101
|
Yang W, Wu F, Luo T, Zhang Y. CCAAT/enhancer binding protein homologous protein knockdown alleviates hypoxia-induced myocardial injury in rat cardiomyocytes exposed to high glucose. Exp Ther Med 2018; 15:4213-4222. [PMID: 29725368 PMCID: PMC5920208 DOI: 10.3892/etm.2018.5944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Diabetic patients are more sensitive to ischemic injury than non-diabetics. Endoplasmic reticulum (ER) stress has been reported to be closely associated with the pathophysiology of ischemic injury in diabetes. The aim of the present study was to investigate the mechanisms involved in the progression of diabetes complicated by myocardial infarction (MI) and further verify the role of CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP) using an in vitro model of diabetes/MI. The rats were exposed to 65 mg/kg streptozotocin (STZ) and left anterior descending (LAD) coronary artery ligation. ST-segment elevation, heart rate, left ventricular systolic pressure (LVSP) and LV end-diastolic pressure (LVEDP) were measured. Serum creatinine kinase-MB (CK-MB) and cardiac troponin T (cTnT) levels were examined by ELISA. Infarct size and apoptosis were measured by triphenyltetrazolium chloride staining and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assay. Pathological changes were evaluated by hematoxylin and eosin staining. H9c2 cells were used to establish an in vitro model of diabetes complicated by MI. Following CHOP knockdown, cell viability, cell cycle distribution and apoptosis were examined by Cell Counting Kit-8 assay, flow cytometry and Hoechst staining. Glucose-regulated protein 78 (GRP78), CHOP, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), endoplasmic reticulum oxidoreductase 1 (Ero1)-α, Ero1β and protein disulfide isomerase (PDI) levels in both myocardial tissues and H9c2 cells were determined by western blotting. In the present study, diabetes complicated by MI promoted ST-segment elevation and myocardial apoptosis, increased infarct size, induced pathological changes and elevated LVEDP, CK-MB, cTnT, GRP78, CHOP, Bax, Ero1α, Ero1β and PDI; however, it decreased heart rate, LVSP and Bcl-2. Additionally, high glucose combined with hypoxic treatment reduced cell viability, induced cell cycle arrest at G1 phase, promoted cell apoptosis, and activated the GRP78/CHOP and Ero1/PDI signaling pathways, which were reversed by CHOP knockdown. Thus, CHOP may be an effective therapeutic target for the treatment of diabetes complicated by MI.
Collapse
Affiliation(s)
- Wenqi Yang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Fang Wu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ting Luo
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuelan Zhang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
102
|
Kryshtafovych A, Albrecht R, Baslé A, Bule P, Caputo AT, Carvalho AL, Chao KL, Diskin R, Fidelis K, Fontes CMGA, Fredslund F, Gilbert HJ, Goulding CW, Hartmann MD, Hayes CS, Herzberg O, Hill JC, Joachimiak A, Kohring GW, Koning RI, Lo Leggio L, Mangiagalli M, Michalska K, Moult J, Najmudin S, Nardini M, Nardone V, Ndeh D, Nguyen TH, Pintacuda G, Postel S, van Raaij MJ, Roversi P, Shimon A, Singh AK, Sundberg EJ, Tars K, Zitzmann N, Schwede T. Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016). Proteins 2018; 86 Suppl 1:27-50. [PMID: 28960539 PMCID: PMC5820184 DOI: 10.1002/prot.25392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022]
Abstract
The functional and biological significance of the selected CASP12 targets are described by the authors of the structures. The crystallographers discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP12 experiment.
Collapse
Affiliation(s)
- Andriy Kryshtafovych
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California, 95616
| | - Reinhard Albrecht
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Pedro Bule
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Alessandro T Caputo
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Ana Luisa Carvalho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Cien⁁cias e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Kinlin L Chao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Krzysztof Fidelis
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California, 95616
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Folmer Fredslund
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry/Pharmaceutical Sciences, University of California Irvine, Irvine, California, 92697
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology/Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, 93106
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742
| | - Johan C Hill
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Andrzej Joachimiak
- Argonne National Laboratory, Midwest Center for Structural Genomics/Structural Biology Center, Biosciences Division, Argonne, Illinois, 60439
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| | - Gert-Wieland Kohring
- Microbiology, Saarland University, Campus Building A1.5, Saarbrücken, Saarland, D-66123, Germany
| | - Roman I Koning
- Netherlands Centre for Electron Nanoscopy, Institute of Biology Leiden, Leiden University, 2333, CC Leiden, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, 20126, Italy
| | - Karolina Michalska
- Argonne National Laboratory, Midwest Center for Structural Genomics/Structural Biology Center, Biosciences Division, Argonne, Illinois, 60439
| | - John Moult
- Department of Cell Biology and Molecular genetics, University of Maryland, 9600 Gudelsky Drive, Institute for Bioscience and Biotechnology Research, Rockville, Maryland, 20850
| | - Shabir Najmudin
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Portugal, Lisboa
| | - Marco Nardini
- Department of Biosciences, University of Milano, Milano, 20133, Italy
| | - Valentina Nardone
- Department of Biosciences, University of Milano, Milano, 20133, Italy
| | - Didier Ndeh
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Thanh-Hong Nguyen
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia (CSIC), calle Darwin 3, Madrid, 28049, Spain
| | - Guido Pintacuda
- Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Villeurbanne, 69100, France
| | - Sandra Postel
- University of Maryland School of Medicine, Institute of Human Virology, Baltimore, Maryland, 21201
| | - Mark J van Raaij
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia (CSIC), calle Darwin 3, Madrid, 28049, Spain
| | - Pietro Roversi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, University Road, Leicester, LE1 7RN, UK
| | - Amir Shimon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Abhimanyu K Singh
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Eric J Sundberg
- Department of Medicine and Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Human Virology, Baltimore, Maryland, 21201
| | - Kaspars Tars
- Latvian Biomedical Research and Study Center, Rātsupītes 1, Riga, LV1067, Latvia
- Faculty of Biology, Department of Molecular Biology, University of Latvia, Jelgavas 1, Riga, LV-1004, Latvia
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, England, United Kingdom
| | - Torsten Schwede
- Biozentrum/SIB Swiss Institute of Bioinformatics, Klingelbergstrasse 50, Basel, 4056, Switzerland
| |
Collapse
|
103
|
Parakh S, Jagaraj CJ, Vidal M, Ragagnin AMG, Perri ER, Konopka A, Toth RP, Galper J, Blair IP, Thomas CJ, Walker AK, Yang S, Spencer DM, Atkin JD. ERp57 is protective against mutant SOD1-induced cellular pathology in amyotrophic lateral sclerosis. Hum Mol Genet 2018; 27:1311-1331. [DOI: 10.1093/hmg/ddy041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sonam Parakh
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Cyril J Jagaraj
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Marta Vidal
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Audrey M G Ragagnin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Emma R Perri
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Anna Konopka
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Reka P Toth
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jasmin Galper
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ian P Blair
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Colleen J Thomas
- Department of Physiology, Anatomy and Microbiology, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Adam K Walker
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Shu Yang
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Damian M Spencer
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
104
|
Li H, Yang K, Wang W, Niu Y, Li J, Dong Y, Liu Y, Wang CC, Wang L, Liang H. Crystal and solution structures of human protein-disulfide isomerase-like protein of the testis (PDILT) provide insight into its chaperone activity. J Biol Chem 2018; 293:1192-1202. [PMID: 29203529 PMCID: PMC5787798 DOI: 10.1074/jbc.m117.797290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/01/2017] [Indexed: 01/07/2023] Open
Abstract
Protein-disulfide isomerase-like protein of the testis (PDILT), a member of the protein-disulfide isomerase family, is a chaperone essential for the folding of spermatogenesis-specific proteins in male postmeiotic germ cells. However, the structural mechanisms that regulate the chaperone function of PDILTs are unknown. Here, we report the structures of human PDILT (hPDILT) determined by X-ray crystallography to 2.4 Å resolution and small-angle X-ray scattering (SAXS). Distinct from previously reported U-like structures of related PDI family proteins, our structures revealed that hPDILT folds into a compact L-like structure in crystals and into an extended chain-like structure in solution. The hydrophobic regions and the hydrophobic pockets in hPDILT, which are important for substrate recognition, were clearly delineated in the crystal structure. Moreover, our results of the SAXS analysis and of structure-based substitutions and truncations indicated that the C-terminal tail in hPDILT is required for suppression of aggregation of denatured proteins, suggesting that the tail is crucial for the chaperone activity of PDILT. Taken together, our findings have identified the critical regions and conformational changes of PDILT that enable and control its activity. These results advance our understanding of the structural mechanisms involved in the chaperone activity of PDILT.
Collapse
Affiliation(s)
- Huanhuan Li
- From the National Laboratory of Biomacromolecules, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and
| | - Kai Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and
| | - Wenjia Wang
- the Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences and
| | - Yingbo Niu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and
| | - Jun Li
- From the National Laboratory of Biomacromolecules, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and
| | - Yuhui Dong
- the Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences and
| | - Yingfang Liu
- From the National Laboratory of Biomacromolecules, ,the School of Medicine and
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, ,the College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, and , To whom correspondence may be addressed. E-mail:
| | - Huanhuan Liang
- From the National Laboratory of Biomacromolecules, ,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China, To whom correspondence may be addressed. E-mail:
| |
Collapse
|
105
|
Campos JLO, Doratioto TR, Videira NB, Ribeiro Filho HV, Batista FAH, Fattori J, Indolfo NDC, Nakahira M, Bajgelman MC, Cvoro A, Laurindo FRM, Webb P, Figueira ACM. Protein Disulfide Isomerase Modulates the Activation of Thyroid Hormone Receptors. Front Endocrinol (Lausanne) 2018; 9:784. [PMID: 30671024 PMCID: PMC6331412 DOI: 10.3389/fendo.2018.00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormone receptors (TRs) are responsible for mediating thyroid hormone (T3 and T4) actions at a cellular level. They belong to the nuclear receptor (NR) superfamily and execute their main functions inside the cell nuclei as hormone-regulated transcription factors. These receptors also exhibit so-called "non-classic" actions, for which other cellular proteins, apart from coregulators inside nuclei, regulate their activity. Aiming to find alternative pathways of TR modulation, we searched for interacting proteins and found that PDIA1 interacts with TRβ in a yeast two-hybrid screening assay. The functional implications of PDIA1-TR interactions are still unclear; however, our co-immunoprecipitation (co-IP) and fluorescence assay results showed that PDI was able to bind both TR isoforms in vitro. Moreover, T3 appears to have no important role in these interactions in cellular assays, where PDIA1 was able to regulate transcription of TRα and TRβ-mediated genes in different ways depending on the promoter region and on the TR isoform involved. Although PDIA1 appears to act as a coregulator, it binds to a TR surface that does not interfere with coactivator binding. However, the TR:PDIA1 complex affinity and activation are different depending on the TR isoform. Such differences may reflect the structural organization of the PDIA1:TR complex, as shown by models depicting an interaction interface with exposed cysteines from both proteins, suggesting that PDIA1 might modulate TR by its thiol reductase/isomerase activity.
Collapse
Affiliation(s)
- Jessica L. O. Campos
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Tabata R. Doratioto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Natalia B. Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Helder V. Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Fernanda A. H. Batista
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Juliana Fattori
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Nathalia de C. Indolfo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- Graduation Program of Biosciences and Bioactive Products Technology, Institute of Biology, State University of Campinas (Unicamp), São Paulo, Brazil
| | - Marcel Nakahira
- Institute of Chemistry (IQ), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Marcio C. Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
| | - Aleksandra Cvoro
- Genomic Medicine, The Methodist Hospital Research Institute, Houston, TX, United States
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paul Webb
- California Institute for Regenerative Medicine, Oakland, CA, United States
| | - Ana Carolina M. Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research Energy and Materials (CNPEM), São Paulo, Brazil
- *Correspondence: Ana Carolina M. Figueira
| |
Collapse
|
106
|
Ellgaard L, Sevier CS, Bulleid NJ. How Are Proteins Reduced in the Endoplasmic Reticulum? Trends Biochem Sci 2018; 43:32-43. [PMID: 29153511 PMCID: PMC5751730 DOI: 10.1016/j.tibs.2017.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
The reversal of thiol oxidation in proteins within the endoplasmic reticulum (ER) is crucial for protein folding, degradation, chaperone function, and the ER stress response. Our understanding of this process is generally poor but progress has been made. Enzymes performing the initial reduction of client proteins, as well as the ultimate electron donor in the pathway, have been identified. Most recently, a role for the cytosol in ER protein reduction has been revealed. Nevertheless, how reducing equivalents are transferred from the cytosol to the ER lumen remains an open question. We review here why proteins are reduced in the ER, discuss recent data on catalysis of steps in the pathway, and consider the implications for redox homeostasis within the early secretory pathway.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Carolyn S Sevier
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-2703, USA.
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
107
|
The role of Protein Disulfide Isomerase and thiol bonds modifications in activation of integrin subunit alpha11. Biochem Biophys Res Commun 2018; 495:1635-1641. [DOI: 10.1016/j.bbrc.2017.11.186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 11/28/2017] [Indexed: 11/21/2022]
|
108
|
Satoh T, Kato K. Structural Aspects of ER Glycoprotein Quality-Control System Mediated by Glucose Tagging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:149-169. [PMID: 30484248 DOI: 10.1007/978-981-13-2158-0_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N-linked oligosaccharides attached to proteins act as tags for glycoprotein quality control, ensuring their appropriate folding and trafficking in cells. Interactions with a variety of intracellular lectins determine glycoprotein fates. Monoglucosylated glycoforms are the hallmarks of incompletely folded glycoproteins in the protein quality-control system, in which glucosidase II and UDP-glucose/glycoprotein glucosyltransferase are, respectively, responsible for glucose trimming and attachment. In this review, we summarize a recently emerging view of the structural basis of the functional mechanisms of these key enzymes as well as substrate N-linked oligosaccharides exhibiting flexible structures, as revealed by applying a series of biophysical techniques including small-angle X-ray scattering, X-ray crystallography, high-speed atomic force microscopy , electron microscopy , and computational simulation in conjunction with NMR spectroscopy.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan. .,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|
109
|
Wang X, Xue G, Song M, Xu P, Chen D, Yuan C, Lin L, Flaumenhaft R, Li J, Huang M. Molecular basis of rutin inhibition of protein disulfide isomerase (PDI) by combinedin silicoand experimental methods. RSC Adv 2018; 8:18480-18491. [PMID: 35541126 PMCID: PMC9080521 DOI: 10.1039/c8ra02683a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/02/2018] [Indexed: 01/13/2023] Open
Abstract
Protein disulfide isomerase (PDI) is a founding member of the thiol isomerase family, and is recently found to play critical roles in thrombus formation. The development of effective PDI inhibitors is of great significance, and attracts strong interest. We previously showed that rutin bound directly to PDI and inhibited PDI activities, leading to the suppression of platelet aggregation and fibrin generation in a mouse model. A close analog of rutin, isoquercetin, is currently in advanced phase clinical trials. However, the molecular interaction between rutin and PDI is unknown and is difficult to study by X-ray crystallography due to the weak interaction. Here, we generated a molecular model of PDI:rutin complex by molecular docking and thorough molecular dynamics (MD) simulations. We then validated the complex model through a number of different experimental methods. We mutated the key residues predicted by the model and analyzed the mutants by an optimized isothermal titration calorimetry (ITC) method and a functional assay (insulin reduction assay). The results consistently showed that the PDI residues H354, L355 and E359 are important in the binding of rutin. These residues are next to the canonical major substrate binding site of the b′ domain, and were not conserved across the members of thiol isomerases, explaining the specificity of rutin for PDI among vascular thiol isomerases. Furthermore, the inhibitory activities of three rutin analogues were evaluated using an insulin reduction assay. The results supported that the second sugar ring at the side chain of rutin was not necessary for the binding to PDI. Together, this work provides the structural basis for the inhibitory mechanism of rutin to PDI, and offers a promising strategy for the design of new generation inhibitors with higher binding affinity to PDI for therapeutic applications. Rutin binds and inhibits PDI at b′x domain, H354 is one of the main binding sites.![]()
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Guangpu Xue
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- China
| | - Meiru Song
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- China
| | - Peng Xu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Dan Chen
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- China
| | - Cai Yuan
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou 350116
- China
| | - Lin Lin
- Beth Israel Deaconess Medical Center
- Harvard Medical School
- Boston
- USA
| | | | - Jinyu Li
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| |
Collapse
|
110
|
Habash SS, Sobczak M, Siddique S, Voigt B, Elashry A, Grundler FMW. Identification and characterization of a putative protein disulfide isomerase (HsPDI) as an alleged effector of Heterodera schachtii. Sci Rep 2017; 7:13536. [PMID: 29051538 PMCID: PMC5648851 DOI: 10.1038/s41598-017-13418-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/21/2017] [Indexed: 12/27/2022] Open
Abstract
The plant-parasitic nematode Heterodera schachtii is an obligate biotroph that induces syncytial feeding sites in roots of its hosts. Nematodes produce effectors that are secreted into the host and facilitate infection process. Here we identified H. schachtii protein disulphide isomerase (HsPDI) as a putative effector that interferes with the host’s redox status. In situ hybridization showed that HsPdi is specifically localized within esophageal glands of pre-parasitic second stage juveniles (J2). HsPdi is up-regulated in the early parasitic J2s. Silencing of HsPdi by RNA interference in the J2s hampers their development and leads to structural malfunctions in associated feeding sites induced in Arabidopsis roots. Expression of HsPDI in Arabidopsis increases plant’s susceptibility towards H. schachtii. HsPdi expression is up-regulated in the presence of exogenous H2O2, whereas HsPdi silencing results in increased mortality under H2O2 stress. Stable expression of HsPDI in Arabidopsis plants decreases ROS burst induced by flg22. Transiently expressed HsPDI in N. benthamiana leaves is localized in the apoplast. HsPDI plays an important role in the interaction between nematode and plant, probably through inducing local changes in the redox status of infected host tissue. It also contributes to protect the nematode from exogenous H2O2 stress.
Collapse
Affiliation(s)
- Samer S Habash
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Miroslaw Sobczak
- Department of Botany, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, PL-02787, Warsaw, Poland
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Boris Voigt
- Rheinische Friedrich-Wilhelms-University of Bonn, Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, Kirschallee 1, D-53115, Bonn, Germany
| | - Abdelnaser Elashry
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany.,Strube Research GmbH & Co. KG, Hauptstraße 1, 38387, Söllingen, Germany
| | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany.
| |
Collapse
|
111
|
Bechtel TJ, Weerapana E. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 2017; 17. [PMID: 28044432 DOI: 10.1002/pmic.201600391] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of the functional roles of disulfide bonds and their relevance to human disease. The critical roles of disulfide bonds in protein structure stabilization and redox regulation of protein activity are addressed. Disulfide bonds are essential to the structural stability of many proteins within the secretory pathway and can exist as intramolecular or inter-domain disulfides. The proper formation of these bonds often relies on folding chaperones and oxidases such as members of the protein disulfide isomerase (PDI) family. Many of the PDI family members catalyze disulfide-bond formation, reduction, and isomerization through redox-active disulfides and perturbed PDI activity is characteristic of carcinomas and neurodegenerative diseases. In addition to catalytic function in oxidoreductases, redox-active disulfides are also found on a diverse array of cellular proteins and act to regulate protein activity and localization in response to oxidative changes in the local environment. These redox-active disulfides are either dynamic intramolecular protein disulfides or mixed disulfides with small-molecule thiols generating glutathionylation and cysteinylation adducts. The oxidation and reduction of redox-active disulfides are mediated by cellular reactive oxygen species and activity of reductases, such as glutaredoxin and thioredoxin. Dysregulation of cellular redox conditions and resulting changes in mixed disulfide formation are directly linked to diseases such as cardiovascular disease and Parkinson's disease.
Collapse
Affiliation(s)
- Tyler J Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
112
|
Yoo DY, Cho SB, Jung HY, Kim W, Choi GM, Won MH, Kim DW, Hwang IK, Choi SY, Moon SM. Tat-protein disulfide-isomerase A3: a possible candidate for preventing ischemic damage in the spinal cord. Cell Death Dis 2017; 8:e3075. [PMID: 28981094 PMCID: PMC5680594 DOI: 10.1038/cddis.2017.473] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/17/2017] [Indexed: 01/24/2023]
Abstract
In the present study, we searched for possible candidates that can prevent ischemic damage in the rabbit spinal cord. For this study, we used two-dimensional gel electrophoresis followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, in sham- and ischemia-operated animals. As the level of protein disulfide-isomerase A3 (PDIA3) significantly decreased 3 h after ischemia/reperfusion, we further investigated its possible role against ischemic damage using an in vitro spinal cord cell line and in vivo spinal cord ischemic model. The administration of Tat-PDIA3 significantly reduced the hydrogen peroxide-induced formation of reactive oxygen species and cell death, based on terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling and a colorimetric WST-1 assay. Further, Tat-PDIA3 significantly ameliorated the ischemia-induced deficits in motor function, based on Tarlov's criteria, 24-72 h after ischemia/reperfusion, as well as the degeneration of motor neurons in the ventral horn 72 h after ischemia/reperfusion. Tat-PDIA3 administration also reduced the ischemia-induced activation of microglia and lipid peroxidation in the motor neurons 72 h after ischemia/reperfusion. PDIA3 also potentially ameliorated the ischemia-induced increase in oxidative markers in serum and decreased the activity of Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, and glutathione peroxidase in spinal cord homogenates, 24 h and 72 h after ischemia/reperfusion. These results suggest that Tat-PDIA3 could be used to protect spinal cord neurons from ischemic damage, due to its modulatory action on the oxidative/anti-oxidative balance. Tat-PDIA3 could be applicable to protects neurons from the ischemic damage induced by thoracoabdominal aorta obstruction.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Su Bin Cho
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Goang-Min Choi
- Departments of Thoracic and Cardiovascular Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, South Korea
| |
Collapse
|
113
|
Satoh T, Song C, Zhu T, Toshimori T, Murata K, Hayashi Y, Kamikubo H, Uchihashi T, Kato K. Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT. Sci Rep 2017; 7:12142. [PMID: 28939828 PMCID: PMC5610325 DOI: 10.1038/s41598-017-12283-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/06/2017] [Indexed: 01/11/2023] Open
Abstract
In the endoplasmic reticulum (ER), a protein quality control system facilitates the efficient folding of newly synthesised proteins. In this system, a series of N-linked glycan intermediates displayed on the protein surface serve as quality tags. The ER folding-sensor enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) acts as a gatekeeper in the ER quality control system by specifically catalysing monoglucosylation onto incompletely folded glycoproteins, thereby enabling them to interact with lectin-chaperone complexes. Here we characterise the dynamic structure of this enzyme. Our crystallographic data demonstrate that the sensor region is composed of four thioredoxin-like domains followed by a β-rich domain, which are arranged into a C-shaped structure with a large central cavity, while the C-terminal catalytic domain undergoes a ligand-dependent conformational alteration. Furthermore, small-angle X-ray scattering, cryo-electron microscopy and high-speed atomic force microscopy have demonstrated that UGGT has a flexible modular structure in which the smaller catalytic domain is tethered to the larger folding-sensor region with variable spatial arrangements. These findings provide structural insights into the working mechanism whereby UGGT operates as a folding-sensor against a variety of glycoprotein substrates through its flexible modular structure possessing extended hydrophobic surfaces for the recognition of unfolded substrates.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
- JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Chihong Song
- National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Tong Zhu
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
- Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Physical Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takayasu Toshimori
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Yugo Hayashi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
- Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- School of Physical Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
114
|
'Something in the way she moves': The functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1383-1394. [PMID: 28844745 PMCID: PMC5654723 DOI: 10.1016/j.bbapap.2017.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 08/10/2017] [Indexed: 01/15/2023]
Abstract
Protein disulfide isomerase (PDI) has diverse functions in the endoplasmic reticulum as catalyst of redox transfer, disulfide isomerization and oxidative protein folding, as molecular chaperone and in multi-subunit complexes. It interacts with an extraordinarily wide range of substrate and partner proteins, but there is only limited structural information on these interactions. Extensive evidence on the flexibility of PDI in solution is not matched by any detailed picture of the scope of its motion. A new rapid method for simulating the motion of large proteins provides detailed molecular trajectories for PDI demonstrating extensive changes in the relative orientation of its four domains, great variation in the distances between key sites and internal motion within the core ligand-binding domain. The review shows that these simulations are consistent with experimental evidence and provide insight into the functional capabilities conferred by the extensive flexible motion of PDI.
Collapse
|
115
|
Touz MC, Zamponi N. Sorting without a Golgi complex. Traffic 2017; 18:637-645. [DOI: 10.1111/tra.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Maria C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
116
|
Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint. Proc Natl Acad Sci U S A 2017; 114:8544-8549. [PMID: 28739903 DOI: 10.1073/pnas.1703682114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glycoproteins traversing the eukaryotic secretory pathway begin life in the endoplasmic reticulum (ER), where their folding is surveyed by the 170-kDa UDP-glucose:glycoprotein glucosyltransferase (UGGT). The enzyme acts as the single glycoprotein folding quality control checkpoint: it selectively reglucosylates misfolded glycoproteins, promotes their association with ER lectins and associated chaperones, and prevents premature secretion from the ER. UGGT has long resisted structural determination and sequence-based domain boundary prediction. Questions remain on how this single enzyme can flag misfolded glycoproteins of different sizes and shapes for ER retention and how it can span variable distances between the site of misfold and a glucose-accepting N-linked glycan on the same glycoprotein. Here, crystal structures of a full-length eukaryotic UGGT reveal four thioredoxin-like (TRXL) domains arranged in a long arc that terminates in two β-sandwiches tightly clasping the glucosyltransferase domain. The fold of the molecule is topologically complex, with the first β-sandwich and the fourth TRXL domain being encoded by nonconsecutive stretches of sequence. In addition to the crystal structures, a 15-Å cryo-EM reconstruction reveals interdomain flexibility of the TRXL domains. Double cysteine point mutants that engineer extra interdomain disulfide bridges rigidify the UGGT structure and exhibit impaired activity. The intrinsic flexibility of the TRXL domains of UGGT may therefore endow the enzyme with the promiscuity needed to recognize and reglucosylate its many different substrates and/or enable reglucosylation of N-linked glycans situated at variable distances from the site of misfold.
Collapse
|
117
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
118
|
Nakao H, Seko A, Ito Y, Sakono M. PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin. Biochem Biophys Res Commun 2017; 487:763-767. [DOI: 10.1016/j.bbrc.2017.04.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 11/16/2022]
|
119
|
Kung PH, Hsieh PW, Lin YT, Lee JH, Chen IH, Wu CC. HPW-RX40 prevents human platelet activation by attenuating cell surface protein disulfide isomerases. Redox Biol 2017; 13:266-277. [PMID: 28600983 PMCID: PMC5466588 DOI: 10.1016/j.redox.2017.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
Protein disulfide isomerase (PDI) present at platelet surfaces has been considered to play an important role in the conformational change and activation of the integrin glycoprotein IIb/IIIa (GPIIb/IIIa) and thus enhances platelet aggregation. Growing evidences indicated that platelet surface PDI may serve as a potential target for developing of a new class of antithrombotic agents. In the present study, we investigated the effects of HPW-RX40, a chemical derivative of β-nitrostyrene, on platelet activation and PDI activity. HPW-RX40 inhibited platelet aggregation, GPIIb/IIIa activation, and P-selectin expression in human platelets. Moreover, HPW-RX40 reduced thrombus formation in human whole blood under flow conditions, and protects mice from FeCl3-induced carotid artery occlusion. HPW-RX40 inhibited the activity of recombinant PDI family proteins (PDI, ERp57, and ERp5) as well as suppressed cell surface PDI activity of platelets in a reversible manner. Exogenous addition of PDI attenuated the inhibitory effect of HPW-RX40 on GPIIb/IIIa activation. Structure-based molecular docking simulations indicated that HPW-RX40 binds to the active site of PDI by forming hydrogen bonds. In addition, HPW-RX40 neither affected the cell viability nor induced endoplasmic reticulum stress in human cancer A549 and MDA-MB-231 cells. Taken together, our results suggest that HPW-RX40 is a reversible and non-cytotoxic PDI inhibitor with antiplatelet effects, and it may have a potential for development of novel antithrombotic agents.
Collapse
Affiliation(s)
- Po-Hsiung Kung
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Ting Lin
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Hau Lee
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Hua Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
120
|
Ping S, Liu S, Zhou Y, Li Z, Li Y, Liu K, Bardeesi AS, Wang L, Chen J, Deng L, Wang J, Wang H, Chen D, Zhang Z, Sheng P, Li C. Protein disulfide isomerase-mediated apoptosis and proliferation of vascular smooth muscle cells induced by mechanical stress and advanced glycosylation end products result in diabetic mouse vein graft atherosclerosis. Cell Death Dis 2017; 8:e2818. [PMID: 28542133 PMCID: PMC5520728 DOI: 10.1038/cddis.2017.213] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/12/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Protein disulfide isomerase (PDI) involves cell survival and death. Whether PDI mediates mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs) -triggered simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) is unknown. Here, we hypothesized that different expression levels of PDI trigger completely opposite cell fates among the different VSMC subtypes. Mouse veins were grafted into carotid arteries of non-diabetic and diabetic mice for 8 weeks; the grafted veins underwent simultaneous increases in proliferation and apoptosis, which triggered vein graft arterializations in non-diabetic or atherosclerosis in diabetic mice. A higher rate of proliferation and apoptosis was seen in the diabetic group. SS and/or AGEs stimulated the quiescent cultured VSMCs, resulting in simultaneous increases in proliferation and apoptosis; they could induce increased PDI activation and expression. Both in vivo and in vitro, the proliferating VSMCs indicated weak co-expression of PDI and SM-α-actin while apoptotic or dead cells showed strong co-expression of both. Either SS or AGEs rapidly upregulated the expression of PDI, NOX1 and ROS, and their combination had synergistic effects. Inhibiting PDI simultaneously suppressed the proliferation and apoptosis of VSMCs, while inhibition of SM-α-actin with cytochalasin D led to increased apoptosis and cleaved caspases-3 but had no effect on proliferation. In conclusion, different expression levels of PDI in VSMCs induced by SS and/or AGEs triggered a simultaneous increase in proliferation and apoptosis, accelerated vein graft arterializations or atherosclerosis, leading us to propose PDI as a novel target for the treatment of vascular remodeling and diseases.
Collapse
Affiliation(s)
- Suning Ping
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhuan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziqing Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhuang Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kefeng Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Adham Sa Bardeesi
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingjing Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhengyu Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Histology and Embryology, School of Basic Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
121
|
Bin BH, Bhin J, Seo J, Kim SY, Lee E, Park K, Choi DH, Takagishi T, Hara T, Hwang D, Koseki H, Asada Y, Shimoda S, Mishima K, Fukada T. Requirement of Zinc Transporter SLC39A7/ZIP7 for Dermal Development to Fine-Tune Endoplasmic Reticulum Function by Regulating Protein Disulfide Isomerase. J Invest Dermatol 2017; 137:1682-1691. [PMID: 28545780 DOI: 10.1016/j.jid.2017.03.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/04/2017] [Accepted: 03/10/2017] [Indexed: 11/30/2022]
Abstract
Skin is the first area that manifests zinc deficiency. However, the molecular mechanisms by which zinc homeostasis affects skin development remain largely unknown. Here, we show that zinc-regulation transporter-/iron-regulation transporter-like protein 7 (ZIP7) localized to the endoplasmic reticulum plays critical roles in connective tissue development. Mice lacking the Slc39a7/Zip7 gene in collagen 1-expressing tissue exhibited dermal dysplasia. Ablation of ZIP7 in mesenchymal stem cells inhibited cell proliferation thereby preventing proper dermis formation, indicating that ZIP7 is required for dermal development. We also found that mesenchymal stem cells lacking ZIP7 accumulated zinc in the endoplasmic reticulum, which triggered zinc-dependent aggregation and inhibition of protein disulfide isomerase, leading to endoplasmic reticulum dysfunction. These results suggest that ZIP7 is necessary for endoplasmic reticulum function in mesenchymal stem cells and, as such, is essential for dermal development.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan.
| | - Jinhyuk Bhin
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Juyeon Seo
- Amorepacific R&D Unit, Beauty in Longevity Science Research Division, Beauty Food Research Team, Yongin, Republic of Korea
| | - Se-Young Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Eunyoung Lee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyuhee Park
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Dong-Hwa Choi
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Teruhisa Takagishi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takafumi Hara
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Daehee Hwang
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoshinobu Asada
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Shinji Shimoda
- Department of Oral Anatomy-1, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Toshiyuki Fukada
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan; Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
122
|
Chittoor B, Krishnarjuna B, Morales RAV, MacRaild CA, Sadek M, Leung EWW, Robinson SD, Pennington MW, Norton RS. The Single Disulfide-Directed β-Hairpin Fold. Dynamics, Stability, and Engineering. Biochemistry 2017; 56:2455-2466. [PMID: 28437072 DOI: 10.1021/acs.biochem.7b00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Grafting bioactive peptide sequences onto small cysteine-rich scaffolds is a promising strategy for enhancing their stability and value as novel peptide-based therapeutics. However, correctly folded disulfide-rich peptides can be challenging to produce by either recombinant or synthetic means. The single disulfide-directed β-hairpin (SDH) fold, first observed in contryphan-Vc1, provides a potential alternative to complex disulfide-rich scaffolds. We have undertaken recombinant production of full-length contryphan-Vc1 (rCon-Vc1[Z1Q]) and a truncated analogue (rCon-Vc11-22[Z1Q]), analyzed the backbone dynamics of rCon-Vc1[Z1Q], and probed the conformational and proteolytic stability of these peptides to evaluate the potential of contryphan-Vc1 as a molecular scaffold. Backbone 15N relaxation measurements for rCon-Vc1[Z1Q] indicate that the N-terminal domain of the peptide is ordered up to Thr19, whereas the remainder of the C-terminal region is highly flexible. The solution structure of truncated rCon-Vc11-22[Z1Q] was similar to that of the full-length peptide, indicating that the flexible C-terminus does not have any effect on the structured domain of the peptide. Contryphan-Vc1 exhibited excellent proteolytic stability against trypsin and chymotrypsin but was susceptible to pepsin digestion. We have investigated whether contryphan-Vc1 can accept a bioactive epitope while maintaining the structure of the peptide by introducing peptide sequences based on the DINNN motif of inducible nitric oxide synthase. We show that sCon-Vc11-22[NNN12-14] binds to the iNOS-binding protein SPSB2 with an affinity of 1.3 μM while maintaining the SDH fold. This study serves as a starting point in utilizing the SDH fold as a peptide scaffold.
Collapse
Affiliation(s)
- Balasubramanyam Chittoor
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Maiada Sadek
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Eleanor W W Leung
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Samuel D Robinson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | | | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| |
Collapse
|
123
|
Cheng HP, Liu Q, Li Y, Li XD, Zhu CY. The Inhibitory Effect of PDIA6 Downregulation on Bladder Cancer Cell Proliferation and Invasion. Oncol Res 2017; 25:587-593. [PMID: 27760590 PMCID: PMC7841030 DOI: 10.3727/096504016x14761811155298] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerases A6 (PDIA6) belongs to the PDI family. Recently, PDIA6 was found to have a close association with various cancers. However, there has been little investigation into the biological functions of PDIA6 in bladder cancer (BC). In this study, we explored the expression pattern and functional significance of PDIA6 in BC. We found that PDIA6 was overexpressed in BC tissues and cell lines. The in vitro study showed that PDIA6 downregulation significantly inhibited BC proliferation and invasion. In addition, the in vivo experiment demonstrated that PDIA6 downregulation decreased the volume, weight, and metastasis of tumors. Furthermore, PDIA6 downregulation reduced the protein expression of β-catenin, cyclin D1, and c-Myc and thus suppressed the Wnt/β-catenin signaling pathway. In conclusion, we suggest that PDIA6 could be targeted for the treatment of BC.
Collapse
Affiliation(s)
- He-Peng Cheng
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Qian Liu
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Yang Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Xiao-Dong Li
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| | - Chao-Yang Zhu
- Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan Province, P.R. China
| |
Collapse
|
124
|
Selles B, Zannini F, Couturier J, Jacquot JP, Rouhier N. Atypical protein disulfide isomerases (PDI): Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A. PLoS One 2017; 12:e0174753. [PMID: 28362814 PMCID: PMC5375154 DOI: 10.1371/journal.pone.0174753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/14/2017] [Indexed: 11/18/2022] Open
Abstract
Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds. We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-b’-a’ and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A. We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain. The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution.
Collapse
Affiliation(s)
- Benjamin Selles
- UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | - Flavien Zannini
- UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | - Jérémy Couturier
- UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | - Jean-Pierre Jacquot
- UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
| | - Nicolas Rouhier
- UMR 1136 Interactions Arbres/Microorganismes, Université de Lorraine/ INRA, Faculté des Sciences et Technologies, Vandoeuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
125
|
Assembly of the elongated collagen prolyl 4-hydroxylase α2β2 heterotetramer around a central α2 dimer. Biochem J 2017; 474:751-769. [DOI: 10.1042/bcj20161000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 11/17/2022]
Abstract
Collagen prolyl 4-hydroxylase (C-P4H), an α2β2 heterotetramer, is a crucial enzyme for collagen synthesis. The α-subunit consists of an N-terminal dimerization domain, a central peptide substrate-binding (PSB) domain, and a C-terminal catalytic (CAT) domain. The β-subunit [also known as protein disulfide isomerase (PDI)] acts as a chaperone, stabilizing the functional conformation of C-P4H. C-P4H has been studied for decades, but its structure has remained elusive. Here, we present a three-dimensional small-angle X-ray scattering model of the entire human C-P4H-I heterotetramer. C-P4H is an elongated, bilobal, symmetric molecule with a length of 290 Å. The dimerization domains from the two α-subunits form a protein–protein dimer interface, assembled around the central antiparallel coiled-coil interface of their N-terminal α-helices. This region forms a thin waist in the bilobal tetramer. The two PSB/CAT units, each complexed with a PDI/β-subunit, form two bulky lobes pointing outward from this waist region, such that the PDI/β-subunits locate at the far ends of the βααβ complex. The PDI/β-subunit interacts extensively with the CAT domain. The asymmetric shape of two truncated C-P4H-I variants, also characterized in the present study, agrees with this assembly. Furthermore, data from these truncated variants show that dimerization between the α-subunits has an important role in achieving the correct PSB–CAT assembly competent for catalytic activity. Kinetic assays with various proline-rich peptide substrates and inhibitors suggest that, in the competent assembly, the PSB domain binds to the procollagen substrate downstream from the CAT domain.
Collapse
|
126
|
Okuda A, Matsusaki M, Masuda T, Urade R. Identification and characterization of GmPDIL7, a soybean ER membrane-bound protein disulfide isomerase family protein. FEBS J 2017; 284:414-428. [PMID: 27960051 DOI: 10.1111/febs.13984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/04/2016] [Accepted: 12/05/2016] [Indexed: 01/19/2023]
Abstract
Most proteins synthesized in the endoplasmic reticulum (ER) possess intramolecular and intermolecular disulfide bonds, which play an important role in the conformational stability and function of proteins. Hence, eukaryotic cells contain protein disulfide bond formation pathways such as the protein disulfide isomerase (PDI)-ER oxidoreductin 1 (Ero1) system in the ER lumen. In this study, we identified soybean PDIL7 (GmPDIL7), a novel soybean ER membrane-bound PDI family protein, and determined its enzymatic properties. GmPDIL7 has a putative N-terminal signal sequence, a thioredoxin domain with an active center motif (CGHC), and a putative C-terminal transmembrane region. Likewise, we demonstrated that GmPDIL7 is ubiquitously expressed in soybean tissues and is localized in the ER membrane. Furthermore, GmPDIL7 associated with other soybean PDI family proteins in vivo and GmPDIL7 mRNA was slightly upregulated under ER stress. The redox potential of recombinant GmPDIL7 expressed in Escherichia coli was -187 mV, indicating that GmPDIL7 could oxidize unfolded proteins. GmPDIL7 exhibited a dithiol oxidase activity level that was similar to other soybean PDI family proteins. However, the oxidative refolding activity of GmPDIL7 was lower than other soybean PDI family proteins. GmPDIL7 was well oxidized by GmERO1. Taken together, our results indicated that GmPDIL7 primarily plays a role as a supplier of disulfide bonds in nascent proteins for oxidative folding on the ER membrane. DATABASE The nucleotide sequence data for the GmPDIL7 cDNA are available in the DNA Data Bank of Japan (DDBJ) databases under the accession numbers LC158001. ENZYME Protein disulfide isomerase: EC 5.3.4.1.
Collapse
Affiliation(s)
- Aya Okuda
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Motonori Matsusaki
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Taro Masuda
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Reiko Urade
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Uji, Japan
| |
Collapse
|
127
|
Synthesis and Experimental Validation of New PDI Inhibitors with Antiproliferative Activity. J CHEM-NY 2017. [DOI: 10.1155/2017/2370359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein disulfide isomerase (PDI) is a member of the thioredoxin superfamily of redox enzymes. PDI is a multifunctional protein that catalyzes disulfide bond formation, cleavage, and rearrangement in unfolded or misfolded proteins and functions as a chaperone in the endoplasmic reticulum. Besides acting as a protein folding catalyst, several evidences have suggested that PDI can bind small molecules containing, for example, a phenolic structure, which includes the estrogenic one. Increasing studies indicate that PDI is involved in both physiology and pathophysiology of cells and tissues and is involved in the survival and proliferation of different cancers. Propionic acid carbamoyl methyl amides (PACMAs) showed anticancer activity in human ovarian cancer, both in vitro and in vivo, by inhibiting PDI. The inhibition of PDI’s activity may have a therapeutic role, in various diseases, including cancer. In the present study, we designed and synthesized a diversified small library of compounds with the aim of identifying a new class of PDI inhibitors. Most of synthesized compounds showed a good inhibitory potency against PDI and particularly 4-methyl substituted 2,6-di-tert-butylphenol derivatives (8–10) presented an antiproliferative activity in a wide panel of human cancer cell lines, including ovarian ones.
Collapse
|
128
|
Liu G, Wang J, Hou Y, Huang YB, Li CZ, Li L, Hu SQ. Improvements of Modified Wheat Protein Disulfide Isomerases with Chaperone Activity Only on the Processing Quality of Flour. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1840-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
129
|
Kitauchi K, Sakono M. Glycoprotein quality control-related proteins effectively inhibit fibrillation of amyloid beta 1–42. Biochem Biophys Res Commun 2016; 481:227-231. [DOI: 10.1016/j.bbrc.2016.10.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/27/2016] [Indexed: 11/28/2022]
|
130
|
Perri E, Parakh S, Atkin J. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opin Ther Targets 2016; 21:37-49. [PMID: 27786579 DOI: 10.1080/14728222.2016.1254197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There is increasing evidence that endoplasmic reticulum (ER) chaperones Protein Disulphide Isomerase (PDI) and ERp57 (endoplasmic reticulum protein 57) are protective against neurodegenerative diseases related to protein misfolding, including Amyotrophic Lateral Sclerosis (ALS). PDI and ERp57 also possess disulphide interchange activity, in which protein disulphide bonds are oxidized, reduced and isomerized, to form their native conformation. Recently, missense and intronic variants of PDI and ERp57 were associated with ALS, implying that PDI proteins are relevant to ALS pathology. Areas covered: Here, we discuss possible implications of the PDI and ERp57 variants, as well as recent studies describing previously unrecognized roles for PDI and ERp57 in the nervous system. Therapeutics based on PDI may therefore be attractive candidates for ALS. However, in addition to its protective functions, aberrant, toxic roles for PDI have recently been described. These functions need to be fully characterized before effective therapeutic strategies can be designed. Expert opinion: These disease-associated variants of PDI and ERp57 provide additional evidence for an important role for PDI proteins in ALS. However, there are many questions remaining unanswered that need to be addressed before the potential of the PDI family in relation to ALS can be fully realized.
Collapse
Affiliation(s)
- Emma Perri
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Sonam Parakh
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Julie Atkin
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
131
|
Soares Moretti AI, Martins Laurindo FR. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Arch Biochem Biophys 2016; 617:106-119. [PMID: 27889386 DOI: 10.1016/j.abb.2016.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de)glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
132
|
Römer RA, Wells SA, Emilio Jimenez‐Roldan J, Bhattacharyya M, Vishweshwara S, Freedman RB. The flexibility and dynamics of protein disulfide isomerase. Proteins 2016; 84:1776-1785. [PMID: 27616289 PMCID: PMC5111589 DOI: 10.1002/prot.25159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 01/01/2023]
Abstract
We have studied the mobility of the multidomain folding catalyst, protein disulfide isomerase (PDI), by a coarse‐graining approach based on flexibility. We analyze our simulations of yeast PDI (yPDI) using measures of backbone movement, relative positions and orientations of domains, and distances between functional sites. We find that there is interdomain flexibility at every interdomain junction but these show very different characteristics. The extent of interdomain flexibility is such that yPDI's two active sites can approach much more closely than is found in crystal structures—and indeed hinge motion to bring these sites into proximity is the lowest energy normal mode of motion of the protein. The flexibility predicted for yPDI (based on one structure) includes the other known conformation of yPDI and is consistent with (i) the mobility observed experimentally for mammalian PDI and (ii) molecular dynamics. We also observe intradomain flexibility and clear differences between the domains in their propensity for internal motion. Our results suggest that PDI flexibility enables it to interact with many different partner molecules of widely different sizes and shapes, and highlights considerable similarities of yPDI and mammalian PDI. Proteins 2016; 84:1776–1785. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rudolf A. Römer
- Department of Physics and Centre for Scientific ComputingThe University of WarwickCoventryCV4 7ALUnited Kingdom
| | - Stephen A. Wells
- Department of Chemical EngineeringUniversity of BathBathBA2 7AYUnited Kingdom
| | - J. Emilio Jimenez‐Roldan
- Department of Physics and Centre for Scientific ComputingThe University of WarwickCoventryCV4 7ALUnited Kingdom
| | - Moitrayee Bhattacharyya
- Molecular Biophysics Unit, Indian Institute of ScienceBangalore560012India
- Present address: Moitrayee Bhattacharyya's current address is Department of Molecular and Cell BiologyUniversity of California BerkeleyCalifornia94720.
| | | | - Robert B. Freedman
- School of Life SciencesThe University of WarwickCoventryCV4 7ALUnited Kingdom
| |
Collapse
|
133
|
Dibas A, Yorio T. Glucocorticoid therapy and ocular hypertension. Eur J Pharmacol 2016; 787:57-71. [PMID: 27388141 PMCID: PMC5014726 DOI: 10.1016/j.ejphar.2016.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022]
Abstract
The projected number of people who will develop age-related macular degeneration in estimated at 2020 is 196 million and is expected to reach 288 million in 2040. Also, the number of people with Diabetic retinopathy will grow from 126.6 million in 2010 to 191.0 million by 2030. In addition, it is estimated that there are 2.3 million people suffering from uveitis worldwide. Because of the anti-inflammatory properties of glucocorticoids (GCs), they are often used topically and/or intravitreally to treat ocular inflammation conditions or edema associated with macular degeneration and diabetic retinopathy. Unfortunately, ocular GC therapy can lead to severe side effects. Serious and sometimes irreversible eye damage can occur as a result of the development of GC-induced ocular hypertension causing secondary open-angle glaucoma. According to the world health organization, glaucoma is the second leading cause of blindness in the world and it is estimated that 80 million will suffer from glaucoma by 2020. In the current review, mechanisms of GC-induced damage in ocular tissue, GC-resistance, and enhancing GC therapy will be discussed.
Collapse
Affiliation(s)
- Adnan Dibas
- North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX, USA.
| | - Thomas Yorio
- North Texas Eye Research Institute, UNT Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
134
|
Abdullah MI, Lee CC, Mat Junit S, Ng KL, Hashim OH. Tissue and serum samples of patients with papillary thyroid cancer with and without benign background demonstrate different altered expression of proteins. PeerJ 2016; 4:e2450. [PMID: 27672505 PMCID: PMC5028788 DOI: 10.7717/peerj.2450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background Papillary thyroid cancer (PTC) is mainly diagnosed using fine-needle aspiration biopsy. This most common form of well-differentiated thyroid cancer occurs with or without a background of benign thyroid goiter (BTG). Methods In the present study, a gel-based proteomics analysis was performed to analyse the expression of proteins in tissue and serum samples of PTC patients with (PTCb; n = 6) and without a history of BTG (PTCa; n = 8) relative to patients with BTG (n = 20). This was followed by confirmation of the levels of proteins which showed significant altered abundances of more than two-fold difference (p < 0.01) in the tissue and serum samples of the same subjects using ELISA. Results The data of our study showed that PTCa and PTCb distinguish themselves from BTG in the types of tissue and serum proteins of altered abundance. While higher levels of alpha-1 antitrypsin (A1AT) and heat shock 70 kDa protein were associated with PTCa, lower levels of A1AT, protein disulfide isomerase and ubiquitin-conjugating enzyme E2 N seemed apparent in the PTCb. In case of the serum proteins, higher abundances of A1AT and alpha 1-beta glycoprotein were detected in PTCa, while PTCb was associated with enhanced apolipoprotein A-IV and alpha 2-HS glycoprotein (AHSG). The different altered expression of tissue and serum A1AT as well as serum AHSG between PTCa and PTCb patients were also validated by ELISA. Discussion The distinctive altered abundances of the tissue and serum proteins form preliminary indications that PTCa and PTCb are two distinct cancers of the thyroid that are etiologically and mechanistically different although it is currently not possible to rule out that they may also be due other reasons such as the different stages of the malignant disease. These proteins stand to have a potential use as tissue or serum biomarkers to discriminate the three different thyroid neoplasms although this requires further validation in clinically representative populations.
Collapse
Affiliation(s)
- Mardiaty Iryani Abdullah
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Ching Chin Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Sarni Mat Junit
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khoon Leong Ng
- Department of Surgery, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
135
|
Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J Virol 2016; 5:38-62. [PMID: 27175349 PMCID: PMC4861870 DOI: 10.5501/wjv.v5.i2.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines.
Collapse
|
136
|
Garcia-Huerta P, Bargsted L, Rivas A, Matus S, Vidal RL. ER chaperones in neurodegenerative disease: Folding and beyond. Brain Res 2016; 1648:580-587. [PMID: 27134034 DOI: 10.1016/j.brainres.2016.04.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022]
Abstract
Proteins along the secretory pathway are co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Afterwards, they are usually modified with N-linked glycans, correctly folded and stabilized by disulfide bonds. ER chaperones and folding enzymes control these processes. The accumulation of unfolded proteins in the ER activates a signaling response, termed the unfolded protein response (UPR). The hallmark of this response is the coordinated transcriptional up-regulation of ER chaperones and folding enzymes. In order to discuss the importance of the proper folding of certain substrates we will address the role of ER chaperones in normal physiological conditions and examine different aspects of its contribution in neurodegenerative disease. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Paula Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Leslie Bargsted
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Alexis Rivas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Soledad Matus
- Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Rene L Vidal
- Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| |
Collapse
|
137
|
Meparishvili M, Nozadze M, Margvelani G, McCabe BJ, Solomonia RO. A Proteomic Study of Memory After Imprinting in the Domestic Chick. Front Behav Neurosci 2015; 9:319. [PMID: 26635566 PMCID: PMC4660867 DOI: 10.3389/fnbeh.2015.00319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/08/2015] [Indexed: 12/19/2022] Open
Abstract
The intermediate and medial mesopallium (IMM) of the domestic chick forebrain has previously been shown to be a memory system for visual imprinting. Learning-related changes occur in certain plasma membrane and mitochondrial proteins in the IMM. Two-dimensional gel electrophoresis/mass spectrometry has been employed to identify more comprehensively learning-related expression of proteins in the membrane-mitochondrial fraction of the IMM 24 h after training. We inquired whether amounts of these proteins in the IMM and a control region (posterior pole of the nidopallium, PPN) are correlated with a behavioral estimate of memory for the imprinting stimulus. Learning-related increases in amounts of the following proteins were found in the left IMM, but not the right IMM or the left or right PPN: (i) membrane cognin; (ii) a protein resembling the P32 subunit of splicing factor SF2; (iii) voltage-dependent anionic channel-1; (iv) dynamin-1; (v) heterogeneous nuclear ribonucleoprotein A2/B1. Learning-related increases in some transcription factors involved in mitochondrial biogenesis were also found, without significant change in mitochondrial DNA copy number. The results indicate that the molecular processes involved in learning and memory underlying imprinting include protein stabilization, increased mRNA trafficking, synaptic vesicle recycling, and specific changes in the mitochondrial proteome.
Collapse
Affiliation(s)
- Maia Meparishvili
- School of Natural Sciences and Engineering, Institute of Chemical Biology, Ilia State University Tbilisi, Georgia
| | - Maia Nozadze
- School of Natural Sciences and Engineering, Institute of Chemical Biology, Ilia State University Tbilisi, Georgia ; I. Beritashvili Institute of Experimental Biomedicine Tbilisi, Georgia
| | - Giorgi Margvelani
- School of Natural Sciences and Engineering, Institute of Chemical Biology, Ilia State University Tbilisi, Georgia
| | - Brian J McCabe
- Department of Zoology, Sub-Department of Animal Behavior, University of Cambridge Cambridge, UK
| | - Revaz O Solomonia
- School of Natural Sciences and Engineering, Institute of Chemical Biology, Ilia State University Tbilisi, Georgia ; I. Beritashvili Institute of Experimental Biomedicine Tbilisi, Georgia
| |
Collapse
|
138
|
Pisoni GB, Ruddock LW, Bulleid N, Molinari M. Division of labor among oxidoreductases: TMX1 preferentially acts on transmembrane polypeptides. Mol Biol Cell 2015; 26:3390-400. [PMID: 26246604 PMCID: PMC4591685 DOI: 10.1091/mbc.e15-05-0321] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 01/18/2023] Open
Abstract
The mammalian ER contains 23 members of the PDI superfamily. Their substrate specificity is largely unknown. TMX1 shows a preference for membrane-bound, cysteine-containing polypeptides. The endoplasmic reticulum (ER) is the site of maturation for secretory and membrane proteins in eukaryotic cells. The lumen of the mammalian ER contains >20 members of the protein disulfide isomerase (PDI) superfamily, which ensure formation of the correct set of intramolecular and intermolecular disulfide bonds as crucial, rate-limiting reactions of the protein folding process. Components of the PDI superfamily may also facilitate dislocation of misfolded polypeptides across the ER membrane for ER-associated degradation (ERAD). The reasons for the high redundancy of PDI family members and the substrate features required for preferential engagement of one or the other are poorly understood. Here we show that TMX1, one of the few transmembrane members of the family, forms functional complexes with the ER lectin calnexin and preferentially intervenes during maturation of cysteine-containing, membrane-associated proteins while ignoring the same cysteine-containing ectodomains if not anchored at the ER membrane. As such, TMX1 is the first example of a topology-specific client protein redox catalyst in living cells.
Collapse
Affiliation(s)
- Giorgia Brambilla Pisoni
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Neil Bulleid
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Maurizio Molinari
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland Università della Svizzera Italiana, CH-6900 Lugano, Switzerland Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland
| |
Collapse
|
139
|
Wang L, Wang X, Wang CC. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free Radic Biol Med 2015; 83:305-13. [PMID: 25697778 DOI: 10.1016/j.freeradbiomed.2015.02.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
Abstract
Protein disulfide-isomerase (PDI) was the first protein-folding catalyst to be characterized, half a century ago. It plays critical roles in a variety of physiological events by displaying oxidoreductase and redox-regulated chaperone activities. This review provides a brief history of the identification of PDI as both an enzyme and a molecular chaperone and of the recent advances in studies on the structure and dynamics of PDI, the substrate binding and release, and the cooperation with its partners to catalyze oxidative protein folding and maintain ER redox homeostasis. In this review, we highlight the structural features of PDI, including the high interdomain flexibility, the multiple binding sites, the two synergic active sites, and the redox-dependent conformational changes.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
140
|
Parakh S, Atkin JD. Novel roles for protein disulphide isomerase in disease states: a double edged sword? Front Cell Dev Biol 2015; 3:30. [PMID: 26052512 PMCID: PMC4439577 DOI: 10.3389/fcell.2015.00030] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Protein disulphide isomerase (PDI) is a multifunctional redox chaperone of the endoplasmic reticulum (ER). Since it was first discovered 40 years ago the functions ascribed to PDI have evolved significantly and recent studies have recognized its distinct functions, with adverse as well as protective effects in disease. Furthermore, post translational modifications of PDI abrogate its normal functional roles in specific disease states. This review focusses on recent studies that have identified novel functions for PDI relevant to specific diseases.
Collapse
Affiliation(s)
- Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia ; Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University Bundoora, VIC, Australia
| |
Collapse
|
141
|
Thiol-disulfide exchange between the PDI family of oxidoreductases negates the requirement for an oxidase or reductase for each enzyme. Biochem J 2015; 469:279-88. [PMID: 25989104 PMCID: PMC4613490 DOI: 10.1042/bj20141423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/19/2015] [Indexed: 01/20/2023]
Abstract
The PDI family form disulfide bridges in substrates via thiol-disulfide exchange reactions. We show in the present study that disulfide exchange can occur directly between individual PDI proteins. Implication is that only certain members need to be oxidized or reduced to maintain function. The formation of disulfides in proteins entering the secretory pathway is catalysed by the protein disulfide isomerase (PDI) family of enzymes. These enzymes catalyse the introduction, reduction and isomerization of disulfides. To function continuously they require an oxidase to reform the disulfide at their active site. To determine how each family member can be recycled to catalyse disulfide exchange, we have studied whether disulfides are transferred between individual PDI family members. We studied disulfide exchange either between purified proteins or by identifying mixed disulfide formation within cells grown in culture. We show that disulfide exchange occurs efficiently and reversibly between specific PDIs. These results have allowed us to define a hierarchy for members of the PDI family, in terms of ability to act as electron acceptors or donors during thiol-disulfide exchange reactions and indicate that there is no kinetic barrier to the exchange of disulfides between several PDI proteins. Such promiscuous disulfide exchange negates the necessity for each enzyme to be oxidized by Ero1 (ER oxidoreductin 1) or reduced by a reductive system. The lack of kinetic separation of the oxidative and reductive pathways in mammalian cells contrasts sharply with the equivalent systems for native disulfide formation within the bacterial periplasm.
Collapse
|
142
|
Tannous A, Pisoni GB, Hebert DN, Molinari M. N-linked sugar-regulated protein folding and quality control in the ER. Semin Cell Dev Biol 2015; 41:79-89. [PMID: 25534658 PMCID: PMC4474783 DOI: 10.1016/j.semcdb.2014.12.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022]
Abstract
Asparagine-linked glycans (N-glycans) are displayed on the majority of proteins synthesized in the endoplasmic reticulum (ER). Removal of the outermost glucose residue recruits the lectin chaperone malectin possibly involved in a first triage of defective polypeptides. Removal of a second glucose promotes engagement of folding and quality control machineries built around the ER lectin chaperones calnexin (CNX) and calreticulin (CRT) and including oxidoreductases and peptidyl-prolyl isomerases. Deprivation of the last glucose residue dictates the release of N-glycosylated polypeptides from the lectin chaperones. Correctly folded proteins are authorized to leave the ER. Non-native polypeptides are recognized by the ER quality control key player UDP-glucose glycoprotein glucosyltransferase 1 (UGT1), re-glucosylated and re-addressed to the CNX/CRT chaperone binding cycle to provide additional opportunity for the protein to fold in the ER. Failure to attain the native structure determines the selection of the misfolded polypeptides for proteasome-mediated degradation.
Collapse
Affiliation(s)
- Abla Tannous
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | - Maurizio Molinari
- Università della Svizzera italiana, CH-6900 Lugano, Switzerland; Institute for Research in Biomedicine, Protein Folding and Quality Control, CH-6500 Bellinzona, Switzerland; Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
143
|
Liu H, Chen J, Li W, Rose ME, Shinde SN, Balasubramani M, Uechi GT, Mutus B, Graham SH, Hickey RW. Protein disulfide isomerase as a novel target for cyclopentenone prostaglandins: implications for hypoxic ischemic injury. FEBS J 2015; 282:2045-59. [PMID: 25754985 DOI: 10.1111/febs.13259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/10/2015] [Accepted: 03/05/2015] [Indexed: 01/02/2023]
Abstract
Cyclooxygenase-2 (COX-2) is an important contributor to ischemic brain injury. Identification of the downstream mediators of COX-2 toxicity may allow the development of targeted therapies. Of particular interest is the cyclopentenone family of prostaglandin metabolites. Cyclopentenone prostaglandins (CyPGs) are highly reactive molecules that form covalent bonds with cellular thiols. Protein disulfide isomerase (PDI) is an important molecule for the restoration of denatured proteins following ischemia. Because PDI has several thiols, including thiols within the active thioredoxin-like domain, we hypothesized that PDI is a target of CyPGs and that CyPG binding of PDI is detrimental. CyPG-PDI binding was detected in vitro via immunoprecipitation and MS. CyPG-PDI binding decreased PDI enzymatic activity in recombinant PDI treated with CyPG, and PDI immunoprecipitated from neuronal culture treated with CyPG or anoxia. Toxic effects of binding were demonstrated in experiments showing that: (a) pharmacologic inhibition of PDI increased cell death in anoxic neurons, (b) PDI overexpression protected neurons exposed to anoxia and SH-SY5Y cells exposed to CyPG, and (c) PDI overexpression in SH-SY5Y cells attenuated ubiquitination of proteins and decreased activation of pro-apoptotic caspases. In conclusion, CyPG production and subsequent binding of PDI is a novel and potentially important mechanism of ischemic brain injury. We show that CyPGs bind to PDI, cyclopentenones inhibit PDI activity, and CyPG-PDI binding is associated with increased neuronal susceptibility to anoxia. Additional studies are necessary to determine the relative role of CyPG-dependent inhibition of PDI activity in ischemia and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Hao Liu
- Geriatric Research Education and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Jie Chen
- Department of Neurology, University of Pittsburgh School of Medicine, PA, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, PA, USA
| | - Wenjin Li
- Geriatric Research Education and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Marie E Rose
- Geriatric Research Education and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Sunita N Shinde
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, PA, USA
| | | | - Guy T Uechi
- Biomedical Mass Spectrometry Center, University of Pittsburgh, PA, USA
| | - Bülent Mutus
- Department of Chemistry & Biochemistry, University of Windsor, ON, Canada
| | - Steven H Graham
- Geriatric Research Education and Clinical Center, V.A. Pittsburgh Healthcare System, PA, USA.,Department of Neurology, University of Pittsburgh School of Medicine, PA, USA
| | - Robert W Hickey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, PA, USA
| |
Collapse
|
144
|
Oberčkal J, Kovačič L, Šribar J, Leonardi A, Dolinar K, Pucer Janež A, Križaj I. On the role of protein disulfide isomerase in the retrograde cell transport of secreted phospholipases A2. PLoS One 2015; 10:e0120692. [PMID: 25763817 PMCID: PMC4357439 DOI: 10.1371/journal.pone.0120692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/25/2015] [Indexed: 11/29/2022] Open
Abstract
Following the finding that ammodytoxin (Atx), a neurotoxic secreted phospholipase A2 (sPLA2) in snake venom, binds specifically to protein disulfide isomerase (PDI) in vitro we show that these proteins also interact in living rat PC12 cells that are able to internalize this group IIA (GIIA) sPLA2. Atx and PDI co-localize in both differentiated and non-differentiated PC12 cells, as shown by fluorescence microscopy. Based on a model of the complex between Atx and yeast PDI (yPDI), a three-dimensional model of the complex between Atx and human PDI (hPDI) was constructed. The Atx binding site on hPDI is situated between domains b and b’. Atx interacts hPDI with an extensive area on its interfacial binding surface. The mammalian GIB, GIIA, GV and GX sPLA2s have the same fold as Atx. The first three sPLA2s have been detected intracellularly but not the last one. The models of their complexes with hPDI were constructed by replacement of Atx with the respective mammalian sPLA2 in the Atx—hPDI complex and molecular docking of the structures. According to the generated models, mammalian GIB, GIIA and GV sPLA2s form complexes with hPDI very similar to that with Atx. The contact area between GX sPLA2 and hPDI is however different from that of the other sPLA2s. Heterologous competition of Atx binding to hPDI with GV and GX sPLA2s confirmed the model-based expectation that GV sPLA2 was a more effective inhibitor than GX sPLA2, thus validating our model. The results suggest a role of hPDI in the (patho)physiology of some snake venom and mammalian sPLA2s by assisting the retrograde transport of these molecules from the cell surface. The sPLA2–hPDI model constitutes a valuable tool to facilitate further insights into this process and into the (patho)physiology of sPLA2s in relation to their action intracellularly.
Collapse
Affiliation(s)
- Jernej Oberčkal
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Lidija Kovačič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Klemen Dolinar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anja Pucer Janež
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
145
|
Diwaker D, Mishra KP, Ganju L, Singh SB. Protein disulfide isomerase mediates dengue virus entry in association with lipid rafts. Viral Immunol 2015; 28:153-60. [PMID: 25664880 DOI: 10.1089/vim.2014.0095] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dengue virus (DENV) causes a febrile disease, infecting around 50-100 million people annually. The relationship between DENV proteins and host cellular responses during infection is unclear. This study investigated the interaction of host protein disulfide isomerase (PDI) with DENV proteins and role of lipid rafts in viral immunopathogenesis. Host viral protein interactions were studied by co-immunoprecipitation and co-localization. It was found that PDI interacts with DENV nonstructural protein 1 (NS1) intracellularly as well as on the surface in the lipid raft domain. Disruption of this key interaction between PDI and NS1 could be an important therapeutic strategy to block DENV infection.
Collapse
Affiliation(s)
- Drishya Diwaker
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences , Delhi, India
| | | | | | | |
Collapse
|
146
|
Bechor E, Dahan I, Fradin T, Berdichevsky Y, Zahavi A, Federman Gross A, Rafalowski M, Pick E. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67 (phox.). Front Chem 2015; 3:3. [PMID: 25699251 PMCID: PMC4316792 DOI: 10.3389/fchem.2015.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/09/2015] [Indexed: 11/28/2022] Open
Abstract
The superoxide (O(·-) 2)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b 558 (a heterodimer of Nox2 and p22 (phox) ), and four cytosolic components, p47 (phox) , p67 (phox) , p40 (phox) , and Rac. The catalytic component, responsible for O(·-) 2 generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67 (phox) . Using a peptide-protein binding assay, we found that Nox2 peptides containing a (369)CysGlyCys(371) triad (CGC) bound p67 (phox) with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67 (phox) only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67 (phox) via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: (1) Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; (2) Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; (3) Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; (4) Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; (5) A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; (6) p67 (phox) , in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67 (phox) to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| |
Collapse
|
147
|
Obacz J, Takacova M, Brychtova V, Dobes P, Pastorekova S, Vojtesek B, Hrstka R. The role of AGR2 and AGR3 in cancer: similar but not identical. Eur J Cell Biol 2015; 94:139-47. [PMID: 25666661 DOI: 10.1016/j.ejcb.2015.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
In the past decades, highly related members of the protein disulphide isomerase family, anterior gradient protein AGR2 and AGR3, attracted researchers' attention due to their putative involvement in developmental processes and carcinogenesis. While AGR2 has been widely demonstrated as a metastasis-related protein whose elevated expression predicts worse patient outcome, little is known about AGR3's role in tumour biology. Thus, we aim to confront the issue of AGR3 function in physiology and pathology in the following review by comparing this protein with the better-described homologue AGR2. Relying on available data and in silico analyses, we show that AGR proteins are co-expressed or uncoupled in context-dependent manners in diverse carcinomas and healthy tissues. Further, we discuss plausible roles of both proteins in tumour-associated processes such as differentiation, proliferation, migration, invasion and metastasis. This work brings new hints and stimulates further thoughts on hitherto unresolved conundrum of anterior gradient protein function.
Collapse
Affiliation(s)
- Joanna Obacz
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Martina Takacova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Veronika Brychtova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Petr Dobes
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Silvia Pastorekova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| |
Collapse
|
148
|
Trichinella spiralis: genome database searches for the presence and immunolocalization of protein disulphide isomerase family members. J Helminthol 2014; 90:62-7. [PMID: 25475092 DOI: 10.1017/s0022149x14000807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The formation of nurse cells in host muscle cells during Trichinella spiralis infection is a key step in the infective mechanism. Collagen trimerization is set up via disulphide bond formation, catalysed by protein disulphide isomerase (PDI). In T. spiralis, some PDI family members have been identified but no localization is described and no antibodies specific for T. spiralis PDIs are available. In this work, computational approaches were used to search for non-described PDIs in the T. spiralis genome database and to check the cross-reactivity of commercial anti-human antibodies with T. spiralis orthologues. In addition to a previously described PDI (PDIA2), endoplasmic reticulum protein (ERp57/PDIA3), ERp72/PDIA4, and the molecular chaperones calreticulin (CRT), calnexin (CNX) and immunoglobulin-binding protein/glucose-regulated protein (BIP/GRP78), we identified orthologues of the human thioredoxin-related-transmembrane proteins (TMX1, TMX2 and TMX3) in the genome protein database, as well as ERp44 (PDIA10) and endoplasmic reticulum disulphide reductase (ERdj5/PDIA19). Immunocytochemical staining of paraffin sections of muscle infected by T. spiralis enabled us to localize some orthologues of the human PDIs (PDIA3 and TMX1) and the chaperone GRP78. A theoretical three-dimensional model for T. spiralis PDIA3 was constructed. The localization and characteristics of the predicted linear B-cell epitopes and amino acid sequence of the immunogens used for commercial production of anti-human PDIA3 antibodies validated the use of these antibodies for the immunolocalization of T. spiralis PDIA3 orthologues. These results suggest that further study of the role of the PDIs and chaperones during nurse cell formation is desirable.
Collapse
|
149
|
Structural insight into substrate recognition by the endoplasmic reticulum folding-sensor enzyme: crystal structure of third thioredoxin-like domain of UDP-glucose:glycoprotein glucosyltransferase. Sci Rep 2014; 4:7322. [PMID: 25471383 PMCID: PMC4255179 DOI: 10.1038/srep07322] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/18/2014] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) possesses a protein quality control system that supports the efficient folding of newly synthesized glycoproteins. In this system, a series of N-linked glycan intermediates displayed on proteins serve as quality tags. The ER folding-sensor enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) operates as the gatekeeper for ER quality control by specifically transferring monoglucose residues to incompletely folded glycoproteins, thereby allowing them to interact with lectin chaperone complexes to facilitate their folding. Despite its functional importance, no structural information is available for this key enzyme to date. To elucidate the folding-sensor mechanism in the ER, we performed a structural study of UGGT. Based on bioinformatics analyses, the folding-sensor region of UGGT was predicted to harbour three tandem thioredoxin (Trx)-like domains, which are often found in proteins involved in ER quality control. Furthermore, we determined the three-dimensional structure of the third Trx-like domain, which exhibits an extensive hydrophobic patch concealed by its flexible C-terminal helix. Our structural data suggest that this hydrophobic patch is involved in intermolecular interactions, thereby contributing to the folding-sensor mechanism of UGGT.
Collapse
|
150
|
Biran S, Gat Y, Fass D. The Eps1p protein disulfide isomerase conserves classic thioredoxin superfamily amino acid motifs but not their functional geometries. PLoS One 2014; 9:e113431. [PMID: 25437863 PMCID: PMC4249923 DOI: 10.1371/journal.pone.0113431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/24/2014] [Indexed: 02/04/2023] Open
Abstract
The widespread thioredoxin superfamily enzymes typically share the following features: a characteristic α-β fold, the presence of a Cys-X-X-Cys (or Cys-X-X-Ser) redox-active motif, and a proline in the cis configuration abutting the redox-active site in the tertiary structure. The Cys-X-X-Cys motif is at the solvent-exposed amino terminus of an α-helix, allowing the first cysteine to engage in nucleophilic attack on substrates, or substrates to attack the Cys-X-X-Cys disulfide, depending on whether the enzyme functions to reduce, isomerize, or oxidize its targets. We report here the X-ray crystal structure of an enzyme that breaks many of our assumptions regarding the sequence-structure relationship of thioredoxin superfamily proteins. The yeast Protein Disulfide Isomerase family member Eps1p has Cys-X-X-Cys motifs and proline residues at the appropriate primary structural positions in its first two predicted thioredoxin-fold domains. However, crystal structures show that the Cys-X-X-Cys of the second domain is buried and that the adjacent proline is in the trans, rather than the cis isomer. In these configurations, neither the “active-site” disulfide nor the backbone carbonyl preceding the proline is available to interact with substrate. The Eps1p structures thus expand the documented diversity of the PDI oxidoreductase family and demonstrate that conserved sequence motifs in common folds do not guarantee structural or functional conservation.
Collapse
Affiliation(s)
- Shai Biran
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yair Gat
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|