101
|
Abstract
PURPOSE OF REVIEW Despite their effectiveness, calcineurin inhibitors (CNIs) represent a major obstacle in the improvement of long-term graft survival in transplantation. The identification of new agents to implement CNI-free regimens is the focus of current transplant research. The purpose of this review is to summarize the novel immunosuppressive agents, including details about their mechanisms of action, stages of development, potential benefits and challenges. RECENT FINDINGS Targeting costimulation with belatacept is now an option for controlling the alloimmune response and has proved to be more effective in preserving long-term allograft function than CNIs despite an increased rate of acute rejection in some studies. mTOR inhibitors are also promising with their remarkable antineoplastic properties, though frequent side-effects may limit their broader use. Other agents under development include JAK inhibitors, CD40 blockade and leukocyte adhesion blockers, with unique potential benefits and side-effects in transplantation. SUMMARY Novel immunosuppressive agents are now available for use in CNI-free regimens in solid organ transplantation. Timing of initiation as well as long-term efficacy and safety are questions that remain to be answered in future clinical trials.
Collapse
|
102
|
Hawthorne WJ, Salvaris EJ, Phillips P, Hawkes J, Liuwantara D, Burns H, Barlow H, Stewart AB, Peirce SB, Hu M, Lew AM, Robson SC, Nottle MB, D'Apice AJF, O'Connell PJ, Cowan PJ. Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. Am J Transplant 2014; 14:1300-9. [PMID: 24842781 PMCID: PMC4204157 DOI: 10.1111/ajt.12722] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 01/25/2023]
Abstract
The instant blood-mediated inflammatory reaction (IBMIR) is a major obstacle to the engraftment of intraportal pig islet xenografts in primates. Higher expression of the galactose-α1,3-galactose (αGal) xenoantigen on neonatal islet cell clusters (NICC) than on adult pig islets may provoke a stronger reaction, but this has not been tested in the baboon model. Here, we report that WT pig NICC xenografts triggered profound IBMIR in baboons, with intravascular clotting and graft destruction occurring within hours, which was not prevented by anti-thrombin treatment. In contrast, IBMIR was minimal when recipients were immunosuppressed with a clinically relevant protocol and transplanted with NICC from αGal-deficient pigs transgenic for the human complement regulators CD55 and CD59. These genetically modified (GM) NICC were less susceptible to humoral injury in vitro than WT NICC, inducing significantly less complement activation and thrombin generation when incubated with baboon platelet-poor plasma. Recipients of GM NICC developed a variable anti-pig antibody response, and examination of the grafts 1 month after transplant revealed significant cell-mediated rejection, although scattered insulin-positive cells were still present. Our results indicate that IBMIR can be attenuated in this model, but long-term graft survival may require more effective immunosuppression or further donor genetic modification.
Collapse
Affiliation(s)
- W J Hawthorne
- The Centre for Transplant and Renal Research, Westmead Millennium InstituteWestmead, NSW, Australia,University of Sydney at Westmead HospitalWestmead, NSW, Australia,*Corresponding author: Wayne J. Hawthorne,
| | - E J Salvaris
- Immunology Research Centre, St. Vincent's HospitalMelbourne, VIC, Australia
| | - P Phillips
- The Centre for Transplant and Renal Research, Westmead Millennium InstituteWestmead, NSW, Australia
| | - J Hawkes
- The Centre for Transplant and Renal Research, Westmead Millennium InstituteWestmead, NSW, Australia
| | - D Liuwantara
- The Centre for Transplant and Renal Research, Westmead Millennium InstituteWestmead, NSW, Australia
| | - H Burns
- The Centre for Transplant and Renal Research, Westmead Millennium InstituteWestmead, NSW, Australia
| | - H Barlow
- Immunology Research Centre, St. Vincent's HospitalMelbourne, VIC, Australia
| | - A B Stewart
- Department of Anaesthesia, St. Vincent's HospitalMelbourne, VIC, Australia
| | - S B Peirce
- Experimental Medical Surgical Unit, St. Vincent's HospitalMelbourne, VIC, Australia
| | - M Hu
- The Centre for Transplant and Renal Research, Westmead Millennium InstituteWestmead, NSW, Australia
| | - A M Lew
- Walter and Eliza Hall InstituteMelbourne, VIC, Australia
| | - S C Robson
- Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA
| | - M B Nottle
- Department of Obstetrics and Gynaecology, University of AdelaideAdelaide, SA, Australia
| | - A J F D'Apice
- Immunology Research Centre, St. Vincent's HospitalMelbourne, VIC, Australia
| | - P J O'Connell
- The Centre for Transplant and Renal Research, Westmead Millennium InstituteWestmead, NSW, Australia,University of Sydney at Westmead HospitalWestmead, NSW, Australia
| | - P J Cowan
- Immunology Research Centre, St. Vincent's HospitalMelbourne, VIC, Australia,Department of Medicine, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
103
|
Diab RAH, Hassan M, Tibell A, Holgersson J, Kumagai-Braesch M. Rat islets are not rejected by anti-islet antibodies in mice treated with costimulation blockade. Xenotransplantation 2014; 21:353-66. [DOI: 10.1111/xen.12103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/14/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Randa A. H. Diab
- Division of Clinical Immunology and Transfusion Medicine; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
- Department of Human Anatomy; School of Medicine; Ahfad University for Women; Omdurman Sudan
| | - Moustapha Hassan
- Division of Therapeutic Immunology; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
| | - Annika Tibell
- Division of Transplantation Surgery; CLINTEC; Karolinska Institutet; Stockholm Sweden
| | - Jan Holgersson
- Department of Clinical Chemistry and Transfusion Medicine; The Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | | |
Collapse
|
104
|
Samy KP, Martin BM, Turgeon NA, Kirk AD. Islet cell xenotransplantation: a serious look toward the clinic. Xenotransplantation 2014; 21:221-9. [PMID: 24806830 DOI: 10.1111/xen.12095] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/14/2014] [Indexed: 01/09/2023]
Abstract
Type I diabetes remains a significant clinical problem in need of a reliable, generally applicable solution. Both whole organ pancreas and islet allotransplantation have been shown to grant patients insulin independence, but organ availability has restricted these procedures to an exceptionally small subset of the diabetic population. Porcine islet xenotransplantation has been pursued as a potential means of overcoming the limits of allotransplantation, and several preclinical studies have achieved near-physiologic function and year-long survival in clinically relevant pig-to-primate model systems. These proof-of-concept studies have suggested that xenogeneic islets may be poised for use in clinical trials. In this review, we examine recent progress in islet xenotransplantation, with a critical eye toward the gaps between the current state of the art and the state required for appropriate clinical investigation.
Collapse
Affiliation(s)
- Kannan P Samy
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
105
|
Abstract
PURPOSE OF REVIEW Pigs have emerged as potential sources of islets for clinical transplantation. Wild-type porcine islets (adult and neonatal) transplanted into the portal vein have successfully reversed diabetes in nonhuman primates. However, there is a rapid loss of the transplanted islets on exposure to blood, known as the instant blood-mediated inflammatory reaction (IBMIR), as well as a T-cell response that leads to rejection of the graft. RECENT FINDINGS Genetically modified pig islets offer a number of potential advantages, particularly with regard to reducing the IBMIR-related graft loss and protecting the islets from the primate immune response. Emerging data indicate that transgenes specifically targeted to pig β cells using an insulin promoter (in order to maximize target tissue expression while limiting host effects) can be achieved without significant effects on the pig's glucose metabolism. SUMMARY Experience with the transplantation of islets from genetically engineered pigs into nonhuman primates is steadily increasing, and has involved the deletion of pig antigenic targets to reduce the primate humoral response, the expression of transgenes for human complement-regulatory and coagulation-regulatory proteins, and manipulations to reduce the effect of the T-cell response. There is increasing evidence of the advantages of using genetically engineered pigs as sources of islets for future clinical trials.
Collapse
|
106
|
Vadori M, Cozzi E. Immunological challenges and therapies in xenotransplantation. Cold Spring Harb Perspect Med 2014; 4:a015578. [PMID: 24616201 DOI: 10.1101/cshperspect.a015578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xenotransplantation, or the transplantation of cells, tissues, or organs between different species, was proposed a long time ago as a possible solution to the worldwide shortage of human organs and tissues for transplantation. In this setting, the pig is currently seen as the most likely candidate species. In the last decade, progress in this field has been remarkable and includes a better insight into the immunological mechanisms underlying the rejection process. Several immunological hurdles nonetheless remain, such as the strong antibody-mediated and innate or adaptive cellular immune responses linked to coagulation derangements, precluding indefinite xenograft survival. This article reviews our current understanding of the immunological mechanisms involved in xenograft rejection and the potential strategies that may enable xenotransplantation to become a clinical reality in the not-too-distant future.
Collapse
Affiliation(s)
- Marta Vadori
- CORIT (Consortium for Research in Organ Transplantation), Legnaro, 35020 Padua, Italy
| | | |
Collapse
|
107
|
Zhu HT, Wang WL, Yu L, Wang B. Pig-islet xenotransplantation: recent progress and current perspectives. Front Surg 2014; 1:7. [PMID: 25593932 PMCID: PMC4287008 DOI: 10.3389/fsurg.2014.00007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/07/2014] [Indexed: 01/23/2023] Open
Abstract
Islet xenotransplantation is one prospective treatment to bridge the gap between available human cells and needs of patients with diabetes. Pig represents an ideal candidate for obtaining such available cells. However, potential clinical application of pig islet still faces obstacles including inadequate yield of high-quality functional islets and xenorejection of the transplants. Adequate amounts of available islets can be obtained by selection of a suitable pathogen-free source herd and the development of isolation and purification method. Several studies demonstrated the feasibility of successful preclinical pig-islet xenotransplantation and provided insights and possible mechanisms of xenogeneic immune recognition and rejection. Particularly promising is the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies. Nonetheless, further efforts are needed to obtain much more safety and efficacy data to translate these findings into clinic.
Collapse
Affiliation(s)
- Hai-Tao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Wan-Li Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
108
|
Increased Soluble CD154 (CD40 Ligand) Levels in Xenograft Recipients Correlate With the Development of De Novo Anti-Pig IgG Antibodies. Transplantation 2014; 97:502-8. [DOI: 10.1097/tp.0000000000000042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
109
|
Cowan PJ, Cooper DKC, d'Apice AJF. Kidney xenotransplantation. Kidney Int 2014; 85:265-75. [PMID: 24088952 PMCID: PMC3946635 DOI: 10.1038/ki.2013.381] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 12/14/2022]
Abstract
Xenotransplantation using pigs as donors offers the possibility of eliminating the chronic shortage of donor kidneys, but there are several obstacles to be overcome before this goal can be achieved. Preclinical studies have shown that, while porcine renal xenografts are broadly compatible physiologically, they provoke a complex rejection process involving preformed and elicited antibodies, heightened innate immune cell reactivity, dysregulated coagulation, and a strong T cell-mediated adaptive response. Furthermore, the susceptibility of the xenograft to proinflammatory and procoagulant stimuli is probably increased by cross-species molecular defects in regulatory pathways. To balance these disadvantages, xenotransplantation has at its disposal a unique tool to address particular rejection mechanisms and incompatibilities: genetic modification of the donor. This review focuses on the pathophysiology of porcine renal xenograft rejection, and on the significant genetic, pharmacological, and technical progress that has been made to prolong xenograft survival.
Collapse
Affiliation(s)
- Peter J Cowan
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anthony J F d'Apice
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
110
|
Abstract
The myriad of co-stimulatory signals expressed, or induced, upon T-cell activation suggests that these signalling pathways shape the character and magnitude of the resulting autoreactive or alloreactive T-cell responses during autoimmunity or transplantation, respectively. Reducing pathological T-cell responses by targeting T-cell co-stimulatory pathways has met with therapeutic success in many instances, but challenges remain. In this Review, we discuss the T-cell co-stimulatory molecules that are known to have critical roles during T-cell activation, expansion, and differentiation. We also outline the functional importance of T-cell co-stimulatory molecules in transplantation, tolerance and autoimmunity, and we describe how therapeutic blockade of these pathways might be harnessed to manipulate the immune response to prevent or attenuate pathological immune responses. Ultimately, understanding the interplay between individual co-stimulatory and co-inhibitory pathways engaged during T-cell activation and differentiation will lead to rational and targeted therapeutic interventions to manipulate T-cell responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Mandy L Ford
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| | - Andrew B Adams
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| | - Thomas C Pearson
- The Emory Transplant Center, Emory University, 101 Woodruff Circle, Woodruff Memorial Research Building Suite 5105, Atlanta, GA 30322, USA
| |
Collapse
|
111
|
Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas ML, Lewis BGT, Eckhaus M, Dabkowski NL, Belli AJ, Reimann KA, Ayares D, Horvath KA. Role of anti-CD40 antibody-mediated costimulation blockade on non-Gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon model. Xenotransplantation 2014; 21:35-45. [PMID: 24164510 PMCID: PMC5603077 DOI: 10.1111/xen.12066] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/16/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recently, we have shown that an immunosuppression regimen including costimulation blockade via anti-CD154 antibody significantly prolongs the cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon heterotopic xenotransplantation model. Unfortunately, many coagulation disorders were observed with the use of anti-CD154 antibody, and recipient survival was markedly reduced by these complications. MATERIAL AND METHODS In this experiment, we replaced anti-CD154 antibody with a more clinically acceptable anti-CD40 antibody while keeping the rest of the immunosuppressive regimen and the donor pig genetics the same. This was carried out to evaluate the antibody's role in xenograft survival and prevention of coagulopathies. Two available clones of anti-CD40 antibody were tested. One mouse anti-human CD40 antibody, (clone 3A8), activated B lymphocytes in vitro and only modestly suppressed antibody production in vivo. Whereas a recombinant mouse non-human primate chimeric raised against macaque CD40, (clone 2C10R4), blocked B-cell activation in vitro and completely blocked antibody production in vivo. RESULTS The thrombotic complications seen with anti-CD154 antibody were effectively avoided but the graft survival, although extended, was not as prolonged as observed with anti-CD154 antibody treatment. The longest survival for the 3A8 antibody group was 27 days, and the longest graft survival in the 2C10R4 antibody group was 146 days. All of the grafts except two rejected and were explanted. Only two recipient baboons had to be euthanized due to unrelated complications, and the rest of the baboons remained healthy throughout the graft survival period or after graft explantation. In contrast to our anti-CD 154 antibody-treated baboons, the non-Gal antibody levels started to rise after B cells made their appearance around 8 weeks post-transplantation. CONCLUSIONS Anti-CD40 antibody at the current dose does not induce any coagulopathies but while effective, had reduced efficacy to induce similar long-term graft survival as with anti-CD154 antibody perhaps due to ineffective control of B-cell function and antibody production at the present dose. More experiments are required to determine antibody affinity and effective dose for inducing long-term cardiac xenograft survival.
Collapse
Affiliation(s)
| | - Avneesh K. Singh
- Cardiothoracic Surgery Research Laboratory, NHLBI, NIH, Bethesda, MD
| | | | | | | | | | | | | | - Aaron J. Belli
- MassBiologics, University of Massachusetts Medical School, Boston, MA
| | - Keith A. Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, MA
| | | | - Keith A. Horvath
- Cardiothoracic Surgery Research Laboratory, NHLBI, NIH, Bethesda, MD
| |
Collapse
|
112
|
Zhu H, Yu L, He Y, Wang B. Nonhuman primate models of type 1 diabetes mellitus for islet transplantation. J Diabetes Res 2014; 2014:785948. [PMID: 25389531 PMCID: PMC4217338 DOI: 10.1155/2014/785948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022] Open
Abstract
Islet transplantation is an attractive treatment of type 1 diabetes mellitus (T1DM). Animal models of diabetes mellitus (DM) contribute a lot to the experimental studies of islet transplantation and to evaluations of isolated islet grafts for future clinical applications. Diabetic nonhuman primates (NHPs) represent the suitable models of DMs to better evaluate the effectiveness of islet transplantation, to assess new strategies for controlling blood glucose (BG), relieving immune rejection, or prolonging islet survival, and eventually to translate the preclinical data into tangible clinical practice. This review introduces some NHP models of DM, clarifies why and how the models should be used, and elucidates the usefulness and limitations of the models in islet transplantation.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liang Yu
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yayi He
- Department of Endocrinology, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an 710061, China
- *Bo Wang:
| |
Collapse
|
113
|
Krishnan R, Arora RP, Alexander M, White SM, Lamb MW, Foster CE, Choi B, Lakey JRT. Noninvasive evaluation of the vascular response to transplantation of alginate encapsulated islets using the dorsal skin-fold model. Biomaterials 2013; 35:891-8. [PMID: 24176195 DOI: 10.1016/j.biomaterials.2013.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/02/2013] [Indexed: 01/25/2023]
Abstract
Alginate encapsulation reduces the risk of transplant rejection by evading immune-mediated cell injury and rejection; however, poor vascular perfusion results in graft failure. Since existing imaging models are incapable of quantifying the vascular response to biomaterial implants after transplantation, in this study, we demonstrate the use of in vivo laser speckle imaging (LSI) and wide-field functional imaging (WiFI) to monitor the microvascular environment surrounding biomaterial implants. The vascular response to two islet-containing biomaterial encapsulation devices, alginate microcapsules and a high-guluronate alginate sheet, was studied and compared after implantation into the mouse dorsal window chamber (N = 4 per implant group). Images obtained over a 14-day period using LSI and WiFI were analyzed using algorithms to quantify blood flow, hemoglobin oxygen saturation and vascular density. Using our method, we were able to monitor the changes in the peri-implant microvasculature noninvasively without the use of fluorescent dyes. Significant changes in blood flow, hemoglobin oxygen saturation and vascular density were noted as early as the first week post-transplant. The dorsal window chamber model enables comparison of host responses to transplanted biomaterials. Future experiments will study the effect of changes in alginate composition on the vascular and immune responses.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Beta cell replacement therapy has been proposed as a novel therapy for the treatment of type 1 diabetes. The proof of concept has been demonstrated with successful islet allotransplantation. Islet xenotransplantation has been proposed as an alternative, more reliable, and infinite source of beta cells. The advantages of islet xenotransplantation are the ability to transplant a well differentiated cell that is responsive to glucose and the potential for genetic modification which focuses the treatment on the donor rather than the recipient. The major hurdle remains overcoming the severe cellular rejection that affects xenografts. This review will focus on the major advances that have occurred with genetic modification and the successful therapeutic strategies that have been demonstrated in nonhuman primates. Novel approaches to overcome cell-mediated rejection including biological agents that target selectively costimulation molecules, the development of local immunosuppression through genetic manipulation, and encapsulation will be discussed. Overall, there has been considerable progress in all these areas, which eventually should lead to clinical trials.
Collapse
Affiliation(s)
- Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia,
| | | | | | | | | |
Collapse
|
115
|
Watanabe M, Yamashita K, Suzuki T, Kamachi H, Kuraya D, Koshizuka Y, Ogura M, Yoshida T, Aoyagi T, Fukumori D, Shimamura T, Okimura K, Maeta K, Miura T, Sakai F, Todo S. ASKP1240, a fully human anti-CD40 monoclonal antibody, prolongs pancreatic islet allograft survival in nonhuman primates. Am J Transplant 2013; 13:1976-88. [PMID: 23841873 DOI: 10.1111/ajt.12330] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 01/25/2023]
Abstract
A strategy for inhibiting CD40 has been considered as an alternative approach for immunosuppression because of undesirable effects of anti-CD154 monoclonal antibodies (mAbs). Previously, we demonstrated that ASKP1240, which is a fully human anti-CD40 mAb, significantly prolonged kidney and liver allograft survival in cynomolgus monkeys without causing thromboembolic complications. Herein, we evaluated the effect of ASKP1240 on pancreatic islet transplantation (PITx) in cynomolgus monkeys. Diabetes was induced by total pancreatectomy, and islet allografts were transplanted into the liver. Following PITx (8201-12 438 IEQ/kg), blood glucose levels normalized promptly in all animals. Control islet allografts were rejected within 9 days (n = 3), whereas ASKP1240 (10 mg/kg) given on postoperative days 0, 4, 7, 11 and 14 (induction treatment, n = 5) significantly prolonged graft survival time (GST) to >15, >23, 210, 250 and >608 days, respectively. When ASKP1240 (5 mg/kg) was administered weekly thereafter up to post-PITx 6 months (maintenance treatment, n = 4), GST was markedly prolonged to >96, >115, 523 and >607 days. During the ASKP1240 treatment period, both anti-donor cellular responses and development of anti-donor antibodies were abolished, and no serious adverse events were noted. ASKP1240 appears to be a promising candidate for immunosuppression in clinical PITx.
Collapse
Affiliation(s)
- M Watanabe
- First Department of Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
PURPOSE OF REVIEW Immunological barriers still preclude clinical xenotransplantation. The protective role of CD4(+)CD25(+)Foxp3(+) T-regulatory cells (Treg) in allotransplantation is well described and, therefore, could represent a promising therapeutical tool for xenotransplantation. This review addresses the latest findings on Treg in xenotransplantation research. RECENT FINDINGS In vivo, costimulation blockade-based strategies including anti-CD154 monoclonal antibodies (mAbs) in combination with rapamycin or anti-LFA-1 mAb prolonged both concordant and discordant islets xenografts survival in a Treg-dependent manner. In vitro, IL-10 secretion was shown to be critical for the suppression of xenogeneic responses mediated by Treg. Moreover, transgenic expression of inducible costimulator-immunoglobulin or PD-L1 on porcine endothelial cells inhibited human T-cell proliferation in vitro and was associated with the induction of Treg and IL-10 secretion. CXCR3 mediated the recruitment of Treg to pig endothelium. Finally, the recruitment of human Treg was enhanced by the immobilization of human CCL17 on pig endothelium. SUMMARY There is increasing evidence for the potential of CD4(+)CD25(+)Foxp3(+) Treg to protect xenografts. Induction of Treg in recipients and/or recruitment of human Treg to pig endothelium may represent novel strategies to prevent cell-mediated rejection in pig-to-human xenotransplantation.
Collapse
|
117
|
Mueller KR, Balamurugan AN, Cline GW, Pongratz RL, Hooper RL, Weegman BP, Kitzmann JP, Taylor MJ, Graham ML, Schuurman HJ, Papas KK. Differences in glucose-stimulated insulin secretion in vitro of islets from human, nonhuman primate, and porcine origin. Xenotransplantation 2013; 20:75-81. [PMID: 23384163 DOI: 10.1111/xen.12022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/28/2012] [Indexed: 01/15/2023]
Abstract
Porcine islet xenotransplantation is considered a potential cell-based therapy for type 1 diabetes. It is currently being evaluated in diabetic nonhuman primates (NHP) to assess safety and efficacy of the islet product. However, due to a variety of distinct differences between the respective species, including the insulin secretory characteristics of islets, the suitability and predictive value of the preclinical model in the extrapolation to the clinical setting remain a critical issue. Islets isolated from human (n = 3), NHP (n = 2), adult pig (AP, n = 3), and juvenile pig (JP, n = 4) pancreata were perifused with medium at basal glucose (2.5 mm) followed by high glucose (16.7 mm) concentrations. The total glucose-stimulated insulin secretion (GSIS) was calculated from generated insulin secretion profiles. Nonhuman primate islets exhibited GSIS 3-fold higher than AP islets, while AP and JP islets exhibited GSIS 1/3 and 1/30 of human islets, respectively. The insulin content of NHP and AP islets was similar to that of human islets, whereas that of JP islets was 1/5 of human islets. Despite the fact that human, NHP, and AP islets contain similar amounts of insulin, the much higher GSIS for NHP islets than for AP and JP islets suggests the need for increased dosing of islets from JP and AP in pig-to-NHP transplantation. Porcine islet xenotransplantation to humans may require significantly higher dosing given the lower GSIS of AP islets compared to human islets.
Collapse
Affiliation(s)
- Kate R Mueller
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Inhibitors of tumour necrosis factor (TNF) are among the most successful protein-based drugs (biologics) and have proven to be clinically efficacious at reducing inflammation associated with several autoimmune diseases. As a result, attention is focusing on the therapeutic potential of additional members of the TNF superfamily of structurally related cytokines. Many of these TNF-related cytokines or their cognate receptors are now in preclinical or clinical development as possible targets for modulating inflammatory diseases and cancer as well as other indications. This Review focuses on the biologics that are currently in clinical trials for immune-related diseases and other syndromes, discusses the successes and failures to date as well as the expanding therapeutic potential of modulating the activity of this superfamily of molecules.
Collapse
Affiliation(s)
- Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
119
|
Cooper DK, Bottino R, Satyananda V, Wijkstrom M, Trucco M. Toward clinical islet xenotransplantation - are revisions to the IXA guidelines warranted? Xenotransplantation 2013; 20:68-74. [DOI: 10.1111/xen.12015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- David K.C. Cooper
- Department of Surgery; Thomas E. Starzl Transplantation Institute; Pittsburgh; PA; USA
| | | | - Vikas Satyananda
- Department of Surgery; Thomas E. Starzl Transplantation Institute; Pittsburgh; PA; USA
| | - Martin Wijkstrom
- Department of Surgery; Thomas E. Starzl Transplantation Institute; Pittsburgh; PA; USA
| | - Massimo Trucco
- Division of Immunogenetics; Department of Pediatrics; Children's Hospital of Pittsburgh; University of Pittsburgh Medical Center; Pittsburgh; PA; USA
| |
Collapse
|
120
|
van der Windt DJ, Bottino R, Kumar G, Wijkstrom M, Hara H, Ezzelarab M, Ekser B, Phelps C, Murase N, Casu A, Ayares D, Lakkis FG, Trucco M, Cooper DK. Clinical islet xenotransplantation: how close are we? Diabetes 2012; 61:3046-55. [PMID: 23172951 PMCID: PMC3501885 DOI: 10.2337/db12-0033] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 06/06/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Dirk J. van der Windt
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rita Bottino
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Division of Immunogenetics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Goutham Kumar
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Martin Wijkstrom
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hidetaka Hara
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mohamed Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Burcin Ekser
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | | | - Noriko Murase
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anna Casu
- Diabetes Unit, Department of Medicine, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (ISMETT), Palermo, Italy
| | | | - Fadi G. Lakkis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Massimo Trucco
- Division of Immunogenetics, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David K.C. Cooper
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
121
|
Graham ML, Schuurman HJ. The usefulness and limitations of the diabetic macaque model in evaluating long-term porcine islet xenograft survival. Xenotransplantation 2012. [PMID: 23190260 DOI: 10.1111/xen.12012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Various groups have reported prolonged diabetes reversal and graft function after porcine islet transplantation into diabetic macaques using different experimental designs (macaque source, islet source, type of immunosuppression): subsequently, the International Xenotransplantation Association has published recommendations for entering a clinical trial. Our experiments showed limitations that affected consistent achievement of long-term survival. We aimed to identify these limitations and underlying causes to emphasize the translational value of this highly relevant type 1 diabetic macaque model. METHODS We reviewed data from our institution and literature data on long-term porcine islet xenograft survival in the diabetic macaque model, especially focusing on aspects of incomplete diabetes reversal relative to macaque normal values. This phenomenon was compared with diabetes reversal in an allo-islet transplant model in macaques and with chronic insulin treatment of diabetic macaques, all with 180-day follow-up. This comparison enabled to identify potential model limitations and underlying causative factors. RESULTS Especially in the xenograft model, the achievement of long-term graft survival revealed limitations including chronic, mild hyperglycemia and absence of body weight (BW) gain or even progressive BW loss. Metabolic incompatibilities in glycemic control (i.e., insulin kinetics) between the pig and macaque species underlie chronic, mild hyperglycemia. This phenomenon might not bear relevance for the pig-to-human species combination because the glycemic control in pigs and humans is similar and differs from that in nonhuman primates (NHP). Weight loss could be related to changes in the gastrointestinal tract related with local high exposure to orally administered immunosuppressants; these must be given at higher dose levels because of low bioavailability in macaques to achieve systemic exposure at therapeutic levels. This is aggravated by insufficient graft insulin production in proportion to the needs of macaques: this model limitation has no translational value to the pig-to-human setting. Nutritional deficits can result in incorrect interpretation of blood glucose levels and C-peptide levels regarding graft function. Likewise, nutritional status alters physiologic responses, influencing susceptibility to infectious and noninfectious complications. CONCLUSION THE model-induced confounding described interferes with accurate interpretation of safety and efficacy studies, which affects the translational value of pig-to-NHP islet cell transplant studies to the pig-to-human transplant condition.
Collapse
Affiliation(s)
- Melanie L Graham
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA.
| | | |
Collapse
|
122
|
Ferrer IR, Liu D, Pinelli DF, Koehn BH, Stempora LL, Ford ML. CD40/CD154 blockade inhibits dendritic cell expression of inflammatory cytokines but not costimulatory molecules. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4387-95. [PMID: 23002440 PMCID: PMC3478479 DOI: 10.4049/jimmunol.1201757] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blockade of the CD40/CD154 pathway remains one of the most effective means of promoting graft survival following transplantation. However, the effects of CD40/CD154 antagonism on dendritic cell (DC) phenotype and functionality following transplantation remain incompletely understood. To dissect the effects of CD154/CD40 blockade on DC activation in vivo, we generated hematopoietic chimeras in mice that expressed a surrogate minor Ag (OVA). Adoptive transfer of OVA-specific CD4(+) and CD8(+) T cells led to chimerism rejection, which was inhibited by treatment with CD154 blockade. Surprisingly, CD154 antagonism did not alter the expression of MHC and costimulatory molecules on CD11c(+) DCs compared with untreated controls. However, DCs isolated from anti-CD154-treated animals exhibited a significant reduction in inflammatory cytokine secretion. Combined blockade of inflammatory cytokines IL-6 and IL-12p40 attenuated the expansion of Ag-specific CD4(+) and CD8(+) T cells and transiently inhibited the rejection of OVA-expressing cells. These results suggest that a major effect of CD154 antagonism in vivo is an impairment in the provision of signal three during donor-reactive T cell programming, as opposed to an impact on the provision of signal two. We conclude that therapies designed to target inflammatory cytokines during donor-reactive T cell activation may be beneficial in attenuating these responses and prolonging graft survival.
Collapse
Affiliation(s)
- Ivana R Ferrer
- Emory Transplant Center, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
123
|
Jiang X, Qian T, Linn T, Cao L, Xiang G, Wang Y, Peng H, Xue P, Zhang L, Chen D, Yang X. Islet isolation and purification from inbred Wuzhishan miniature pigs. Xenotransplantation 2012; 19:159-65. [PMID: 22702467 DOI: 10.1111/j.1399-3089.2012.00702.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND To investigate the applicability of inbred Wuzhishan (WZS) miniature pigs for porcine islet isolation and purification. METHODS Islet isolation and purification was conducted on adult (1-yr-old), male inbred WZS miniature pigs and age- and sex-matched market pigs obtained from a local slaughterhouse (control group). Pancreata were excised, and islet isolation was carried out by static digestion and discontinuous gradient centrifugation. Viability of the purified islets was tested by radioimmunochemistry assay to measure glucose-induced insulin release in culture and transplantation in an in vivo study. RESULTS The anatomical structure of the WZS miniature pig pancreas was more similar to the human pancreas than that of the market pig. Islet yield of the WZS miniature pigs' pancreata was significantly higher than that of the market pigs (6078 ± 1105 vs. 2500 ± 625 islet equivalents [IEQ]/g). In vitro study demonstrated that the islets isolated from WZS miniature pigs were viable, as they efficiently responded to glucose challenge. In vivo study showed that the islets from both groups could cure the diabetic rat with the survival varied from 3 to 5 days (median, 4.3 days) and 2-4 days (median, 3.6 days) in experimental group and control group, respectively. CONCLUSION Wuzhishan miniature pig pancreas may be a feasible source of islets for xenotransplantation.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Department of Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Page EK, Dar WA, Knechtle SJ. Tolerogenic therapies in transplantation. Front Immunol 2012; 3:198. [PMID: 22826708 PMCID: PMC3399382 DOI: 10.3389/fimmu.2012.00198] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/22/2012] [Indexed: 01/08/2023] Open
Abstract
Since the concept of immunologic tolerance was discovered in the 1940s, the pursuit of tolerance induction in human transplantation has led to a rapid development of pharmacologic and biologic agents. Short-term graft survival remains an all-time high, but successful withdrawal of immunosuppression to achieve operational tolerance rarely occurs outside of liver transplantation. Collaborative efforts through the NIH sponsored Immune Tolerance Network and the European Commission sponsored Reprogramming the Immune System for Establishment of Tolerance consortia have afforded researchers opportunity to evaluate the safety and efficacy of tolerogenic strategies, investigate mechanisms of tolerance, and identify molecular and genetic markers that distinguish the tolerance phenotype. In this article, we review traditional and novel approaches to inducing tolerance for organ transplantation, with an emphasis on their translation into clinical trials.
Collapse
|
125
|
Thompson P, Badell IR, Lowe M, Turner A, Cano J, Avila J, Azimzadeh A, Cheng X, Pierson R, Johnson B, Robertson J, Song M, Leopardi F, Strobert E, Korbutt G, Rayat G, Rajotte R, Larsen CP, Kirk AD. Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival. Am J Transplant 2012; 12:1765-75. [PMID: 22458586 PMCID: PMC3387302 DOI: 10.1111/j.1600-6143.2012.04031.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Immunosuppressive therapies that block the CD40/CD154 costimulatory pathway have proven to be uniquely effective in preclinical xenotransplant models. Given the challenges facing clinical translation of CD40/CD154 pathway blockade, we examined the efficacy and tolerability of CD40/CD154 pathway-sparing immunomodulatory strategies in a pig-to-nonhuman primate islet xenotransplant model. Rhesus macaques were rendered diabetic with streptozocin and given an intraportal infusion of ≈ 50 000 islet equivalents/kg wild-type neonatal porcine islets. Base immunosuppression for all recipients included maintenance therapy with belatacept and mycophenolate mofetil plus induction with basiliximab and LFA-1 blockade. Cohort 1 recipients (n = 3) were treated with the base regimen alone; cohort 2 recipients (n = 5) were additionally treated with tacrolimus induction and cohort 3 recipients (n = 5) were treated with alefacept in place of basiliximab, and more intense LFA-1 blockade. Three of five recipients in both cohorts 2 and 3 achieved sustained insulin-independent normoglycemia (median rejection-free survivals 60 and 111 days, respectively), compared to zero of three recipients in cohort 1. These data show that CD40/CD154 pathway-sparing regimens can promote xenoislet survival. Further optimization of these strategies is warranted to aid the clinical translation of islet xenotransplantation.
Collapse
Affiliation(s)
- P Thompson
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - IR Badell
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - M Lowe
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - A Turner
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - J Cano
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - J Avila
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - A Azimzadeh
- Division of Cardiac Surgery, University of Maryland, Baltimore, MD 21201
| | - X Cheng
- Division of Cardiac Surgery, University of Maryland, Baltimore, MD 21201
| | - R Pierson
- Division of Cardiac Surgery, University of Maryland, Baltimore, MD 21201
| | - B Johnson
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - J Robertson
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - M Song
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - F Leopardi
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - E Strobert
- Yerkes National Primate Research Center, Atlanta, GA, USA 30322
| | - G Korbutt
- Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, T6G 2N8, Canada
| | - G Rayat
- Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, T6G 2N8, Canada
| | - R Rajotte
- Surgical-Medical Research Institute, University of Alberta, Edmonton, AB, T6G 2N8, Canada
| | - CP Larsen
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| | - AD Kirk
- Emory Transplant Center, Emory University, Atlanta, GA, USA 30322
| |
Collapse
|
126
|
Priyadharshini B, Greiner DL, Brehm MA. T-cell activation and transplantation tolerance. Transplant Rev (Orlando) 2012; 26:212-22. [PMID: 22074786 PMCID: PMC3294261 DOI: 10.1016/j.trre.2011.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 08/16/2011] [Accepted: 09/02/2011] [Indexed: 12/28/2022]
Abstract
Transplantation of allogeneic or "nonself" tissues stimulates a robust immune response leading to graft rejection, and therefore, most recipients of allogeneic organ transplants require the lifelong use of immune suppressive agents. Excellent outcomes notwithstanding, contemporary immunosuppressive medications are toxic, are often not taken by patients, and pose long-term risks of infection and malignancy. The ultimate goal in transplantation is to develop new treatments that will supplant the need for general immunosuppression. Here, we will describe the development and application of costimulation blockade to induce transplantation tolerance and discuss how the diverse array of signals that act on T cells will determine the balance between graft survival and rejection.
Collapse
Affiliation(s)
- Bhavana Priyadharshini
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Worcester, MA 01605
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Worcester, MA 01605
| | - Michael A. Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Worcester, MA 01605
| |
Collapse
|
127
|
Ezzelarab MB, Ekser B, Echeverri G, Hara H, Ezzelarab C, Long C, Bajona P, Garcia B, Murase N, Ayares D, Cooper DKC. Costimulation blockade in pig artery patch xenotransplantation - a simple model to monitor the adaptive immune response in nonhuman primates. Xenotransplantation 2012; 19:221-32. [PMID: 22909135 PMCID: PMC3428748 DOI: 10.1111/j.1399-3089.2012.00711.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND CD154 blockade-based immunosuppression successfully prevents both humoral and cellular adaptive immune responses in baboons receiving α1,3-galactosyltransferase gene-knockout (GTKO) pig organs. Using a GTKO pig artery transplantation model in baboons, we evaluated the efficacy of CD28/B7 costimulatory pathway blockade in comparison with CD154 blockade. METHODS Baboons received artery patch grafts from GTKO pigs, with no (Group1), anti-CD154mAb-based (Group2), or CTLA4-Ig-based (Group3) immunosuppressive therapy. Anti-pig IgM and IgG antibody and cellular responses were monitored. Xenografts were immunohistologically evaluated for antibody and complement deposition, and cellular infiltration. RESULTS Group1 baboons developed increased IgM and IgG antibody and cellular responses against GTKO antigens. In Group2, anti-CD154mAb alone prevented the development of both IgM and IgG antibody and cellular responses,but not cellular infiltration of the graft. In the single baboon that received anti-thymocyte globulin (ATG) + mycophenolate mofetil (MMF) + anti-CD154mAb, cellular infiltration of the graft was not seen. In Group3, CTLA4-Ig with ATG + MMF inhibited the cellular proliferative response to pig antigens but did not prevent the IgG response or cellular infiltration. CONCLUSIONS (i) Artery patch transplantation is a simple model to monitor the adaptive immune response to xenografts; (ii) anti-CD154mAb prevents sensitization but not cellular infiltration (but, without anticoagulation, may result in early thrombosis of a pig xenograft); (iii) although in only one baboon, the addition of ATG and MMF prevents cellular infiltration and (iv) replacement of anti-CD154mAb by CTLA4-Ig (at the doses used), even in combination with ATG and MMF, prevents the cellular proliferative response to GTKO pig antigens but is insufficient to prevent the development of anti-pig antibodies.
Collapse
Affiliation(s)
- Mohamed B Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Graham ML, Bellin MD, Papas KK, Hering BJ, Schuurman HJ. Species incompatibilities in the pig-to-macaque islet xenotransplant model affect transplant outcome: a comparison with allotransplantation. Xenotransplantation 2012; 18:328-42. [PMID: 22168140 DOI: 10.1111/j.1399-3089.2011.00676.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Porcine islet transplantation into diabetic non-human primates is considered most relevant in translational research supporting a clinical application. Most studies have focused on immunosuppressive protocols, while metabolic aspects have mainly been utilized in graft monitoring. We evaluated data from our group regarding human and non-human primate (NHP) allotransplantation and pig-to-NHP xenotransplantation to identify incompatibilities in metabolic factors and their consequences for transplant outcomes. METHODS Basic gluco-metabolic parameters (fasting blood glucose, C-peptide, and response to stimulation with arginine or glucose) were derived from literature (humans), 72 macaques, and 47 adult Landrace pigs. Islet preparations from 15 human deceased donors, 61 macaques, and 23 adult pigs were compared with respect to yield, fractional viability assessed by oxygen consumption normalized for DNA, and in vitro glucose-induced insulin release. Metabolic parameters at day 75 after a single islet transplantation in the liver were compared for 19 patients and 9 macaques receiving an allotransplant and 11 macaques receiving a porcine xenotransplant: recipients received chronic immunosuppression. RESULTS Pigs differ from NHPs and humans by a much lower C-peptide level (0.42 vs. 1.3 to 2.0 ng/ml, respectively) and a 2- to 7-fold lower C-peptide response to arginine stimulation. In contrast, NHPs have the highest metabolic demand as evidenced by a high C-peptide and high C-peptide response to arginine stimulation; values are about twice higher than in humans. For manufactured islet preparations, these differences are reflected by glucose-stimulated insulin release (the stimulation index for pigs is 1.5, for humans 3.8, and for macaques 7.7), but not by fractional viability, which was in the same range. The day 75 outcome after transplantation assessed by C-peptide was similar for allotransplanted humans and NHPs (80 to 90% good graft function) and lower in xenografted NHPs (36% good graft function); gluco-metabolic parameters were in accordance with graft function, albeit different between species because normoglycemia under exogenous insulin is maintained more aggressively in patients than in NHPs. In xenografted NHPs, the shift in glycemic control with respect to normal values, combined with low values of circulating porcine C-peptide, resembled more the normal condition in a pig than that in a macaque. CONCLUSIONS The substantially lower glucose-induced insulin response in adult porcine islet preparations as opposed to islets manufactured from humans or macaques combined with the much higher need for insulin in macaques than in humans creates an imbalance between the metabolic demand and the engrafted islet mass in the pig-to-NHP xenograft recipient. Engrafted islet mass is affected by dose, suggesting that a much higher dose level of islets is necessary in the xenogeneic setting than in human or NHP allotransplantation, and pig islets need to be given at a higher dose in macaques than the anticipated effective dose in humans. To cope with differences in metabolic demand and presumably also metabolic dynamics, a liberal regime in supportive exogenous insulin might be essential to achieve long-term survival. These intrinsic characteristics of the NHP model deserve consideration to optimally design experimental studies with the perspective of translational value of results.
Collapse
Affiliation(s)
- Melanie L Graham
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | |
Collapse
|
129
|
Graham ML, Rieke EF, Mutch LA, Zolondek EK, Faig AW, Dufour TA, Munson JW, Kittredge JA, Schuurman HJ. Successful implementation of cooperative handling eliminates the need for restraint in a complex non-human primate disease model. J Med Primatol 2012; 41:89-106. [PMID: 22150842 PMCID: PMC3309152 DOI: 10.1111/j.1600-0684.2011.00525.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Streptozotocin-induced diabetic non-human primates are used to study efficacy and safety of innovative immunosuppression after islet transplantation. We implemented a training program for medical management of a chronic disease state. METHODS Cooperation with hand feeding and drinking, shifting, and limb presentation were trained utilizing predominately positive but also negative reinforcement in 52 animals compared with 28 macaques subjected to conventional physical and/or chemical restraint. The success and timing of behavior acquisition was evaluated in a representative subset of 14 animals. RESULTS Over 90% of animals were successful in behavior acquisition. Programmatically this resulted in complete elimination of chair restraint and negligible requirement for sedation. About half of the trained animals had no-to-moderate thymic involution, indicative of a substantial reduction in stress. CONCLUSION Cooperative handling enhances animal well-being. This contributes to validity of scientific results and eliminates model-induced confounding that can obstruct interpretation of safety and efficacy data.
Collapse
Affiliation(s)
- Melanie L Graham
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN 55108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
PURPOSE OF REVIEW The present review updates the current status of research regarding the immunologic responses of the recipient following xenotransplantation. Additionally, we present the recent progress with attempts to induce xenogeneic tolerance induction. RECENT FINDINGS There continues to be great interest in xenotransplantation. Recently, descriptions of the mechanisms responsible for attempted T-cell xenogeneic tolerance in both large and small animal models have improved xenogeneic graft survivals. Additionally, the cellular signaling mechanisms, such as those involving CD39, CD44, and CD47, are proving to be highly important. Using the mixed chimerism approach to tolerance in xenogeneic model may be encouraging, especially given the recent clarification of the role for macrophage-induced phagocytosis of xenogeneic donor cells. SUMMARY Induction of tolerance to xenogeneic antigens has been accomplished only in small animals; however, graft survivals in large animal models continue to improve. Further clarification of both the adaptive and innate immune responses to xenogeneic antigens is required for success to continue.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts 02129, USA.
| | | |
Collapse
|
131
|
Mohiuddin MM, Corcoran PC, Singh AK, Azimzadeh A, Hoyt RF, Thomas ML, Eckhaus MA, Seavey C, Ayares D, Pierson RN, Horvath KA. B-cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months. Am J Transplant 2012; 12:763-71. [PMID: 22070772 PMCID: PMC4182960 DOI: 10.1111/j.1600-6143.2011.03846.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Xenotransplantation of genetically modified pig organs offers great potential to address the shortage of human organs for allotransplantation. Rejection in Gal knockout (GTKO) pigs due to elicited non-Gal antibody response required further genetic modifications of donor pigs and better control of the B-cell response to xenoantigens. We report significant prolongation of heterotopic alpha Galactosyl transferase "knock-out" and human CD46 transgenic (GTKO.hCD46Tg) pig cardiac xenografts survival in specific pathogen free baboons. Peritransplant B-cell depletion using 4 weekly doses of anti-CD20 antibody in the context of an established ATG, anti-CD154 and MMF-based immunosuppressive regimen prolonged GTKO.hCD46Tg graft survival for up to 236 days (n = 9, median survival 71 days and mean survival 94 days). B-cell depletion persisted for over 2 months, and elicited anti-non-Gal antibody production remained suppressed for the duration of graft follow-up. This result identifies a critical role for B cells in the mechanisms of elicited anti-non-Gal antibody and delayed xenograft rejection. Model-related morbidity due to variety of causes was seen in these experiments, suggesting that further therapeutic interventions, including candidate genetic modifications of donor pigs, may be necessary to reduce late morbidity in this model to a clinically manageable level.
Collapse
Affiliation(s)
- MM Mohiuddin
- Cardiothoracic Surgery Research Program, NHLBI, NIH, Bethesda, MD
| | - PC Corcoran
- Cardiothoracic Surgery Research Program, NHLBI, NIH, Bethesda, MD
| | - AK Singh
- Cardiothoracic Surgery Research Program, NHLBI, NIH, Bethesda, MD
| | - A Azimzadeh
- University of Maryland Medical Center, Baltimore, MD
| | - RF Hoyt
- LAMS, NHLBI, NIH, Bethesda, MD
| | | | | | - C Seavey
- Cardiothoracic Surgery Research Program, NHLBI, NIH, Bethesda, MD
| | | | - RN Pierson
- University of Maryland Medical Center, Baltimore, MD
| | - KA Horvath
- Cardiothoracic Surgery Research Program, NHLBI, NIH, Bethesda, MD
| |
Collapse
|
132
|
Abstract
Clinical islet transplantation has transitioned from curiosity to realistic therapy over the past decade. An estimated 750 patients have undergone intraportal islet-alone transplantation over this period, and a smaller subset received combined islet-kidney transplants. The primary benefit of successful islet transplantation has been to eliminate severe, recurrent hypoglycemia, a problem that has been hard to eliminate by other means in 15% of those with type 1 diabetes. The secondary benefit of independence from insulin has attracted patients, but has had limited sustainability previously, especially with a single-donor graft, but recent results from four independent centers suggest marked improvement in long-term outcome, with 5-year results now approximating solitary pancreas transplantation. Emerging data confirm that islet transplantation can stabilize and reverse several secondary diabetic complications similar to whole pancreas transplantation, but larger, head-to-head trials are needed to compare islet transplantation with best medical therapies. Current goals are to extend durability, and to make islet transplantation more widely available for patients in need. Governmental and health insurance providers in several countries now reimburse islet transplantation as part of clinical care. As the safety of the procedure and of adjunctive immunosuppressive therapies improve, and benefit accrues over potential risk, islet transplantation will be offered earlier in the course of the disease, including newly diagnosed children. The role of islet transplantation in type 2 diabetes has yet to be defined. We review the current status of islet transplantation, and discuss current and future immunosuppressive protocols that will pave the way to more broad application of cellular replacement in diabetes.
Collapse
Affiliation(s)
- A M James Shapiro
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB T6G 2C8, Canada.
| |
Collapse
|
133
|
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|