101
|
Singh S, Trikha S, Bhowmick DC, Sarkar AA, Jeremic AM. Role of Cholesterol and Phospholipids in Amylin Misfolding, Aggregation and Etiology of Islet Amyloidosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:95-116. [PMID: 26149927 DOI: 10.1007/978-3-319-17344-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amyloidosis is a biological event in which proteins undergo structural transitions from soluble monomers and oligomers to insoluble fibrillar aggregates that are often toxic to cells. Exactly how amyloid proteins, such as the pancreatic hormone amylin, aggregate and kill cells is still unclear. Islet amyloid polypeptide, or amylin, is a recently discovered hormone that is stored and co-released with insulin from pancreatic islet β-cells. The pathology of type 2 diabetes mellitus (T2DM) is characterized by an excessive extracellular and intracellular accumulation of toxic amylin species, soluble oligomers and insoluble fibrils, in islets, eventually leading to β-cell loss. Obesity and elevated serum cholesterol levels are additional risk factors implicated in the development of T2DM. Because the homeostatic balance between cholesterol synthesis and uptake is lost in diabetics, and amylin aggregation is a hallmark of T2DM, this chapter focuses on the biophysical and cell biology studies exploring molecular mechanisms by which cholesterol and phospholipids modulate secondary structure, folding and aggregation of human amylin and other amyloid proteins on membranes and in cells. Amylin turnover and toxicity in pancreatic cells and the regulatory role of cholesterol in these processes are also discussed.
Collapse
Affiliation(s)
- Sanghamitra Singh
- Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, DC, 20052, USA
| | | | | | | | | |
Collapse
|
102
|
Tomasello MF, Sinopoli A, Pappalardo G. On the Environmental Factors Affecting the Structural and Cytotoxic Properties of IAPP Peptides. J Diabetes Res 2015; 2015:918573. [PMID: 26582441 PMCID: PMC4637107 DOI: 10.1155/2015/918573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/05/2015] [Indexed: 12/18/2022] Open
Abstract
Pancreatic islets in type 2 diabetes mellitus (T2DM) patients are characterized by reduced β-cells mass and diffuse extracellular amyloidosis. Amyloid deposition involves the islet amyloid polypeptide (IAPP), a neuropancreatic hormone cosecreted with insulin by β-cells. IAPP is physiologically involved in glucose homeostasis, but it may turn toxic to β-cells owing to its tendency to misfold giving rise to oligomers and fibrils. The process by which the unfolded IAPP starts to self-assemble and the overall factors promoting this conversion are poorly understood. Other open questions are related to the nature of the IAPP toxic species and how exactly β-cells die. Over the last decades, there has been growing consensus about the notion that early molecular assemblies, notably small hIAPP oligomers, are the culprit of β-cells decline. Numerous environmental factors might affect the conformational, aggregation, and cytotoxic properties of IAPP. Herein we review recent progress in the field, focusing on the influences that membranes, pH, and metal ions may have on the conformational conversion and cytotoxicity of full-length IAPP as well as peptide fragments thereof. Current theories proposed for the mechanisms of toxicity will be also summarized together with an outline of the underlying molecular links between IAPP and amyloid beta (Aβ) misfolding.
Collapse
Affiliation(s)
| | - Alessandro Sinopoli
- International PhD Program in Translational Biomedicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Pappalardo
- CNR Institute of Biostructures and Bioimaging, Via P. Gaifami 18, 95126 Catania, Italy
- *Giuseppe Pappalardo:
| |
Collapse
|
103
|
Caillon L, Duma L, Lequin O, Khemtemourian L. Cholesterol modulates the interaction of the islet amyloid polypeptide with membranes. Mol Membr Biol 2014; 31:239-49. [PMID: 25495656 DOI: 10.3109/09687688.2014.987182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The deposition of insoluble amyloid fibrils resulting from the aggregation of the human islet amyloid polypeptide (hIAPP) within the islet of Langerhans is a pathological feature of type 2 diabetes mellitus (T2DM). Increasing evidence indicates that biological membranes play a key role in amyloid aggregation, modulating among others the kinetics of amyloid formation, and being the target of toxic species generated during amyloid formation. In T2DM patients, elevated levels of cholesterol, an important determinant of the physical state of biological membranes, are observed in β-cells and are thought to directly impair β-cell function and insulin secretion. However, it is not known whether cholesterol enhances membrane-interaction or membrane-insertion of hIAPP. In this study, we investigated the effect of cholesterol incorporated in zwitterionic and anionic membranes. Our circular dichroism and liquid state NMR data reveal that 10-30% of cholesterol slightly affects the aggregational and conformational behaviour of hIAPP. Additional fluorescence results indicate that 10 and 20% of cholesterol slightly slow down the kinetics of oligomer and fibril formation while anionic lipids accelerate this kinetics. This behavior might be caused by differences in membrane insertion and therefore in membrane binding of hIAPP. The membrane binding affinity was evaluated using (1)H NMR experiments and our results show that the affinity of hIAPP for membranes containing cholesterol is significantly smaller than that for membranes containing anionic lipids. Furthermore, we found that hIAPP-induced membrane damage is synchronized to fibril formation in the absence and in the presence of cholesterol.
Collapse
Affiliation(s)
- Lucie Caillon
- Sorbonne Universités , UPMC Univ Paris 06, Laboratoire des Biomolécules , Paris, France
| | | | | | | |
Collapse
|
104
|
Zhang S, Liu H, Chuang CL, Li X, Au M, Zhang L, Phillips ARJ, Scott DW, Cooper GJS. The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet β cells. FASEB J 2014; 28:5083-96. [PMID: 25138158 DOI: 10.1096/fj.14-251744] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aggregation of human amylin (hA) to form cytotoxic structures has been closely associated with the causation of type 2 diabetes. We sought to advance understanding of how altered expression and aggregation of hA might link β-cell degeneration with diabetes onset and progression, by comparing phenotypes between homozygous and hemizygous hA-transgenic mice. The homozygous mice displayed elevated islet hA that correlated positively with measures of oligomer formation (r=0.91; P<0.0001). They also developed hyperinsulinemia with transient insulin resistance during the prediabetes stage and then underwent rapid β-cell loss, culminating in severe juvenile-onset diabetes. The prediabetes stage was prolonged in the hemizygous mice, wherein β-cell dysfunction and extensive oligomer formation occurred in adulthood at a much later stage, when hA levels were lower (r=-0.60; P<0.0001). This is the first report to show that hA-evoked diabetes is associated with age, insulin resistance, progressive islet dysfunction, and β-cell apoptosis, which interact variably to cause the different diabetes syndromes. The various levels of hA elevation cause different extents of oligomer formation in the disease stages, thus eliciting early- or adult-onset diabetes syndromes, reminiscent of type 1 and 2 diabetes, respectively. Thus, the hA-evoked diabetes phenotypes differ substantively according to degree of amylin overproduction. These findings are relevant to the understanding of the pathogenesis and the development of experimental therapeutics for diabetes.
Collapse
Affiliation(s)
- Shaoping Zhang
- The School of Biological Sciences and The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Hong Liu
- The School of Biological Sciences and
| | | | | | - Maggie Au
- The School of Biological Sciences and
| | - Lin Zhang
- The School of Biological Sciences and
| | - Anthony R J Phillips
- The School of Biological Sciences and The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Garth J S Cooper
- The School of Biological Sciences and The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester, UK; and Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
105
|
Selenium-enriched Spirulina protects INS-1E pancreatic beta cells from human islet amyloid polypeptide-induced apoptosis through suppression of ROS-mediated mitochondrial dysfunction and PI3/AKT pathway. Eur J Nutr 2014; 54:509-22. [PMID: 25112514 DOI: 10.1007/s00394-014-0732-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/27/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Human islet amyloid polypeptide (hIAPP) aggregation is linked to loss of pancreatic beta cells in type 2 diabetes, in part due to oxidative stress. Currently, little is known about the effects of selenium-enriched Spirulina on beta cells with the presence of hIAPP. In this study, INS-1E rat insulinoma cells were used as a model to evaluate in vitro protective effects of Se-enriched Spirulina extract (Se-SE) against hIAPP-induced cell death, as well as the underlying mechanisms. METHODS Flow cytometric analysis was used to evaluate cell apoptosis, mitochondrial membrane potential (ΔΨm) and ROS generation. Caspase activity was measured using a fluorometric method. Western blotting was applied to detect protein expression. RESULTS Our results showed that exposure of INS-1E cells to hIAPP resulted in cell viability loss, LDH release and appearance of sub-G peak. However, cytotoxicity of hIAPP was significantly attenuated by co-treatment with Se-SE. Se-SE also inhibited hIAPP-induced activation of caspase-3, -8 and -9. Additionally, hIAPP-induced accumulation of ROS and superoxide was suppressed by co-treatment with Se-SE. Moreover, Se-SE was able to prevent hIAPP-induced depletion of ΔΨm and intracellular ATP, reduction in mitochondrial mass, changes in the expression of Bcl-2 family members, release of mitochondrial apoptogenic factors. Furthermore, hIAPP-mediated AKT inhibition was restored by co-treatment with Se-SE. CONCLUSION Our results showed that Se-SE protects INS-1E cells from hIAPP-induced cell death through preventing ROS overproduction, mitochondrial dysfunction and modulating PI3K/AKT pathway.
Collapse
|
106
|
Chen YF, Sun TL, Sun Y, Huang HW. Interaction of daptomycin with lipid bilayers: a lipid extracting effect. Biochemistry 2014; 53:5384-92. [PMID: 25093761 PMCID: PMC4148140 DOI: 10.1021/bi500779g] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Daptomycin is the first approved member of a new structural class of antibiotics, the cyclic lipopeptides. The peptide interacts with the lipid matrix of cell membranes, inducing permeability of the membrane to ions, but its molecular mechanism has been a puzzle. Unlike the ubiquitous membrane-acting host-defense antimicrobial peptides, daptomycin does not induce pores in the cell membranes. Thus, how it affects the permeability of a membrane to ions is not clear. We studied its interaction with giant unilamellar vesicles (GUVs) and discovered a lipid-extracting phenomenon that correlates with the direct action of daptomycin on bacterial membranes observed in a recent fluorescence microscopy study. Lipid extraction occurred only when the GUV lipid composition included phosphatidylglycerol and in the presence of Ca(2+) ions, the same condition found to be necessary for daptomycin to be effective against bacteria. Furthermore, it occurred only when the peptide/lipid ratio exceeded a threshold value, which could be the basis of the minimal inhibitory concentration of daptomycin. In this first publication on the lipid extracting effect, we characterize its dependence on ions and lipid compositions. We also discuss possibilities for connecting the lipid extracting effect to the antibacterial activity of daptomycin.
Collapse
Affiliation(s)
- Yen-Fei Chen
- Department of Physics and Astronomy, Rice University , Houston, Texas 77005, United States
| | | | | | | |
Collapse
|
107
|
Sinopoli A, Magrì A, Milardi D, Pappalardo M, Pucci P, Flagiello A, Titman JJ, Nicoletti VG, Caruso G, Pappalardo G, Grasso G. The role of copper(II) in the aggregation of human amylin. Metallomics 2014; 6:1841-52. [PMID: 25080969 DOI: 10.1039/c4mt00130c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amylin is a 37-residue peptide hormone produced by the islet β-cells of pancreas and the formation of amylin aggregates is strongly associated with β-cell degeneration in type 2 diabetes, as demonstrated by more than 95% of patients exhibiting amylin amyloid upon autopsy. It is widely recognized that metal ions such as copper(II) have been implicated in the aggregation process of amyloidogenic peptides such as Aβ and α-synuclein and there is evidence that amylin self-assembly is also largely affected by copper(II). For this reason, in this work, the role of copper(II) in the aggregation of amylin has been investigated by several different experimental approaches. Mass spectrometric investigations show that copper(II) induces significant changes in the amylin structure, which decrease the protein fibrillogenesis as observed by ThT measurements. Accordingly, solid-state NMR experiments together with computational analysis carried out on a model amylin fragment confirmed the non-fibrillogenic nature of the copper(II) induced aggregated structure. Finally, the presence of copper(II) is also shown to have a major influence on amylin proneness to be degraded by proteases and cytotoxicity studies on different cell cultures are reported.
Collapse
Affiliation(s)
- Alessandro Sinopoli
- Dottorato Internazionale in Biomedicina Traslazionale, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Tu LH, Noor H, Cao P, Raleigh DP. Aspirin, diabetes, and amyloid: re-examination of the inhibition of amyloid formation by aspirin and ketoprofen. ACS Chem Biol 2014; 9:1632-7. [PMID: 24837419 PMCID: PMC4215902 DOI: 10.1021/cb500162w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The loss of β-cell function and β-cell death are key features of diabetes. A range of mechanisms are thought to contribute to β-cell loss, including islet amyloid formation by the neuropancreatic hormone amylin (islet amyloid polypeptide, IAPP). Islet amyloid deposition also contributes to the failure of islet transplants. There are no therapeutic strategies for the treatment or prevention of islet amyloidosis. Aspirin and the nonsteroid anti-inflammatory drug (NSAID) ketoprofen, at clinically relevant doses, have been proposed to inhibit amyloid formation by amylin and thus may hold promise for treatment of islet amyloidosis. These compounds are potentially attractive given the importance of inflammation in islet amyloidosis and given the fact that there are no anti-islet amyloid agents in the clinic. We show that aspirin, even in 20-fold excess, has no effect on the kinetics of amyloid formation by amylin as judged by thioflavin-T binding, right angle light scattering, and transmission electron microscopy, nor does it alter the morphology of resulting amyloid fibrils. Aspirin showed no ability to disaggregate preformed amylin amyloid fibrils under the conditions of these studies, 25 °C and pH 7.4. Ketoprofen is similarly ineffective at inhibiting amylin amyloid formation. The compounds do, however, interfere with circular dichroism- and Congo Red-based assays of amylin amyloid formation. This study highlights the importance of using multiple methods to follow amyloid formation when screening inhibitors.
Collapse
Affiliation(s)
- Ling-Hsien Tu
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Harris Noor
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Ping Cao
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Structural
Biology Program, Kimmel Center for Biology and Medicine at the Skirball
Institute, New York University School of Medicine, New York, New York 10016, United States
| | - Daniel P. Raleigh
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Graduate
Program in Biochemistry and Structural Biology, Stony Brook University, Stony
Brook, New York 11794-3400, United States
| |
Collapse
|
109
|
Li X, Ma L, Zheng W, Chen T. Inhibition of islet amyloid polypeptide fibril formation by selenium-containing phycocyanin and prevention of beta cell apoptosis. Biomaterials 2014; 35:8596-604. [PMID: 25034964 DOI: 10.1016/j.biomaterials.2014.06.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/29/2014] [Indexed: 01/02/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) fibril is the major constituent of amyloid deposits in pancreatic islets of type 2 diabetes. Misfolding and hIAPP fibril formation are thought to be important in the pathogenesis of diabetes. Studies have showed that selenium-containing phycocyanin (Se-PC) inhibited the fibrillation of hIAPP to form nanoscale particles, which is mainly by interfering with the combination between hIAPP. Small nanoscale oligomers tended to grow into larger nanoparticles and the size of nanoparticles increased with the incubation time. By interfering with the fibrillation of hIAPP and altering the structure, Se-PC alleviated hIAPP-induced cell apoptosis. Meantime, generation of ROS produced during the fibrillation process was inhibited, which was proposed to be the main factor for the hIAPP-cytotoxicity in beta cells. Taken together, Se-PC inhibited hIAPP fibrillation, thus suppressed the formation of ROS to show protective effect on hIAPP mediated cell apoptosis. Our studies provide useful information for our understanding of the interaction mechanisms of Se-PC on hIAPP structure and protective mechanisms on hIAPP cytotoxicity, presenting useful candidate for anti-diabetes drug development.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lijuan Ma
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
110
|
Bellia F, Grasso G. The role of copper(II) and zinc(II) in the degradation of human and murine IAPP by insulin-degrading enzyme. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:274-279. [PMID: 24719342 DOI: 10.1002/jms.3338] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/20/2013] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
Amylin or islet amyloid polypeptide (IAPP) is a 37-residue peptide hormone secreted from the pancreatic islets into the blood circulation and is cleared by peptidases in the kidney. IAPP aggregates are strongly associated with β-cell degeneration in type 2 diabetes, as demonstrated by the fact that more than 95% of patients exhibit IAPP amyloid upon autopsy. Recently, it has been reported that metal ions such as copper(II) and zinc(II) are implicated in the aggregation of IAPP as well as able to modulate the proteolytic activity of IAPP degrading enzymes. For this reason, in this work, the role of the latter metal ions in the degradation of IAPP by insulin-degrading enzyme (IDE) has been investigated by a chromatographic and mass spectrometric combined method. The latter experimental approach allowed not only to assess the overall metal ion inhibition of the human and murine IAPP degradation by IDE but also to have information on copper- and zinc-induced changes in IAPP aggregation. In addition, IDE cleavage site preferences in the presence of metal ions are rationalized as metal ion-induced changes in substrate accessibility.
Collapse
Affiliation(s)
- Francesco Bellia
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy
| | | |
Collapse
|
111
|
Lee EC, Ha E, Singh S, Legesse L, Ahmad S, Karnaukhova E, Donaldson RP, Jeremic AM. Copper(II)-human amylin complex protects pancreatic cells from amylin toxicity. Phys Chem Chem Phys 2014; 15:12558-71. [PMID: 23793354 DOI: 10.1039/c3cp44542a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human amylin-derived oligomers and aggregates are believed to play an important role in the pathogenesis of type II diabetes mellitus (T2DM). In addition to amylin-evoked cell attrition, T2DM is often accompanied by elevated serum copper levels. Although previous studies have shown that human amylin, in the course of its aggregation, produces hydrogen peroxide (H2O2) in solution, and that this process is exacerbated in the presence of copper(ii) ions (Cu(2+)), very little is known about the mechanism of interaction between Cu(2+) and amylin in pancreatic β-cells, including its pathological significance. Hence, in this study we investigated the mechanism by which Cu(2+) and human amylin catalyze formation of reactive oxygen species (ROS) in cells and in vitro, and examined the modulatory effect of Cu(2+) on amylin aggregation and toxicity in pancreatic rat insulinoma (RIN-m5F) β-cells. Our results indicate that Cu(2+) interacts with human and rat amylin to form metalo-peptide complexes with low aggregative and oxidative properties. Human and non-amyloidogenic rat amylin produced minute (nM) amounts of H2O2, the accumulation of which was slightly enhanced in the presence of Cu(2+). In a marked contrast to human and rat amylin, and in the presence of the reducing agents glutathione and ascorbate, Cu(2+) produced μM concentrations of H2O2 surpassing the amylin effect by several fold. The current study shows that human and rat amylin not only produce but also quench H2O2, and that human but not rat amylin significantly decreases the amount of H2O2 in solution produced by Cu(2+) and glutathione. Similarly, human amylin was found to also decrease hydroxyl radical formation elicited by Cu(2+) and glutathione. Furthermore, Cu(2+) mitigated the toxic effect of human amylin by inhibiting activation of pro-apoptotic caspase-3 and stress-kinase signaling pathways in rat pancreatic insulinoma cells in part by stabilizing human amylin in its native conformational state. This sacrificial quenching of metal-catalyzed ROS by human amylin and copper's anti-aggregative and anti-apoptotic properties suggest a novel and protective role for the copper-amylin complex.
Collapse
Affiliation(s)
- Elizabeth C Lee
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Young LM, Cao P, Raleigh DP, Ashcroft AE, Radford SE. Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J Am Chem Soc 2014; 136:660-70. [PMID: 24372466 PMCID: PMC3928500 DOI: 10.1021/ja406831n] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Indexed: 12/31/2022]
Abstract
The molecular mechanisms by which different proteins assemble into highly ordered fibrillar deposits and cause disease remain topics of debate. Human amylin (also known as islet amyloid polypeptide/hIAPP) is found in vivo as amyloid deposits in the pancreatic islets of sufferers of type II diabetes mellitus, and its self-aggregation is thought to be a pathogenic factor in disease and to contribute to the failure of islet transplants. Here, electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) has been used to monitor oligomer formation from IAPP. The detection, identification and characterization of oligomers from both human and rat amylin (rIAPP) are described. Oligomers up to and including hexamers have been detected for both peptides. From ESI-IMS-MS derived collision cross sections (CCS), these species are shown to be elongated in conformation. Collision-induced dissociation (CID-MS/MS) revealed differences in the gas-phase stability of the oligomers formed from hIAPP and rIAPP, which may contribute to their differences in amyloid propensity. Using ESI-IMS-MS, the mode of inhibition of amyloid formation from hIAPP using small molecules or co-incubation with rIAPP was also investigated. We show that the polyphenolic compounds epigallocatechin gallate (EGCG) and silibinin bind to specific conformers within a dynamic ensemble of hIAPP monomers, altering the progress of oligomerization and fibril assembly. Hetero-oligomer formation also occurs with rIAPP but leads only to inefficient inhibition. The results indicate that although different small molecules can be effective inhibitors of hIAPP self-assembly, their modes of action are distinct and can be distinguished using ESI-IMS-MS.
Collapse
Affiliation(s)
- Lydia M Young
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds , Leeds LS2 9JT, U.K
| | | | | | | | | |
Collapse
|
113
|
Abstract
Amylin is a peptide that aggregates into species that are toxic to pancreatic beta cells, leading to type II diabetes. This study has for the first time quantified amylin association and dissociation kinetics (association constant (ka ) = 28.7 ± 5.1 L mol-1 s-1 and dissociation constant (kd ) = 2.8 ± 0.6 ×10-4 s-1) using surface plasmon resonance (SPR). Thus far, techniques used for the sizing of amylin aggregates do not cater for the real-time monitoring of unconstrained amylin in solution. In this regard we evaluated recently innovated nanoparticle tracking analysis (NTA). In addition, both SPR and NTA were used to study the effect of previously synthesized amylin derivatives on amylin aggregation and to evaluate their potential as a cell-free system for screening potential inhibitors of amylin-mediated cytotoxicity. Results obtained from NTA highlighted a predominance of 100-300 nm amylin aggregates and correlation to previously published cytotoxicity results suggests the toxic species of amylin to be 200-300 nm in size. The results seem to indicate that NTA has potential as a new technique to monitor the aggregation potential of amyloid peptides in solution and also to screen potential inhibitors of amylin-mediated cytotoxicity.
Collapse
Affiliation(s)
- Karen Pillay
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Patrick Govender
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
114
|
Abstract
Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation in vitro. Human IAPP damages anionic membranes, promoting vesicle leakage, but the features that control IAPP-membrane interactions and the connection with cellular toxicity are not clear. Kinetic studies with wild-type IAPP and IAPP mutants demonstrate that membrane leakage is induced by prefibrillar IAPP species and continues over the course of amyloid formation, correlating additional membrane disruption with fibril growth. Analyses of a set of designed mutants reveal that membrane leakage does not require the formation of β-sheet or α-helical structures. A His-18 to Arg substitution enhances leakage, whereas replacement of all of the aromatic residues via a triple leucine mutant has no effect. Biophysical measurements in conjunction with cytotoxicity studies show that nonamyloidogenic rat IAPP is as effective as human IAPP at disrupting standard anionic model membranes under conditions where rat IAPP does not induce cellular toxicity. Similar results are obtained with more complex model membranes, including ternary systems that contain cholesterol and are capable of forming lipid rafts. A designed point mutant, I26P-IAPP; a designed double mutant, G24P, I26P-IAPP; a double N-methylated variant; and pramlintide, a US Food and Drug Administration-approved IAPP variant all induce membrane leakage, but are not cytotoxic, showing that there is no one-to-one relationship between disruption of model membranes and induction of cellular toxicity.
Collapse
|
115
|
Watve M, Bodas A, Diwekar M. Altered autonomic inputs as a cause of pancreatic β-cell amyloid. Med Hypotheses 2013; 82:49-53. [PMID: 24321738 DOI: 10.1016/j.mehy.2013.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/03/2013] [Indexed: 01/09/2023]
Abstract
A partial loss of β-cell mass and β-cell dysfunction in Type 2 Diabetes Mellitus (T2DM) is associated with amyloid deposition but whether it is causal or consequential is debated. Although the in vitro polymerization of amylin has been studied in detail, the exact trigger for the mechanism in vivo has not been identified. One suggestion is that an increased load on β-cells results in inefficient handling of proteins leading to misfolding and aggregation, but this hypothesis is faced with certain paradoxes. We suggest an alternative mechanism based on the assumption that polymerization is a spontaneous process. The concentration of the polypeptide in β-cell granules is shown to be sufficient to allow polymerization. However if the rate of turnover in normal cells is greater than the rate of polymerization, amyloid deposition will not be observed. If this is true, it follows that amyloid deposition could be a result of increased retention time of amylin in the β-cell granules. In T2D, the sympathetic inputs are known to increase which could result in suppression of the secretion process. The increase in the retention time due to this suppression can allow polymerization. In addition to this in a prediabetic state parasympathetic stimulation increases β-cell proliferation. This reduces the insulin demand per cell thereby increasing the mean retention time. Thus a combination of contrasting actions of sympathetic and parasympathetic systems could lead to increase in the amyloid deposition. We suggest testable predictions of the alternative hypotheses and the lines of research needed to test them.
Collapse
Affiliation(s)
- Milind Watve
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Arushi Bodas
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Manawa Diwekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
116
|
Peinado JR, Sami F, Rajpurohit N, Lindberg I. Blockade of islet amyloid polypeptide fibrillation and cytotoxicity by the secretory chaperones 7B2 and proSAAS. FEBS Lett 2013; 587:3406-11. [PMID: 24042052 DOI: 10.1016/j.febslet.2013.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
The deposition of fibrillated human islet β-cell peptide islet amyloid polypeptide (hIAPP) into amyloid plaques is characteristic of the pathogenesis of islet cell death during type 2 diabetes. We investigated the effects of the neuroendocrine secretory proteins 7B2 and proSAAS on hIAPP fibrillation in vitro and on cytotoxicity. In vitro, 21-kDa 7B2 and proSAAS blocked hIAPP fibrillation. Structure-function studies showed that a central region within 21-kDa 7B2 is important in this effect and revealed the importance of the N-terminal region of proSAAS. Both chaperones blocked the cytotoxic effects of exogenous hIAPP on Rin5f cells; 7B2 generated by overexpression was also effective. ProSAAS and 7B2 may perform a chaperone role as secretory anti-aggregants in normal islet cell function and in type 2 diabetes.
Collapse
Affiliation(s)
- Juan R Peinado
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore, Baltimore, MD 21201, United States
| | | | | | | |
Collapse
|
117
|
Trikha S, Jeremic AM. Distinct internalization pathways of human amylin monomers and its cytotoxic oligomers in pancreatic cells. PLoS One 2013; 8:e73080. [PMID: 24019897 PMCID: PMC3760900 DOI: 10.1371/journal.pone.0073080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/15/2013] [Indexed: 01/06/2023] Open
Abstract
Toxic human amylin oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (TTDM). Although recent studies have shown that pancreatic cells can recycle amylin monomers and toxic oligomers, the exact uptake mechanism and trafficking routes of these molecular forms and their significance for amylin toxicity are yet to be determined. Using pancreatic rat insulinoma (RIN-m5F) beta (β)-cells and human islets as model systems we show that monomers and oligomers cross the plasma membrane (PM) through both endocytotic and non-endocytotic (translocation) mechanisms, the predominance of which is dependent on amylin concentrations and incubation times. At low (≤ 100 nM) concentrations, internalization of amylin monomers in pancreatic cells is completely blocked by the selective amylin-receptor (AM-R) antagonist, AC-187, indicating an AM-R dependent mechanism. In contrast at cytotoxic (µM) concentrations monomers initially (1 hour) enter pancreatic cells by two distinct mechanisms: translocation and macropinocytosis. However, during the late stage (24 hours) monomers internalize by a clathrin-dependent but AM-R and macropinocytotic independent pathway. Like monomers a small fraction of the oligomers initially enter cells by a non-endocytotic mechanism. In contrast a majority of the oligomers at both early (1 hour) and late times (24 hours) traffic with a fluid-phase marker, dextran, to the same endocytotic compartments, the uptake of which is blocked by potent macropinocytotic inhibitors. This led to a significant increase in extra-cellular PM accumulation, in turn potentiating amylin toxicity in pancreatic cells. Our studies suggest that macropinocytosis is a major but not the only clearance mechanism for both amylin's molecular forms, thereby serving a cyto-protective role in these cells.
Collapse
Affiliation(s)
- Saurabh Trikha
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, United States of America
| | - Aleksandar M. Jeremic
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
118
|
Pillay K, Govender P. A direct fluorescence-based technique for cellular localization of amylin. Biotechnol Appl Biochem 2013; 60:384-92. [DOI: 10.1002/bab.1113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/11/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Karen Pillay
- School of Life Sciences; University of KwaZulu-Natal; South Africa
| | - Patrick Govender
- School of Life Sciences; University of KwaZulu-Natal; South Africa
| |
Collapse
|
119
|
Yang Y, Song W. Molecular links between Alzheimer's disease and diabetes mellitus. Neuroscience 2013; 250:140-50. [PMID: 23867771 DOI: 10.1016/j.neuroscience.2013.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/03/2013] [Indexed: 01/07/2023]
Abstract
Substantial epidemiological evidence shows an increased risk for developing Alzheimer's disease (AD) in people with diabetes. Yet the underlying molecular mechanisms still remain to be elucidated. This article reviews the current studies on common pathological processes of Alzheimer's disease and diabetes with particular focus on potential mechanisms through which diabetes affects the initiation and progression of Alzheimer's disease. Impairment of insulin signaling, inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, APOEε4 and cholesterol appear to be important mediators and are likely to act synergistically in promoting AD pathology.
Collapse
Affiliation(s)
- Y Yang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
120
|
de Tullio MB, Castelletto V, Hamley IW, Martino Adami PV, Morelli L, Castaño EM. Proteolytically inactive insulin-degrading enzyme inhibits amyloid formation yielding non-neurotoxic aβ peptide aggregates. PLoS One 2013; 8:e59113. [PMID: 23593132 PMCID: PMC3623905 DOI: 10.1371/journal.pone.0059113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/11/2013] [Indexed: 01/18/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a neutral Zn2+ peptidase that degrades short peptides based on substrate conformation, size and charge. Some of these substrates, including amyloid β (Aβ) are capable of self-assembling into cytotoxic oligomers. Based on IDE recognition mechanism and our previous report of the formation of a stable complex between IDE and intact Aβ in vitro and in vivo, we analyzed the possibility of a chaperone-like function of IDE. A proteolytically inactive recombinant IDE with Glu111 replaced by Gln (IDEQ) was used. IDEQ blocked the amyloidogenic pathway of Aβ yielding non-fibrillar structures as assessed by electron microscopy. Measurements of the kinetics of Aβ aggregation by light scattering showed that 1) IDEQ effect was promoted by ATP independent of its hydrolysis, 2) end products of Aβ-IDEQ co-incubation were incapable of “seeding” the assembly of monomeric Aβ and 3) IDEQ was ineffective in reversing Aβ aggregation. Moreover, Aβ aggregates formed in the presence of IDEQ were non-neurotoxic. IDEQ had no conformational effects upon insulin (a non-amyloidogenic protein under physiological conditions) and did not disturb insulin receptor activation in cultured cells. Our results suggest that IDE has a chaperone-like activity upon amyloid-forming peptides. It remains to be explored whether other highly conserved metallopeptidases have a dual protease-chaperone function to prevent the formation of toxic peptide oligomers from bacteria to mammals.
Collapse
Affiliation(s)
- Matias B. de Tullio
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, United Kingdom
| | - Pamela V. Martino Adami
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Morelli
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo M. Castaño
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
121
|
Amylin uncovered: a review on the polypeptide responsible for type II diabetes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:826706. [PMID: 23607096 PMCID: PMC3626316 DOI: 10.1155/2013/826706] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/21/2013] [Indexed: 11/17/2022]
Abstract
Amylin is primarily responsible for classifying type II diabetes as an amyloid (protein misfolding) disease as it has great potential to aggregate into toxic nanoparticles, thereby resulting in loss of pancreatic β-cells. Although type II diabetes is on the increase each year, possibly due to bad eating habits of modern society, research on the culprit for this disease is still in its early days. In addition, unlike the culprit for Alzheimer's disease, amyloid β-peptide, amylin has failed to receive attention worthy of being featured in an abundance of review articles. Thus, the aim of this paper is to shine the spotlight on amylin in an attempt to put it onto the top of researchers' to-do list since the secondary complications of type II diabetes have far-reaching and severe consequences on public health both in developing and fully developed countries alike. This paper will cover characteristics of the amylin aggregates, mechanisms of toxicity, and a particular focus on inhibitors of toxicity and techniques used to assess these inhibitors.
Collapse
|
122
|
Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP. Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 2013; 587:1106-18. [PMID: 23380070 DOI: 10.1016/j.febslet.2013.01.046] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
Abstract
Pancreatic islet amyloid is a characteristic feature of type 2 diabetes. The major protein component of islet amyloid is the polypeptide hormone known as islet amyloid polypeptide (IAPP, or amylin). IAPP is stored with insulin in the β-cell secretory granules and is released in response to the stimuli that lead to insulin secretion. IAPP is normally soluble and is natively unfolded in its monomeric state, but forms islet amyloid in type 2 diabetes. Islet amyloid is not the cause of type 2 diabetes, but it leads to β-cell dysfunction and cell death, and contributes to the failure of islet cell transplantation. The mechanism of IAPP amyloid formation is not understood and the mechanisms of cytotoxicity are not fully defined.
Collapse
Affiliation(s)
- Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Cations as switches of amyloid-mediated membrane disruption mechanisms: calcium and IAPP. Biophys J 2013; 104:173-84. [PMID: 23332070 DOI: 10.1016/j.bpj.2012.11.3811] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/09/2012] [Accepted: 11/21/2012] [Indexed: 12/15/2022] Open
Abstract
Disruption of the integrity of the plasma membrane by amyloidogenic proteins is linked to the pathogenesis of a number of common age-related diseases. Although accumulating evidence suggests that adverse environmental stressors such as unbalanced levels of metal ions may trigger amyloid-mediated membrane damage, many features of the molecular mechanisms underlying these events are unknown. Using human islet amyloid polypeptide (hIAPP, aka amylin), an amyloidogenic peptide associated with β-cell death in type 2 diabetes, we demonstrate that the presence of Ca(2+) ions inhibits membrane damage occurring immediately after the interaction of freshly dissolved hIAPP with the membrane, but significantly enhances fiber-dependent membrane disruption. In particular, dye leakage, quartz crystal microbalance, atomic force microscopy, and NMR experiments show that Ca(2+) ions promote a shallow membrane insertion of hIAPP, which leads to the removal of lipids from the bilayer through a detergent-like mechanism triggered by fiber growth. Because both types of membrane-damage mechanisms are common to amyloid toxicity by most amyloidogenic proteins, it is likely that unregulated ion homeostasis, amyloid aggregation, and membrane disruption are all parts of a self-perpetuating cycle that fuels amyloid cytotoxicity.
Collapse
|
124
|
Cao P, Abedini A, Raleigh DP. Aggregation of islet amyloid polypeptide: from physical chemistry to cell biology. Curr Opin Struct Biol 2012; 23:82-9. [PMID: 23266002 DOI: 10.1016/j.sbi.2012.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/15/2012] [Indexed: 01/15/2023]
Abstract
Amyloid formation in the pancreas by islet amyloid polypeptide (IAPP) leads to β-cell death and dysfunction, contributing to islet transplant failure and to type-2 diabetes. IAPP is stored in the β-cell insulin secretory granules and cosecreted with insulin in response to β-cell secretagogues. IAPP is believed to play a role in the control of food intake, in controlling gastric emptying and in glucose homeostasis. The polypeptide is natively unfolded in its monomeric state, but is one of the most amyloidogenic sequences known. The mechanisms of IAPP amyloid formation in vivo and in vitro are not understood; the mechanisms of IAPP induced cell death are unclear; and the nature of the toxic species is not completely defined. Recent work is shedding light on these important issues.
Collapse
Affiliation(s)
- Ping Cao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-3400, United States
| | | | | |
Collapse
|
125
|
Guan H, Chow KM, Shah R, Rhodes CJ, Hersh LB. Degradation of islet amyloid polypeptide by neprilysin. Diabetologia 2012; 55:2989-98. [PMID: 22898766 PMCID: PMC3660010 DOI: 10.1007/s00125-012-2678-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/16/2012] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS A progressive loss of pancreatic beta cell function, a decrease in beta cell mass and accumulation of islet amyloid is characteristic of type 2 diabetes mellitus. The main constituent of islet amyloid is islet amyloid polypeptide (IAPP). In this study, we examined the ability of the peptidase neprilysin to cleave IAPP and prevent human IAPP-induced pancreatic beta cell toxicity. METHODS Neprilysin and a catalytically compromised neprilysin mutant were tested for their ability to inhibit human IAPP fibrillisation and human IAPP-induced pancreatic beta cell cytotoxicity. Degradation of human IAPP by neprilysin was followed by HPLC, and the degradation products were identified by MS. RESULTS Neprilysin prevented IAPP fibrillisation by cleaving IAPP at Arg(11)-Leu(12), Leu(12)-Ala(13), Asn(14)-Phe(15), Phe(15)-Leu(16), Asn(22)-Phe(23) and Ala(25)-Ile(26). It also appears to prevent human IAPP fibrillisation through a non-catalytic interaction. Neprilysin protected against beta cell cytotoxicity induced by exogenously added or endogenously produced human IAPP. CONCLUSIONS/INTERPRETATION The data presented support a potential therapeutic role for neprilysin in preventing type 2 diabetes mellitus. This study supports the hypothesis that extracellular human IAPP contributes to human IAPP-induced beta cell cytotoxicity. Whether human IAPP exerts its cytotoxic effect through a totally extracellular mechanism or through a cellular reuptake mechanism is unclear at this time.
Collapse
Affiliation(s)
- H Guan
- Department of Molecular and Cellular Biochemistry, University of Kentucky, B236 Biomedical Biological Sciences Research Building, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| | | | | | | | | |
Collapse
|
126
|
Fang J, Landersdorfer CB, Cirincione B, Jusko WJ. Study reanalysis using a mechanism-based pharmacokinetic/pharmacodynamic model of pramlintide in subjects with type 1 diabetes. AAPS JOURNAL 2012; 15:15-29. [PMID: 23054970 DOI: 10.1208/s12248-012-9409-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 09/04/2012] [Indexed: 01/25/2023]
Abstract
This report describes a pharmacokinetic/pharmacodynamic model for pramlintide, an amylinomimetic, in type 1 diabetes mellitus (T1DM). Plasma glucose and drug concentrations were obtained following bolus and 2-h intravenous infusions of pramlintide at three dose levels or placebo in 25 T1DM subjects during the postprandial period in a crossover study. The original clinical data were reanalyzed by mechanism-based population modeling. Pramlintide pharmacokinetics followed a two-compartment model with zero-order infusion and first-order elimination. Pramlintide lowered overall postprandial plasma glucose AUC (AUC(net)) and delayed the time to peak plasma glucose after a meal (T (max)). The delay in glucose T (max) and reduction of AUC(net) indicate that overall plasma glucose concentrations might be affected by differing mechanisms of action of pramlintide. The observed increase in glucose T (max) following pramlintide treatment was independent of dose within the studied dose range and was adequately described by a dose-independent, maximum pramlintide effect on gastric emptying of glucose in the model. The inhibition of endogenous glucose production by pramlintide was described using a sigmoidal function with capacity and sensitivity parameter estimates of 0.995 for I (max) and 23.8 pmol/L for IC(50). The parameter estimates are in good agreement with literature values and the IC(50) is well within the range of postprandial plasma amylin concentrations in healthy humans, indicating physiological relevance of the pramlintide effect on glucagon secretion in the postprandial state. This model may prove to be useful in future clinical studies of other amylinomimetics or antidiabetic drugs with similar mechanisms of action.
Collapse
Affiliation(s)
- Jing Fang
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, 404 Kapoor Hall, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
127
|
Sciacca MFM, Brender JR, Lee DK, Ramamoorthy A. Phosphatidylethanolamine enhances amyloid fiber-dependent membrane fragmentation. Biochemistry 2012; 51:7676-84. [PMID: 22970795 DOI: 10.1021/bi3009888] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The toxicity of amyloid-forming peptides has been hypothesized to reside in the ability of protein oligomers to interact with and disrupt the cell membrane. Much of the evidence for this hypothesis comes from in vitro experiments using model membranes. However, the accuracy of this approach depends on the ability of the model membrane to accurately mimic the cell membrane. The effect of membrane composition has been overlooked in many studies of amyloid toxicity in model systems. By combining measurements of membrane binding, membrane permeabilization, and fiber formation, we show that lipids with the phosphatidylethanolamine (PE) headgroup strongly modulate the membrane disruption induced by IAPP (islet amyloid polypeptide protein), an amyloidogenic protein involved in type II diabetes. Our results suggest that PE lipids hamper the interaction of prefibrillar IAPP with membranes but enhance the membrane disruption correlated with the growth of fibers on the membrane surface via a detergent-like mechanism. These findings provide insights into the mechanism of membrane disruption induced by IAPP, suggesting a possible role of PE and other amyloids involved in other pathologies.
Collapse
Affiliation(s)
- Michele F M Sciacca
- Departments of Biophysics and Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | | | | | | |
Collapse
|
128
|
Lee CC, Sun Y, Huang H. How type II diabetes-related islet amyloid polypeptide damages lipid bilayers. Biophys J 2012; 102:1059-68. [PMID: 22404928 PMCID: PMC3296043 DOI: 10.1016/j.bpj.2012.01.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022] Open
Abstract
A leading hypothesis for the decimation of insulin-producing β-cells in type 2 diabetes attributes the cause to islet amyloid polypeptide (IAPP) for its deleterious effects on the cell membranes. This idea has produced extensive investigations on human IAPP (hIAPP) and its interactions with lipid bilayers. However, it is still difficult to correlate the peptide-lipid interactions with its effects on islet cells in culture. The hIAPP fibrils have been shown to interact with lipids and damage lipid bilayers, but appear to have no effect on islet cells in culture. Thus, a modified amyloid hypothesis assumes that the toxicity is caused by hIAPP oligomers, which are not preamyloid fibrils or protofibrils. However, so far such oligomers have not been isolated or identified. The hIAPP monomers also bind to lipid bilayers, but the mode of interaction is not clear. Here, we performed two types of experiments that, to our knowledge, have not been done before. We used x-ray diffraction, in conjunction with circular dichroism measurement, to reveal the location of the peptide bound to a lipid bilayer. We also investigated the effects of hIAPP on giant unilamellar vesicles at various peptide concentrations. We obtained the following qualitative results. Monomeric hIAPP binds within the headgroup region and expands the membrane area of a lipid bilayer. At low concentrations, such binding causes no leakage or damage to the lipid bilayer. At high concentrations, the bound peptides transform to β-aggregates. The aggregates exit the headgroup region and bind to the surface of lipid bilayers. The damage by the surface bound β-aggregates depends on the aggregation size. The initial aggregation extracts lipid molecules, which probably causes ion permeation, but no molecular leakage. However, the initial β-aggregates serve as the seed for larger fibrils, in the manner of the Jarrett-Lansbury seeded-polymerization model, that eventually disintegrate lipid bilayers by electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
| | | | - Huey W. Huang
- Department of Physics & Astronomy, Rice University, Houston, Texas
| |
Collapse
|
129
|
Liu T, Bitan G. Modulating self-assembly of amyloidogenic proteins as a therapeutic approach for neurodegenerative diseases: strategies and mechanisms. ChemMedChem 2012; 7:359-74. [PMID: 22323134 DOI: 10.1002/cmdc.201100585] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Indexed: 01/19/2023]
Abstract
Abnormal protein assembly causes multiple devastating disorders in the central nervous system (CNS), such as Alzheimer's, Parkinson's, Huntington's, and prion diseases. Due to the now extended human lifespan, these diseases have been increasing in prevalence, resulting in major public health problems and the associated financial difficulties worldwide. The wayward proteins that lead to disease self-associate into neurotoxic oligomers and go on to form fibrillar polymers through multiple pathways. Thus, a range of possible targets for pharmacotherapeutic intervention exists along these pathways. Many compounds have shown different levels of effectiveness in inhibiting aberrant self-assembly, dissociating existing aggregates, protecting cells against neurotoxic insults, and in some cases ameliorating disease symptoms in vivo, yet achieving efficient, disease-modifying therapy in humans remains a major unattained goal. To a large degree, this is because the mechanisms of action for these drugs are essentially unknown. For successful design of new effective drugs, it is crucial to elucidate the mechanistic details of their action, including the actual target(s) along the protein aggregation pathways, how the compounds modulate these pathways, and their effect at the cellular, tissue, organ, and organism level. Here, the current knowledge of major mechanisms by which some of the more extensively explored drug candidates work are discussed. In particular, we focus on three prominent strategies: 1) stabilizing the native fold of amyloidogenic proteins, 2) accelerating the aggregation pathways towards the fibrillar endpoint thereby reducing accumulation of toxic oligomers, and 3) modulating the assembly process towards nontoxic oligomers/aggregates. The merit of each strategy is assessed, and the key points to consider when analyzing the efficacy of possible drug candidates and their mechanism of action are discussed.
Collapse
Affiliation(s)
- Tingyu Liu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, 635 Charles E. Young Drive South/NRB 455, Los Angeles, CA 90095, USA
| | | |
Collapse
|
130
|
SivakamaSundari C, Rukmani S, Nagaraj R. Effect of introducing a short amyloidogenic sequence from the Aβ peptide at the N-terminus of 18-residue amphipathic helical peptides. J Pept Sci 2012; 18:122-8. [DOI: 10.1002/psc.1424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 09/10/2011] [Accepted: 09/13/2011] [Indexed: 12/16/2022]
Affiliation(s)
| | - Sridharan Rukmani
- CSIR-Centre for Cellular and Molecular Biology; Uppal Road; Hyderabad ; 500 007; India
| | - Ramakrishnan Nagaraj
- CSIR-Centre for Cellular and Molecular Biology; Uppal Road; Hyderabad ; 500 007; India
| |
Collapse
|
131
|
Shenhar-Tsarfaty S, Bruck T, Bennett ER, Bravman T, Aassayag EB, Waiskopf N, Rogowski O, Bornstein N, Berliner S, Soreq H. Butyrylcholinesterase interactions with amylin may protect pancreatic cells in metabolic syndrome. J Cell Mol Med 2012; 15:1747-56. [PMID: 20807286 PMCID: PMC4373355 DOI: 10.1111/j.1582-4934.2010.01165.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The metabolic syndrome (MetS) is a risk factor for type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the transition from MetS to T2DM are unknown. Our goal was to study the potential contribution of butyrylcholinesterase (BChE) to this process. We first determined the hydrolytic activity of BChE in serum from MetS, T2DM and healthy individuals. The ‘Kalow’ variant of BChE (BChE-K), which has been proposed to be a risk factor for T2DM, was genotyped in the last two groups. Our results show that in MetS patients serum BChE activity is elevated compared to T2DM patients and healthy controls (P < 0.001). The BChE-K genotype showed similar prevalence in T2DM and healthy individuals, excluding this genotype as a risk factor for T2DM. However, the activity differences remained unexplained. Previous results from our laboratory have shown BChE to attenuate the formation of β-amyloid fibrils, and protect cultured neurons from their cytotoxicity. Therefore, we next studied the in vitro interactions between recombinant human butyrylcholinesterase and amylin by surface plasmon resonance, Thioflavine T fluorescence assay and cross-linking, and used cultured pancreatic β cells to test protection by BChE from amylin cytotoxicity. We demonstrate that BChE interacts with amylin through its core domain and efficiently attenuates both amylin fibril and oligomer formation. Furthermore, application of BChE to cultured β cells protects them from amylin cytotoxicity. Taken together, our results suggest that MetS-associated BChE increases could protect pancreatic β-cells in vivo by decreasing the formation of toxic amylin oligomers.
Collapse
Affiliation(s)
- Shani Shenhar-Tsarfaty
- Department of Neurology and Internal Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Cao P, Tu LH, Abedini A, Levsh O, Akter R, Patsalo V, Schmidt AM, Raleigh DP. Sensitivity of amyloid formation by human islet amyloid polypeptide to mutations at residue 20. J Mol Biol 2011; 421:282-95. [PMID: 22206987 DOI: 10.1016/j.jmb.2011.12.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 12/27/2022]
Abstract
Islet amyloid polypeptide (IAPP, amylin) is responsible for amyloid formation in type 2 diabetes and in islet cell transplants. The only known natural mutation found in mature human IAPP is a Ser20-to-Gly missense mutation, found with small frequency in Chinese and Japanese populations. The mutation appears to be associated with increased risk of early-onset type 2 diabetes. Early measurements in the presence of organic co-solvents showed that S20G-IAPP formed amyloid more quickly than the wild type. We confirm that the mutant accelerates amyloid formation under a range of conditions including in the absence of co-solvents. Ser20 adopts a normal backbone geometry, and the side chain makes no steric clashes in models of IAPP amyloid fibers, suggesting that the increased rate of amyloid formation by the mutant does not result from the relief of steric incompatibility in the fiber state. Transmission electronic microscopy, circular dichroism, and seeding studies were used to probe the structure of the resulting fibers. The S20G-IAPP peptide is toxic to cultured rat INS-1 (transformed rat insulinoma-1) β-cells. The sensitivity of amyloid formation to the identity of residue 20 was exploited to design a variant that is much slower to aggregate and that inhibits amyloid formation by wild-type IAPP. An S20K mutant forms amyloid with an 18-fold longer lag phase in homogeneous solution. Thioflavin T binding assays, together with experiments using a p-cyanophenylalanine (p-cyanoPhe) variant of human IAPP, show that the designed S20K mutant inhibits amyloid formation by human IAPP. The experiments illustrate how p-cyanoPhe can be exploited to monitor amyloid formation even in the presence of other amyloidogenic proteins.
Collapse
Affiliation(s)
- Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Magzoub M, Miranker AD. Concentration-dependent transitions govern the subcellular localization of islet amyloid polypeptide. FASEB J 2011; 26:1228-38. [PMID: 22183778 DOI: 10.1096/fj.11-194613] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Islet amyloid polypeptide (IAPP) is a peptide hormone cosecreted with insulin by pancreatic β-cells. In type II diabetes, IAPP aggregates in a process that is associated with β-cell dysfunction and loss of β-cell mass. The relationship between IAPP's conformational landscape and its capacity to mediate cell death remains poorly understood. We have addressed these unknowns by comparing the cytotoxic effects of sequence variants with differing α-helical and amyloid propensities. IAPP was previously shown to oligomerize cooperatively on binding to lipid bilayers. Here, comparable transitions are evident in cell culture and are associated with a change in subcellular localization to the mitochondria under toxic conditions. Notably, we find that this toxic gain of function maps to IAPP's capacity to adopt aggregated membrane-bound α-helical, and not β-sheet, states. Our findings suggest that upon α-helical mediated oligomerization, IAPP acquires cell-penetrating peptide (CPP) properties, facilitating access to the mitochondrial compartment, resulting in its dysfunction.
Collapse
Affiliation(s)
- Mazin Magzoub
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Ave., New Haven, CT 06520-8114, USA
| | | |
Collapse
|
134
|
Trikha S, Jeremic AM. Clustering and internalization of toxic amylin oligomers in pancreatic cells require plasma membrane cholesterol. J Biol Chem 2011; 286:36086-36097. [PMID: 21865171 DOI: 10.1074/jbc.m111.240762] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Self-assembly of the human pancreatic hormone amylin into toxic oligomers and aggregates is linked to dysfunction of islet β-cells and pathogenesis of type 2 diabetes mellitus. Recent evidence suggests that cholesterol, an essential component of eukaryotic cells membranes, controls amylin aggregation on model membranes. However, the pathophysiological consequence of cholesterol-regulated amylin polymerization on membranes and biochemical mechanisms that protect β-cells from amylin toxicity are poorly understood. Here, we report that plasma membrane (PM) cholesterol plays a key role in molecular recognition, sorting, and internalization of toxic amylin oligomers but not monomers in pancreatic rat insulinoma and human islet cells. Depletion of PM cholesterol or the disruption of the cytoskeleton network inhibits internalization of amylin oligomers, which in turn enhances extracellular oligomer accumulation and potentiates amylin toxicity. Confocal microscopy reveals an increased nucleation of amylin oligomers across the plasma membrane in cholesterol-depleted cells, with a 2-fold increase in cell surface coverage and a 3-fold increase in their number on the PM. Biochemical studies confirm accumulation of amylin oligomers in the medium after depletion of PM cholesterol. Replenishment of PM cholesterol from intracellular cholesterol stores or by the addition of water-soluble cholesterol restores amylin oligomer clustering at the PM and internalization, which consequently diminishes cell surface coverage and toxicity of amylin oligomers. In contrast to oligomers, amylin monomers followed clathrin-dependent endocytosis, which is not sensitive to cholesterol depletion. Our studies identify an actin-mediated and cholesterol-dependent mechanism for selective uptake and clearance of amylin oligomers, impairment of which greatly potentiates amylin toxicity.
Collapse
Affiliation(s)
- Saurabh Trikha
- Department of Biological Sciences, The George Washington University, Washington, D. C. 20052
| | - Aleksandar M Jeremic
- Department of Biological Sciences, The George Washington University, Washington, D. C. 20052.
| |
Collapse
|
135
|
Masad A, Tabner BJ, Mayes J, Allsop D. The amylin peptide implicated in type 2 diabetes stimulates copper-mediated carbonyl group and ascorbate radical formation. Free Radic Biol Med 2011; 51:869-75. [PMID: 21683137 DOI: 10.1016/j.freeradbiomed.2011.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/17/2022]
Abstract
Human amylin (hA), which is toxic to islet β-cells, can self-generate H(2)O(2), and this process is greatly enhanced in the presence of Cu(II) ions. Here we show that carbonyl groups, a marker of oxidative modification, were formed in hA incubated in the presence of Cu(II) ions or Cu(II) ions plus H(2)O(2), but not in the presence of H(2)O(2) alone. Furthermore, under similar conditions (i.e., in the presence of both Cu(II) ions and H(2)O(2)), hA also stimulated ascorbate radical formation. The same observations concerning carbonyl group formation were made when the histidine residue (at position 18) in hA was replaced by alanine, indicating that this residue does not play a key role. In complete contrast to hA, rodent amylin, which is nontoxic, does not generate H(2)O(2), and binds Cu(II) ions only weakly, showed none of these properties. We conclude that the hA-Cu(II)/Cu(I) complex is redox active, with electron donation from the peptide reducing the oxidation state of the copper ions. The complex is capable of forming H(2)O(2) from O(2) and can also generate (•)OH via Fenton chemistry. These redox properties of hA can explain its ability to stimulate copper-mediated carbonyl group and ascorbate radical formation. The formation of reactive oxygen species from hA in this way could hold the key to a better understanding of the damaging consequences of amyloid formation within the pancreatic islets of patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Atef Masad
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | |
Collapse
|
136
|
Lang F, Ullrich S, Gulbins E. Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets 2011; 15:1061-71. [PMID: 21635197 DOI: 10.1517/14728222.2011.588209] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Ceramide may be synthesized de novo or generated by sphingomyelinase-dependent hydrolysis of sphingomyelin. AREAS COVERED The role of ceramide, ceramide-sensitive signaling and ion channels in β-cell apoptosis, lipotoxicity and amyloid-induced β-cell death. EXPERT OPINION Ceramide participates in β-cell dysfunction and apoptosis after exposure to TNFα, IL-1β and IFN-γ, excessive amyloid and islet amyloid polypeptide or non-esterified fatty acids (lipotoxicity). Knockout of sphingomyelin synthase 1, which converts ceramide to sphingomyelin, leads to impairment of insulin secretion. Increased ceramidase activity or pharmacological inhibition of ceramide synthetase, inhibits β-cell apoptosis. Ceramide contributes to endoplasmatic reticulum (ER) stress, decreased mitochondrial membrane potential in insulin-secreting cells and mitochondrial release of cytochrome c into the cytosol, which are all triggers of apoptotic cell death. Ceramide-dependent signaling involves activation of extracellularly regulated kinases 1 and 2 (ERK1/2), downregulation of Period (Per)-aryl hydrocarbon receptor nuclear translocator (Arnt)-single-minded (Sim) kinase (PASK), activation of okadaic-acid-sensitive protein phosphatase 2A (PP2A) and stimulation of NADPH-oxidase with generation of superoxides and lipid peroxides. Ceramide reduces the activity of voltage gated potassium (Kv)-channels in insulin-secreting cells. The role of ceramide in β-cell survival and function may be therapeutically relevant, because ceramide formation can be suppressed by pharmacological inhibition of ceramide synthetase and/or sphingomyelinase.
Collapse
Affiliation(s)
- Florian Lang
- University of Tübingen, Institute of Physiology, Germany.
| | | | | |
Collapse
|
137
|
Jha S, Patil SM, Gibson J, Nelson CE, Alder NN, Alexandrescu AT. Mechanism of amylin fibrillization enhancement by heparin. J Biol Chem 2011; 286:22894-904. [PMID: 21555785 DOI: 10.1074/jbc.m110.215814] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We characterized the interaction of amylin with heparin fragments of defined length, which model the glycosaminoglycan chains associated with amyloid deposits found in type 2 diabetes. Binding of heparin fragments to the positively charged N-terminal half of monomeric amylin depends on the concentration of negatively charged saccharides but is independent of oligosaccharide length. By contrast, amylin fibrillogenesis has a sigmoidal dependence on heparin fragment length, with an enhancement observed for oligosaccharides longer than four monomers and a leveling off of effects beyond 12 monomers. The length dependence suggests that the negatively charged helical structure of heparin electrostatically complements the positively charged surface of the fibrillar amylin cross-β structure. Fluorescence resonance energy transfer and total internal reflection fluorescence microscopy experiments indicate that heparin associates with amylin fibrils, rather than enhancing fibrillogenesis catalytically. Short heparin fragments containing two- or eight-saccharide monomers protect against amylin cytotoxicity toward a MIN6 mouse cell model of pancreatic β-cells.
Collapse
Affiliation(s)
- Suman Jha
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | | | | | |
Collapse
|
138
|
Yam AY, Wang X, Gao CM, Connolly MD, Zuckermann RN, Bleu T, Hall J, Fedynyshyn JP, Allauzen S, Peretz D, Salisbury CM. A Universal Method for Detection of Amyloidogenic Misfolded Proteins. Biochemistry 2011; 50:4322-9. [DOI: 10.1021/bi200215j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alice Y. Yam
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Xuemei Wang
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Carol Man Gao
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Michael D. Connolly
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Ronald N. Zuckermann
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Thieu Bleu
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - John Hall
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Joseph P. Fedynyshyn
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Sophie Allauzen
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - David Peretz
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| | - Cleo M. Salisbury
- Novartis Vaccines and Diagnostics, Inc., 4560 Horton St, Emeryville, California 94608, United States
| |
Collapse
|
139
|
The chaperone proteins HSP70, HSP40/DnaJ and GRP78/BiP suppress misfolding and formation of β-sheet-containing aggregates by human amylin: a potential role for defective chaperone biology in Type 2 diabetes. Biochem J 2010; 432:113-21. [PMID: 20735358 DOI: 10.1042/bj20100434] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Misfolding of the islet β-cell peptide hA (human amylin) into β-sheet-containing oligomers is linked to β-cell apoptosis and the pathogenesis of T2DM (Type 2 diabetes mellitus). In the present study, we have investigated the possible effects on hA misfolding of the chaperones HSP (heat-shock protein) 70, GRP78/BiP (glucose-regulated protein of 78 kDa/immunoglobulin heavy-chain-binding protein) and HSP40/DnaJ. We demonstrate that hA underwent spontaneous time-dependent β-sheet formation and aggregation by thioflavin-T fluorescence in solution, whereas rA (rat amylin) did not. HSP70, GRP78/BiP and HSP40/DnaJ each independently suppressed hA misfolding. Maximal molar protein/hA ratios at which chaperone activity was detected were 1:200 (HSP70, HSP40/DnaJ and GRP78/BiP). By contrast, none of the chaperones modified the secondary structure of rA. hA, but not rA, was co-precipitated independently with HSP70 and GRP78/BiP by anti-amylin antibodies. As these effects occur at molar ratios consistent with chaperone binding to relatively rare misfolded hA species, we conclude that HSP70 and GRP78/BiP can detect and bind misfolded hA oligomers, thereby effectively protecting hA against bulk misfolding and irreversible aggregation. Defective β-cell chaperone biology could contribute to hA misfolding and initiation of apoptosis in T2DM.
Collapse
|
140
|
Meng F, Abedini A, Plesner A, Verchere CB, Raleigh DP. The flavanol (-)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry 2010; 49:8127-33. [PMID: 20707388 DOI: 10.1021/bi100939a] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Islet amyloid polypeptide (IAPP, amylin) is the major protein component of the islet amyloid deposits associated with type 2 diabetes. The polypeptide lacks a well-defined structure in its monomeric state but readily assembles to form amyloid. Amyloid fibrils formed from IAPP, intermediates generated in the assembly of IAPP amyloid, or both are toxic to β-cells, suggesting that islet amyloid formation may contribute to the pathology of type 2 diabetes. There are relatively few reported inhibitors of amyloid formation by IAPP. Here we show that the tea-derived flavanol, (-)-epigallocatechin 3-gallate [(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate] (EGCG), is an effective inhibitor of in vitro IAPP amyloid formation and disaggregates preformed amyloid fibrils derived from IAPP. The compound is thus one of a very small set of molecules which have been shown to disaggregate IAPP amyloid fibrils. Fluorescence-detected thioflavin-T binding assays and transmission electron microscopy confirm that the compound inhibits unseeded amyloid fibril formation as well as disaggregates IAPP amyloid. Seeding studies show that the complex formed by IAPP and EGCG does not seed amyloid formation by IAPP. In this regard, the behavior of IAPP is similar to the reported interactions of Aβ and α-synuclein with EGCG. Alamar blue assays and light microscopy indicate that the compound protects cultured rat INS-1 cells against IAPP-induced toxicity. Thus, EGCG offers an interesting lead structure for further development of inhibitors of IAPP amyloid formation and compounds that disaggregate IAPP amyloid.
Collapse
Affiliation(s)
- Fanling Meng
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| | | | | | | | | |
Collapse
|
141
|
Goldsbury C, Baxa U, Simon MN, Steven AC, Engel A, Wall JS, Aebi U, Müller SA. Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 2010; 173:1-13. [PMID: 20868754 DOI: 10.1016/j.jsb.2010.09.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).
Collapse
Affiliation(s)
- Claire Goldsbury
- The Brain and Mind Research Institute, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
142
|
The role of aromatic side-chains in amyloid growth and membrane interaction of the islet amyloid polypeptide fragment LANFLVH. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:1-12. [DOI: 10.1007/s00249-010-0623-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/27/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
|
143
|
Cao P, Raleigh DP. Ester to amide switch peptides provide a simple method for preparing monomeric islet amyloid polypeptide under physiologically relevant conditions and facilitate investigations of amyloid formation. J Am Chem Soc 2010; 132:4052-3. [PMID: 20201512 DOI: 10.1021/ja910763m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A major issue in studies of amyloid formation is the difficulty of preparing the polypeptide of interest in an initially monomeric state under physiologically relevant conditions. This is particularly problematic for polypeptides which are natively unfolded in their unaggregated state, and perhaps the most challenging such system is islet amyloid polypeptide (Amylin), the causative agent of amyloid formation in type-2 diabetes. Preparation of islet amyloid polypeptide with the Ser-19 Ser-20 amide bond replaced by an ester circumvents these problems. The modified peptide is unstructured and monomeric at slightly acidic pH's as judged by analytical ultracentrifugation, gel filtration, dynamic light scattering, and CD. A rapid pH jump leads to deprotonation of the Ser-20 amide group, and a subsequent rapid O to N acyl shift regenerates normal human islet amyloid polypeptide. The half time, t(1/2), for the conversion to normal islet amyloid polypeptide is 70 s at pH 7.4. The amyloid fibrils which are formed by the regenerated islet amyloid polypeptide are indistinguishable from those formed by the wild type polypeptide. The approach allows studies of amyloid formation by islet amyloid polypeptide to be carried out from a well-defined, physiologically relevant starting state in the absence of denaturants or organic cosolvents.
Collapse
Affiliation(s)
- Ping Cao
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| | | |
Collapse
|
144
|
Zraika S, Hull RL, Verchere CB, Clark A, Potter KJ, Fraser PE, Raleigh DP, Kahn SE. Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? Diabetologia 2010; 53:1046-56. [PMID: 20182863 PMCID: PMC3164873 DOI: 10.1007/s00125-010-1671-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 12/04/2009] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes is a progressive disease characterised by islet amyloid deposits in the majority of patients. Amyloid formation is considered a significant factor in deterioration of islet function and reduction in beta cell mass, and involves aggregation of monomers of the normally soluble beta cell peptide, human islet amyloid polypeptide (hIAPP) into oligomers, fibrils and, ultimately, mature amyloid deposits. Despite extensive in vitro studies, the process of hIAPP aggregation in vivo is poorly understood, though it is widely reported to promote cytotoxicity. Recently, studies have suggested that only the early stages of fibril assembly, and in particular small hIAPP oligomers, are responsible for beta cell cytotoxicity. This challenges the prior concept that newly formed fibrils and/or mature fibrillar amyloid are cytotoxic. Herein, evidence both for and against the toxic hIAPP oligomer hypothesis is presented; from this, it is apparent that what exactly causes beta cell death when hIAPP aggregates remains debatable. Moreover, substantially more work with more specific reagents and techniques than are currently available will be required to identify conclusively the toxic species resulting from hIAPP aggregation. Keeping an open mind on the nature of the cytotoxic insult has implications for therapeutic developments and clinical care in type 2 diabetes.
Collapse
Affiliation(s)
- S Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, 1660 South Columbian Way (151), Seattle, WA 98108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Marek P, Mukherjee S, Zanni MT, Raleigh DP. Residue-specific, real-time characterization of lag-phase species and fibril growth during amyloid formation: a combined fluorescence and IR study of p-cyanophenylalanine analogs of islet amyloid polypeptide. J Mol Biol 2010; 400:878-88. [PMID: 20630475 DOI: 10.1016/j.jmb.2010.05.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/05/2010] [Accepted: 05/16/2010] [Indexed: 01/09/2023]
Abstract
Amyloid formation normally exhibits a lag phase followed by a growth phase, which leads to amyloid fibrils. Characterization of the species populated during the lag phase is experimentally challenging, but is critical since the most toxic entities may be pre-fibrillar species. p-Cyanophenylalanine (F(C[triple bond]N)) fluorescence is used to probe the nature of lag-phase species populated during the formation of amyloid by human islet amyloid polypeptide. The polypeptide contains two phenylalanines at positions 15 and 23 and a single tyrosine located at the C-terminus. Each aromatic residue was separately replaced by F(C[triple bond]N). The substitutions do not perturb amyloid formation relative to wild-type islet amyloid polypeptide as detected using thioflavin T fluorescence and electron microscopy. F(C[triple bond]N) fluorescence is high when the cyano group is hydrogen bonded and low when it is not. It can also be quenched via Förster resonance energy transfer to tyrosine. Fluorescence intensity was monitored in real time and revealed that all three positions remained exposed to solvent during the lag phase but less exposed than unstructured model peptides. The time course of amyloid formation as monitored by thioflavin T fluorescence and F(C[triple bond]N) fluorescence is virtually identical. Fluorescence quenching experiments confirmed that each residue remains exposed during the lag phase. These results place significant constraints on the nature of intermediates that are populated during the lag phase and indicate that significant sequestering of the aromatic side chains does not occur until beta-structure sufficient to bind thioflavin T has developed. Seeding studies and analysis of maximum rates confirm that sequestering of the cyano groups occurs concomitantly with the development of thioflavin T binding capability. Overall, the process of amyloid formation and growth appears to be remarkably homogenous in terms of side-chain ordering. F(C[triple bond]N) also provides information about fibril structure. Fluorescence emission measurements, infrared measurements, and quenching studies indicate that the aromatic residues are differentially exposed in the fibril state with Phe15 being the most exposed. F(C[triple bond]N) is readily accommodated into proteins; thus, the approach should be broadly applicable.
Collapse
Affiliation(s)
- Peter Marek
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | | | |
Collapse
|
146
|
Cooper GJS, Aitken JF, Zhang S. Is type 2 diabetes an amyloidosis and does it really matter (to patients)? Diabetologia 2010; 53:1011-6. [PMID: 20229094 DOI: 10.1007/s00125-010-1715-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 12/17/2022]
Affiliation(s)
- G J S Cooper
- School of Biological Sciences, and Maurice Wilkins Centre of Excellence for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
147
|
Bartolini M, Andrisano V. Strategies for the Inhibition of Protein Aggregation in Human Diseases. Chembiochem 2010; 11:1018-35. [DOI: 10.1002/cbic.200900666] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
148
|
Mazzaglia A, Micali N, Scolaro LM, Attanasio F, Magrí A, Pappalardo G, Villari V. Aggregation properties of the peptide fragments derived from the 17-29 region of the human and rat IAPP: a comparative study with two PEG-conjugated variants of the human sequence. J Phys Chem B 2010; 114:705-13. [PMID: 20039665 DOI: 10.1021/jp908436s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amyloidogenic amino acid sequence Ac-VHSSNNFGAILSS-NH(2), corresponding to the 17-29 peptide region of human amylin (hIAPP17-29), was modified by grafting a hydrophilic PEG chain in order to obtain a novel class of peptides to be used as models to study the aggregation process of the full-length IAPP. The amphiphilic feature of the pegylated peptide fragment at the N-terminus (PEG-N-hIAPP17-29) drives the aggregation process toward stable micellar clusters without fibrillogenesis, despite the presence of beta-sheet interaction between peptides at pH values higher than 4.0. The hIAPP17-29-C-PEG, in which the PEG moiety is linked to the C-terminus, does not possess analogous amphiphilic character and the ability of PEG in forming H-bonds with the solvent overcomes that of the peptide chain, thereby causing peptide flocculation. The comparison with the unmodified hIAPP17-29 and the rat's peptide sequence Ac-VRSSNNLGPGLPP-NH(2)(rIAPP17-29) revealed the crucial role of hydrogen bonding between peptide and solvent in determining the aggregate structure and preventing fibril formation, as well as the non-negligible effect of a small amount of organic solvent in the aqueous solution which affects the aggregation process and rate.
Collapse
Affiliation(s)
- Antonino Mazzaglia
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica dell'Universitá di Messina, S.ta Sperone 31, I-98166, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
149
|
Cabaleiro-Lago C, Lynch I, Dawson KA, Linse S. Inhibition of IAPP and IAPP(20-29) fibrillation by polymeric nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3453-3461. [PMID: 20017535 DOI: 10.1021/la902980d] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The fibrillation process of the islet amyloid polypeptide (IAPP) and its fragment (IAPP(20-29)) was studied by means of Thioflavin T (ThT) fluorescence and transmission electron microscopy in the absence and presence of N-isopropylacrylamide:N-tert-butylacrylamide (NiPAM:BAM) copolymeric nanoparticles. The process was found to be strongly affected by the presence of the nanoparticles, which retard protein fibrillation as a function of the chemical surface properties of the nanoparticles. The NiPAM:BAM ratio was varied from 50:50 to 100:0. The nanoparticles with higher fraction of NiPAM imposed the strongest retardation of IAPP and IAPP(20-29) fibrillation. These particles have the strongest hydrogen bonding capacity due to the less bulky N-isopropyl group and thus less steric hindrance of the hydrogen-bonding groups of the nanoparticle polymer backbone. Kinetic fibrillation data, as monitored by ThT fluorescence and supported by surface plasmon resonance experiments, suggest that the peptide is strongly absorbed onto the surface of the nanoparticles. This interaction reduces the concentration of peptide free in solution available to proceed to fibrillation which results in an increased lag time of fibrillation, observed as a delayed onset of ThT fluorescence increase, plus a reduction of the amount of fibrils formed as indicated by the equilibrium values at the end of the fibrillation reaction. For the fragment (IAPP(20-29)), the presence of nanoparticles changes the mechanism of association from monomers to fibrils, by interfering with early oligomeric species along the fibrillation pathway.
Collapse
Affiliation(s)
- C Cabaleiro-Lago
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
150
|
Aitken JF, Loomes KM, Scott DW, Reddy S, Phillips AR, Prijic G, Fernando C, Zhang S, Broadhurst R, L'Huillier P, Cooper GJ. Tetracycline treatment retards the onset and slows the progression of diabetes in human amylin/islet amyloid polypeptide transgenic mice. Diabetes 2010; 59:161-71. [PMID: 19794060 PMCID: PMC2797917 DOI: 10.2337/db09-0548] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Aggregation of human amylin/islet amyloid polypeptide (hA/hIAPP) into small soluble beta-sheet-containing oligomers is linked to islet beta-cell degeneration and the pathogenesis of type 2 diabetes. Here, we used tetracycline, which modifies hA/hIAPP oligomerization, to probe mechanisms whereby hA/hIAPP causes diabetes in hemizygous hA/hIAPP-transgenic mice. RESEARCH DESIGN AND METHODS We chronically treated hemizygous hA/hIAPP transgenic mice with oral tetracycline to determine its effects on rates of diabetes initiation, progression, and survival. RESULTS Homozygous mice developed severe spontaneous diabetes due to islet beta-cell loss. Hemizygous transgenic animals also developed spontaneous diabetes, although severity was less and progression rates slower. Pathogenesis was characterized by initial islet beta-cell dysfunction followed by progressive beta-cell loss. Islet amyloid was absent from hemizygous animals with early-onset diabetes and correlated positively with longevity. Some long-lived nondiabetic hemizygous animals also had large islet-amyloid areas, showing that amyloid itself was not intrinsically cytotoxic. Administration of tetracycline dose-dependently ameliorated hyperglycemia and polydipsia, delayed rates of diabetes initiation and progression, and increased longevity compared with water-treated controls. CONCLUSIONS This is the first report to show that treating hA/hIAPP transgenic mice with a modifier of hA/hIAPP misfolding can ameliorate their diabetic phenotype. Fibrillar amyloid was neither necessary nor sufficient to cause diabetes and indeed was positively correlated with longevity therein, whereas early- to mid-stage diabetes was associated with islet beta-cell dysfunction followed by beta-cell loss. Interventions capable of suppressing misfolding in soluble hA/hIAPP oligomers rather than mature fibrils may have potential for treating or preventing type 2 diabetes.
Collapse
Affiliation(s)
- Jacqueline F. Aitken
- School of Biological Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Kerry M. Loomes
- School of Biological Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - David W. Scott
- School of Biological Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Shivanand Reddy
- School of Biological Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony R.J. Phillips
- School of Biological Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Gordana Prijic
- School of Biological Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Chathurini Fernando
- School of Biological Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Shaoping Zhang
- School of Biological Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | | | - Garth J.S. Cooper
- School of Biological Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, U.K
- Corresponding author: Garth J.S. Cooper,
| |
Collapse
|