101
|
Razavi F, Farhad A, Razavi S, Saatchi M, Manshaei M. Histological assessment of the local effect of different concentrations of aminoguanidine hydrochloride on bone healing in rats. Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.324022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
102
|
Vornholt SM, Duncan MJ, Warrender SJ, Semino R, Ramsahye NA, Maurin G, Smith MW, Tan JC, Miller DN, Morris RE. Multifaceted Study of the Interactions between CPO-27-Ni and Polyurethane and Their Impact on Nitric Oxide Release Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58263-58276. [PMID: 33325239 DOI: 10.1021/acsami.0c17937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A multifaceted study involving focused ion beam scanning electron microscopy techniques, mechanical analysis, water adsorption measurements, and molecular simulations is employed to rationalize the nitric oxide release performance of polyurethane films containing 5, 10, 20, and 40 wt % of the metal-organic framework (MOF) CPO-27-Ni. The polymer and the MOF are first demonstrated to exhibit excellent compatibility. This is reflected in the even distribution and encapsulation of large wt % MOF loadings throughout the full thickness of the films and by the rather minimal influence of the MOF on the mechanical properties of the polymer at low wt %. The NO release efficiency of the MOF is attenuated by the polymer and found to depend on wt % of MOF loading. The formation of a fully connected network of MOF agglomerates within the films at higher wt % is proposed to contribute to a more complex guest transport in these formulations, resulting in a reduction of NO release efficiency and film ductility. An optimum MOF loading of 10 wt % is identified for maximizing NO release without adversely impacting the polymer properties. Bactericidal efficacy of released NO from the films is demonstrated against Pseudomonas aeruginosa, with a >8 log10 reduction in cell density observed after a contact period of 24 h.
Collapse
Affiliation(s)
- Simon M Vornholt
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Morven J Duncan
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Stewart J Warrender
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Rocio Semino
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 75005, France
| | - Naseem A Ramsahye
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 75005, France
| | - Guillaume Maurin
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier 75005, France
| | - Martin W Smith
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| | - Jin-Chong Tan
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - David N Miller
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
| | - Russell E Morris
- School of Chemistry, University of St. Andrews, Purdie Building, St. Andrews KY16 9ST, U.K
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| |
Collapse
|
103
|
Bruno G, Wenske S, Lackmann JW, Lalk M, von Woedtke T, Wende K. On the Liquid Chemistry of the Reactive Nitrogen Species Peroxynitrite and Nitrogen Dioxide Generated by Physical Plasmas. Biomolecules 2020; 10:E1687. [PMID: 33339444 PMCID: PMC7766045 DOI: 10.3390/biom10121687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
Cold physical plasmas modulate cellular redox signaling processes, leading to the evolution of a number of clinical applications in recent years. They are a source of small reactive species, including reactive nitrogen species (RNS). Wound healing is a major application and, as its physiology involves RNS signaling, a correlation between clinical effectiveness and the activity of plasma-derived RNS seems evident. To investigate the type and reactivity of plasma-derived RNS in aqueous systems, a model with tyrosine as a tracer was utilized. By high-resolution mass spectrometry, 26 different tyrosine derivatives including the physiologic nitrotyrosine were identified. The product pattern was distinctive in terms of plasma parameters, especially gas phase composition. By scavenger experiments and isotopic labelling, gaseous nitric dioxide radicals and liquid phase peroxynitrite ions were determined as dominant RNS. The presence of water molecules in the active plasma favored the generation of peroxynitrite. A pilot study, identifying RNS driven post-translational modifications of proteins in healing human wounds after the treatment with cold plasma (kINPen), demonstrated the presence of in vitro determined chemical pathways. The plasma-driven nitration and nitrosylation of tyrosine allows the conclusion that covalent modification of biomolecules by RNS contributes to the clinically observed impact of cold plasmas.
Collapse
Affiliation(s)
- Giuliana Bruno
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (G.B.); (S.W.)
| | - Sebastian Wenske
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (G.B.); (S.W.)
| | - Jan-Wilm Lackmann
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany;
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany;
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany;
| | - Kristian Wende
- Centre for Innovation Competence (ZIK) Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (G.B.); (S.W.)
| |
Collapse
|
104
|
Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf B Biointerfaces 2020; 199:111508. [PMID: 33340932 DOI: 10.1016/j.colsurfb.2020.111508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an important pharmaceutical agent of considerable therapeutic interest ascribed to its vasodilative, tumoricidal and antibacterial effects. Rapid development of functional nanomaterials has provided opportunities for us to achieve controllable exogenous delivery of NO. In the current review, a variety of functionalized colloidal nanovehicles that have been developed to date for nitric oxide delivery are reported. Specifically, we focus on inorganic nanomaterials such as semiconductor quantum dots, silica nanoparticles, upconversion nanomaterials, carbon/graphene nanodots, gold nanoparticles, iron oxide nanoparticles as the functional or/and supporting materials to carry NO donors. N-diazeniumdiolates, S-nitrosothiols, nitrosyl metal complexes and organic nitrates as main types of NO donors have their own unique properties and molecular structures. Conjugating the NO donors of different forms with appropriate nanomaterials results in NO delivery nanovehicles capable of releasing NO in a dose-controllable or/and on-demand manner. We also consider the therapeutic applications of those NO delivery nanovehicles, especially their applications for cancer therapy. In the end, we discuss possible future directions for developing exogenous NO delivery systems with more desired structure and improved performance. This review aims to offer the readers an overall view of the advances in functionalized colloidal nanovehicles for NO delivery. It will be attractive to scientists and researchers in the areas of material science, nanotechnology, biomedical engineering, chemical biology, etc.
Collapse
|
105
|
Pena-Eguiluz R, Serment-Guerrero JH, Azorin-Vega EP, Mercado-Cabrera A, Flores-Fuentes AA, Jaramillo-Sierra B, Hernandez-Arias AN, Giron-Romero K, Lopez-Callejas R, Rodriguez-Mendez BG, Valencia-Alvarado R. Development and Characterization of a Non-Thermal Plasma Source for Therapeutic Treatments. IEEE Trans Biomed Eng 2020; 68:1467-1476. [PMID: 33245692 DOI: 10.1109/tbme.2020.3041195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE an innovative non-thermal plasma (NTP) system constituted by a radiofrequency (RF) power generator directly coupled to a treatment probe is described and characterized. This system is intended to be applied as a medical device for therapeutic treatments. METHODS electrical characterization of the radiofrequency power generator supplying the treatment probe was performed. Meanwhile, generated NTP was optically analyzed. Obtained data were studied to establish the safety profile of plasma application on heat sensitive matter. RESULTS the NTP system was validated through bacterial deactivation trials, as well as, of being capable of deactivating carcinogenic cells. Besides promoting and accelerating wound closure in vivo performed in mice, demonstrating faster healing than that done with conventional treatments. CONCLUSION the NTP system's characterization is an essential stage to determine the adequate application of the generated plasma over organic media. The therapeutic benefits of the NTP system were proved by the development of in vivo experiences involving laboratory mice. SIGNIFICANCE the generated NTP interacts with surrounding air particles producing reactive oxygen and nitrogen species, which, exhibit bactericidal and antiseptic effects due to their strong biochemical reactivity; functioning like critical mediators in animal physiology and promoting wound healing processes. These properties make the NTP system a feasible technology intended for therapeutic treatments.
Collapse
|
106
|
Mikeš P, Brož A, Sinica A, Asatiani N, Bačáková L. In vitro and in vivo testing of nanofibrous membranes doped with alaptide and L-arginine for wound treatment. Biomed Mater 2020; 15:065023. [PMID: 32434166 DOI: 10.1088/1748-605x/ab950f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have prepared a candidate biocompatible construct for skin wound healing based on electrospun polycaprolactone (PCL) nanofibrous membranes. The membrane material was loaded either with L-arginine or with alaptide, or with a mixture of both bioactive components. Alaptide is a spirocyclic synthetic dipeptide, an analogue of melanocyte-stimulating hormone release-inhibiting factor. L-arginine is an amino acid with a basic guanidine side chain. It is a direct precursor of nitric oxide, which plays a pivotal role in skin repair. The presence and the distribution of the additives were proved with high-performance liquid chromatography, Fourier-transform infrared spectroscopy and Raman spectroscopy. The influence of L-arginine and alaptide on the morphology of the membrane was characterized using scanning electron microscopy. No statistically significant correlation between fiber diameter and drug concentration was observed. The membranes were then tested in vitro for their cytotoxicity, using primary human dermal fibroblasts, in order to obtain the optimal concentrations of the additives for in vivo tests in a rat model. The membranes with the highest concentration of L-arginine (10 wt. %) proved to be cytotoxic. The membranes with alaptide in concentrations from 0.1 to 2.5 wt.%, and with the other L-arginine concentrations (1 and 5 wt.%), did not show high toxicity. In addition, there was no observed improvement in cell proliferation on the membranes. The in vivo experiments revealed that membranes with 1.5 wt.% of alaptide or with 1.5 wt.% of alaptide in combination with 5 wt.% of L-arginine markedly accelerated the healing of skin incisions, and particularly the healing of skin burns, i.e. wounds of relatively large extent. These results indicate that our newly-developed nanofibrous membranes are promising for treating wounds with large damaged areas, where a supporting material is needed.
Collapse
Affiliation(s)
- Petr Mikeš
- Department of Chemistry, Technical University of Liberec, Liberec, Czech Republic
| | - Antonín Brož
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Author to whom any correspondence should be addressed
| | - Alla Sinica
- University of Chemistry and Technology, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nikifor Asatiani
- Department of Chemistry, Technical University of Liberec, Liberec, Czech Republic
| | - Lucie Bačáková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
107
|
Synytsya A, Poučková P, Zadinová M, Troshchynska Y, Štětina J, Synytsya A, Saloň I, Král V. Hydrogels based on low-methoxyl amidated citrus pectin and flaxseed gum formulated with tripeptide glycyl-l-histidyl-l-lysine improve the healing of experimental cutting wounds in rats. Int J Biol Macromol 2020; 165:3156-3168. [PMID: 33031852 DOI: 10.1016/j.ijbiomac.2020.09.251] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/06/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Hydrogels based on natural and modified polysaccharides represent growing group of suitable matrices for the construction of effective wound healing materials. Bioactive tripeptide glycyl-l-histidyl-l-lysine and amino acid α-l-arginine are known to accelerate wound healing and skin repair. In this study, hydrogels based on low-methoxyl amidated citrus pectin or flaxseed gum were prepared and used for the transport of these healing agents to the experimental cutting wounds affected by extensive skin damage. Fourier-transform infrared spectroscopy, rheology, differential scanning calorimetry, scanning electron microscopy, swelling and release tests confirmed that these hydrogels differed in structure and physical properties. The cationic tripeptide was found to bind to carboxylic groups in LMA pectin, and the C3OH hydroxyl and ring oxygen O5 are involved in this interaction. The pectin hydrogel showed high viscosity and strong elastic properties, while the flaxseed gum hydrogel was characterised as a viscoelastic system of much lower viscosity. The former hydrogel released the drugs very slowly, while the latter hydrogel demonstrated zero order releasing kinetics optimal for drug delivery. In the in vivo wound healing testing on rats, both polysaccharide hydrogels improved the healing process mediated by the mentioned biomolecules. The tripeptide applied in the hydrogels showed significantly higher healing degree and lower healing time than in the control animals without treatment and when it was applied in an aqueous solution. Despite the absence of a synergistic effect, the mixture of the tripeptide and α-l-arginine in the hydrogels was also quite effective in wound healing. According to histological analysis, complete healing was achieved only when using the tripeptide in the flaxseed gum hydrogel. These observations might have an important prospect in clinical application of polysaccharide hydrogels.
Collapse
Affiliation(s)
- Alla Synytsya
- Department of Analytical Chemistry, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic; BIOCEV, 1st Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Pavla Poučková
- Institute of Biophysics and Informatics, 1st Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08 Prague 2, Czech Republic
| | - Marie Zadinová
- Institute of Biophysics and Informatics, 1st Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08 Prague 2, Czech Republic
| | - Yana Troshchynska
- Department of Dairy, Fat and Cosmetics, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic; Department of Carbohydrates and Cereals, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jiří Štětina
- Department of Dairy, Fat and Cosmetics, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Ivan Saloň
- Department of Chemical Engineering, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vladimír Král
- Department of Analytical Chemistry, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic; BIOCEV, 1st Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
108
|
Salami AT, Adebimpe MA, Olagoke OC, Iyiola TO, Olaleye SB. Potassium bromate cytotoxicity in the Wister rat model of chronic gastric ulcers: Possible reversal by protocatechuic acid. J Food Biochem 2020; 44:e13501. [PMID: 33025593 DOI: 10.1111/jfbc.13501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
The interaction between ingested xenobiotics and the gastrointestinal epithelium influences the possibility of gut epithelial cytotoxicity and systemic toxicity. Potassium bromate (KBrO3 ) has been shown to perturb the central nervous system and it may be carcinogenic, albeit it is used as a food additive. This highlights the need to understand KBrO3 's effect on the stomach epithelium. Here, we report the cytotoxic potential of KBrO3 in an ulcerated stomach, as well as possible cytoprotection by the polyphenol - protocatechuic acid. Potassium bromate (12.5 mg/kg) and protocatechuic acid (120 mg/kg) were administered orally while omeprazole (20 mg/kg) was used as standard. Potassium bromate exacerbated gastric ulcers, increased malonaldehyde levels, catalase, and sodium pump activities, but reduced nitric oxide levels. Potassium bromate further increased mast cell count in the muscularis mucosa, while inducing chronic inflammation and moderate angiogenesis in the gastric mucosa. Our results delineate KBrO3 -induced gastric epithelial cytotoxicity that is ameliorated by protocatechuic acid. PRACTICAL APPLICATIONS: Potassium bromate is a known food additive in the baking, brewing, and cheese-making process. Conversely, protocatechuic acid (3,4-dihydroxybenzoic acid) is the polyphenolic content of plants like Hibiscus sabdariffa L that are commonly consumed as herbal drink, food, spices, and used in folk medicine. This study reports the cytoprotective effect of protocatechuic acid against gastric mucosa ulceration that has been aggravated by potassium bromate.
Collapse
Affiliation(s)
- Adeola T Salami
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayokun A Adebimpe
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olawande C Olagoke
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Toluwalope O Iyiola
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Nigeria
| | - Samuel B Olaleye
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
109
|
Cold Atmospheric Pressure Plasma in Wound Healing and Cancer Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196898] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasma medicine is gaining increasing attention and is moving from basic research into clinical practice. While areas of application are diverse, much research has been conducted assessing the use of cold atmospheric pressure plasma (CAP) in wound healing and cancer treatment—two applications with entirely different goals. In wound healing, a tissue-stimulating effect is intended, whereas cancer therapy aims at killing malignant cells. In this review, we provide an overview of the latest clinical and some preclinical research on the efficacy of CAP in wound healing and cancer therapy. Furthermore, we discuss the current understanding of molecular signaling mechanisms triggered by CAP that grant CAP its antiseptic and tissue regenerating or anti-proliferative and cell death-inducing properties. For the efficacy of CAP in wound healing, already substantial evidence from clinical studies is available, while evidence for therapeutic effects of CAP in oncology is mainly from in vitro and in vivo animal studies. Efforts to elucidate the mode of action of CAP suggest that different components, such as ultraviolet (UV) radiation, electromagnetic fields, and reactive species, may act synergistically, with reactive species being regarded as the major effector by modulating complex and concentration-dependent redox signaling pathways.
Collapse
|
110
|
Nitric Oxide-Releasing Thermoresponsive Pluronic F127/Alginate Hydrogel for Enhanced Antibacterial Activity and Accelerated Healing of Infected Wounds. Pharmaceutics 2020; 12:pharmaceutics12100926. [PMID: 32998349 PMCID: PMC7600256 DOI: 10.3390/pharmaceutics12100926] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/24/2023] Open
Abstract
Nitric oxide (NO), a highly reactive and lipophilic molecule, is one of the molecules present in the wound environment and implicated as an important regulator in all phases of wound healing. Here, we developed an NO-releasing thermoresponsive hydrogel (GSNO-PL/AL) composed of S-nitrosoglutathione (GSNO), pluronic F127 (PL), and alginate (AL) for the treatment of infected wounds. The GSNO was incorporated into the thermoresponsive PL/AL hydrogel, and differential scanning calorimetry techniques were used for the hydrogel characterization. The hydrogel was assessed by in vitro NO release, antibacterial activity, cytotoxicity, and wound-healing activity. The GSNO-PL/AL hydrogel demonstrated thermal responsiveness and biocompatibility, and it showed sustained NO release for 7 days. It also exhibited potent bactericidal activity against Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative multidrug-resistant Pseudomonas aeruginosa (MRPA). Moreover, the GSNO-PL/AL treatment of MRPA-infected wounds accelerated healing with a reduced bacterial burden in the wounds. The GSNO-PL/AL hydrogel would be a promising option for the treatment of infected wounds.
Collapse
|
111
|
Palma Medina LM, Becker AK, Michalik S, Surmann K, Hildebrandt P, Gesell Salazar M, Mekonnen SA, Kaderali L, Völker U, van Dijl JM. Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different Stages of Regeneration. ACS Infect Dis 2020; 6:2279-2290. [PMID: 32579327 PMCID: PMC7432605 DOI: 10.1021/acsinfecdis.0c00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The
primary barrier that protects our lungs against infection by
pathogens is a tightly sealed layer of epithelial cells. When the
integrity of this barrier is disrupted as a consequence of chronic
pulmonary diseases or viral insults, bacterial pathogens will gain
access to underlying tissues. A major pathogen that can take advantage
of such conditions is Staphylococcus aureus, thereby
causing severe pneumonia. In this study, we investigated how S. aureus responds to different conditions of the human
epithelium, especially nonpolarization and fibrogenesis during regeneration
using an in vitro infection model. The infective
process was monitored by quantification of the epithelial cell and
bacterial populations, fluorescence microscopy, and mass spectrometry.
The results uncover differences in bacterial internalization and population
dynamics that correlate with the outcome of infection. Protein profiling
reveals that, irrespective of the polarization state of the epithelial
cells, the invading bacteria mount similar responses to adapt to the
intracellular milieu. Remarkably, a bacterial adaptation that was
associated with the regeneration state of the epithelial cells concerned
the early upregulation of proteins controlled by the redox-responsive
regulator Rex when bacteria were confronted with a polarized cell
layer. This is indicative of the modulation of the bacterial cytoplasmic
redox state to maintain homeostasis early during infection even before
internalization. Our present observations provide a deeper insight
into how S. aureus can take advantage of a breached
epithelial barrier and show that infected epithelial cells have limited
ability to respond adequately to staphylococcal insults.
Collapse
Affiliation(s)
- Laura M. Palma Medina
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| | - Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Solomon A. Mekonnen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, 9700 RB Groningen, The Netherlands
| |
Collapse
|
112
|
Alwattar JK, Chouaib R, Khalil A, Mehanna MM. A novel multifaceted approach for wound healing: Optimization and in vivo evaluation of spray dried tadalafil loaded pro-nanoliposomal powder. Int J Pharm 2020; 587:119647. [PMID: 32673771 DOI: 10.1016/j.ijpharm.2020.119647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
The topical delivery of nanotherapeutics at the injury site for skin regeneration has received increasing attention as a strategy for wound treatment. This study aimed to investigate the preparation of spray dried tadalafil loaded pro-nanoliposomes powder as a novel system to accelerate wound healing process. The optimization was carried out employing 32 factorial design based on phospholipid and cholesterol concentrations. The physicochemical characterizations, in vitro cellular assessment and in vivo performance were evaluated. The results obtained pointed out that phospholipid concentration presented a positive effect on the entrapment efficacy and particle size, while cholesterol hindered the entrapment efficacy yet presented a prominent influence on particle size. Moreover, the optimized formulation showed a sustained release, high zeta potential and uniform spherical particles indicating entrapment of tadalafil in its amorphous state as demonstrated by FTIR and XPRD results. Cell viability and in vitro scratch assay demonstrated no cytotoxicity on human fibroblast cell lines and the ability of the drug and optimized formulation to promote cell migration. In vivo wound healing studies revealed significantly higher wound closure rates for areas treated with optimized loaded-formulation (65.95±6.47%) compared to unloaded formulation (29.78±9.65%), free drug (38.87±11.44%) and sham group (10.22±5.11%). In the in vivo study, histopathological specimens supported the previous results with presentation of cascade of healing elements via the angiogenetic activity of tadalafil. These outcomes provide an insight of a novel and emerging therapeutic drug system for wound treatment in clinical practice.
Collapse
Affiliation(s)
- Jana K Alwattar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Racha Chouaib
- Faculty of Sciences, Lebanese University, Beirut, Lebanon; Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Alia Khalil
- Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon; Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
113
|
Yang T, Zelikin AN, Chandrawati R. Enzyme Mimics for the Catalytic Generation of Nitric Oxide from Endogenous Prodrugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907635. [PMID: 32372556 DOI: 10.1002/smll.201907635] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The highly diverse biological roles of nitric oxide (NO) in both physiological and pathophysiological processes have prompted great interest in the use of NO as a therapeutic agent in various biomedical applications. NO can exert either protective or deleterious effects depending on its concentration and the location where it is delivered or generated. This double-edged attribute, together with the short half-life of NO in biological systems, poses a major challenge to the realization of the full therapeutic potential of this molecule. Controlled release strategies show an admirable degree of precision with regard to the spatiotemporal dosing of NO but are disadvantaged by the finite NO deliverable payload. In turn, enzyme-prodrug therapy techniques afford enhanced deliverable payload but are troubled by the inherent low stability of natural enzymes, as well as the requirement to control pharmacokinetics for the exogenous prodrugs. The past decade has seen the advent of a new paradigm in controlled delivery of NO, namely localized bioconversion of the endogenous prodrugs of NO, specifically by enzyme mimics. These early developments are presented, successes of this strategy are highlighted, and possible future work on this avenue of research is critically discussed.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Alexander N Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
114
|
Kale NR, Dutta D, Carstens W, Mallik S, Quadir M. Functional Applications of Polyarginine-Hyaluronic Acid-Based Electrostatic Complexes. Bioelectricity 2020; 2:158-166. [PMID: 32856018 DOI: 10.1089/bioe.2020.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Electrostatic complexes of poly (l-Arginine) (pArg) and hyaluronic acid (HA) have been investigated for their functional applications to supply free or polymeric form of l-Arginine (Arg) to target cells. As a vital amino acid, Arg plays significant role in multitude of pathophysiological processes ranging from wound healing to cancer. However, serum arginase expression and toxicity of Arg at cellular level renders exogenous delivery of this amino acid a challenging task. We showed that polyarginine-hyaluronic acid ionic nanocomplexes (pArg-HA iNCs) could be an effective way to deliver Arg to target cell populations. Materials and Methods: These electrostatic complexes were prepared by mixing HA (average m.w. of 200 kDa) with pArg (m.w. 5-15 kDa; Sigma) in aqueous solutions and purifying over glycerol. Nanocomplexes were characterized for their particle size, surface charge, capacity to release l-Arg, and intracellular uptake of complexes. Results: Synthesized nanocomplexes showed hydrodynamic diameter ranging from 140-306 nm depending on the content of pArg or HA within the formulation. With surface charge (ζ-potential) of -29 mV, the nanocomplexes showed pH-dependent release of Arg. At pH 7.4, pArg-HA iNCs released 30% of the total Arg-content, while at pH 5.0, 60% of Arg was released after 24 h. These electrostatically stabilized complexes were found to promote growth of human dermal fibroblasts (HDF) in wound-healing assay and increased nitric oxide (NO) activity in these cells in a time-dependent manner. Nanocomplexes also showed cellular uptake and enhanced dose-dependent toxicity against two pancreatic cancer cell lines, i.e. MIA PaCa-2 and Panc-1. Interestingly, the cytotoxic effect was synergized upon pre-treatment of the cells with a frontline chemotherapeutic agent, gemcitabine (GEM), and was not observed when the cells were treated with Arg alone. Conclusion: As such, this communication shows the prospect of pArg-HA iNC electrostatic nanocomplexes to interact and interfere with intracellular Arg metabolic machinery conducive to rescuing different pathological conditions.
Collapse
Affiliation(s)
- Narendra R Kale
- School of Pharmacy, Maharashtra Institute of Technology-WPU, School of Pharmacy, Pune, India
| | - Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | - William Carstens
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
115
|
Ding H, Wang L, Zhang L, Zhu B, Hou L, Huang G, Xu Z. RGD-modified ZnO nanoparticles loaded with nitric oxide precursor for targeted cancer therapy. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
116
|
Dillon KM, Carrazzone RJ, Matson JB, Kashfi K. The evolving landscape for cellular nitric oxide and hydrogen sulfide delivery systems: A new era of customized medications. Biochem Pharmacol 2020; 176:113931. [PMID: 32224139 PMCID: PMC7263970 DOI: 10.1016/j.bcp.2020.113931] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/20/2020] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are industrial toxins or pollutants; however, both are produced endogenously and have important biological roles in most mammalian tissues. The recognition that these gasotransmitters have a role in physiological and pathophysiological processes has presented opportunities to harness their intracellular effects either through inhibition of their production; or more commonly, through inducing their levels and or delivering them by various modalities. In this review article, we have focused on an array of NO and H2S donors, their hybrids with other established classes of drugs, and the various engineered delivery platforms such a fibers, polymers, nanoparticles, hydrogels, and others. In each case, we have reviewed the rationale for their development.
Collapse
Affiliation(s)
- Kearsley M Dillon
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ryan J Carrazzone
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
117
|
Gavel PK, Kumar N, Parmar HS, Das AK. Evaluation of a Peptide-Based Coassembled Nanofibrous and Thixotropic Hydrogel for Dermal Wound Healing. ACS APPLIED BIO MATERIALS 2020; 3:3326-3336. [DOI: 10.1021/acsabm.0c00252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pramod K. Gavel
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Narendra Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | | | - Apurba K. Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
118
|
Comparative Study of Histological Change After Local Treatments with Zinc Oxide, Infrared Rays, Ultraviolet Rays, and Cold Plasma in Rat Model of Diabetic Foot. Indian J Surg 2020. [DOI: 10.1007/s12262-020-02143-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
119
|
de Aquino PEA, de Souza TDFG, Santos FA, Viana AFSC, Louchard BO, Leal LKAM, Rocha TM, Evangelista JSAM, de Aquino NC, de Alencar NMN, Silveira EDR, Viana GSDB. The Wound Healing Property of N-Methyl-(2 S,4 R)- trans-4-Hydroxy-L-Proline from Sideroxylon obtusifolium is Related to its Anti-Inflammatory and Antioxidant Actions. J Evid Based Integr Med 2020; 24:2515690X19865166. [PMID: 31394920 PMCID: PMC6689925 DOI: 10.1177/2515690x19865166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Wound healing involves the interaction of blood cells, proteins, proteases, growth factors, and extracellular matrix components. Inflammation is one of the first events occurring during this process. Previously, we showed that the N-Methyl-(2S,4R)-trans-4-Hydroxy-L-Proline (NMP) from Sideroxylon obtusifolium leaves (a Brazilian medicinal species) presents an anti-inflammatory action. Considering inflammation as an important event in the wound healing process, the objectives were to investigate the topical effects of the NMP gel on a mice wound-induced model. Male Swiss mice were divided into 4 groups: Sham (surgical procedure only), Control (gel-base treated), and 3% or 10% NMP gel-treated groups. Measurements of wound areas and microscopic analyses (HE [hematoxylin-eosin] and PSR [picrosirius red] stainings) were carried out, at the 7th and 12th, days after the wound induction. Furthermore, immunohistochemical assays for iNOS (inducible nitric oxide synthase) and COX-2 (cyclooxygenase-2) and biochemical measurements for TBARS (thiobarbituric acid reactive substances), GSH (glutathione), and myeloperoxidase (MPO) were also performed, at the second day after the wound induction. The work showed that NMP decreases the wound areas, after topical application, relatively to the Sham and Control groups. In addition, microscopic alterations were reduced and collagen deposition was increased, at the 7th and 12th days, in the 10% NMP group. While iNOS and COX-2 immunostainings and GSH contents increased, in relation to the Sham and Control groups, TBARS and MPO decreased. Altogether, the results showed NMP to improve the wound healing process, by upregulating iNOS and COX-2 activities, reducing lipid peroxidation and MPO activity, and increasing GSH contents. In addition, NMP certainly contributes to the increased collagen deposition. These data may stimulate translational studies dealing with the possible use of NMP from Sideroxylon obtusifolium or from other sources for the management of wound healing.
Collapse
|
120
|
Zhou L, Li X, Wang K, Shen F, Zhang L, Li P, Shang T, Wang J, Huang N. Cu ∥-loaded polydopamine coatings with in situ nitric oxide generation function for improved hemocompatibility. Regen Biomater 2020; 7:153-160. [PMID: 32296534 PMCID: PMC7147359 DOI: 10.1093/rb/rbz043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 02/01/2023] Open
Abstract
NO is the earliest discovered gas signal molecule which is produced by normal healthy endothelial cells, and it has many functions, such as maintaining cardiovascular homeostasis, regulating vasodilation, inhibiting intimal hyperplasia and preventing atherosclerosis in the blood system. Insufficient NO release is often observed in the pathological environment, for instance atherosclerosis. It was discovered that NO could be released from the human endogenous NO donor by many compounds, and these methods can be used for the treatment of certain diseases in the blood system. In this work, a series of copper-loaded polydopamine (PDA) coatings were produced through self-polymerization time for 24, 48 and 72 h. The chemical composition and structure, coating thickness and hydrophilicity of the different copper-loaded PDA coatings surfaces were characterized by phenol hydroxyl quantitative, X-ray photoelectron spectroscopy, ellipsometry atomic force microscopy and water contact angles. The results indicate that the thickness and the surface phenolic hydroxyl density of the PDA coatings increased with the polymerization time.This copper-loaded coating has glutathione peroxidase-like activity, and it has the capability of catalyzing NO releasing from GSNO. The surface of the coating showed desirable hemocompatibility, the adhesion and activation of platelets were inhibited on the copper-loaded coatings. At the same time, the formation of the thrombosis was also suppressed. These copper-loaded PDA coatings could provide a promising platform for the development of blood contact materials.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xin Li
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Kebing Wang
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Fangyu Shen
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Lu Zhang
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Peichuang Li
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Tengda Shang
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jin Wang
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Nan Huang
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
121
|
Letsiou S, Félix RC, Cardoso JCR, Anjos L, Mestre AL, Gomes HL, Power DM. Cartilage acidic protein 1 promotes increased cell viability, cell proliferation and energy metabolism in primary human dermal fibroblasts. Biochimie 2020; 171-172:72-78. [PMID: 32084494 DOI: 10.1016/j.biochi.2020.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/15/2020] [Indexed: 02/08/2023]
Abstract
Cartilage acidic protein 1 (CRTAC1) is an extracellular matrix protein of human chondrogenic tissue that is also present in other vertebrates, non-vertebrate eukaryotes and in some prokaryotes. The function of CRTAC1 remains unknown but the protein's structure indicates a role in cell-cell or cell-matrix interactions and calcium-binding. The aim of the present study was to evaluate the in vitro effects of hCRTAC1-A on normal human dermal fibroblasts (NHDF). A battery of in vitro assays (biochemical and PCR), immunofluorescence and a biosensor approach were used to characterize the protein's biological activities on NHDF cells in a scratch assay. Gene expression analysis revealed that hCRTAC1-A protein is associated with altered levels of expression for genes involved in the processes of cell proliferation (CXCL12 and NOS2), cell migration (AQP3 and TNC), and extracellular matrix-ECM regeneration and remodeling (FMOD, TIMP1, FN1) indicating a role for hCRTAC1-A in promoting these activities in a scratch assay. In parallel, the candidate processes identified by differential gene transcription were substantiated and extended using Electric cell-substrate impedance sensing (ECIS) technology, immunofluorescence and cell viability assays. Our findings indicate that hCRTAC1-A stimulated cell proliferation, migration and ECM production in primary human fibroblasts in vitro.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Scientific Affairs, APIVITA SA, Industrial Park of Markopoulo Mesogaias, 19003, Markopoulo Attikis, Athens, Greece.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology Group (CEIB), Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology Group (CEIB), Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Liliana Anjos
- Comparative Endocrinology and Integrative Biology Group (CEIB), Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana L Mestre
- Universidade Do Algarve, Faculdade de Ciências e Tecnologia, 8005-139, Faro, Portugal; Instituto de Telecomunicações, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Henrique L Gomes
- Universidade Do Algarve, Faculdade de Ciências e Tecnologia, 8005-139, Faro, Portugal; Instituto de Telecomunicações, Avenida Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group (CEIB), Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Universidade Do Algarve, Faculdade de Ciências e Tecnologia, 8005-139, Faro, Portugal.
| |
Collapse
|
122
|
Nie X, Zhang H, Shi X, Zhao J, Chen Y, Wu F, Yang J, Li X. Asiaticoside nitric oxide gel accelerates diabetic cutaneous ulcers healing by activating Wnt/β-catenin signaling pathway. Int Immunopharmacol 2020; 79:106109. [PMID: 31865242 DOI: 10.1016/j.intimp.2019.106109] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022]
Abstract
Diabetic ulcers, gangrene, local infections and other traumatic symptoms of wound healing are all directly related. Promoting the early healing of diabetic cutaneous ulcers (DCU) and reducing the disability and treatment costs is an important research project integrating traditional Chinese and Western medicine. Nitric oxide (NO) is a key component of wound healing, and endogenous NO secretion is insufficient during the development of DCU. It has been reported that exogenous NO can promote wound healing, but exogenous NO has a short half-life and is difficult to adhere to the skin. Asiaticoside (AC) is extracted from the traditional Chinese medicine Centella asiatica, and has angiogenic, anticancer, antioxidant, anti-inflammatory, and wound-healing effects. Therefore, our study is based on the hypothesis that the combination of AC and NO to treat DCU is possible. In this study we considered gels of AC and NO, and evaluated the effects of the gel on DCU healing. Based on our study, it was found that the combined effect of asiaticoside and NO could accelerate the healing rate of DCU wounds. The asiaticoside NO gel can inhibit the growth of bacteria in the wound surface, alleviate the inflammatory reaction of wound, and increase the expression of VEGF, iNOS, eNOS and CD34. Our research shows that asiaticoside NO gel may promote DCU wound healing by regulating Wnt/β-Catenin signaling pathway. It will provide new targets and strategies for the diagnosis and treatment of DCU.
Collapse
Affiliation(s)
- Xuqiang Nie
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China; College of Pharmacy, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Han Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiujun Shi
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jiufeng Zhao
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yu Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Faming Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jianwen Yang
- Pharmacy Department, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
123
|
Chandran B, Janakiraman K. New Disposable Nitric Oxide Sensor Fabrication Using GaN Nanowires. ACS OMEGA 2019; 4:17171-17176. [PMID: 31656890 PMCID: PMC6811847 DOI: 10.1021/acsomega.9b01609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Gallium nitride (GaN) nanowires anchored on the surface of cost-effective pencil graphite electrodes (PGEs) have been developed as a new disposable nitric oxide (NO) sensor through a hydrothermal method followed by annealing treatment. The as-obtained nanomaterials were examined by field emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and EIS. Concurrently, the electrocatalytic performance has been analyzed using cyclic voltammetry and amperometric measurements. The experimental results exhibit good electrochemical sensing performance toward the generated NO in NO2 - with a wide linear detection range of 1.0 μM to 1.0 mM with a correlation coefficient of 0.999 and a detection limit of 0.180 μM. In addition, the GaN nanowire-modified PGE surface showed high selectivity for the detection of NO as compared to other relevant biomolecules. This confirms that the PGE/GaN nanowire is a new promising electrochemical sensor for the sensitive detection of NO.
Collapse
|
124
|
Lee J, Hlaing SP, Cao J, Hasan N, Ahn HJ, Song KW, Yoo JW. In Situ Hydrogel-Forming/Nitric Oxide-Releasing Wound Dressing for Enhanced Antibacterial Activity and Healing in Mice with Infected Wounds. Pharmaceutics 2019; 11:pharmaceutics11100496. [PMID: 31569746 PMCID: PMC6836051 DOI: 10.3390/pharmaceutics11100496] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
The eradication of bacteria from wound sites and promotion of healing are essential for treating infected wounds. Nitric oxide (NO) is desirable for these purposes due to its ability to accelerate wound healing and its broad-spectrum antibacterial effects. We developed an in situ hydrogel-forming/NO-releasing powder dressing (NO/GP), which is a powder during storage and forms a hydrogel when applied to wounds, as a novel NO-releasing formulation to treat infected wounds. An NO/GP fine powder (51.5 μm) was fabricated by blending and micronizing S-nitrosoglutathione (GSNO), alginate, pectin, and polyethylene glycol (PEG). NO/GP remained stable for more than four months when stored at 4 or 37 °C. When applied to wounds, NO/GP absorbed wound fluid and immediately converted to a hydrogel. Additionally, wound fluid triggered a NO release from NO/GP for more than 18 h. The rheological properties of hydrogel-transformed NO/GP indicated that NO/GP possesses similar adhesive properties to marketed products (Vaseline). NO/GP resulted in a 6-log reduction in colony forming units (CFUs) of methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, which are representative drug-resistant gram-positive and -negative bacteria, respectively. The promotion of wound healing by NO/GP was demonstrated in mice with full-thickness wounds challenged with MRSA and P. aeruginosa. Thus, NO/GP is a promising formulation for the treatment of infected wounds.
Collapse
Affiliation(s)
- Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| | - Hye-Jin Ahn
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea.
| | - Ki-Won Song
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea.
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
125
|
Brown MD, Schoenfisch MH. Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization. Chem Rev 2019; 119:11551-11575. [DOI: 10.1021/acs.chemrev.8b00797] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
126
|
Dalisson B, Barralet J. Bioinorganics and Wound Healing. Adv Healthc Mater 2019; 8:e1900764. [PMID: 31402608 DOI: 10.1002/adhm.201900764] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Wound dressings and the healing enhancement (increasing healing speed and quality) are two components of wound care that lead to a proper healing. Wound care today consists mostly of providing an optimal environment by removing waste and necrotic tissues from a wound, preventing infections, and keeping the wounds adequately moist. This is however often not enough to re-establish the healing process in chronic wounds; with the local disruption of vascularization, the local environment is lacking oxygen, nutrients, and has a modified ionic and molecular concentration which limits the healing process. This disruption may affect cellular ionic pumps, energy production, chemotaxis, etc., and will affect the healing process. Biomaterials for wound healing range from simple absorbents to sophisticated bioactive delivery vehicles. Often placing a material in or on a wound can change multiple parameters such as pH, ionic concentration, and osmolarity, and it can be challenging to pinpoint key mechanism of action. This article reviews the literature of several inorganic ions and molecules and their potential effects on the different wound healing phases and their use in new wound dressings.
Collapse
Affiliation(s)
| | - Jake Barralet
- Faculty of DentistryMcGill University Montreal H3A 1G1 QC Canada
- Division of OrthopaedicsDepartment of SurgeryFaculty of MedicineMcGill University Montreal H4A 0A9 QC Canada
| |
Collapse
|
127
|
Krzystek-Korpacka M, Wiśniewski J, Fleszar MG, Bednarz-Misa I, Bronowicka-Szydełko A, Gacka M, Masłowski L, Kędzior K, Witkiewicz W, Gamian A. Metabolites of the Nitric Oxide (NO) Pathway Are Altered and Indicative of Reduced NO and Arginine Bioavailability in Patients with Cardiometabolic Diseases Complicated with Chronic Wounds of Lower Extremities: Targeted Metabolomics Approach (LC-MS/MS). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5965721. [PMID: 31396302 PMCID: PMC6664544 DOI: 10.1155/2019/5965721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The status of metabolites of the nitric oxide (NO) pathway in patients with chronic wounds in the course of cardiometabolic diseases is largely unknown. Yet arginine supplementation and citrulline supplementation as novel therapeutic modalities aimed at increasing NO are tested. MATERIAL AND METHODS Targeted metabolomics approach (LC-MS/MS) was applied to determine the concentrations of L-arginine, L-citrulline, asymmetric and symmetric dimethylarginines (ADMA and SDMA), and arginine/ADMA and arginine/SDMA ratios as surrogate markers of NO and arginine availability in ulnar and femoral veins, representing systemic and local levels of metabolites, in patients with chronic wounds in the course of cardiometabolic diseases (n = 59) as compared to patients without chronic wounds but with similar cardiometabolic burden (n = 55) and healthy individuals (n = 88). RESULTS Patients with chronic wounds had significantly lower systemic L-citrulline and higher ADMA and SDMA concentrations and lower L-arginine/ADMA and L-arginine/SDMA as compared to healthy controls. The presence of chronic wounds in patients with cardiometabolic diseases was associated with decreased L-arginine but with increased L-citrulline, ADMA, and SDMA concentrations and decreased L-arginine/ADMA and L-arginine/SDMA. Serum obtained from the ulnar and femoral veins of patients with chronic wounds differed by L-arginine concentrations and L-arginine/SDMA ratio, both lower in the femoral vein. Wound etiology affected L-citrulline and SDMA concentrations, lower and higher, respectively, in patients with venous stasis, and the L-arginine/SDMA ratio-lower in venous stasis. The wound type affected L-arginine/ADMA and citrulline-lower in patients with ulcerations or gangrene. IL-6 was an independent predictor of L-arginine/ADMA, VEGF-A of ADMA, G-CSF of L-arginine/SDMA, and GM-CSF of L-citrulline and SDMA. CONCLUSION Chronic wounds in the course of cardiometabolic diseases are associated with reduced NO and arginine availability due to ADMA and SDMA accumulation rather than arginine deficiency, not supporting its supplementation. Wound character seems to affect NO bioavailability and wound etiology-arginine bioavailability. Arginine concentration and its availability are more markedly reduced at the local level than the systemic level.
Collapse
Affiliation(s)
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Mariusz G. Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw 50-368, Poland
- PORT Polski Ośrodek Rozwoju Technologii sp, ZOO, Wroclaw 54-066, Poland
| | - Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw 50-368, Poland
| | | | - Małgorzata Gacka
- Department of Angiology, Hypertension and Diabetes, Wroclaw Medical University, Wroclaw 50-556, Poland
| | - Leszek Masłowski
- Department of Angiology, Regional Specialist Hospital, Wroclaw 51-124, Poland
| | - Krzysztof Kędzior
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Wojciech Witkiewicz
- Department of Vascular Surgery, Regional Specialist Hospital, Wroclaw 51-124, Poland
- Research and Development Centre, Regional Specialist Hospital, Wroclaw 51-124, Poland
| | - Andrzej Gamian
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw 50-368, Poland
| |
Collapse
|
128
|
Kramer A, Conway BR, Meissner K, Scholz F, Rauch BH, Moroder A, Ehlers A, Meixner AJ, Heidecke CD, Partecke LI, Kietzmann M, Assadian O. Cold atmospheric pressure plasma for treatment of chronic wounds: drug or medical device? J Wound Care 2019; 26:470-475. [PMID: 28795892 DOI: 10.12968/jowc.2017.26.8.470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The use of cold atmospheric pressure plasma (CAPP) as a new therapeutic option to aid the healing of chronic wounds appears promising. Currently, uncertainty exists regarding their classification as medical device or medical drug. Because the classification of CAPP has medical, legal, and economic consequences as well as implications for the level of preclinical and clinical testing, the correct classification is not an academic exercise, but an ethical need. METHOD A multidisciplinary team of physicians, surgeons, pharmacists, physicists and lawyers has analysed the physical and technical characteristics as well as legal conditions of the biological action of CAPP. RESULTS It was concluded that the mode of action of the locally generated CAPP, with its main active components being different radicals, is pharmacological and not physical in nature. CONCLUSION Depending on the intended use, CAPP should be classified as a drug, which is generated by use of a medical device directly at the point of therapeutic application.
Collapse
Affiliation(s)
- A Kramer
- Consultant Clinical Microbiology and Infection Control, Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Germany
| | - B R Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, United Kingdom; Institute of Skin Integrity and Infection Prevention, School for Human and Health Sciences, University of Huddersfield
| | - K Meissner
- Anesthetist, Intensive Care Specialist, Department of Anesthesiology and Intensive Medicine, University Medicine, Greifswald, Germany
| | - F Scholz
- Biochemist, Institute of Biochemistry, University of Greifswald, Germany
| | - B H Rauch
- Medical Pharmacology and Toxicology, Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Germany
| | - A Moroder
- Lawyer, Ehlers, Ehlers & Partner Healthcare Law Firm Munich, Germany
| | - A Ehlers
- Lawyer, Ehlers, Ehlers & Partner Healthcare Law Firm Munich, Germany
| | - A J Meixner
- Physicist, Institute of Physical and Theoretical Chemistry Tübingen, Germany
| | - C-D Heidecke
- General Surgeon, Department of Surgery, University Medicine Greifswald, Germany
| | - L I Partecke
- General Surgeon, Department of Surgery, University Medicine Greifswald, Germany
| | - M Kietzmann
- Veterinary Medicine, Pharmacologist, Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - O Assadian
- Consultant Clinical Microbiology and Infection Control, Consultant Infectious Diseases and Tropical Medicine, Institute for Hospital Epidemiology and Infection Control, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
129
|
Abd El-Aleem SA, Abdelwahab S, Am-Sherief H, Sayed A. Cellular and physiological upregulation of inducible nitric oxide synthase, arginase, and inducible cyclooxygenase in wound healing. J Cell Physiol 2019; 234:23618-23632. [PMID: 31161614 DOI: 10.1002/jcp.28930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Wound repair is regulated by overlapping cellular, physiological and biochemical events. Prostaglandins and nitric oxide have been a focus for inflammation research particularly since the discovery of their inducible isoforms nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Study of the cellular expression of iNOS and COX-2 and arginase which competes with iNOS for its substrate, in an in vivo model of wound healing could reveal important roles for these enzymes in the physiological progression of wound repair. Adult male rats received full thickness dermal wounds which were harvested at different times. Protein levels and activities of the enzymes were assessed by western blot and biochemical assays respectively. The cellular distribution and the colocalization were assessed by immunostaining. The protein levels and activities of iNOS, arginase, and COX-2 increased only during the inflammatory phase of wound. Immunocytochemistry showed that the three enzymes were coexpressed and the main cellular source was inflammatory cells mainly macrophages. iNOS was induced at the wound site and was the earliest to increase significantly (p < 0.05) for only up to 3 days postwounding. However, arginase and COX-2 significant ( p < 0.05) upregulation started at a later time points and continued for up to 14 days postwounding. Therefore iNOS, compared with arginase and COX-2, showed a temporal difference in expression during wound healing which could be explained by their products being required at different stages of the healing process. The coordinated expression of the three enzymes at different time points could account for the physiological progression of the healing process.
Collapse
Affiliation(s)
- Seham A Abd El-Aleem
- Cell Biology, School of Biological Sciences, University of Manchester, Manchester, UK.,Histology and Cell Biology, Minia University, Minia, Egypt
| | - Soha Abdelwahab
- Histology and Cell Biology, Minia University, Minia, Egypt.,Histology, Deraya University, New Minia, Egypt
| | - Hany Am-Sherief
- Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Jouf, Sakaka, Saudi Arabia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt
| | - Ahmed Sayed
- Histology and Cell Biology, Minia University, Minia, Egypt
| |
Collapse
|
130
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 560] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
131
|
Hasan N, Cao J, Lee J, Naeem M, Hlaing SP, Kim J, Jung Y, Lee BL, Yoo JW. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109741. [PMID: 31349480 DOI: 10.1016/j.msec.2019.109741] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 01/23/2023]
Abstract
Wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) biofilm represent a high risk in patients with diabetes. Nitric oxide (NO) has shown promise in dispersing biofilm and wound healing. For an effective treatment of MRSA biofilm-infected wounds, however, NO needs to be supplied to the biofilm matrix in a sustainable manner due to a short half-life and limited diffusion distance of NO. In this study, polyethylenimine/diazeniumdiolate (PEI/NONOate)-doped PLGA nanoparticles (PLGA-PEI/NO NPs) with an ability to bind to the biofilm matrix are developed to facilitate the NO delivery to MRSA biofilm-infected wound. In simulated wound fluid, PLGA-PEI/NO NPs show an extended NO release over 4 days. PLGA-PEI/NO NPs firmly bind to the MRSA biofilm matrix, resulting in a greatly enhanced anti-biofilm activity. Moreover, PLGA-PEI/NO NPs accelerate healing of MRSA biofilm-infected wounds in diabetic mice along with complete biofilm dispersal and reduced bacterial burden. These results suggest that the biofilm-binding NO-releasing NPs represent a promising NO delivery system for the treatments of biofilm-infected chronic wounds.
Collapse
Affiliation(s)
- Nurhasni Hasan
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jiafu Cao
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Juho Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Muhammad Naeem
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Shwe Phyu Hlaing
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jihyun Kim
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Bok-Leul Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jin-Wook Yoo
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
132
|
Su CH, Li WP, Tsao LC, Wang LC, Hsu YP, Wang WJ, Liao MC, Lee CL, Yeh CS. Enhancing Microcirculation on Multitriggering Manner Facilitates Angiogenesis and Collagen Deposition on Wound Healing by Photoreleased NO from Hemin-Derivatized Colloids. ACS NANO 2019; 13:4290-4301. [PMID: 30883107 DOI: 10.1021/acsnano.8b09417] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A deficiency of nitric oxide (NO) supply has been found to impair wound healing. The exogenous topical delivery of NO is a promising approach to enhance vasodilation and stimulate angiogenesis and collagen deposition. In this study, the CN groups on the surface of Prussian blue (PB) nanocubes were carefully reduced to -CH2-NH2 to conjugate with COOH group of hemin consisting of a Fe-porphyrin structure with strong affinity toward NO. Accordingly, the NO gas was able to coordinate to hemin-modified PB nanocubes. The hemin-modified PB carrying NO (PB-NO) can be responsible to near-infrared (NIR) light (808 nm) exposure to induce the thermo-induced liberation of NO based on the light-to-heat transformation property of PB nanocubes. The NO supply on the incisional wound sites can be readily topically dropped the colloidal solution of PB-NO for receiving NIR light irradiation. The enhanced blood flow was in a controllable manner whenever the wound sites containing PB-NO received NIR light irradiation. The promotion of blood perfusion following the on-demand multidelivery of NO has effectively facilitated the process of wound closure to enhance angiogensis and collagen deposition.
Collapse
Affiliation(s)
- Chia-Hao Su
- Institute for Translational Research in Biomedicine , Kaohsiung Chang Gung Memorial Hospital , Kaohsiung 833 , Taiwan
| | | | | | | | | | | | - Min-Chiao Liao
- Institute for Translational Research in Biomedicine , Kaohsiung Chang Gung Memorial Hospital , Kaohsiung 833 , Taiwan
| | - Chin-Lai Lee
- Institute for Translational Research in Biomedicine , Kaohsiung Chang Gung Memorial Hospital , Kaohsiung 833 , Taiwan
| | - Chen-Sheng Yeh
- Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 807 , Taiwan
| |
Collapse
|
133
|
Kulshrestha S, Chawla R, Alam MT, Adhikari J, Basu M. Efficacy and dermal toxicity analysis of Sildenafil citrate based topical hydrogel formulation against traumatic wounds. Biomed Pharmacother 2019; 112:108571. [DOI: 10.1016/j.biopha.2019.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022] Open
|
134
|
Sahana TG, Rekha PD. A bioactive exopolysaccharide from marine bacteria Alteromonas sp. PRIM-28 and its role in cell proliferation and wound healing in vitro. Int J Biol Macromol 2019; 131:10-18. [PMID: 30851325 DOI: 10.1016/j.ijbiomac.2019.03.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
Marine bacteria secrete exopolysaccharides (EPS) with unique structural and functional properties and serve as a source of newer bioactive biopolymers. This study reports an EPS produced by a marine bacterium identified as Alteromonas sp. PRIM-28 for its bioactivities. The EPS was characterised using standard methods and tested for its bioactivities using in vitro models. EPS-A28 is an anionic heteropolysaccharide with a molecular weight of 780 kDa and exists as triple helical structure in aqueous solution. Monosaccharide composition is mannuronic acid, glucose and N-acetyl glucosamine repeating units in the ratio 1:3.67:0.93. The FT-IR spectra showed the presence of sulphate, phosphate and uronic acid residues. The thermal analysis showed partial degradation of the EPS-A28 at 190 °C and 40% of residues were stable up to 800 °C. It showed biocompatibility and induced proliferation and migration of dermal fibroblasts (HDF) and keratinocytes. EPS-A28 could increase the S-phase of cell cycle. The proliferative property of the EPS-A28 was established by the increased expression of fibroblast proliferation marker (Ki-67) also its capability of binding to cell surface. It also induced nitric oxide and arginase synthesis in macrophages. These findings suggest that EPS-A28 can be potentially used as a multifunctional bioactive polymer in wound care.
Collapse
Affiliation(s)
- T G Sahana
- Yenepoya Research Centre, Yenepoya University, University Road, Deralakatte, Mangalore, India.
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya University, University Road, Deralakatte, Mangalore, India.
| |
Collapse
|
135
|
Lee HY, Lee HJ, Kim GC, Choi JH, Hong JW. Plasma cupping induces VEGF expression in skin cells through nitric oxide-mediated activation of hypoxia inducible factor 1. Sci Rep 2019; 9:3821. [PMID: 30846730 PMCID: PMC6405951 DOI: 10.1038/s41598-019-40086-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022] Open
Abstract
Despite a long history, the clinical efficacy of cupping therapy is still under debate. This is likely due to the lack of direct evidence for the biological actions of cupping, since the short exposure of cells to vacuum condition rarely has affects cellular activity. In this study, the medicinal properties of a recent medical technology, non-thermal plasma, were added to classical cupping and designated as 'plasma cupping' (PC). In our results, the plasma-generating efficacy was increased under a cupping-like semi-vacuum condition (410 Torr) rather than normal atmospheric pressure (760 Torr). Notably, while cupping rarely affects the angiogenic factor vascular-endothelial growth factor (VEGF)-A, the PC treatment on HaCaT human keratinocytes significantly induced the expression of VEGF-A. The increased expression of the VEGF-A gene after the PC treatment was expected to be a result of PC-mediated ERK protein activation. The PC-mediated activation of ERK was essential for the activity of hypoxia inducible factor (HIF) 1 alpha, which is responsible for the PC-mediated expression of VEGF-A. The PC mediated increase of NO in the media was thought as a main reason for the elevated HIF-1 protein activity. In addition to the angiogenesis-promoting action of PC, it also showed anti-inflammatory activity by reducing TNF-α-mediated IL-1β and IL-6 expression. Taken together, this study indicates the potential for PC that could enhance the clinical efficacy of cupping by adding the effects of non-thermal plasma to traditional cupping.
Collapse
Affiliation(s)
- Hyun-Young Lee
- Department of electrical engineering, Pusan National University, Busan, South Korea
| | - Hae-June Lee
- Department of electrical engineering, Pusan National University, Busan, South Korea
| | - Gyoo-Cheon Kim
- Department of Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Jeong-Hae Choi
- Department of Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan, South Korea.
- Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan, South Korea.
| | - Jin-Woo Hong
- Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan, South Korea.
| |
Collapse
|
136
|
Premarathna AD, Ranahewa T, Wijesekera S, Wijesundara R, Jayasooriya AP, Wijewardana V, Rajapakse R. Wound healing properties of aqueous extracts of Sargassum illicifolium: An in vitro assay. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.wndm.2018.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
137
|
Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed Pharmacother 2019; 111:1260-1276. [DOI: 10.1016/j.biopha.2019.01.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 01/27/2023] Open
|
138
|
Park K, Jeong H, Tanum J, Yoo JC, Hong J. Poly-l-lysine/poly-l-glutamic acid-based layer-by-layer self-assembled multilayer film for nitric oxide gas delivery. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
139
|
Janićijević Ž, Ninkov M, Kataranovski M, Radovanović F. Poly(DL-Lactide-co-ε-Caprolactone)/Poly(Acrylic Acid) Composite Implant for Controlled Delivery of Cationic Drugs. Macromol Biosci 2018; 19:e1800322. [PMID: 30548776 DOI: 10.1002/mabi.201800322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/02/2018] [Indexed: 11/09/2022]
Abstract
Poly(DL-lactide-co-ε-caprolactone)/poly(acrylic acid) implantable composite reservoirs for cationic drugs are synthesized by sequentially applying photoirradiation and liquid phase inversion. The chemical composition and microstructure of reservoirs are characterized with Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and scanning electron microscopy (SEM), respectively. Drug loading and release properties are investigated using methylene blue as the drug model. Biocompatibility of reservoirs is examined through a series of in vitro tests and an in vivo experiment of subcutaneous implantation in Dark Agouti rats. Reservoirs show good ion-exchange capacity, high water content, and fast reversible swelling with retained geometry. Results of drug loading and release reveal excellent loading efficiency and diffusion-controlled release during 2 weeks. Biocompatibility tests in vitro demonstrate the lack of implant proinflammatory potential and hindered adhesion of L929 cells on the implant surface. Implants exhibit low acute toxicity and elicit a normal acute foreign body reaction that reaches the early stages of fibrous capsule formation after 7 days.
Collapse
Affiliation(s)
- Željko Janićijević
- University of Belgrade, School of Electrical Engineering, Bulevar kralja Aleksandra 73, 11120, Belgrade, Serbia.,Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000, Belgrade, Serbia
| | - Marina Ninkov
- Department of Ecology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Milena Kataranovski
- Department of Ecology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.,Department of Physiology and Biochemistry, University of Belgrade, Studenstki trg 16, 11000, Belgrade, Serbia
| | - Filip Radovanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000, Belgrade, Serbia
| |
Collapse
|
140
|
Investigative Study on Nitric Oxide Production in Human Dermal Fibroblast Cells under Normal and High Glucose Conditions. Med Sci (Basel) 2018; 6:medsci6040099. [PMID: 30423993 PMCID: PMC6313404 DOI: 10.3390/medsci6040099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022] Open
Abstract
Diabetic foot ulcers (DFU) are a major health problem associated with diabetes mellitus. Impaired nitric oxide (NO) production has been shown to be a major contributor to the dysregulation of healing in DFU. The level of impairment is not known primarily due to challenges with measuring NO. Herein, we report the actual level of NO produced by human dermal fibroblasts cultured under normal and high glucose conditions. Fibroblasts produce the extracellular matrix, which facilitate the migration of keratinocytes to close wounds. The results show that NO production was significantly higher in normal glucose compared to high glucose conditions. The real-time NO detected was compared to the nitrite present in the culture media and there was a direct correlation between real-time NO and nitrite in normal glucose conditions. However, real-time NO detection and nitrite measurement did not correlate under high glucose conditions. The inducible nitric oxide synthase (iNOS) enzyme responsible for NO production was upregulated in normal and high glucose conditions and the proliferation rate of fibroblasts was not statistically different in all the treatment groups. Relying only on nitrite to assess NO production is not an accurate determinant of the NO present in the wound bed in pathological states such as diabetes mellitus.
Collapse
|
141
|
O’Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. MICROBIOME 2018; 6:177. [PMID: 30285861 PMCID: PMC6169095 DOI: 10.1186/s40168-018-0558-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/11/2018] [Indexed: 05/07/2023]
Abstract
Acne is one of the most common skin diseases worldwide and results in major health care costs and significant morbidity to severely affected individuals. However, the pathophysiology of this disorder is not well understood. Host-microbiome interactions that affect both innate and adaptive immune homeostasis appear to be a central factor in this disease, with recent observations suggesting that the composition and activities of the microbiota in acne is perturbed. Staphylococcus epidermidis and Cutibacterium acnes (C. acnes; formerly Propionibacterium acnes) are two major inhabitants of the skin that are thought to contribute to the disease but are also known to promote health by inhibiting the growth and invasion of pathogens. Because C. acnes is ubiquitous in sebaceous-rich skin, it is typically labeled as the etiological agent of acne yet it fails to fulfill all of Koch's postulates. The outdated model of acne progression proposes that increased sebum production promotes over-proliferation of C. acnes in a plugged hair follicle, thereby driving inflammation. In contrast, growing evidence indicates that C. acnes is equally abundant in both unaffected and acne-affected follicles. Moreover, recent advances in metagenomic sequencing of the acne microbiome have revealed a diverse population structure distinct from healthy individuals, uncovering new lineage-specific virulence determinants. In this article, we review recent developments in the interactions of skin microbes with host immunity, discussing the contribution of dysbiosis to the immunobiology of acne and newly emerging skin microbiome-based therapeutics to treat acne.
Collapse
Affiliation(s)
- Alan M. O’Neill
- Department of Dermatology, University of California San Diego, La Jolla, CA 92037 USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA 92037 USA
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr., #0869, La Jolla, CA 92093 USA
| |
Collapse
|
142
|
Champeau M, Póvoa V, Militão L, Cabrini FM, Picheth GF, Meneau F, Jara CP, de Araujo EP, de Oliveira MG. Supramolecular poly(acrylic acid)/F127 hydrogel with hydration-controlled nitric oxide release for enhancing wound healing. Acta Biomater 2018; 74:312-325. [PMID: 29777958 DOI: 10.1016/j.actbio.2018.05.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 01/20/2023]
Abstract
Topical nitric oxide (NO) delivery has been shown to accelerate wound healing. However, delivering NO to wounds at appropriate rates and doses requires new biomaterial-based strategies. Here, we describe the development of supramolecular interpolymer complex hydrogels comprising PEO-PPO-PEO (F127) micelles embedded in a poly(acrylic acid) (PAA) matrix, with S-nitrosoglutathione (GSNO) molecules dissolved in the hydrophilic domain. We show that PAA:F127/GSNO hydrogels start releasing NO upon hydration at rates controlled by their rates of water absorption. SAXS measurements indicate that the supramolecular structure of the hydrogels retains long-range order domains of F127 micelles. The PAA/F1227 hydrogels displayed dense morphologies and reduced rates of hydration. The NO release rates remain constant over the first 200 min, are directly correlated with the hydration rates of the PAA:F127/GSNO hydrogels, and can be modulated in the range of 40 nmol/g h to 1.5 μmol/g h by changing the PAA:F127 mass ratio. Long-term NO-release profiles over 5 days are governed by the first-order exponential decay of GSNO, with half-lives in the range of 0.5-3.4 days. A preliminary in vivo study on full-thickness excisional wounds in mice showed that topical NO release from the PAA:F127/GSNO hydrogels is triggered by exudate absorption and leads to increased angiogenesis and collagen fiber organization, as well as TGF-β, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue. In summary, these results suggest that hydration-controlled NO release from topical PAA:F127/GSNO hydrogels is a potential strategy for enhancing wound healing. STATEMENT OF SIGNIFICANCE The topical delivery of nitric oxide (NO) to wounds may provide significant beneficial results and represent a promising strategy to treat chronic wounds. However, wound dressings capable of releasing NO after application and allowing the modulation of NO release rates, demand new platforms. Here, we describe a novel strategy to overcome these challenges, based on the use of supramolecular poly(acrylic acid) (PAA):F127 hydrogels charged with the NO donor S-nitrosoglutathione (GSNO) from whereby the NO release can be triggered by exudate absorption and delivered to the wound at rates controlled by the PAA:F127 mass ratio. Preliminary in vivo results offer a proof of concept for this strategy by demonstrating increased angiogenesis; collagen fibers organization; and TGF-β, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue after topical treatment with a PAA:F127/GSNO hydrogel.
Collapse
|
143
|
Cao GJ, Fisher CM, Jiang X, Chong Y, Zhang H, Guo H, Zhang Q, Zheng J, Knolhoff AM, Croley TR, Yin JJ. Platinum nanoparticles: an avenue for enhancing the release of nitric oxide from S-nitroso-N-acetylpenicillamine and S-nitrosoglutathione. NANOSCALE 2018; 10:11176-11185. [PMID: 29873378 DOI: 10.1039/c8nr03874k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nitric oxide (NO) is an endogenous bioregulator with established roles in diverse fields. The difficulty in the modulation of NO release is still a significant obstacle to achieving successful clinical applications. We report herein our initial work using electron spin resonance (ESR) spectroscopy to detect NO generated from S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) donors catalyzed by platinum nanoparticles (Pt NPs, 3 nm) under physiological conditions. With ESR spectroscopy coupled with spin trapping and spin labeling techniques, we identified that Pt NPs can significantly promote the generation of NO from SNAP and GSNO under physiological conditions. A classic NO colorimetric detection kit was also employed to verify that Pt NPs truly triggered the release of NO from its donors. Pt NPs can act as promising delivery vehicles for on-demand NO delivery based on time and dosage. These results, along with the detection of the resulting disulfide product, were confirmed with mass spectrometry. In addition, cellular experiments provided a convincing demonstration that the triggered release of NO from its donors by Pt NPs is efficient in killing human cancer cells in vitro. The catalytic mechanism was elucidated by X-ray photo-electron spectroscopy (XPS) and ultra-high performance liquid chromatography/high-resolution mass spectrometry (UHPLC-HRMS), which suggested that Pt-S bond formation occurs in the solution of Pt NPs and NO donors. Identification of Pt NPs capable of generating NO from S-nitrosothiols (RSNOs) is an important step in harnessing NO for investigations into its clinical applications and therapies.
Collapse
Affiliation(s)
- Gao-Juan Cao
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Brown MD, Schoenfisch MH. Catalytic selectivity of metallophthalocyanines for electrochemical nitric oxide sensing. Electrochim Acta 2018; 273:98-104. [PMID: 30739948 PMCID: PMC6366661 DOI: 10.1016/j.electacta.2018.03.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The catalytic properties of metallophthalocyanine (MPc) complexes have long been applied to electrochemical sensing of nitric oxide (NO) to amplify sensitivity and reduce the substantial overpotential required for NO oxidation. The latter point has significant ramifications for in situ amperometric detection, as large working potentials oxidize biological interferents (e.g., nitrite, L-ascorbate, and carbon monoxide). Herein, we sought to isolate and quantify, for the first time, the selectivity benefits of MPc modification of glassy carbon electrodes. A series of the most catalytically active MPc complexes towards NO, including Fe(II)Pc, Co(II)Pc, Ni(II)Pc, and Zn(II)Pc, was selected and probed for NO sensing ability under both differential pulse voltammetry (DPV) and constant potential amperometry (CPA). Data from DPV measurements provided information with respect to MPc signal sensitivity amplification (~1.5×) and peak shifting (100-200 mV). Iron-Pc exerted the most specific catalytic activity towards NO over nitrite. Catalyst-enabled reduction of the working potential under CPA was found to improve selectivity for NO over high potential interferents, regardless of MPc. However, impaired selectivity against low potential interferents was also noted.
Collapse
Affiliation(s)
- Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, USA
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, USA
| |
Collapse
|
145
|
Brown MS, Ashley B, Koh A. Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects. Front Bioeng Biotechnol 2018; 6:47. [PMID: 29755977 PMCID: PMC5932176 DOI: 10.3389/fbioe.2018.00047] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress.
Collapse
Affiliation(s)
- Matthew S Brown
- Department of Biomedical Engineering, State University of New York at Binghamton University, Binghamton, NY, United States
| | - Brandon Ashley
- Department of Biomedical Engineering, State University of New York at Binghamton University, Binghamton, NY, United States
| | - Ahyeon Koh
- Department of Biomedical Engineering, State University of New York at Binghamton University, Binghamton, NY, United States
| |
Collapse
|
146
|
Hunt SD, Elg F, Percival SL. Assessment of clinical effectiveness of haemoglobin spray as adjunctive therapy in the treatment of sloughy wounds. J Wound Care 2018; 27:210-219. [PMID: 29637828 DOI: 10.12968/jowc.2018.27.4.210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To assess use of an adjunctive topical haemoglobin spray in the treatment of sloughy wounds. METHOD In addition to a standard wound care regimen, consecutive patients with sloughy wounds self-administered haemoglobin spray treatment twice a week until the wound was healed. All patients were followed-up for 26 weeks. Results were compared with a retrospective cohort of 100 consecutive patients, treated during the same period the previous year with standard wound care alone. Data were collected on wound characteristics including percentage of slough, exudate levels, wound pain, and wound size. RESULTS After 26 weeks, 94/100 patients (94%) treated with haemoglobin spray were completely healed compared with 63/100 control patients (63%). Positive results were evident as early as week one with 52% mean wound size reduction using the heamoglobin spray versus 11% in the retrospective control (p<0.001). At baseline, mean slough coverage was higher in the haemoglobin group, 58% versus 44% in the control group (p<0.001). By week four, mean slough coverage was 1% in the haemoglobin versus 29% in the control group (p<0.001). Reductions in exudate and pain levels (p<0.001) were also observed. CONCLUSION Overall, results of this evaluation showed the addition of adjunctive haemoglobin spray to standard wound care treatment achieved positive clinical outcomes for patients self-managing complicated sloughy wounds, by supporting reduction of wound exudate and slough within the complex multifaceted process of wound healing.
Collapse
Affiliation(s)
- Sharon D Hunt
- Lead Nurse, Advanced Nurse Practitioner, Wellway Medical Group, Independent Specialist Wound Care, Northumberland, Berwick Upon Tweed
| | | | | |
Collapse
|
147
|
Tandon B, Magaz A, Balint R, Blaker JJ, Cartmell SH. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv Drug Deliv Rev 2018; 129:148-168. [PMID: 29262296 DOI: 10.1016/j.addr.2017.12.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023]
Abstract
Electrical stimulation for delivery of biochemical agents such as genes, proteins and RNA molecules amongst others, holds great potential for controlled therapeutic delivery and in promoting tissue regeneration. Electroactive biomaterials have the capability of delivering these agents in a localized, controlled, responsive and efficient manner. These systems have also been combined for the delivery of both physical and biochemical cues and can be programmed to achieve enhanced effects on healing by establishing control over the microenvironment. This review focuses on current state-of-the-art research in electroactive-based materials towards the delivery of drugs and other therapeutic signalling agents for wound care treatment. Future directions and current challenges for developing effective electroactive approach based therapies for wound care are discussed.
Collapse
|
148
|
Singer AJ, Choi Y, Rashel M, Toussaint J, McClain SA. The effects of topical nitric oxide on healing of partial thickness porcine burns. Burns 2018; 44:423-428. [DOI: 10.1016/j.burns.2017.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/15/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
|
149
|
Henatsch D, Alsulami S, Duijvestijn AM, Cleutjens JP, Peutz-Kootstra CJ, Stokroos RJ. Histopathological and Inflammatory Features of Chronically Discharging Open Mastoid Cavities: Secondary Analysis of a Randomized Clinical Trial. JAMA Otolaryngol Head Neck Surg 2018; 144:211-217. [PMID: 29327047 DOI: 10.1001/jamaoto.2017.2801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Importance Many patients with an open radical mastoid cavity experience therapy-resistant otorrhea. Little is known about the underlying histopathological substrate of unstable cavities and the correlation with treatment failure. Objective To study the histopathological and inflammatory features of chronically discharging open radical mastoid cavities and the influence of different treatments. Design, Setting, and Participants This secondary analysis of a randomized clinical trial was a histopathology study of tissue samples of a cohort of 30 patients with a chronically discharging open mastoid cavity. Samples were taken from the cavities, which were treated with either honey gel or conventional eardrops in a tertiary center between 2012 and 2013. Tissue staining was performed in May 2014; final computer analysis/correlation studies were performed in June 2016. Main Outcomes and Measures Differences of epithelial tissue coverage, infiltration of T cells (CD3, CD4, CD8) and macrophage (CD68, isoenzyme nitric oxide synthase, arginase 1) (sub-)populations, infection status, and the correlation with clinical presentation. Results There were 30 patients (24 [80%] male; mean [SD] age, 59 [14] years). Cavities were covered with either stratified squamous (keratinized) epithelium (n = 10), respiratory columnar epithelium (n = 9), or granulation tissue (n = 10). The presence of respiratory epithelium was associated with lower treatment success (posttreatment VAS improvement of 3.1 [95% CI, 0.5 to 5.8] for discomfort and 3.6 [95% CI, 0.2 to 6.9] for otorrhea in the group with granulation tissue coverage vs 4.9 [95% CI, 0.2 to 9.6] and 5.8 [95% CI, -0.1 to 11.6] in the group with squamous [keratinized] epithelium coverage and 1.4 [95% CI, -1.2 to 4.1] and 2.5 [95% CI, -1.3 to 6.2] in the group with respiratory columnar epithelium coverage). In all 3 tissue types of cavity-covering tissues, T-cell infiltrates consisted of helper T cells and cytotoxic T cells, together with a lower number of macrophages. The immunopositivity for isoenzyme nitric oxide synthase and arginase 1 was high and not restricted to a macrophage subpopulation, but seen in various cell types. Inflammatory infiltrations varied strongly in all 3 tissue modalities. Conclusions and Relevance Discharging open mastoid cavities can be classified histologically into 3 different types, based on their coverage: squamous epithelium, respiratory epithelium, or granulation tissue. Treatment is less successful in cavities covered with respiratory epithelium, possibly explained by the status of bacterial infection and local immunological differences.
Collapse
Affiliation(s)
- Darius Henatsch
- Department of Otorhinolaryngology-Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Sultan Alsulami
- Department of Otorhinolaryngology-Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Adriaan M Duijvestijn
- Internal Medicine, Clinical and Experimental Immunology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jack P Cleutjens
- Department of Pathology, Maastricht University Medical Center+, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Carine J Peutz-Kootstra
- Department of Pathology, Maastricht University Medical Center+, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology-Head and Neck Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
150
|
Acuña A, Basílio N, Parajó M, Mejuto JC, Pérez-Juste J, Taladriz-Blanco P, Garcia-Rio L. Nitric oxide release from a cucurbituril encapsulated NO-donor. Org Biomol Chem 2018; 16:4272-4278. [DOI: 10.1039/c8ob00895g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The denitrosation of a S-nitrosothiol derivative, nitrosomercaptopyridine (SNO+), can be inhibited by incorporation into the cucurbit[7]uril cavity. Owing to the reversible character of host : guest complexation, SNO+ can be expelled from the host cavity through the application of a chemical stimulus allowing controlled nitric oxide release.
Collapse
Affiliation(s)
- A. Acuña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- Departamento de Química Física
- Universidade de Santiago
- 15782 Santiago
- Spain
| | - N. Basílio
- LAQV
- REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade NOVA de Lisboa
| | - M. Parajó
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- Departamento de Química Física
- Universidade de Santiago
- 15782 Santiago
- Spain
| | - J. C. Mejuto
- Departamento de Química Física
- Facultad de Ciencias
- Universidade de Vigo
- E32004 Ourense
- Spain
| | - J. Pérez-Juste
- Departamento de Química Física and CINBIO
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - P. Taladriz-Blanco
- Departamento de Química Física and CINBIO
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - L. Garcia-Rio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
- Departamento de Química Física
- Universidade de Santiago
- 15782 Santiago
- Spain
| |
Collapse
|