101
|
Abstract
Because of the weak penetrating power of electrons, the signal-to-noise ratio of a transmission electron micrograph (TEM) worsens as section thickness increases. This problem is alleviated by the use of the scanning transmission electron microscopy (STEM). Tomography analyses using STEM of thick sections from yeast and mammalian cells are of higher quality than are bright-field (BF) images. In this study, we compared regular BF tomograms and STEM tomograms from 500-nm thick sections from hypertrophied Golgi stacks of alfalfa root cap cells. Due to their thickness and intense heavy metal staining, BF tomograms of the thick sections suffer from poor contrast and high noise levels. We were able to mitigate these drawbacks by using STEM tomography. When we performed STEM tomography of densely stained chloroplasts of Arabidopsis cotyledon, we observed similar improvements relative to BF tomograms. A longer time is required to collect a STEM tilt series than similar BF TEM images, and dynamic autofocusing required for STEM imaging often fails at high tilt angles. Despite these limitations, STEM tomography is a powerful method for analyzing structures of large or dense organelles of plant cells.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
102
|
Nicolas WJ, Bayer E, Brocard L. Electron Tomography to Study the Three-dimensional Structure of Plasmodesmata in Plant Tissues-from High Pressure Freezing Preparation to Ultrathin Section Collection. Bio Protoc 2018; 8:e2681. [PMID: 34179233 PMCID: PMC8203878 DOI: 10.21769/bioprotoc.2681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/02/2022] Open
Abstract
Plasmodesmata (PD) are nanometric (~20 nm wide) membrane lined pores encased in the cell walls of the adjacent plant cells. They allow the cells to exchange all types of molecules ranging from nutrients like sugar, hormones, to RNAs and various proteins. Unfortunately, they are also hijacked by phyto-viruses, enabling them to spread from cell-to-cell and then systematically throughout the whole plant. Their central position in plant biology makes it crucial to understand their physiology and especially link their function to their structure. Over the past 50 years, electron microscopists have observed them and attempted to ultrastructurally characterize them. They laid the foundation of what is known about these pores (Tilney et al., 1991; Ding et al., 1992; Oparka and Roberts, 2001; Nicolas et al., 2017a). Despite the explosion of three-dimensional electron microscopy (3D-EM), PD ultrastructure remained recalcitrant to such technique. The first technical difficulty is to process them in such a way where they are as close to their native state as possible. Secondly, plant samples reveal themselves as being difficult to process due to the poor staining/fixating reagents penetration rates, their increased size, their high water content and the presence of an acidic vacuole. On top of this, their very unique position in the cell wall and their nanometric size make them difficult to conveniently stain in order to see the inner-workings of these pores. Here we describe in detail the protocol used in Nicolas et al. (2017b) to image PD in fine detail and produce high-resolution tomograms.
Collapse
Affiliation(s)
- William J. Nicolas
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, University of Bordeaux, Villenave d’Ornon, France
| | - Emmanuelle Bayer
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, University of Bordeaux, Villenave d’Ornon, France
| | - Lysiane Brocard
- Bordeaux Imaging Centre, Plant Imaging Platform, UMS 3420, INRA-CNRS-INSERM University of Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
103
|
Takagi J, Uemura T. Use of Brefeldin A and Wortmannin to Dissect Post-Golgi Organelles Related to Vacuolar Transport in Arabidopsis thaliana. Methods Mol Biol 2018; 1789:155-165. [PMID: 29916078 DOI: 10.1007/978-1-4939-7856-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eukaryotic cells comprise various organelles surrounded by the membrane. Each organelle is characterized by unique proteins and lipids and has its own specific functions. Single membrane-bounded organelles, including the Golgi apparatus, endosomes, and vacuoles are connected by membrane trafficking. Identifying the organelle localization of a protein of interest is essential for determining the proteins physiological functions. Here, we describe methods for determining protein subcellular localization using the inhibitors brefeldin A and wortmannin in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Junpei Takagi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
104
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
105
|
Jin X, Cao X, Wang X, Jiang J, Wan J, Laliberté JF, Zhang Y. Three-Dimensional Architecture and Biogenesis of Membrane Structures Associated with Plant Virus Replication. FRONTIERS IN PLANT SCIENCE 2018; 9:57. [PMID: 29441085 PMCID: PMC5797596 DOI: 10.3389/fpls.2018.00057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/11/2018] [Indexed: 05/20/2023]
Abstract
Positive-sense (+) RNA viruses represent the most abundant group of viruses and are dependent on the host cell machinery to replicate. One remarkable feature that occurs after (+) RNA virus entry into cells is the remodeling of host endomembranes, leading to the formation of viral replication factories. Recently, rapid progress in three-dimensional (3D) imaging technologies, such as electron tomography (ET) and focused ion beam-scanning electron microscopy (FIB-SEM), has enabled researchers to visualize the novel membrane structures induced by viruses at high resolution. These 3D imaging technologies provide new mechanistic insights into the viral infection cycle. In this review, we summarize the latest reports on the cellular remodeling that occurs during plant virus infection; in particular, we focus on studies that provide 3D architectural information on viral replication factories. We also outline the mechanisms underlying the formation of these membranous structures and discuss possible future research directions.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiuling Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueting Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Jiang
- Institut National de la Recherche Scientifique—Institut Armand-Frappier, Laval, QC, Canada
| | - Juan Wan
- Institut National de la Recherche Scientifique—Institut Armand-Frappier, Laval, QC, Canada
| | - Jean-François Laliberté
- Institut National de la Recherche Scientifique—Institut Armand-Frappier, Laval, QC, Canada
- *Correspondence: Jean-François Laliberté
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Yongliang Zhang
| |
Collapse
|
106
|
Wang Y, Yang L, Tang Y, Tang R, Jing Y, Zhang C, Zhang B, Li X, Cui Y, Zhang C, Shi J, Zhao F, Lan W, Luan S. Arabidopsis choline transporter-like 1 (CTL1) regulates secretory trafficking of auxin transporters to control seedling growth. PLoS Biol 2017; 15:e2004310. [PMID: 29283991 PMCID: PMC5746207 DOI: 10.1371/journal.pbio.2004310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023] Open
Abstract
Auxin controls a myriad of plant developmental processes and plant response to environmental conditions. Precise trafficking of auxin transporters is essential for auxin homeostasis in plants. Here, we report characterization of Arabidopsis CTL1, which controls seedling growth and apical hook development by regulating intracellular trafficking of PIN-type auxin transporters. The CTL1 gene encodes a choline transporter-like protein with an expression pattern highly correlated with auxin distribution and is enriched in shoot and root apical meristems, lateral root primordia, the vascular system, and the concave side of the apical hook. The choline transporter-like 1 (CTL1) protein is localized to the trans-Golgi network (TGN), prevacuolar compartment (PVC), and plasma membrane (PM). Disruption of CTL1 gene expression alters the trafficking of 2 auxin efflux transporters—Arabidopsis PM-located auxin efflux transporter PIN-formed 1 (PIN1) and Arabidopsis PM-located auxin efflux transporter PIN-formed 3 (PIN3)—to the PM, thereby affecting auxin distribution and plant growth and development. We further found that phospholipids, sphingolipids, and other membrane lipids were significantly altered in the ctl1 mutant, linking CTL1 function to lipid homeostasis. We propose that CTL1 regulates protein sorting from the TGN to the PM through its function in lipid homeostasis. Auxin, a plant hormone, controls many aspects of plant growth and development. The precise transport and distribution of auxin hold the key to its function. A number of transport proteins are known to be involved in auxin translocation, and the PIN proteins, which are an integral part of membranes in plants, play a pivotal role in this process. Several PIN proteins are localized in the plasma membrane to mediate auxin efflux from cells, but their regulation is not well known. In this report, we analyze the role of a choline transport protein, choline transporter-like 1 (CTL1), and find that it controls the trafficking of Arabidopsis PM-located auxin efflux transporter PIN-formed 1 (PIN1) and Arabidopsis PM-located auxin efflux transporter PIN-formed 3 (PIN3) to the plasma membrane, thereby regulating auxin distribution during plant growth and development. In addition, we show that CTL1 has a role in lipid homeostasis in the membrane; thus, these findings provide a mechanistic link between choline transport, lipid homeostasis, and vesicle trafficking in plants. We conclude that CTL1 is a new factor in secretory protein sorting and that this finding contributes to the understanding of not only auxin distribution in plants but also protein trafficking in general.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- College of Life Sciences, Northwest University, Xi’an, Shanxi, China
| | - Lei Yang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yumei Tang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Yanping Jing
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Chi Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Bin Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaojuan Li
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yaning Cui
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jisen Shi
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Fugeng Zhao
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: (WL); (SL)
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (WL); (SL)
| |
Collapse
|
107
|
Wang X, Chung KP, Lin W, Jiang L. Protein secretion in plants: conventional and unconventional pathways and new techniques. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:21-37. [PMID: 28992209 DOI: 10.1093/jxb/erx262] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein secretion is an essential process in all eukaryotic cells and its mechanisms have been extensively studied. Proteins with an N-terminal leading sequence or transmembrane domain are delivered through the conventional protein secretion (CPS) pathway from the endoplasmic reticulum (ER) to the Golgi apparatus. This feature is conserved in yeast, animals, and plants. In contrast, the transport of leaderless secretory proteins (LSPs) from the cytosol to the cell exterior is accomplished via the unconventional protein secretion (UPS) pathway. So far, the CPS pathway has been well characterized in plants, with several recent studies providing new information about the regulatory mechanisms involved. On the other hand, studies on UPS pathways in plants remain descriptive, although a connection between UPS and the plant defense response is becoming more and more apparent. In this review, we present an update on CPS and UPS. With the emergence of new techniques, a more comprehensive understanding of protein secretion in plants can be expected in the future.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Weili Lin
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
108
|
Zhou B, Zeng L. Conventional and unconventional ubiquitination in plant immunity. MOLECULAR PLANT PATHOLOGY 2017; 18:1313-1330. [PMID: 27925369 PMCID: PMC6638253 DOI: 10.1111/mpp.12521] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/16/2023]
Abstract
Ubiquitination is one of the most abundant types of protein post-translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non-degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
- Southern Regional Collaborative Innovation Center for Grain and Oil CropsHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
109
|
Noack LC, Jaillais Y. Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:22-33. [PMID: 28734137 DOI: 10.1016/j.pbi.2017.06.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 05/18/2023]
Abstract
Each phosphoinositide (PI, also known as phosphatidylinositol phosphate, polyphosphoinositide, PtdInsP or PIP) species is partitioned in the endomembrane system and thereby contributes to the identity of membrane compartments. However, membranes are in constant flux within this system, which raises the questions of how the spatiotemporal pattern of phosphoinositides is established and maintained within the cell. Here, we review the general mechanisms by which phosphoinositides and membrane trafficking feedbacks on each other to regulate cellular patterning. We then use the specific examples of polarized trafficking, endosomal sorting and vacuolar biogenesis to illustrate these general concepts.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France.
| |
Collapse
|
110
|
Mass spectrometry approaches to study plant endomembrane trafficking. Semin Cell Dev Biol 2017; 80:123-132. [PMID: 29042236 DOI: 10.1016/j.semcdb.2017.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/12/2017] [Indexed: 01/08/2023]
Abstract
Intracellular proteins reside in highly controlled microenvironments in which they perform context specific functions. Trafficking pathways have evolved that enable proteins to be precisely delivered to the correct location but also to re-locate in response to environmental perturbation. Trafficking of membrane proteins to their correct endomembrane location is especially important to enable them to carry out their function. Although a considerable amount of knowledge about membrane protein trafficking in plants has been delivered by years of dedicated research, there are still significant gaps in our understanding of this process. Further knowledge of endomembrane trafficking is dependent on thorough characterization of the subcellular components that constitute the endomembrane system. Such studies are challenging for a number of reasons including the complexity of the plant endomembrane system, inability to purify individual constituents, discrimination protein cargo for full time residents of compartments, and the fact that many proteins function at more than one location. In this review, we describe the components of the secretory pathway and focus on how mass spectrometry based proteomics methods have helped elucidation of this pathway. We demonstrate that the combination of targeted and untargeted approaches is allowing research into new areas of the secretory pathway investigation. Finally we describe new enabling technologies that will impact future studies in this area.
Collapse
|
111
|
Wang P, Chen X, Goldbeck C, Chung E, Kang BH. A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:596-610. [PMID: 28865155 DOI: 10.1111/tpj.13704] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 05/05/2023]
Abstract
Root border cells lie on the surface of the root cap and secrete massive amounts of mucilage that contains polysaccharides and proteoglycans. Golgi stacks in the border cells have hypertrophied margins, reflecting elevated biosynthetic activity to produce the polysaccharide components of the mucilage. To investigate the three-dimensional structures and macromolecular compositions of these Golgi stacks, we examined high-pressure frozen/freeze-substituted alfalfa root cap cells with electron microscopy/tomography. Golgi stacks in border cells and peripheral cells, precursor cells of border cells, displayed similar morphological features, such as proliferation of trans cisternae and swelling of the trans cisternae and trans-Golgi network (TGN) compartments. These swollen margins give rise to two types of vesicles larger than other Golgi-associated vesicles. Margins of trans-Golgi cisternae accumulate the LM8 xylogalacturonan (XGA) epitope, and they become darkly stained large vesicles (LVs) after release from the Golgi. Epitopes for xyloglucan (XG), polygalacturonic acid/rhamnogalacturonan-I (PGA/RG-I) are detected in the trans-most cisternae and TGN compartments. LVs produced from TGN compartments (TGN-LVs) stained lighter than LVs and contained the cell wall polysaccharide epitopes seen in the TGN. LVs carrying the XGA epitope fuse with the plasma membrane only in border cells, whereas TGN-LVs containing the XG and PGA/RG-I epitopes fuse with the plasma membrane of both peripheral cells and border cells. Taken together, these results indicate that XGA is secreted by a novel type of secretory vesicles derived from trans-Golgi cisternae. Furthermore, we simulated the collapse in the central domain of the trans-cisternae accompanying polysaccharide synthesis with a mathematical model.
Collapse
Affiliation(s)
- Pengfei Wang
- Cellular and Molecular Biology Program, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Xinshi Chen
- Department of Mathematics, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Cameron Goldbeck
- Department of Mathematics, University of California, Santa Barbara, CA, 93106, USA
| | - Eric Chung
- Department of Mathematics, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Byung-Ho Kang
- Cellular and Molecular Biology Program, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| |
Collapse
|
112
|
Fang X, Sun J, Leng B, Sheng G, Huang J, Qi X, Chen X, Li L. A brief view of international conference on plant cell wall biology 2017. Sci Bull (Beijing) 2017; 62:1357-1358. [PMID: 36659369 DOI: 10.1016/j.scib.2017.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xin Fang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Juncong Sun
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Bing Leng
- Chinese Society for Plant Biology, Shanghai 200031, China
| | - Guoan Sheng
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jirong Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaoquan Qi
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiaoya Chen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Chinese Society for Plant Biology, Shanghai 200031, China.
| | - Laigeng Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
113
|
Barlow LD, Dacks JB. Seeing the endomembrane system for the trees: Evolutionary analysis highlights the importance of plants as models for eukaryotic membrane-trafficking. Semin Cell Dev Biol 2017; 80:142-152. [PMID: 28939036 DOI: 10.1016/j.semcdb.2017.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/22/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Plant cells show many signs of a unique evolutionary history. This is seen in the system of intracellular organelles and vesicle transport pathways plants use to traffic molecular cargo. Bioinformatic and cell biological work in this area is beginning to tackle the question of how plant cells have evolved, and what this tells us about the evolution of other eukaryotes. Key protein families with membrane trafficking function, including Rabs, SNAREs, vesicle coat proteins, and ArfGAPs, show patterns of evolution that indicate both specialization and conservation in plants. These changes are accompanied by changes at the level of organelles and trafficking pathways between them. Major specializations include losses of several ancient Rabs, novel functions of many proteins, and apparent modification of trafficking in endocytosis and cytokinesis. Nevertheless, plants show extensive conservation of ancestral membrane trafficking genes, and conservation of their ancestral function in most duplicates. Moreover, plants have retained several ancient membrane trafficking genes lost in the evolution of animals and fungi. Considering this, plants such as Arabidopsis are highly valuable for investigating not only plant-specific aspects of membrane trafficking, but also general eukaryotic mechanisms.
Collapse
Affiliation(s)
- L D Barlow
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta,5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada
| | - J B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta,5-31 Medical Sciences Building, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
114
|
Vermeer JE, van Wijk R, Goedhart J, Geldner N, Chory J, Gadella TW, Munnik T. In Vivo Imaging of Diacylglycerol at the Cytoplasmic Leaflet of Plant Membranes. PLANT & CELL PHYSIOLOGY 2017; 58:1196-1207. [PMID: 28158855 PMCID: PMC6200129 DOI: 10.1093/pcp/pcx012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/11/2017] [Indexed: 05/05/2023]
Abstract
Diacylglycerol (DAG) is an important intermediate in lipid biosynthesis and plays key roles in cell signaling, either as a second messenger itself or as a precursor of phosphatidic acid. Methods to identify distinct DAG pools have proven difficult because biochemical fractionation affects the pools, and concentrations are limiting. Here, we validate the use of a genetically encoded DAG biosensor in living plant cells. The sensor is composed of a fusion between yellow fluorescent protein and the C1a domain of protein kinase C (YFP-C1aPKC) that specifically binds DAG, and was stably expressed in suspension-cultured tobacco BY-2 cells and whole Arabidopsis thaliana plants. Confocal imaging revealed that the majority of the YFP-C1aPKC fluorescence did not locate to membranes but was present in the cytosol and nucleus. Treatment with short-chain DAG or PMA (phorbol-12-myristate-13-acetate), a phorbol ester that binds the C1a domain of PKC, caused the recruitment of the biosensor to the plasma membrane. These results indicate that the biosensor works and that the basal DAG concentration in the cytoplasmic leaflet of membranes (i.e. accessible to the biosensor) is in general too low, and confirms that the known pools in plastids, the endoplasmic reticulum and mitochondria are located at the luminal face of these compartments (i.e. inaccessible to the biosensor). Nevertheless, detailed further analysis of different cells and tissues discovered four novel DAG pools, namely at: (i) the trans-Golgi network; (ii) the cell plate during cytokinesis; (iii) the plasma membrane of root epidermal cells in the transition zone, and (iv) the apex of growing root hairs. The results provide new insights into the spatiotemporal dynamics of DAG in plants and offer a new tool to monitor this in vivo.
Collapse
Affiliation(s)
- Joop E.M. Vermeer
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Department of Plant Molecular Biology, University of Lausanne-Sorge, Lausanne 1015, Switzerland
- Present address: Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Ringo van Wijk
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Section of Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne-Sorge, Lausanne 1015, Switzerland
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Theodorus W.J. Gadella
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| | - Teun Munnik
- Section of Plant Physiology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
- Section of Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, NL-1098XH, Amsterdam, The Netherlands
| |
Collapse
|
115
|
Yuen CYL, Wang P, Kang BH, Matsumoto K, Christopher DA. A Non-Classical Member of the Protein Disulfide Isomerase Family, PDI7 of Arabidopsis thaliana, Localizes to the cis-Golgi and Endoplasmic Reticulum Membranes. PLANT & CELL PHYSIOLOGY 2017; 58:1103-1117. [PMID: 28444333 DOI: 10.1093/pcp/pcx057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Members of the protein disulfide isomerase (PDI)-C subfamily are chimeric proteins containing the thioredoxin (Trx) domain of PDIs, and the conserved N- and C-terminal Pfam domains of Erv41p/Erv46p-type cargo receptors. They are unique to plants and chromalveolates. The Arabidopsis genome encodes three PDI-C isoforms: PDI7, PDI12 and PDI13. Here we demonstrate that PDI7 is a 65 kDa integral membrane glycoprotein expressed throughout many Arabidopsis tissues. Using a PDI7-specific antibody, we show through immunoelectron microscopy that PDI7 localizes to the endoplasmic reticulum (ER) and Golgi membranes in wild-type root tip cells, and was also detected in vesicles. Tomographic modeling of the Golgi revealed that PDI7 was confined to the cis-Golgi, and accumulated primarily at the cis-most cisterna. Shoot apical meristem cells from transgenic plants overexpressing PDI7 exhibited a dramatic increase in anti-PDI7 labeling at the cis-Golgi. When N- or C-terminal fusions between PDI7 and the green fluorescent protein variant, GFP(S65T), were expressed in mesophyll protoplasts, the fusions co-localized with the ER marker, ER-mCherry. However, when GFP(S65T) was positioned internally within PDI7 (PDI7-GFPint), the fusion strongly co-localized with the cis-Golgi marker, mCherry-SYP31, and faintly labeled the ER. In contrast to the Golgi-resident fusion protein (Man49-mCherry), PDI7-GFPint did not redistribute to the ER after brefeldin A treatment. Protease protection experiments indicated that the Trx domain of PDI7 is located within the ER/Golgi lumen. We propose a model where PDI-C isoforms function as cargo receptors for proteins containing exposed cysteine residues, cycling them from the Golgi back to the ER.
Collapse
Affiliation(s)
- Christen Y L Yuen
- University of Hawaii, Molecular Biosciences & Bioengineering, Honolulu, HI, USA
| | - Pengfei Wang
- Chinese University of Hong Kong, Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong, China
| | - Byung-Ho Kang
- Chinese University of Hong Kong, Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong, China
| | - Kristie Matsumoto
- University of Hawaii, Molecular Biosciences & Bioengineering, Honolulu, HI, USA
| | - David A Christopher
- University of Hawaii, Molecular Biosciences & Bioengineering, Honolulu, HI, USA
| |
Collapse
|
116
|
Ito Y, Toyooka K, Fujimoto M, Ueda T, Uemura T, Nakano A. The trans-Golgi Network and the Golgi Stacks Behave Independently During Regeneration After Brefeldin A Treatment in Tobacco BY-2 Cells. PLANT & CELL PHYSIOLOGY 2017; 58:811-821. [PMID: 28339924 DOI: 10.1093/pcp/pcx028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
The trans-Golgi network (TGN) plays an essential role in intracellular membrane trafficking. In plant cells, recent live-cell imaging studies have revealed the dynamic behavior of the TGN independent from the Golgi apparatus. In order to better understand the relationships between the two organelles, we examined their dynamic responses to the reagent brefeldin A (BFA) and their recovery after BFA removal. Golgi markers responded to BFA similarly over a range of concentrations, whereas the behavior of the TGN was BFA concentration dependent. The TGN formed aggregates at high concentrations of BFA; however, TGN proteins relocalized to numerous small vesicular structures dispersed throughout the cytoplasm at lower BFA concentrations. During recovery from weak BFA treatment, the TGN started to regenerate earlier than the completion of the Golgi. The regeneration of the two organelles proceeded independently of each other for a while, and eventually was completed by their association. Our data suggest that there is some degree of autonomy for the regeneration of the TGN and the Golgi in tobacco BY-2 cells.
Collapse
Affiliation(s)
- Yoko Ito
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Saitama, Japan
| | - Tomohiro Uemura
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
117
|
Hirano T, Munnik T, Sato MH. Inhibition of phosphatidylinositol 3,5-bisphosphate production has pleiotropic effects on various membrane trafficking routes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:120-129. [PMID: 27803131 DOI: 10.1093/pcp/pcw164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Phosphoinositides play an important role in various membrane trafficking events in eukaryotes. One of them, however, phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], has not been studied widely in plants. Using a combination of fluorescent reporter proteins and the PI(3,5)P2-specific inhibitor YM202636, here we demonstrated that in Arabidopsis thaliana, PI(3,5)P2 affects various membrane trafficking events, mostly in the post-Golgi routes. We found that YM201636 treatment effectively reduced PI(3,5)P2 concentration not only in the wild type but also in FAB1A-overexpressing Arabidopsis plants. In particular, reduced PI(3,5)P2 levels caused abnormal membrane dynamics of plasma membrane proteins, AUX1 and BOR1, with different trafficking patterns. Secretion and morphological characteristics of late endosomes and vacuoles were also affected by the decreased PI(3,5)P2 production. These pleiotropic defects in the post-Golgi trafficking events were caused by the inhibition of PI(3,5)P2 production. This effect is probably mediated by the inhibition of maturation of FAB1-positive late endosomes, thereby impairing late endosome function. In conclusion, our results imply that in Arabidopsis, late endosomes are involved in multiple post-Golgi membrane trafficking routes including not only vacuolar trafficking and endocytosis but also secretion.
Collapse
Affiliation(s)
- Tomoko Hirano
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Teun Munnik
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Masa H Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
118
|
Mai KKK, Kang BH. Semiautomatic Segmentation of Plant Golgi Stacks in Electron Tomograms Using 3dmod. Methods Mol Biol 2017; 1662:97-104. [PMID: 28861820 DOI: 10.1007/978-1-4939-7262-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electron tomography is a powerful tool for visualizing subcellular organelles. With the advances in cryo-fixation techniques, it is now possible to reconstruct complex structures in cells preserved close to their native states in three-dimension (3D) using electron tomography. In order to better visualize these objects, 3D models are made from outlines of organelles in individual tomographic slices, which can be used to display morphological features and quantify structural parameters. While outlines of simple organelles can be drawn by hand fairly quickly, it is possible to accelerate 3D modeling of more complex organelles by means of semiautomatic segmentation. In this chapter, we use the example of reconstructing Golgi cisternae of a plant cell into 3D models using the semiautomatic protocol.
Collapse
Affiliation(s)
- Keith Ka Ki Mai
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Byung-Ho Kang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
119
|
van de Meene AML, Doblin MS, Bacic A. The plant secretory pathway seen through the lens of the cell wall. PROTOPLASMA 2017; 254:75-94. [PMID: 26993347 DOI: 10.1007/s00709-016-0952-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 05/18/2023]
Abstract
Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.
Collapse
Affiliation(s)
- A M L van de Meene
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - M S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
120
|
Pan J, Wang W, Li D, Shu Z, Ye X, Chang P, Wang Y. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature. BMC Genomics 2016; 17:809. [PMID: 27756219 PMCID: PMC5070194 DOI: 10.1186/s12864-016-3158-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/12/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress. RESULTS Three libraries were generated from C. sinensis cv. 'Longjingchangye' pollen tubes cultured at 25 °C (CsPT-CK) and 4 °C (CsPT-LT) or with 25 μM DEA NONOate (CsPT-NO). The number of unigenes found for the three biological replications were 39,726, 40,440 and 41,626 for CsPT-CK; 36,993, 39,070 and 39,439 for CsPT-LT; and 39,514, 38,298 and 39,061 for CsPT-NO. A total of 36,097 unique assembled and annotated sequences from C. sinensis pollen tube reads were found in a BLAST search of the following databases: NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology. The absolute values of log2Ratio > 1 and probability > 0.7 were used as the thresholds for significantly differential gene expression, and 766, 497 and 929 differentially expressed genes (DEGs) were found from the comparison analyses of the CK-VS-LT, CK-VS-NO and LT-VS-NO libraries, respectively. Genes related to metabolism and signaling pathways of plant hormones, transcription factors (TFs), vesicle polarized trafficking, cell wall biosynthesis, the ubiquitination machinery of the ubiquitin system and species-specific secondary metabolite pathways were mainly observed in the CK-VS-LT and CK-VS-NO libraries. CONCLUSION Differentially expressed unigenes related to the inhibition of C. sinensis pollen tube growth under low temperature and NO are identified in this study. The transcriptomic gene expression profiles present a valuable genomic tool to improve studying the molecular mechanisms underlying low-temperature tolerance in pollen tube.
Collapse
Affiliation(s)
- Junting Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weidong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
121
|
Wang H, Zhuang X, Wang X, Law AHY, Zhao T, Du S, Loy MMT, Jiang L. A Distinct Pathway for Polar Exocytosis in Plant Cell Wall Formation. PLANT PHYSIOLOGY 2016; 172:1003-1018. [PMID: 27531442 PMCID: PMC5047090 DOI: 10.1104/pp.16.00754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/08/2016] [Indexed: 05/02/2023]
Abstract
Post-Golgi protein sorting and trafficking to the plasma membrane (PM) is generally believed to occur via the trans-Golgi network (TGN). In this study using Nicotiana tabacum pectin methylesterase (NtPPME1) as a marker, we have identified a TGN-independent polar exocytosis pathway that mediates cell wall formation during cell expansion and cytokinesis. Confocal immunofluorescence and immunogold electron microscopy studies demonstrated that Golgi-derived secretory vesicles (GDSVs) labeled by NtPPME1-GFP are distinct from those organelles belonging to the conventional post-Golgi exocytosis pathway. In addition, pharmaceutical treatments, superresolution imaging, and dynamic studies suggest that NtPPME1 follows a polar exocytic process from Golgi-GDSV-PM/cell plate (CP), which is distinct from the conventional Golgi-TGN-PM/CP secretion pathway. Further studies show that ROP1 regulates this specific polar exocytic pathway. Taken together, we have demonstrated an alternative TGN-independent Golgi-to-PM polar exocytic route, which mediates secretion of NtPPME1 for cell wall formation during cell expansion and cytokinesis and is ROP1-dependent.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Angus Ho Yin Law
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Teng Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Shengwang Du
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Michael M T Loy
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| |
Collapse
|
122
|
Uemura T. Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking. PLANT & CELL PHYSIOLOGY 2016; 57:2013-2019. [PMID: 27649735 DOI: 10.1093/pcp/pcw149] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/12/2016] [Indexed: 05/02/2023]
Abstract
Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants.
Collapse
Affiliation(s)
- Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
123
|
Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains. Nat Commun 2016; 7:12788. [PMID: 27681606 PMCID: PMC5056404 DOI: 10.1038/ncomms12788] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 07/29/2016] [Indexed: 01/01/2023] Open
Abstract
The post-Golgi compartment trans-Golgi Network (TGN) is a central hub divided into multiple subdomains hosting distinct trafficking pathways, including polar delivery to apical membrane. Lipids such as sphingolipids and sterols have been implicated in polar trafficking from the TGN but the underlying mechanisms linking lipid composition to functional polar sorting at TGN subdomains remain unknown. Here we demonstrate that sphingolipids with α-hydroxylated acyl-chains of at least 24 carbon atoms are enriched in secretory vesicle subdomains of the TGN and are critical for de novo polar secretory sorting of the auxin carrier PIN2 to apical membrane of Arabidopsis root epithelial cells. We show that sphingolipid acyl-chain length influences the morphology and interconnections of TGN-associated secretory vesicles. Our results uncover that the sphingolipids acyl-chain length links lipid composition of TGN subdomains with polar secretory trafficking of PIN2 to apical membrane of polarized epithelial cells. Sphingolipids in the trans-Golgi network have been implicated in polar trafficking. Here Wattelet-Boyer et al. show that hydroxylated C24- and C26-acyl-chain sphingolipids are enriched in trans-Golgi network subdomains that are critical for polar sorting of the PIN2 auxin carrier in plant cells.
Collapse
|
124
|
Klinger CM, Ramirez-Macias I, Herman EK, Turkewitz AP, Field MC, Dacks JB. Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Mol Biochem Parasitol 2016; 209:88-103. [PMID: 27444378 PMCID: PMC5140719 DOI: 10.1016/j.molbiopara.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
125
|
Robinson DG, Neuhaus JM. Receptor-mediated sorting of soluble vacuolar proteins: myths, facts, and a new model. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4435-49. [PMID: 27262127 DOI: 10.1093/jxb/erw222] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To prevent their being released to the cell exterior, acid hydrolases are recognized by receptors at some point in the secretory pathway and diverted towards the lytic compartment of the cell (lysosome or vacuole). In animal cells, the receptor is called the mannosyl 6-phosphate receptor (MPR) and it binds hydrolase ligands in the trans-Golgi network (TGN). These ligands are then sequestered into clathrin-coated vesicles (CCVs) because of motifs in the cytosolic tail of the MPR which interact first with monomeric adaptors (Golgi-localized, Gamma-ear-containing, ARF-binding proteins, GGAs) and then with tetrameric (adaptin) adaptor complexes. The CCVs then fuse with an early endosome, whose more acidic lumen causes the ligands to dissociate. The MPRs are then recycled back to the TGN via retromer-coated carriers. Plants have vacuolar sorting receptors (VSRs) which were originally identified in CCVs isolated from pea (Pisum sativum L.) cotyledons. It was therefore assumed that VSRs would have an analogous function in plants to MPRs in animals. Although this dogma has enjoyed wide support over the last 20 years there are many inconsistencies. Recently, results have been published which are quite contrary to it. It now emerges that VSRs and their ligands can interact very early in the secretory pathway, and dissociate in the TGN, which, in contrast to its mammalian counterpart, has a pH of 5.5. Multivesicular endosomes in plants lack proton pump complexes and consequently have an almost neutral internal pH, which discounts them as organelles of pH-dependent receptor-ligand dissociation. These data force a critical re-evaluation of the role of CCVs at the TGN, especially considering that vacuolar cargo ligands have never been identified in them. We propose that one population of TGN-derived CCVs participate in retrograde transport of VSRs from the TGN. We also present a new model to explain how secretory and vacuolar cargo proteins are effectively separated after entering the late Golgi/TGN compartments.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies (COS), University of Heidelberg, Germany
| | - Jean-Marc Neuhaus
- Institute of Biology, Laboratory of Cell and Molecular Biology, University of Neuchatel, Switzerland
| |
Collapse
|
126
|
Armengot L, Marquès-Bueno MM, Jaillais Y. Regulation of polar auxin transport by protein and lipid kinases. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4015-4037. [PMID: 27242371 PMCID: PMC4968656 DOI: 10.1093/jxb/erw216] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The directional transport of auxin, known as polar auxin transport (PAT), allows asymmetric distribution of this hormone in different cells and tissues. This system creates local auxin maxima, minima, and gradients that are instrumental in both organ initiation and shape determination. As such, PAT is crucial for all aspects of plant development but also for environmental interaction, notably in shaping plant architecture to its environment. Cell to cell auxin transport is mediated by a network of auxin carriers that are regulated at the transcriptional and post-translational levels. Here we review our current knowledge on some aspects of the 'non-genomic' regulation of auxin transport, placing an emphasis on how phosphorylation by protein and lipid kinases controls the polarity, intracellular trafficking, stability, and activity of auxin carriers. We describe the role of several AGC kinases, including PINOID, D6PK, and the blue light photoreceptor phot1, in phosphorylating auxin carriers from the PIN and ABCB families. We also highlight the function of some receptor-like kinases (RLKs) and two-component histidine kinase receptors in PAT, noting that there are probably RLKs involved in co-ordinating auxin distribution yet to be discovered. In addition, we describe the emerging role of phospholipid phosphorylation in polarity establishment and intracellular trafficking of PIN proteins. We outline these various phosphorylation mechanisms in the context of primary and lateral root development, leaf cell shape acquisition, as well as root gravitropism and shoot phototropism.
Collapse
Affiliation(s)
- Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Maria Mar Marquès-Bueno
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
- Correspondence to:
| |
Collapse
|
127
|
Zhou Q, Li H, Li H, Nakagawa A, Lin JLJ, Lee ES, Harry BL, Skeen-Gaar RR, Suehiro Y, William D, Mitani S, Yuan HS, Kang BH, Xue D. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science 2016; 353:394-9. [PMID: 27338704 DOI: 10.1126/science.aaf4777] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development.
Collapse
Affiliation(s)
- Qinghua Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Haimin Li
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Hanzeng Li
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA. Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Akihisa Nakagawa
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Jason L J Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Eui-Seung Lee
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Brian L Harry
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA. Medical Scientist Training Program, University of Colorado, Aurora, CO 80045, USA
| | - Riley Robert Skeen-Gaar
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women's Medical University, School of Medicine and CREST, Japan Science and Technology Agency, Tokyo 162-8666, Japan
| | - Donna William
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, School of Medicine and CREST, Japan Science and Technology Agency, Tokyo 162-8666, Japan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Byung-Ho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China.
| | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
128
|
Simon MLA, Platre MP, Marquès-Bueno MM, Armengot L, Stanislas T, Bayle V, Caillaud MC, Jaillais Y. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. NATURE PLANTS 2016; 2:16089. [PMID: 27322096 PMCID: PMC4918763 DOI: 10.1038/nplants.2016.89] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/17/2016] [Indexed: 05/19/2023]
Abstract
Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.
Collapse
Affiliation(s)
- Mathilde Laetitia Audrey Simon
- Laboratoire de Reproduction et Développement des Plantes, UMR 5667 CNRS/INRA/ENS-Lyon/Université de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Matthieu Pierre Platre
- Laboratoire de Reproduction et Développement des Plantes, UMR 5667 CNRS/INRA/ENS-Lyon/Université de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Maria Mar Marquès-Bueno
- Laboratoire de Reproduction et Développement des Plantes, UMR 5667 CNRS/INRA/ENS-Lyon/Université de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Laia Armengot
- Laboratoire de Reproduction et Développement des Plantes, UMR 5667 CNRS/INRA/ENS-Lyon/Université de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Thomas Stanislas
- Laboratoire de Reproduction et Développement des Plantes, UMR 5667 CNRS/INRA/ENS-Lyon/Université de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Vincent Bayle
- Laboratoire de Reproduction et Développement des Plantes, UMR 5667 CNRS/INRA/ENS-Lyon/Université de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Marie-Cécile Caillaud
- Laboratoire de Reproduction et Développement des Plantes, UMR 5667 CNRS/INRA/ENS-Lyon/Université de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
- Correspondence and requests for materials should be addressed to Y.J. () and M.C.C ()
| | - Yvon Jaillais
- Laboratoire de Reproduction et Développement des Plantes, UMR 5667 CNRS/INRA/ENS-Lyon/Université de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
- Correspondence and requests for materials should be addressed to Y.J. () and M.C.C ()
| |
Collapse
|
129
|
Heilmann I, Ischebeck T. Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. PLANT REPRODUCTION 2016; 29:3-20. [PMID: 26676144 DOI: 10.1007/s00497-015-0270-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/17/2015] [Indexed: 05/12/2023]
Abstract
Phosphoinositides in pollen. In angiosperms, sexual reproduction is a series of complex biological events that facilitate the distribution of male generative cells for double fertilization. Angiosperms have no motile gametes, and the distribution units of generative cells are pollen grains, passively mobile desiccated structures, capable of delivering genetic material to compatible flowers over long distances and in an adverse environment. The development of pollen (male gametogenesis) and the formation of a pollen tube after a pollen grain has reached a compatible flower (pollen tube growth) are important aspects of plant developmental biology. In recent years, a wealth of information has been gathered about the molecular control of cell polarity, membrane trafficking and cytoskeletal dynamics underlying these developmental processes. In particular, it has been found that regulatory membrane phospholipids, such as phosphoinositides (PIs), are critical regulatory players, controlling key steps of trafficking and polarization. Characteristic features of PIs are the inositol phosphate headgroups of the lipids, which protrude from the cytosolic surfaces of membranes, enabling specific binding and recruitment of numerous protein partners containing specific PI-binding domains. Such recruitment is globally an early event in polarization processes of eukaryotic cells and also of key importance to pollen development and tube growth. Additionally, PIs serve as precursors of other signaling factors with importance to male gametogenesis. This review highlights the recent advances about the roles of PIs in pollen development and pollen function.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
130
|
Paez Valencia J, Goodman K, Otegui MS. Endocytosis and Endosomal Trafficking in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:309-35. [PMID: 27128466 DOI: 10.1146/annurev-arplant-043015-112242] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.
Collapse
Affiliation(s)
- Julio Paez Valencia
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
| | - Kaija Goodman
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
| | - Marisa S Otegui
- Department of Botany
- R.M. Bock Laboratories of Cell and Molecular Biology, and
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706; , ,
| |
Collapse
|
131
|
Ito E, Uemura T, Ueda T, Nakano A. Distribution of RAB5-positive multivesicular endosomes and the trans-Golgi network in root meristematic cells of Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:281-286. [PMID: 31367184 PMCID: PMC6637257 DOI: 10.5511/plantbiotechnology.16.0218a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/18/2016] [Indexed: 05/23/2023]
Abstract
In plant cells, the trans-Golgi network (TGN) is known to act as the early endocytic compartment, whereas RAB5-localizing multivesicular endosomes (MVEs) act as the later compartment. Land plants and certain green algal species possess plant-unique RAB5 homologs (ARA6/RABF1 in Arabidopsis thaliana) in addition to the orthologs of animal RAB5 (RHA1/RABF2a and ARA7/RABF2b in A. thaliana), and these two RAB5 members reside in substantially overlapping but different subpopulations of MVEs. Several studies indicate that the TGN and MVEs are closely related; however, the distribution of the two RAB5 groups in relation to the TGN remains elusive. Here, we quantitatively showed that ARA6 and ARA7 are closely associated with the TGN, and the subpopulation of ARA6 and ARA7 overlaps with the TGN in the root epidermal cells of A. thaliana.
Collapse
Affiliation(s)
- Emi Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science, International Christian University, Mitaka, Tokyo 181-8585, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| |
Collapse
|
132
|
Wang WM, Liu PQ, Xu YJ, Xiao S. Protein trafficking during plant innate immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:284-98. [PMID: 26345282 DOI: 10.1111/jipb.12426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/06/2015] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng-Qiang Liu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, Rockville, MD, 20850, USA
| |
Collapse
|
133
|
Jiang N, Wiemels RE, Soya A, Whitley R, Held M, Faik A. Composition, Assembly, and Trafficking of a Wheat Xylan Synthase Complex. PLANT PHYSIOLOGY 2016; 170:1999-2023. [PMID: 26917684 PMCID: PMC4825154 DOI: 10.1104/pp.15.01777] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/23/2016] [Indexed: 05/18/2023]
Abstract
Xylans play an important role in plant cell wall integrity and have many industrial applications. Characterization of xylan synthase (XS) complexes responsible for the synthesis of these polymers is currently lacking. We recently purified XS activity from etiolated wheat (Triticum aestivum) seedlings. To further characterize this purified activity, we analyzed its protein composition and assembly. Proteomic analysis identified six main proteins: two glycosyltransferases (GTs) TaGT43-4 and TaGT47-13; two putative mutases (TaGT75-3 and TaGT75-4) and two non-GTs; a germin-like protein (TaGLP); and a vernalization related protein (TaVER2). Coexpression of TaGT43-4, TaGT47-13, TaGT75-3, and TaGT75-4 in Pichia pastoris confirmed that these proteins form a complex. Confocal microscopy showed that all these proteins interact in the endoplasmic reticulum (ER) but the complexes accumulate in Golgi, and TaGT43-4 acts as a scaffold protein that holds the other proteins. Furthermore, ER export of the complexes is dependent of the interaction between TaGT43-4 and TaGT47-13. Immunogold electron microscopy data support the conclusion that complex assembly occurs at specific areas of the ER before export to the Golgi. A di-Arg motif and a long sequence motif within the transmembrane domains were found conserved at the NH2-terminal ends of TaGT43-4 and homologous proteins from diverse taxa. These conserved motifs may control the forward trafficking of the complexes and their accumulation in the Golgi. Our findings indicate that xylan synthesis in grasses may involve a new regulatory mechanism linking complex assembly with forward trafficking and provide new insights that advance our understanding of xylan biosynthesis and regulation in plants.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Richard E Wiemels
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Aaron Soya
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Rebekah Whitley
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Michael Held
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| | - Ahmed Faik
- Department of Environmental and Plant Biology (N.J., R.E.W., A.S., R.W., A.F.) and Department of Chemistry and Biochemistry (M.H.), Ohio University, Athens, Ohio 45701
| |
Collapse
|
134
|
Abstract
Unconventional protein secretion (UPS) describes secretion pathways that bypass one or several of the canonical secretion pit-stops on the way to the plasma membrane, and/or involve the secretion of leaderless proteins. So far, alternatives to conventional secretion were primarily observed and studied in yeast and animal cells. The sessile lifestyle of plants brings with it unique restraints on how they adapt to adverse conditions and environmental challenges. Recently, attention towards unconventional secretion pathways in plant cells has substantially increased, with the large number of leaderless proteins identified through proteomic studies. While UPS pathways in plants are certainly not yet exhaustively researched, an emerging notion is that induction of UPS pathways is correlated with pathogenesis and stress responses. Given the multitude UPS events observed, comprehensively organizing the routes proteins take to the apoplast in defined UPS categories is challenging. With the establishment of a larger collection of studied plant proteins taking these UPS pathways, a clearer picture of endomembrane trafficking as a whole will emerge. There are several novel enabling technologies, such as vesicle proteomics and chemical genomics, with great potential for dissecting secretion pathways, providing information about the cargo that travels along them and the conditions that induce them.
Collapse
Affiliation(s)
- Destiny J Davis
- Department of Plant Sciences, University of California, Asmundson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Byung-Ho Kang
- Center for Organelle Biogenesis and Function, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Angelo S Heringer
- Department of Plant Sciences, University of California, Asmundson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Thomas E Wilkop
- Department of Plant Sciences, University of California, Asmundson Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Asmundson Hall, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
135
|
Venditti R, Masone MC, Wilson C, De Matteis MA. PI(4)P homeostasis: Who controls the controllers? Adv Biol Regul 2016; 60:105-114. [PMID: 26542744 DOI: 10.1016/j.jbior.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
During recent decades, PI(4)P (phosphoinositol-4-phosphate) has been described as a key regulator of a wide range of cellular functions such as organelle biogenesis, lipid metabolism and distribution, membrane trafficking, ion channels, pumps, and transporter activities. In this review we will focus on the multiple mechanisms that regulate PI(4)P homeostasis ranging from those responsible for the spatial distribution of the PI4 kinases and PI(4)P phosphatase to those controlling their enzymatic activity or the delivery/presentation of the substrate, i.e. PI or PI(4)P, to the PI4Ks or PI(4)P phosphatase, respectively. We will also highlight the open questions in the field mainly dealing with the existence and mode of action of PI(4)P sensors that monitor its amount and can act as a rheostat tuning PI(4)P levels in different compartments and adapting them to the different needs of the cell.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Maria Chiara Masone
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | | |
Collapse
|
136
|
Foissner I, Sommer A, Hoeftberger M, Hoepflinger MC, Absolonova M. Is Wortmannin-Induced Reorganization of the trans-Golgi Network the Key to Explain Charasome Formation? FRONTIERS IN PLANT SCIENCE 2016; 7:756. [PMID: 27375631 PMCID: PMC4891338 DOI: 10.3389/fpls.2016.00756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Wortmannin, a fungal metabolite and an inhibitor of phosphatidylinositol-3 (PI3) and phosphatidylinositol-4 (PI4) kinases, is widely used for the investigation and dissection of vacuolar trafficking routes and for the identification of proteins located at multivesicular bodies (MVBs). In this study, we applied wortmannin on internodal cells of the characean green alga Chara australis. Wortmannin was used at concentrations of 25 and 50 μM which, unlike in other cells, arrested neither constitutive, nor wounding-induced endocytosis via coated vesicles. Wortmannin caused the formation of "mixed compartments" consisting of MVBs and membranous tubules which were probably derived from the trans-Golgi network (TGN) and within these compartments MVBs fused into larger organelles. Most interestingly, wortmannin also caused pronounced changes in the morphology of the TGNs. After transient hypertrophy, the TGNs lost their coat and formed compact, three-dimensional meshworks of anastomosing tubules containing a central core. These meshworks had a size of up to 4 μm and a striking resemblance to charasomes, which are convoluted plasma membrane domains, and which serve to increase the area available for transporters. Our findings indicate that similar mechanisms are responsible for the formation of charasomes and the wortmannin-induced reorganization of the TGN. We hypothesize that both organelles grow because of a disturbance of clathrin-dependent membrane retrieval due to inhibition of PI3 and/or PI4 kinases. This leads to local inhibition of clathrin-mediated endocytosis during charasome formation in untreated cells and to inhibition of vesicle release from the TGN in wortmannin-treated cells, respectively. The morphological resemblance between charasomes and wortmannin-modified TGN compartments suggests that homologous proteins are involved in membrane curvature and organelle architecture.
Collapse
|
137
|
Robinson MS. Forty Years of Clathrin-coated Vesicles. Traffic 2015; 16:1210-38. [PMID: 26403691 DOI: 10.1111/tra.12335] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved.
Collapse
Affiliation(s)
- Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
138
|
Kang BH, Yong C, Goldbeck C, Staehelin LA. C2-O-02Dimorphic secretory vesicles produced from the Golgi stacks of mucilage secreting root cap cells. Microscopy (Oxf) 2015. [DOI: 10.1093/jmicro/dfv184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
139
|
Marais C, Wattelet-Boyer V, Bouyssou G, Hocquellet A, Dupuy JW, Batailler B, Brocard L, Boutté Y, Maneta-Peyret L, Moreau P. The Qb-SNARE Memb11 interacts specifically with Arf1 in the Golgi apparatus of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6665-6678. [PMID: 26208648 DOI: 10.1093/jxb/erv373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins are critical for the function of the secretory pathway. The SNARE Memb11 is involved in membrane trafficking at the ER-Golgi interface. The aim of the work was to decipher molecular mechanisms acting in Memb11-mediated ER-Golgi traffic. In mammalian cells, the orthologue of Memb11 (membrin) is potentially involved in the recruitment of the GTPase Arf1 at the Golgi membrane. However molecular mechanisms associated to Memb11 remain unknown in plants. Memb11 was detected mainly at the cis-Golgi and co-immunoprecipitated with Arf1, suggesting that Arf1 may interact with Memb11. This interaction of Memb11 with Arf1 at the Golgi was confirmed by in vivo BiFC (Bimolecular Fluorescence Complementation) experiments. This interaction was found to be specific to Memb11 as compared to either Memb12 or Sec22. Using a structural bioinformatic approach, several sequences in the N-ter part of Memb11 were hypothesized to be critical for this interaction and were tested by BiFC on corresponding mutants. Finally, by using both in vitro and in vivo approaches, we determined that only the GDP-bound form of Arf1 interacts with Memb11. Together, our results indicate that Memb11 interacts with the GDP-bound form of Arf1 in the Golgi apparatus.
Collapse
Affiliation(s)
- Claireline Marais
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Valérie Wattelet-Boyer
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Guillaume Bouyssou
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Agnès Hocquellet
- University of Bordeaux- INP Bordeaux, BPRVS, EA4135, F-33000 Bordeaux, France
| | - Jean-William Dupuy
- Proteome platform, Functional Genomic Center of Bordeaux, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Brigitte Batailler
- Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - Yohann Boutté
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Lilly Maneta-Peyret
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France
| | - Patrick Moreau
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon, France Bordeaux Imaging Center, UMS 3420 CNRS, US4 INSERM, University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
140
|
Daher FB, Braybrook SA. How to let go: pectin and plant cell adhesion. FRONTIERS IN PLANT SCIENCE 2015; 6:523. [PMID: 26236321 PMCID: PMC4500915 DOI: 10.3389/fpls.2015.00523] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go.
Collapse
|
141
|
Grison MS, Brocard L, Fouillen L, Nicolas W, Wewer V, Dörmann P, Nacir H, Benitez-Alfonso Y, Claverol S, Germain V, Boutté Y, Mongrand S, Bayer EM. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. THE PLANT CELL 2015; 27:1228-50. [PMID: 25818623 PMCID: PMC4558693 DOI: 10.1105/tpc.114.135731] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 05/18/2023]
Abstract
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes.
Collapse
Affiliation(s)
- Magali S Grison
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Lysiane Brocard
- Plant Imaging Platform, Bordeaux Imaging Centre, INRA, 33883 Villenave-d'Ornon Cedex, France University of Bordeaux/CNRS/UMS3420 and University of Bordeaux/Institut National de la Santé et de la Recherche Médicale/US004, 33000 Bordeaux, France
| | - Laetitia Fouillen
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France Functional Genomic Centre, Métabolome/Lipidome Platform, INRA-CNRS-University of Bordeaux, 33883 Villenave-d'Ornon Cedex, France
| | - William Nicolas
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Vera Wewer
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany
| | - Houda Nacir
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Yoselin Benitez-Alfonso
- Centre for Plant Sciences, School of Biology, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Stéphane Claverol
- Functional Genomic Centre, Métabolome/Lipidome Platform, INRA-CNRS-University of Bordeaux, 33883 Villenave-d'Ornon Cedex, France
| | - Véronique Germain
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Yohann Boutté
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| | - Emmanuelle M Bayer
- Laboratory of Membrane Biogenesis, UMR5200 CNRS, 33883 Villenave d'Ornon Cedex, France University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
142
|
Gendre D, Jonsson K, Boutté Y, Bhalerao RP. Journey to the cell surface--the central role of the trans-Golgi network in plants. PROTOPLASMA 2015; 252:385-98. [PMID: 25187082 DOI: 10.1007/s00709-014-0693-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/21/2014] [Indexed: 05/11/2023]
Abstract
The secretion of proteins, lipids, and carbohydrates to the cell surface is essential for plant development and adaptation. Secreted substances synthesized at the endoplasmic reticulum pass through the Golgi apparatus and trans-Golgi network (TGN) en route to the plasma membrane via the conventional secretion pathway. The TGN is morphologically and functionally distinct from the Golgi apparatus. The TGN is located at the crossroads of many trafficking pathways and regulates a range of crucial processes including secretion to the cell surface, transport to the vacuole, and the reception of endocytic cargo. This review outlines the TGN's central role in cargo secretion, showing that its behavior is more complex and controlled than the bulk-flow hypothesis suggests. Its formation, structure, and maintenance are discussed along with the formation and release of secretory vesicles.
Collapse
Affiliation(s)
- Delphine Gendre
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden,
| | | | | | | |
Collapse
|
143
|
Okazaki K, Miyagishima SY, Wada H. Phosphatidylinositol 4-phosphate negatively regulates chloroplast division in Arabidopsis. THE PLANT CELL 2015; 27:663-74. [PMID: 25736058 PMCID: PMC4558672 DOI: 10.1105/tpc.115.136234] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/05/2015] [Accepted: 02/15/2015] [Indexed: 05/22/2023]
Abstract
Chloroplast division is performed by the constriction of envelope membranes at the division site. Although constriction of a ring-like protein complex has been shown to be involved in chloroplast division, it remains unknown how membrane lipids participate in the process. Here, we show that phosphoinositides with unknown function in envelope membranes are involved in the regulation of chloroplast division in Arabidopsis thaliana. PLASTID DIVISION1 (PDV1) and PDV2 proteins interacted specifically with phosphatidylinositol 4-phosphate (PI4P). Inhibition of phosphatidylinositol 4-kinase (PI4K) decreased the level of PI4P in chloroplasts and accelerated chloroplast division. Knockout of PI4Kβ2 expression or downregulation of PI4Kα1 expression resulted in decreased levels of PI4P in chloroplasts and increased chloroplast numbers. PI4Kα1 is the main contributor to PI4P synthesis in chloroplasts, and the effect of PI4K inhibition was largely abolished in the pdv1 mutant. Overexpression of DYNAMIN-RELATED PROTEIN5B (DRP5B), another component of the chloroplast division machinery, which is recruited to chloroplasts by PDV1 and PDV2, enhanced the effect of PI4K inhibition, whereas overexpression of PDV1 and PDV2 had additive effects. The amount of DRP5B that associated with chloroplasts increased upon PI4K inhibition. These findings suggest that PI4P is a regulator of chloroplast division in a PDV1- and DRP5B-dependent manner.
Collapse
Affiliation(s)
- Kumiko Okazaki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shin-ya Miyagishima
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
144
|
An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:E806-15. [PMID: 25646449 DOI: 10.1073/pnas.1424856112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF-defective mutants gnom-like 1 (gnl1-1) and gnom (van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER)-Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development.
Collapse
|
145
|
Fujimoto M, Suda Y, Vernhettes S, Nakano A, Ueda T. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2015; 56:287-98. [PMID: 25516570 DOI: 10.1093/pcp/pcu195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3.
Collapse
Affiliation(s)
- Masaru Fujimoto
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Present address: Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Yasuyuki Suda
- RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan Present address: Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Samantha Vernhettes
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Akihiko Nakano
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan RIKEN Center for Advanced Photonics, Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Laboratory of Developmental Cell Biology, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
146
|
Park J, Cui Y, Kang BH. AtPGL3 is an Arabidopsis BURP domain protein that is localized to the cell wall and promotes cell enlargement. FRONTIERS IN PLANT SCIENCE 2015; 6:412. [PMID: 26106400 PMCID: PMC4460304 DOI: 10.3389/fpls.2015.00412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/22/2015] [Indexed: 05/22/2023]
Abstract
The BURP domain is a plant-specific domain that has been identified in secretory proteins, and some of these are involved in cell wall modification. The tomato polygalacturonase I complex involved in pectin degradation in ripening fruits has a non-catalytic subunit that has a BURP domain. This protein is called polygalacturonase 1 beta (PG1β) and the Arabidopsis genome encodes three proteins that exhibit strong amino acid similarities with PG1β? We generated Arabidopsis lines in which expression levels of AtPGLs are altered in order to investigate the biological roles of the Arabidopsis PG1β-like proteins (AtPGLs). Among the three AtPGLs (AtPGL1-3), AtPGL3 exhibited the highest transcriptional activity throughout all developmental stages. AtPGL triple mutant plants have smaller rosette leaves than those of wild type plants because the leaf cells are smaller in the mutant plants. Interestingly, when we overexpressed AtPGL3 using a 35S promoter, leaf cells in transgenic plants grew larger than those of the wild type. A C-terminal GFP fusion protein of AtPGL3 complemented phenotypes of the triple mutant plants and it localized to the cell wall. A truncated AtPGL3-GFP fusion protein lacking the BURP domain failed to rescue the mutant phenotypes even though the GFP protein was targeted to the cell wall, indicating that the BURP domain is required for the protein's effect on cell expansion. Quantitative RT-PCR and immunoblot analyses indicated that the α-expansin 6 gene is up-regulated in the overexpressor plants. Taken together, these results indicate that AtPGL3 is an apoplastic BURP domain protein playing a role in cell expansion.
Collapse
Affiliation(s)
- Jiyoung Park
- Plant Molecular Cellular Biology Program, Microbiology and Cell Sciences, University of FloridaGainesville, FL, USA
| | - Yong Cui
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, China
| | - Byung-Ho Kang
- Plant Molecular Cellular Biology Program, Microbiology and Cell Sciences, University of FloridaGainesville, FL, USA
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong KongHong Kong, China
- *Correspondence: Byung-Ho Kang, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, 409 East Block Science Center, Shatin, NT, Hong Kong, China
| |
Collapse
|
147
|
Antignani V, Klocko AL, Bak G, Chandrasekaran SD, Dunivin T, Nielsen E. Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis. THE PLANT CELL 2015; 27:243-61. [PMID: 25634989 PMCID: PMC4330583 DOI: 10.1105/tpc.114.134262] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/28/2014] [Accepted: 01/09/2015] [Indexed: 05/19/2023]
Abstract
Protection against microbial pathogens involves the activation of cellular immune responses in eukaryotes, and this cellular immunity likely involves changes in subcellular membrane trafficking. In eukaryotes, members of the Rab GTPase family of small monomeric regulatory GTPases play prominent roles in the regulation of membrane trafficking. We previously showed that RabA4B is recruited to vesicles that emerge from trans-Golgi network (TGN) compartments and regulates polarized membrane trafficking in plant cells. As part of this regulation, RabA4B recruits the closely related phosphatidylinositol 4-kinase (PI4K) PI4Kβ1 and PI4Kβ2 lipid kinases. Here, we identify a second Arabidopsis thaliana RabA4B-interacting protein, PLANT U-BOX13 (PUB13), which has recently been identified to play important roles in salicylic acid (SA)-mediated defense signaling. We show that PUB13 interacts with RabA4B through N-terminal domains and with phosphatidylinositol 4-phosphate (PI-4P) through a C-terminal armadillo domain. Furthermore, we demonstrate that a functional fluorescent PUB13 fusion protein (YFP-PUB13) localizes to TGN and Golgi compartments and that PUB13, PI4Kβ1, and PI4Kβ2 are negative regulators of SA-mediated induction of pathogenesis-related gene expression. Taken together, these results highlight a role for RabA4B and PI-4P in SA-dependent defense responses.
Collapse
Affiliation(s)
- Vincenzo Antignani
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Amy L Klocko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gwangbae Bak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Suma D Chandrasekaran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Taylor Dunivin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
148
|
Boutté Y, Moreau P. Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:22-29. [PMID: 25233477 DOI: 10.1016/j.pbi.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 05/11/2023]
Abstract
Membrane lipids are crucial bricks for cell and organelle compartmentalization and their physical properties and interactions with other membrane partners (lipids or proteins) reveal lipids as key actors of the regulation of membrane morphodynamics in many cellular functions and especially in the secretory/retrograde pathways. Studies on membrane models have indicated diverse mechanisms by which membranes bend. Moreover, in vivo studies also indicate that membrane curvature can play crucial roles in the regulation of endomembrane morphodynamics, organelle morphology and transport vesicle formation. A role for enzymes of lipid metabolism and lipid-protein interactions will be discussed as crucial mechanisms in the regulation of membrane morphodynamics in the secretory/retrograde pathways.
Collapse
Affiliation(s)
- Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France.
| |
Collapse
|
149
|
Affiliation(s)
- Jean-François Laliberté
- INRS–Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada;
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada;
| |
Collapse
|
150
|
Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:759-69. [PMID: 25280638 DOI: 10.1016/j.bbalip.2014.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 11/24/2022]
Abstract
Plants differ in many ways from mammals or yeast. However, plants employ phosphoinositides for the regulation of essential cellular functions as do all other eukaryotes. In recent years the plant phosphoinositide system has been linked to the control of cell polarity. Phosphoinositides are also implicated in plant adaptive responses to changing environmental conditions. The current understanding is that plant phosphoinositides control membrane trafficking, ion channels and the cytoskeleton in similar ways as in other eukaryotic systems, but adapted to meet plant cellular requirements and with some plant-specific features. In addition, the formation of soluble inositol polyphosphates from phosphoinositides is important for the perception of important phytohormones, as the relevant receptor proteins contain such molecules as structural cofactors. Overall, the essential nature of phosphoinositides in plants has been established. Still, the complexity of the phosphoinositide networks in plant cells is only emerging and invites further study of its molecular details. This article is part of a special issue entitled Phosphoinositides.
Collapse
|