZ. The regions of T-cell recognition on the extracellular part of the alpha chain of Torpedo californica acetylcholine receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1987; 225:103-13. [PMID: 3502590 DOI: 10.1007/978-1-4684-5442-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A comprehensive synthetic approach was employed to identify the continuous regions of T-cell recognition on the alpha-chain of Torpedo californica acetylcholine receptor (AChR). Eighteen synthetic consecutive overlapping peptides, of uniform size and overlaps, that spanned the entire extracellular part (residues 1-210) of the alpha chain were examined for their in vitro stimulation of lymph node cells from AChR-primed C57BL/6 (H-2b), C3H/He (H-2k), SWR(H-2q) and SJL (H-2s) mice. The T-cell recognition sites (T sites) in the AChR-primed mouse strains resided within six regions on the extracellular part of the alpha-chain. Three of the regions recognized by T cells coincided with regions recognized by antibodies (i.e. B cells) and one of these three regions also coincided with an alpha-neurotoxin binding region. It is noteworthy that, in addition to sites recognized by both T and B cells, the protein has at least two sites which are recognized exclusively by T cells and to which no detectable antibody responses are directed.
Collapse
Affiliation(s)
- T Yokoi
- Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
142
|
Kordeli E, Cartaud J, Nghiêm HO, Changeux JP. The Torpedo electrocyte: a model system for the study of receptor-cytoskeleton interactions. JOURNAL OF RECEPTOR RESEARCH 1987; 7:71-88. [PMID: 3625599 DOI: 10.3109/10799898709054980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have used the electrocyte of Torpedo electric organ as a model system for the study of AchR stabilization in the postsynaptic membrane. Attention was focused on membrane cytoskeleton interactions in particular on a peripheral protein of 43 KD that is believed to participate in AchR immobilization. Using immunocytochemical methods, we have shown that the cortical skeleton in Torpedo electrocyte displays a local differentiation proper for each specialized domain of the plasma membrane. In the postsynaptic membrane, characterized by an accumulation and a geometrical organization of the receptors in the plane of the membrane, the 43 KD protein participates in a submembraneous coating or "postsynaptic densities" that strictly codistribute with the AchR. The 43 KD protein might also account for the anchoring of intermediate-sized filaments. The organization of the postsynaptic domain appears readily different from that of the non-innervated one where the membrane folds are maintained by a cortical meshwork of cytoskeletal proteins such as ankyrin, spectrin and oligomeric actin. In conclusion, the asymmetrical organization of the cortical skeleton in the electrocyte offers a unique opportunity for the study of the specific aspects of membrane-skeleton interactions that take place in the postsynaptic domain.
Collapse
|
143
|
|
144
|
Heidmann T, Changeux JP. Characterization of the transient agonist-triggered state of the acetylcholine receptor rapidly labeled by the noncompetitive blocker [3H]chlorpromazine: additional evidence for the open channel conformation. Biochemistry 1986; 25:6109-13. [PMID: 3790508 DOI: 10.1021/bi00368a041] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The kinetics of covalent labeling of the alpha, beta, gamma, and delta chains of the acetylcholine receptor (AcChR) from Torpedo marmorata by the noncompetitive blocker [3H]chlorpromazine ([3H]CPZ) are investigated by using rapid mixing photolabeling techniques. In an initial study [Heidmann, T., & Changeux, J. P. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1897-1901], it was shown that the rate of [3H]CPZ labeling increases 100-1000-fold upon simultaneous addition of nicotinic agonists to the AcChR and that prior addition of these agonists abolishes the effect. The data were interpreted in terms of the rapid labeling of the transient active state of the AcChR where the ion channel is in its open configuration. This interpretation was recently challenged [Cox, R. N., Kaldany, R. R. J., Di Paola, M., & Karlin, A. (1985) J. Biol. Chem. 260, 7186-7193] on the ground of studies with a different noncompetitive blocker, [3H]quinacrine azide, and the suggestion was made that this compound labels the rapidly desensitized closed channel conformation of the AcChR. In this paper it is shown that the rate of rapid labeling of the AcChR by [3H]CPZ decreases to negligible values upon exposure of the AcChR to nicotinic agonists, in the 100-500-ms time range. The absolute values of the rate constants of this decrease (10-15 s-1 for saturating concentrations of acetylcholine and carbamoylcholine) and their variation with agonist concentration (apparent dissociation constants of 40 microM and 0.4 mM for acetylcholine and carbamoylcholine, respectively) are those expected for the rapid desensitization of the AcChR.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
145
|
Pedersen SE, Dreyer EB, Cohen JB. Location of ligand-binding sites on the nicotinic acetylcholine receptor alpha-subunit. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67082-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
146
|
Hucho F. The nicotinic acetylcholine receptor and its ion channel. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 158:211-26. [PMID: 2426106 DOI: 10.1111/j.1432-1033.1986.tb09740.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
147
|
Ratnam M, Sargent PB, Sarin V, Fox JL, Nguyen DL, Rivier J, Criado M, Lindstrom J. Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping. Biochemistry 1986; 25:2621-32. [PMID: 2424498 DOI: 10.1021/bi00357a051] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The binding domains of 28 monoclonal antibodies (mAbs) against the alpha, beta, and delta subunits of the Torpedo acetylcholine receptor were mapped on the primary sequences of these subunits. Small peptide fragments (2000-20,000 daltons) of the purified subunits were obtained by digestion with staphylococcal V8 protease and papain, separated on a discontinuous polyacrylamide gel electrophoretic system, and electroblotted onto diaminophenyl thioether paper. The blots were probed with the various monoclonal antibodies and also with antibodies against carboxy-terminal decapeptides of the alpha, beta, and delta subunits to identify the carboxy-terminal fragments. From inspection of the binding patterns of the various antibodies to the subunits fragments and the molecular weights of these fragments, and by using the carboxy termini of the subunits as reference points, it was possible to deduce the regions on the primary sequence of each subunit in which the antibodies bound and in some cases to order the binding sites within these sequences. mAb 148, which inhibits receptor function by cross-linking receptor molecules on the cytoplasmic side, was mapped to the sequence beta 368-406. The main immunogenic region of the native receptor, which is of pathological importance in the autoimmune disease myasthenia gravis, was mapped by using mAb 210 to within 80 amino acid residues (alpha 46-127). The overall antigenic structure of alpha subunits was examined. Synthetic peptides have been used to locate determinants responsible for 83% of the antibodies in antisera to denatured alpha subunits and 46% of the antibodies to denatured alpha subunits in antisera to intact receptor. Theoretical models of the transmembrane orientation of the subunit polypeptide chains were tested by determining whether mapped monoclonal antibodies bound to the extracellular or intracellular surface of receptor-rich membranes. Our results confirm previous reports that the carboxy termini of the subunits are exposed on the intracellular surface, as is part of the region between a putative channel-forming domain (M5) and a putative membrane-spanning region (M3). However, contrary to current theoretical models, the region between M5 and the putative membrane-spanning sequence M4 also appears to be on the intracellular surface, implying that M4 and M5 are not membrane-spanning domains.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
148
|
Delcour AH, Hess GP. Chemical kinetic measurements of the effect of trans- and cis-3,3'-Bis[(trimethylammonio)methyl]azobenzene bromide on acetylcholine receptor mediated ion translocation in Electrophorus electricus and Torpedo californica. Biochemistry 1986; 25:1793-8. [PMID: 2423118 DOI: 10.1021/bi00355a051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A quench-flow technique was used to study the effect of trans- and cis-3,3'-bis[(trimethylammonio)methyl]azobenzene bromide (trans- and cis-Bis-Q), photoisomerizable ligands, on the acetylcholine receptor in vesicles prepared from the electric organ of Electrophorus electricus and of Torpedo californica. In E. electricus, two rate coefficients of the receptor-mediated translocation of 86Rb+ induced with trans-Bis-Q were measured: JA, the rate coefficient for ion flux, and alpha, the rate coefficient for receptor inactivation (desensitization). Both rate coefficients increase with increasing concentrations of Bis-Q up to 50 microM. At higher concentrations JA decreases in a concentration-dependent manner while alpha remains unchanged. This effect was previously observed with suberyldicholine [Pasquale, E. B., Takeyasu, K., Udgaonkar, J., Cash, D.J., Severski, M.C., & Hess, G. P. (1983) Biochemistry 22, 5967-5973] and with acetylcholine [Takeyasu, K., Udgaonkar, J., & Hess, G. P. (1983) Biochemistry 22, 5973-5978] and was analyzed in terms of a minimum mechanism that accounts for the properties of activation, desensitization, and inhibition of the receptor. Two molecules of trans-Bis-Q must be bound for the channel to open, but at concentrations greater than 50 microM the population of open channels decreases because of the additional binding of one molecule of trans-Bis-Q to a regulatory inhibitory site, independent of the activating sites. cis-Bis-Q does not induce transmembrane ion flux, but it does inhibit the response of the receptor to acetylcholine and induces inactivation (desensitization) in the micromolar range.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
149
|
Takeyasu K, Shiono S, Udgaonkar JB, Fujita N, Hess GP. Acetylcholine receptor: characterization of the voltage-dependent regulatory (inhibitory) site for acetylcholine in membrane vesicles from Torpedo californica electroplax. Biochemistry 1986; 25:1770-6. [PMID: 3707909 DOI: 10.1021/bi00355a048] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Evidence for a voltage-dependent regulatory (inhibitory) site on the nicotinic acetylcholine receptor to which acetylcholine binds was obtained in membrane vesicles prepared from the Torpedo californica electric organ. Two rate coefficients, JA and alpha, which pertain to the receptor-controlled ion flux, were measured. A 1000-fold concentration range of acetylcholine was used in a transmembrane voltage (Vm) range from 0 to -48 mV under a voltage-clamped condition at pH 7.4, 1 degrees C. The following observations were made. (i) At low acetylcholine concentrations, the value of JA, the rate coefficient for ion translocation by the active (nondesensitized) state of the receptor, increased with increasing concentration. (ii) JA decreased at high acetylcholine concentrations. (iii) In contrast, alpha, the rate coefficient for receptor desensitization, did not show such a decrease. (iv) When the transmembrane potential of the vesicle membrane was changed to more negative values, the value of KR (the dissociation constant for binding of acetylcholine to the regulatory site) decreased by a factor of approximately 9 for a 25 mV change in Vm, while KI (the dissociation constant for binding of acetylcholine to the receptor site that controls channel opening) did not show such a change and has a value of 80 microM. When Vm is -48 mV, KR has a value of 8 microM. (v) The effect of a transmembrane voltage on the regulatory site was reversible and occurred within the time resolution (5 ms) of the quench-flow technique used in the measurements.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
150
|
Mulac-Jericevic B, Atassi MZ. Segment alpha 182-198 of Torpedo californica acetylcholine receptor contains second toxin-binding region and binds anti-receptor antibodies. FEBS Lett 1986; 199:68-74. [PMID: 3956748 DOI: 10.1016/0014-5793(86)81225-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The area around Cys-192 and Cys-193 is thought to be a functionally important part of the alpha-subunit of the acetylcholine receptor. We have synthesized peptide alpha 182-198 of the alpha-chain of the Torpedo californica acetylcholine receptor and investigated the binding to the peptide of alpha-bungarotoxin, cobratoxin and antibodies raised against acetylcholine receptor. The results showed that the synthetic peptide alpha 182-198 contains a second toxin-binding region and also binds a considerable fraction of anti-receptor antibodies. We also report here the toxin-binding activity of synthetic peptide alpha 125-148 of the human acetylcholine receptor which has been previously localized as a toxin-binding region in the alpha-chain of the Torpedo receptor.
Collapse
|