101
|
Schlereth T, Schukraft J, Krämer-Best HH, Geber C, Ackermann T, Birklein F. Interaction of calcitonin gene related peptide (CGRP) and substance P (SP) in human skin. Neuropeptides 2016; 59:57-62. [PMID: 27344069 DOI: 10.1016/j.npep.2016.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022]
Abstract
Calcitonin gene related peptide (CGRP) and substance P (SP) are neuropeptides that are simultaneously released from nociceptive C-fibers. CGRP is a potent vasodilator, inducing a long-lasting increase in superficial skin blood flow, whereas SP induces only a brief vasodilation but a significant plasma extravasation. CGRP and SP may play important roles in the pathophysiology of various pain states but little is known about their interaction. Different concentrations of SP (ranging from 10-5M to 10-9M) were applied to the volar forearm of 24 healthy subjects via dermal microdialysis. SP was applied either alone or in combination with CGRP10-9M and CGRP 10-6M. As expected, SP induced a transient increase in skin blood flow that decayed shortly after application. This transient blood flow peak was blunted with co-application of CGRP 10-9M and inhibited with co-application of CGRP10-6M. SP alone induced plasma protein extravasation (PPE). However, when CGRP10-6M was added, the PPE significantly increased. Our results demonstrate a complex interaction of the neuropeptides CGRP and SP. CGRP10-6M prevented SP-induced early vasodilation but augmented SP-induced PPE. These interactions might explain why vascular symptoms in chronic pain can differ strikingly between individuals.
Collapse
Affiliation(s)
- Tanja Schlereth
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany.
| | - Jonas Schukraft
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Heidrun H Krämer-Best
- Department of Neurology, Justus-Liebig-University, Klinikstr. 33, D-35385 Gießen, Germany
| | - Christian Geber
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Tatiana Ackermann
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany
| |
Collapse
|
102
|
Douglas SD. Substance P and sickle cell disease-a marker for pain and novel therapeutic approaches. Br J Haematol 2016; 175:187-188. [PMID: 27539537 DOI: 10.1111/bjh.14299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Steven D Douglas
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine, University of Pennsylvania, Abramson Research Center, Philadelphia, PA, USA.
| |
Collapse
|
103
|
Neurokinin-1 receptor inhibition reverses ischaemic brain injury and dementia in bilateral common carotid artery occluded rats: possible mechanisms. Inflammopharmacology 2016; 24:133-43. [DOI: 10.1007/s10787-016-0271-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/21/2016] [Indexed: 02/01/2023]
|
104
|
Barrett JS, Spitsin S, Moorthy G, Barrett K, Baker K, Lackner A, Tulic F, Winters A, Evans DL, Douglas SD. Pharmacologic rationale for the NK1R antagonist, aprepitant as adjunctive therapy in HIV. J Transl Med 2016; 14:148. [PMID: 27230663 PMCID: PMC4880976 DOI: 10.1186/s12967-016-0904-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/13/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Many HIV infected individuals with suppressed viral loads experience chronic immune activation frequently developing neurological impairment designated as HIV associated neurocognitive disorder (HAND). Adjunctive therapies may reduce HIV associated inflammation and therefore decrease the occurrence of HAND. METHODS We have conducted in vitro, animal and clinical studies of the neurokinin 1 receptor (NK1R) antagonist aprepitant in HIV/SIV infection. RESULTS Aprepitant inhibits HIV infection of human macrophages ex vivo with an ED50 ~ 5 µM. When administered at 125 mg once daily for 12 months to SIV-infected rhesus macaques, aprepitant reduced viral load by approximately tenfold and produced anti-anxiolytic effects. The anti-viral and anti-anxiolytic effects occur at approximately the third month of dosing; and the effects are sustained throughout the duration of drug administration. Protein binding experiments in culture media and animal and human plasma indicate that the free fraction of aprepitant is lower than previously reported supporting usage of higher doses in vivo. The analysis of blood samples from HIV positive individuals treated for 2 weeks with aprepitant at doses up to 375 mg demonstrated reduced levels of pro-inflammatory cytokines including G-CSF, IL-6, IL-8 and TNFα. Decreased pro-inflammatory cytokines may reduce HIV comorbidities associated with chronic inflammation. CONCLUSIONS Our results provide evidence for a unique combination of antiretroviral, anti-inflammatory and behavioral modulation properties of aprepitant in vitro and in vivo. These results provide robust support for a clinical exposure target above that recommended for chemotherapy-induced nausea and vomiting. Doses up to 375 mg once daily in HIV-infected patients still elicit sub-therapeutic exposure of aprepitant though effective plasma concentrations can be achievable by proper dose modulation.
Collapse
Affiliation(s)
- Jeffrey S Barrett
- Divisions of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA. .,Translational Informatics, Sanofi Pharmaceuticals, Bridgewater, NJ, USA.
| | - Sergei Spitsin
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Ganesh Moorthy
- Divisions of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Kyle Barrett
- Divisions of Clinical Pharmacology and Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA.,Drexel University (BS Expected 2019), Philadelphia, PA, 19104, USA
| | - Kate Baker
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Andrew Lackner
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Florin Tulic
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Flow Cytometry Core Laboratory, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Angela Winters
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Dwight L Evans
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven D Douglas
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
105
|
Martinez AN, Philipp MT. Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System. ACTA ACUST UNITED AC 2016; 1:29-36. [PMID: 27430034 DOI: 10.29245/2572.942x/2016/2.1020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review addresses the role that substance P (SP) and its preferred receptor neurokinin-1 (NK1R) play in neuroinflammation associated with select bacterial, viral, parasitic, and neurodegenerative diseases of the central nervous system. The SP/NK1R complex is a key player in the interaction between the immune and nervous systems. A common effect of this interaction is inflammation. For this reason and because of the predominance in the human brain of the NK1R, its antagonists are attractive potential therapeutic agents. Preventing the deleterious effects of SP through the use of NK1R antagonists has been shown to be a promising therapeutic strategy, as these antagonists are selective, potent, and safe. Here we evaluate their utility in the treatment of different neuroinfectious and neuroinflammatory diseases, as a novel approach to clinical management of CNS inflammation.
Collapse
Affiliation(s)
- Alejandra N Martinez
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Mario T Philipp
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA
| |
Collapse
|
106
|
Evidence of substance P autocrine circuitry that involves TNF-α, IL-6, and PGE2 in endogenous pyrogen-induced fever. J Neuroimmunol 2016; 293:1-7. [DOI: 10.1016/j.jneuroim.2016.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 11/23/2022]
|
107
|
Tsilioni I, Russell IJ, Stewart JM, Gleason RM, Theoharides TC. Neuropeptides CRH, SP, HK-1, and Inflammatory Cytokines IL-6 and TNF Are Increased in Serum of Patients with Fibromyalgia Syndrome, Implicating Mast Cells. J Pharmacol Exp Ther 2016; 356:664-72. [PMID: 26763911 PMCID: PMC4767394 DOI: 10.1124/jpet.115.230060] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/30/2015] [Indexed: 12/30/2022] Open
Abstract
Fibromyalgia syndrome (FMS) is a chronic, idiopathic condition of widespread musculoskeletal pain affecting more women than men. Even though clinical studies have provided evidence of altered central pain pathways, the lack of definitive pathogenesis or reliable objective markers has hampered development of effective treatments. Here we report that the neuropeptides corticotropin-releasing hormone (CRH), substance P (SP), and SP-structurally-related hemokinin-1 (HK-1) were significantly (P = 0.026, P < 0.0001, and P = 0.002, respectively) elevated (0.82 ± 0.57 ng/ml, 0.39 ± 0.18 ng/ml, and 7.98 ± 3.12 ng/ml, respectively) in the serum of patients with FMS compared with healthy controls (0.49 ± 0.26 ng/ml, 0.12 ± 0.1 ng/ml, and 5.71 ± 1.08 ng/ml, respectively). Moreover, SP and HK-1 levels were positively correlated (Pearson r = 0.45, P = 0.002) in FMS. The serum concentrations of the inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF) were also significantly (P = 0.029 and P = 0.006, respectively) higher (2.97 ± 2.35 pg/ml and 0.92 ± 0.31 pg/ml, respectively) in the FMS group compared with healthy subjects (1.79 ± 0.62 pg/ml and 0.69 ± 0.16 pg/ml, respectively). In contrast, serum IL-31 and IL-33 levels were significantly lower (P = 0.0001 and P = 0.044, respectively) in the FMS patients (849.5 ± 1005 pg/ml and 923.2 ± 1284 pg/ml, respectively) in comparison with healthy controls (1281 ± 806.4 pg/ml and 3149 ± 4073 pg/ml, respectively). FMS serum levels of neurotensin were not different from controls. We had previously shown that CRH and SP stimulate IL-6 and TNF release from mast cells (MCs). Our current results indicate that neuropeptides could stimulate MCs to secrete inflammatory cytokines that contribute importantly to the symptoms of FMS. Treatment directed at preventing the secretion or antagonizing these elevated neuroimmune markers, both centrally and peripherally, may prove to be useful in the management of FMS.
Collapse
Affiliation(s)
- Irene Tsilioni
- Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine (I.T., J.M.S., T.C.T.); Department of Internal Medicine, Department of Psychiatry, and Sackler School of Graduate Biomedical Sciences, Tufts University, and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.)
| | - Irwin J Russell
- Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine (I.T., J.M.S., T.C.T.); Department of Internal Medicine, Department of Psychiatry, and Sackler School of Graduate Biomedical Sciences, Tufts University, and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.)
| | - Julia M Stewart
- Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine (I.T., J.M.S., T.C.T.); Department of Internal Medicine, Department of Psychiatry, and Sackler School of Graduate Biomedical Sciences, Tufts University, and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.)
| | - Rae M Gleason
- Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine (I.T., J.M.S., T.C.T.); Department of Internal Medicine, Department of Psychiatry, and Sackler School of Graduate Biomedical Sciences, Tufts University, and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.)
| | - Theoharis C Theoharides
- Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine (I.T., J.M.S., T.C.T.); Department of Internal Medicine, Department of Psychiatry, and Sackler School of Graduate Biomedical Sciences, Tufts University, and Tufts Medical Center, Boston, Massachusetts (T.C.T.); Fibromyalgia Research and Consulting, Arthritis and Osteoporosis Center of South Texas, San Antonio, Texas (I.J.R.); National Fibromyalgia and Chronic Pain Association, Logan, Utah (R.M.G.)
| |
Collapse
|
108
|
Ciszek BP, Khan AA, Dang H, Slade GD, Smith S, Bair E, Maixner W, Zolnoun D, Nackley AG. MicroRNA expression profiles differentiate chronic pain condition subtypes. Transl Res 2015; 166:706-720.e11. [PMID: 26166255 PMCID: PMC4656098 DOI: 10.1016/j.trsl.2015.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/21/2015] [Accepted: 06/13/2015] [Indexed: 02/07/2023]
Abstract
Chronic pain is a significant health care problem, ineffectively treated because of its unclear etiology and heterogeneous clinical presentation. Emerging evidence demonstrates that microRNAs (miRNAs) regulate the expression of pain-relevant genes, yet little is known about their role in chronic pain. Here, we evaluate the relationship among pain, psychological characteristics, plasma cytokines, and whole blood miRNAs in 22 healthy controls (HCs); 33 subjects with chronic pelvic pain (vestibulodynia, VBD); and 23 subjects with VBD and irritable bowel syndrome (VBD + IBS). VBD subjects were similar to HCs in self-reported pain, psychological profiles, and remote bodily pain. VBD + IBS subjects reported decreased health and function; and an increase in headaches, somatization, and remote bodily pain. Furthermore, VBD subjects exhibited a balance in proinflammatory and anti-inflammatory cytokines, whereas VBD + IBS subjects failed to exhibit a compensatory increase in anti-inflammatory cytokines. VBD subjects differed from controls in expression of 10 miRNAs of predicted importance for pain and estrogen signaling. VBD + IBS subjects differed from controls in expression of 11 miRNAs of predicted importance for pain, cell physiology, and insulin signaling. miRNA expression was correlated with pain-relevant phenotypes and cytokine levels. These results suggest that miRNAs represent a valuable tool for differentiating VBD subtypes (localized pain with apparent peripheral neurosensory disruption vs widespread pain with a central sensory contribution) that may require different treatment approaches.
Collapse
Affiliation(s)
- Brittney P Ciszek
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - Asma A Khan
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - Hong Dang
- Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC
| | - Gary D Slade
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - Shad Smith
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - Eric Bair
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - William Maixner
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC
| | - Denniz Zolnoun
- Pelvic Pain Center, University of North Carolina, Chapel Hill, NC
| | - Andrea G Nackley
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC.
| |
Collapse
|
109
|
Im SH, Takle K, Jo J, Babcock DT, Ma Z, Xiang Y, Galko MJ. Tachykinin acts upstream of autocrine Hedgehog signaling during nociceptive sensitization in Drosophila. eLife 2015; 4:e10735. [PMID: 26575288 PMCID: PMC4739760 DOI: 10.7554/elife.10735] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022] Open
Abstract
Pain signaling in vertebrates is modulated by neuropeptides like Substance P (SP). To determine whether such modulation is conserved and potentially uncover novel interactions between nociceptive signaling pathways we examined SP/Tachykinin signaling in a Drosophila model of tissue damage-induced nociceptive hypersensitivity. Tissue-specific knockdowns and genetic mutant analyses revealed that both Tachykinin and Tachykinin-like receptor (DTKR99D) are required for damage-induced thermal nociceptive sensitization. Electrophysiological recording showed that DTKR99D is required in nociceptive sensory neurons for temperature-dependent increases in firing frequency upon tissue damage. DTKR overexpression caused both behavioral and electrophysiological thermal nociceptive hypersensitivity. Hedgehog, another key regulator of nociceptive sensitization, was produced by nociceptive sensory neurons following tissue damage. Surprisingly, genetic epistasis analysis revealed that DTKR function was upstream of Hedgehog-dependent sensitization in nociceptive sensory neurons. Our results highlight a conserved role for Tachykinin signaling in regulating nociception and the power of Drosophila for genetic dissection of nociception. DOI:http://dx.doi.org/10.7554/eLife.10735.001 Injured animals from humans to insects become extra sensitive to sensations such as touch and heat. This hypersensitivity is thought to protect areas of injury or inflammation while they heal, but it is not clear how it comes about. Now, Im et al. have addressed this question by assessing pain in fruit flies after tissue damage. The experiments used ultraviolet radiation to essentially cause ‘localized sunburn’ to fruit fly larvae. Electrical impulses were then recorded from the larvae’s pain-detecting neurons and the larvae were analyzed for behaviors that indicate pain responses (for example, rolling). Im et al. found that tissue injury lowers the threshold at which temperature causes pain in fruit fly larvae. Further experiments using mutant flies that lacked genes involved in two signaling pathways showed that a signaling molecule called Tachykinin and its receptor (called DTKR) are needed to regulate the observed threshold lowering. When the genes for either of these proteins were deleted, the larvae no longer showed the pain hypersensitivity following an injury. Further experiments then uncovered a genetic interaction between Tachykinin signaling and a second signaling pathway that also regulates pain sensitization (called Hedgehog signaling). Im et al. found that Tachykinin acts upstream of Hedgehog in the pain-detecting neurons. Following on from these findings, the biggest outstanding questions are: how, when and where does tissue damage lead to the release of Tachykinin to sensitize neurons? Future studies could also ask whether the genetic interactions between Hedgehog and Tachykinin (or related proteins) are conserved in other animals such as humans and mice. DOI:http://dx.doi.org/10.7554/eLife.10735.002
Collapse
Affiliation(s)
- Seol Hee Im
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Kendra Takle
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Juyeon Jo
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States.,Genes and Development Graduate Program, University of Texas Graduate School of Biomedical Sciences, Houston, United States
| | - Daniel T Babcock
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States.,Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences, Houston, United States
| | - Zhiguo Ma
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Michael J Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, United States.,Genes and Development Graduate Program, University of Texas Graduate School of Biomedical Sciences, Houston, United States.,Neuroscience Graduate Program, University of Texas Graduate School of Biomedical Sciences, Houston, United States
| |
Collapse
|
110
|
Biological and Pharmacological Aspects of the NK1-Receptor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:495704. [PMID: 26421291 PMCID: PMC4573218 DOI: 10.1155/2015/495704] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/19/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
The neurokinin 1 receptor (NK-1R) is the main receptor for the tachykinin family of peptides. Substance P (SP) is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema). This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV). The first of these antagonists, aprepitant (oral administration) and fosaprepitant (intravenous administration), are prescribed for high and moderate emesis.
Collapse
|
111
|
Gonella S, Di Giulio P. Delayed Chemotherapy-Induced Nausea and Vomiting in the Hematology Population: A Review of the Literature. Clin J Oncol Nurs 2015. [DOI: 10.1188/15.cjon.438-443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
112
|
Reduction of soluble CD163, substance P, programmed death 1 and inflammatory markers: phase 1B trial of aprepitant in HIV-1-infected adults. AIDS 2015; 29:931-9. [PMID: 25915168 PMCID: PMC4472318 DOI: 10.1097/qad.0000000000000638] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We evaluated safety, antiviral, immunomodulatory and anti-inflammatory properties of aprepitant - a neurokinin 1 receptor antagonist. DESIGN Phase IB randomized, placebo-controlled, double-blinded study. METHODS Eighteen patients were randomized (nine to aprepitant and nine to placebo). The patients received once-daily treatment (375 mg aprepitant or placebo by oral administration) for 2 weeks and were followed off drug for 4 weeks. RESULTS There were no significant changes in the plasma viremia or CD4(+) T cells during the dosing period. Aprepitant treatment was associated with significant decreases of median within patient change in percentages of CD4(+) T cells expressing programmed death 1 (-4.8%; P = 0.04), plasma substance P (-34.0 pg/ml; P = 0.05) and soluble CD163 (-563 ng/ml; P = 0.02), with no significant changes in the placebo arm. Mean peak aprepitant plasma concentration on day 14 was 7.6 ± 3.1 μg/ml. The use of aprepitant was associated with moderate increases in total cholesterol, low-density lipoprotein and high-density lipoprotein (median change = +31 mg/dl, P = 0.01; +26 mg/dl, P = 0.02; +3 mg/dl, P = 0.02, respectively). CONCLUSION Aprepitant was safe and well tolerated. At the dose used in this proof-of-concept phase IB study, aprepitant did not show a significant antiviral activity. Aprepitant-treated patients had decreased numbers of CD4(+) programmed death 1-positive cells and decreased plasma levels of substance P and soluble CD163, suggesting that blockade of the neurokinin 1 receptor pathway has a role in modulating monocyte activation in HIV infection. Prospective studies in virologically-suppressed individuals are warranted to evaluate the immunomodulatory properties of aprepitant. Exposures exceeding those attained in this trial are more likely to elicit clinical benefit.
Collapse
|
113
|
Calcitonin gene-related peptide cooperates with substance P to inhibit melanogenesis and induces apoptosis of B16F10 cells. Cytokine 2015; 74:137-44. [PMID: 25982845 DOI: 10.1016/j.cyto.2015.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Skin is the largest organ in human body and works as biologically active barrier to provide critical preservation of body homeostasis. The skin is highly innervated by a plenitude of nerve fiber subpopulations, each carrying one or more neuronal mediators. Melanocyte itself also intimately contact with nerve fibers to form 'synaptic-like structure' and its functions may be directly regulated by the mediators contained in terminals of intra-epidermal nerve fibers. Clinical and biochemical studies have suggested that calcitonin gene-related peptide (CGRP) is involved in vitiligo skin. The present study was designed to investigate the effect of CGRP on epidermal melanocytes. After treatment with CGRP ranging from 0 to 500 ng/mL for 48 h, tyrosinase activity and melanogenesis were with little changes compared to treatment with medium only in B16F10 cells. Treatment with 500 ng/mL of CGRP cooperates with substance P (SP) (0.1-10 nM) to decrease tyrosinase activity and decrease melanin biosynthesis in B16F10 cells in a concentration-dependent manner. Furthermore, CGRP (8-37) antagonizes the synergistic effect of CGRP. The effect of CGRP on the cell apoptosis was examined. Treatments with 0-500 ng/mL of CGRP for 24 h, the expression levels of cleaved caspase-3, total caspase-3, cleaved caspase-9 and total caspase-9 were increased in a concentration-dependent manner. And 500 ng/mL of CGRP induced B16F10 cell apoptosis showed by TUNEL assay. In addition, Bax expression was up-regulated and Bcl-2 down-regulated in response to CGRP treatment. Hence, the Bax/Bcl-2 ratio was significantly increased. These in vitro observations indicate the pro-apoptotic impact of CGRP on B16F10 cell.
Collapse
|
114
|
Reciprocal Regulation of Substance P and IL-12/IL-23 and the Associated Cytokines, IFNγ/IL-17: A Perspective on the Relevance of This Interaction to Multiple Sclerosis. J Neuroimmune Pharmacol 2015; 10:457-67. [PMID: 25690155 PMCID: PMC4543419 DOI: 10.1007/s11481-015-9589-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/19/2015] [Indexed: 12/31/2022]
Abstract
The neuropeptide substance P (SP) exhibits cytokine-like properties and exerts different effects in autoimmune inflammation. Various immune cells express SP and its neurokinin-1 receptor (NK1R) isoforms. A role for SP has been demonstrated in a number of autoimmune conditions, including multiple sclerosis (MS). In this work, we studied the role of SP and NK1R in human immune cells with a focus on their relationship with IL-12/IL-23 family cytokines and the associated IFN-γ/IL-17. AIMS: (1) To determine the role of SP mediated effects on induction of various inflammatory cytokines in peripheral blood mononuclear cells (PBMC); (2) to investigate the expression of SP and its receptor in T cells and the effects of stimulation with IL-12 and IL-23. Quantitative real-time PCR, flow cytometry, ELISA, promoter studies on PBMC and primary T cells from healthy volunteers, and Jurkat cell line. Treatment with SP significantly increased the expression of IL-12/IL-23 subunit p40, IL-23 p19 and IL-12 p35 mRNA in human PBMC. Expression of NK1R and SP in T cells was upregulated by IL-23 but a trend was observed with IL-12. The IL-23 effect likely involves IL-17 production that additionally mediates IL-23 effects. Mutual interactions exist with SP enhancing the cytokines IL-23 and IL-12, and SP and NK1R expression being differentially but potentially synergistically regulated by these cytokines. These findings suggest a proinflammatory role for SP in autoimmune inflammation. We propose a model whereby immunocyte derived SP stimulates Th1 and Th17 autoreactive cells migrating to the central nervous system (CNS), enhances their crossing the blood brain barrier and perpetuates inflammation in the CNS by being released from damaged nerves and activating both resident glia and infiltrating immune cells. SP may be a therapeutic target in MS.
Collapse
|
115
|
Weinstock JV. Substance P and the regulation of inflammation in infections and inflammatory bowel disease. Acta Physiol (Oxf) 2015; 213:453-61. [PMID: 25424746 DOI: 10.1111/apha.12428] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/07/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
Substance P (SP) and its natural analogue hemokinin-1 (HK1) are produced by lymphocytes and macrophages, and at times B cells. These peptides are an important component of the immune response during several infections and in inflammatory bowel disease (IBD). The synthesis of SP and HK1 in leucocytes is subject to immune regulation. IL12 and IL23 stimulate T cells and macrophages to make SP respectively. The cytokines driving HK1 production are not presently defined. These peptides act through a shared receptor called neurokinin-1. T cells, macrophages and probably other immune cell types can express this receptor. Several cytokines IL12, IL18 and TNFα as well as T-cell antigen receptor activation induce neurokinin-1 receptor expression on T cells, while IL10 blocks receptor display. TGFβ delays internalization of the SP/neurokine-1R complex on T cells resulting in stronger receptor signalling. One of the functions of SP and neurokinin-1 receptor is to enhance T cell IFNγ and IL17 production, amplifying the proinflammatory response. Thus, SP and HK1 have overlapping functions and are part of a sophisticated immune regulatory circuit aimed at amplifying inflammation at mucosal surfaces and in other regions of the body as shown in animal models of infection and IBD.
Collapse
Affiliation(s)
- J. V. Weinstock
- Division of Gastroenterology; Tufts Medical Center; Boston MA USA
| |
Collapse
|
116
|
Abstract
OBJECTIVES Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. DESIGN Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. SETTING Academic medical centers in Cincinnati, OH, and Boston, MA. PATIENTS/SUBJECTS Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8-10 weeks old. INTERVENTIONS Administration of a substance P receptor antagonist in mice. MEASUREMENTS AND MAIN RESULTS Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury-associated increases in bacterial clearance and survival. CONCLUSIONS The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non-head-injured trauma patients and suggest that the mechanism of this effect occurs through traumatic brain injury-induced release of substance P, which improves innate immunity to decrease pneumonia.
Collapse
|
117
|
Hunter D, Chai C, Barr GA. Effects of COX inhibition and LPS on formalin induced pain in the infant rat. Dev Neurobiol 2014; 75:1068-79. [PMID: 25205468 DOI: 10.1002/dneu.22230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/29/2014] [Accepted: 09/07/2014] [Indexed: 12/14/2022]
Abstract
In the adult, immune and neural processes jointly modulate pain. During development, both are in transition and little is known about the role that the immune system plays in pain processing in infants and children. The objective of this study was to determine if inhibition or augmentation of the immune system would alter pain processing in the infant rat, as it does in the adult. In Experiment 1, rat pups aged 3, 10, or 21 (PN3, PN10, and PN21) days of age were pretreated with NS398 (selective cyclooxygenase (COX)-2 inhibitor) or SC560 (selective COX-1 inhibitor) and tested in the intraplantar formalin test to assess effects of COX inhibition on nociception. Neither drug had an effect on the behavioral response at PN3 or PN10 pups but both drugs attenuated nociceptive scores in PN21 pups. cFos expression in the spinal cord likewise was reduced only at PN21. In Experiment 2, pups were injected with lipopolysaccharide (LPS) prior to the formalin test at PN3 or PN21. LPS increased the nociceptive response more robustly at PN21 than at PN3, while increasing cytokine mRNA equally at both ages. The augmentation of pain responding at PN21 was largely during the late stages of the formalin test, as reported in the adult. These data support previous findings demonstrating late maturing immune modulation of nociceptive behaviors.
Collapse
Affiliation(s)
- Deirtra Hunter
- Department of Developmental Neuroscience, New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York
| | - Christina Chai
- Department of Psychology, Mercy College, Dobbs Ferry, New York, 10522
| | - Gordon A Barr
- Department of Developmental Neuroscience, New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York
- Department of Psychology, Hunter College, City University of New York, New York
| |
Collapse
|
118
|
Autocrine hemokinin-1 functions as an endogenous adjuvant for IgE-mediated mast cell inflammatory responses. J Allergy Clin Immunol 2014; 135:1019-1030.e8. [PMID: 25201259 DOI: 10.1016/j.jaci.2014.07.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Efficient development of atopic diseases requires interactions between allergen and adjuvant to initiate and amplify the underlying inflammatory responses. Substance P (SP) and hemokinin-1 (HK-1) are neuropeptides that signal through the neurokinin-1 receptor (NK1R) to promote inflammation. Mast cells initiate the symptoms and tissue effects of atopic disorders, secreting TNF and IL-6 after FcεRI cross-linking by antigen-IgE complexes (FcεRI-activated mast cells [FcεRI-MCs]). Additionally, MCs express the NK1R, suggesting an adjuvant role for NK1R agonists in FcεRI-MC-mediated pathologies; however, in-depth research addressing this relevant aspect of MC biology is lacking. OBJECTIVE We sought to investigate the effect of NK1R signaling and the individual roles of SP and HK-1 as potential adjuvants for FcεRI-MC-mediated allergic disorders. METHODS Bone marrow-derived mast cells (BMMCs) from C57BL/6 wild-type (WT) or NK1R(-/-) mice were used to investigate the effects of NK1R signaling on FcεRI-MCs. BMMCs generated from Tac1(-/-) mice or after culture with Tac4 small interfering RNA were used to address the adjuvancy of SP and HK-1. WT, NK1R(-/-), and c-Kit(W-sh/W-sh) mice reconstituted with WT or NK1R(-/-) BMMCs were used to evaluate NK1R signaling on FcεRI-MC-mediated passive local and systemic anaphylaxis and on airway inflammation. RESULTS FcεRI-activated MCs upregulated NK1R and HK-1 transcripts and protein synthesis, without modifying SP expression. In a positive signaling loop HK-1 promoted TNF and IL-6 secretion by MC degranulation and protein synthesis, the latter through the phosphoinositide 3-kinase/Akt/nuclear factor κB pathways. In vivo NK1R signaling was necessary for the development of passive local and systemic anaphylaxis and airway inflammation. CONCLUSIONS FcεRI stimulation of MCs promotes autocrine secretion of HK-1, which signals through NK1R to provide adjuvancy for efficient development of FcεRI-MC-mediated disorders.
Collapse
|
119
|
Barr GA, Hunter DA. Interactions between glia, the immune system and pain processes during early development. Dev Psychobiol 2014; 56:1698-710. [PMID: 24910104 DOI: 10.1002/dev.21229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/15/2014] [Indexed: 01/10/2023]
Abstract
Pain is a serious problem for infants and children and treatment options are limited. Moreover, infants born prematurely or hospitalized for illness likely have concurrent infection that activates the immune system. It is now recognized that the immune system in general and glia in particular influence neurotransmission and that the neural bases of pain are intimately connected to immune function. We know that injuries that induce pain activate immune function and suppressing the immune system alleviates pain. Despite this advance in our understanding, virtually nothing is known of the role that the immune system plays in pain processing in infants and children, even though pain is a serious clinical issue in pediatric medicine. This brief review summarizes the existing data on immune-neural interactions in infants, providing evidence for the immaturity of these interactions.
Collapse
Affiliation(s)
- Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.
| | | |
Collapse
|
120
|
Muñoz M, Coveñas R. Involvement of substance P and the NK-1 receptor in pancreatic cancer. World J Gastroenterol 2014; 20:2321-2334. [PMID: 24605029 PMCID: PMC3942835 DOI: 10.3748/wjg.v20.i9.2321] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/23/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer related-death for both men and women and the 1- and 5-year relative survival rates are 25% and 6%, respectively. Thus, it is urgent to investigate new antitumor drugs to improve the survival of pancreatic cancer patients. The peptide substance P (SP) has a widespread distribution throughout the body. After binding to the neurokinin-1 (NK-1) receptor, SP regulates biological functions related to cancer, such as tumor cell proliferation, neoangiogenesis, the migration of tumor cells for invasion, infiltration and metastasis, and it exerts an antiapoptotic effects on tumor cells. It is known that the SP/NK-1 receptor system is involved in pancreatic cancer progression: (1) pancreatic cancer cells and samples express NK-1 receptors; (2) the NK-1 receptor is overexpressed in pancreatic cancer cells in comparison with non-tumor cells; (3) nanomolar concentrations of SP induce pancreatic cancer cell proliferation; (4) NK-1 receptor antagonists inhibit pancreatic cell proliferation in a concentration-dependent manner, at a certain concentration, these antagonists inhibit 100% of tumor cells; (5) this antitumor action is mediated through the NK-1 receptor, and tumor cells die by apoptosis; and (6) NK-1 receptor antagonists inhibit angiogenesis in pancreatic cancer xenografts. All these data suggest that the SP/NK-1 receptor system could play an important role in the development of pancreatic cancer; that the NK-1 receptor could be a new promising therapeutic target in pancreatic cancer, and that NK-1 receptor antagonists could improve the treatment of pancreatic cancer.
Collapse
|
121
|
Tuluc F, Meshki J, Spitsin S, Douglas SD. HIV infection of macrophages is enhanced in the presence of increased expression of CD163 induced by substance P. J Leukoc Biol 2014; 96:143-50. [PMID: 24577568 DOI: 10.1189/jlb.4ab0813-434rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Activation of NK1R by SP contributes to increased HIV-1 infection in macrophages. The scavenger receptor CD163 is expressed on cells of monocyte-macrophage origin. Our main goal was to determine if there is interplay among SP, CD163 expression, and HIV infection in macrophages. We showed that SP triggers intracellular calcium elevation and increased CD163 expression in human monocytes in a time- and concentration-dependent manner. The role of CD163 on HIV infection was examined by RT-PCR in sorted monocytes (CD163(low) and CD163(high)) and in macrophages having CD163 knocked down using siRNA. We found that the productivity of HIV infection was higher in CD163(high) cells. Additionally, in macrophages with CD163 expression knocked down, we found a significant decrease of HIV infection. Furthermore, Hb-Hp complexes, which function as an endogenous ligand for CD163, decreased HIV infection in macrophages in a dose-dependent manner. Thus, we demonstrate that SP induces higher levels of CD163 in monocytes and that high expression of CD163 is associated with increases HIV infection in macrophages. Thus, in addition to being a prognostic marker of HIV infection, the expression of CD163 on macrophages may be critical in HIV immunopathogenesis.
Collapse
Affiliation(s)
- Florin Tuluc
- Division of Allergy and Immunology and Flow Cytometry Core Laboratory, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA; and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Steven D Douglas
- Division of Allergy and Immunology and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
122
|
Abstract
STUDY DESIGN Laboratory study. OBJECTIVE The aims of this study were as follows: (1) to confirm that Substance P (SP) is expressed by nucleus pulposus (NP) and annulus fibrosus (AF) cells; (2) to determine the effect of SP on expression of inflammatory mediators in human disc cells and the effect of inflammatory mediators on the expression of SP; and (3) to characterize the relative expression of SP receptor isoforms in disc tissue and describe whether exposure to SP changes receptor expression. SUMMARY OF BACKGROUND DATA SP, classically described as a neurotransmitter, acts as an inflammatory regulator in other tissue types, but its role within the intervertebral disc has not been characterized. METHODS Human AF and NP cells from 7 individuals were expanded in monolayer and maintained in alginate bead culture. Cells were treated with SP or interleukin (IL)-1β/tumor necrosis factor-α (TNF-α). After treatment, the cells were recovered and then RNA was isolated and transcribed into cDNA. Quantitative reverse-transcriptase polymerase chain reaction was performed to evaluate expression of inflammatory mediators and SP and its receptors. RESULTS Disc cells treated with SP demonstrated significant upregulation of IL-1β, IL-6, and IL-8 in NP and AF cells whereas significant upregulation of RANTES and TNF occurred only in the AF cells. AF and NP cells expressed SP at low levels; expression did not change significantly with SP treatment but was significantly upregulated after treatment with IL-1β/TNF-α. Both SP receptor isoforms were expressed by NP and AF cells. CONCLUSION SP upregulates inflammatory mediators in disc cells. SP and its receptors were expressed in both NP and AF cells, and expression did not change after treatment with SP but increased after treatment with IL-1β/TNF-α. SP likely acts in an autocrine or paracrine manner in intervertebral disc cells and may be involved in "crosstalk" between disc cells and neurons, providing a potential mechanism for transmission of painful discogenic stimuli.
Collapse
|
123
|
Boyoglu-Barnum S, Gaston KA, Todd SO, Boyoglu C, Chirkova T, Barnum TR, Jorquera P, Haynes LM, Tripp RA, Moore ML, Anderson LJ. A respiratory syncytial virus (RSV) anti-G protein F(ab')2 monoclonal antibody suppresses mucous production and breathing effort in RSV rA2-line19F-infected BALB/c mice. J Virol 2013; 87:10955-67. [PMID: 23885067 PMCID: PMC3807296 DOI: 10.1128/jvi.01164-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/12/2013] [Indexed: 12/27/2022] Open
Abstract
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Increased airway resistance and increased airway mucin production are two manifestations of RSV infection in children. RSV rA2-line19F infection induces pulmonary mucous production and increased breathing effort in BALB/c mice and provides a way to assess these manifestations of RSV disease in an animal model. In the present study, we investigated the effect of prophylactic treatment with the F(ab')2 form of the anti-G protein monoclonal antibody (MAb) 131-2G on disease in RSV rA2-line19F-challenged mice. F(ab')2 131-2G does not affect virus replication. It and the intact form that does decrease virus replication prevented increased breathing effort and airway mucin production, as well as weight loss, pulmonary inflammatory-cell infiltration, and the pulmonary substance P and pulmonary Th2 cytokine levels that occur in mice challenged with this virus. These data suggest that the RSV G protein contributes to prominent manifestations of RSV disease and that MAb 131-2G can prevent these manifestations of RSV disease without inhibiting virus infection.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelsey A. Gaston
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sean O. Todd
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Cemil Boyoglu
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Tatiana Chirkova
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Thomas R. Barnum
- University of Georgia Odum School of Ecology, Athens, Georgia, USA
| | - Patricia Jorquera
- University of Georgia Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - Lia M. Haynes
- Division of Viral Diseases, NCIRD, CDC, Atlanta, Georgia, USA
| | - Ralph A. Tripp
- University of Georgia Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - Martin L. Moore
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Larry J. Anderson
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
124
|
Abstract
In this issue of Blood, Janelsins et al report that substance P (SP)–treated dendritic cells (DCs) efficiently home to lymph nodes, where they induce inflammatory DCs to produce interleukin-12 (IL-12), thereby promoting type 1 polarized immunity.
Collapse
|
125
|
Neurokinin-1 receptor, a new modulator of lymphangiogenesis in obese-asthma phenotype. Life Sci 2013; 93:169-77. [PMID: 23792204 DOI: 10.1016/j.lfs.2013.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022]
Abstract
AIMS Obesity and asthma are widely prevalent and associated disorders. Recent studies of our group revealed that Substance P (SP) is involved in pathophysiology of obese-asthma phenotype in mice through its selective NK1 receptor (NK1-R). Lymphangiogenesis is impaired in asthma and obesity, and SP activates contractile and inflammatory pathways in lymphatics. Our aim was to study whether NK1-R expression was involved in lymphangiogenesis on visceral (VAT) and subcutaneous (SAT) adipose tissues and in the lungs, in obese-allergen sensitized mice. MAIN METHODS Diet-induced obese and ovalbumin (OVA)-sensitized Balb/c mice were treated with a selective NK1-R antagonist (CJ 12,255, Pfizer Inc., USA) or placebo. Lymphatic structures (LYVE-1+) and NK1-R expression were analyzed by immunohistochemistry. A semi-quantitative score methodology was used for NK1-R expression. KEY FINDINGS Obesity and allergen-sensitization together increased the number of LYVE-1+ lymphatics in VAT and decreased it in SAT and lungs. NK1-R was mainly expressed on adipocyte membranes of VAT, blood vessel areas of SAT, and in lung epithelium. Obesity and allergen-sensitization combined increased the expression of NK1-R in VAT, SAT and lungs. NK1-R antagonist treatment reversed the effects observed in lymphangiogenesis in those tissues. SIGNIFICANCE The obese-asthma phenotype in mice is accompanied by increased expression of NK1-R on adipose tissues and lung epithelium, reflecting that SP released during inflammation may act directly on these tissues. Blocking NK1-R affects lymphangiogenesis, implying a role of SP, with opposite physiological consequences in VAT, and in SAT and lungs. Our results provide a clue for a novel SP role in the obese-asthma phenotype.
Collapse
|
126
|
Schwartz L, Spitsin SV, Meshki J, Tuluc F, Douglas SD, Wolfe JH. Substance P enhances HIV-1 infection in human fetal brain cell cultures expressing full-length neurokinin-1 receptor. J Neurovirol 2013; 19:219-27. [PMID: 23765222 PMCID: PMC3719168 DOI: 10.1007/s13365-013-0166-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 12/12/2022]
Abstract
The associations between the neurokinin-1 receptor (NK-1R), substance P (SP), and HIV-1 were investigated in neurosphere-derived cultures of microglial-depleted human fetal brain cells (HFBC). Full-length NK-1R was identified in HFBC cultures. SP treatment of the HFBC increased intracellular calcium mobilization and decreased electrical impedance, both of which were blocked by the NK-1R antagonist aprepitant. SP treatment of HIV-1-infected HFBC upregulated HIV-1 expression. These data show that human neural cells grown from neurospheres express functional full length NK-1R that is responsive to SP, and that SP enhanced HIV-1 infection in HBFC.
Collapse
Affiliation(s)
- Lynnae Schwartz
- Research Institute, Children's Hospital of Philadelphia, Suite 1208, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
127
|
|
128
|
Esposito AJ, Heydrick SJ, Cassidy MR, Gallant J, Stucchi AF, Becker JM. Substance P is an early mediator of peritoneal fibrinolytic pathway genes and promotes intra-abdominal adhesion formation. J Surg Res 2013; 181:25-31. [DOI: 10.1016/j.jss.2012.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/07/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
129
|
Kwatra SG. Role of neurokinin-1 receptor in patients with artemin-induced warmth-provoked pruritus. J Allergy Clin Immunol 2013; 131:928. [DOI: 10.1016/j.jaci.2012.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
|
130
|
Neurokinin-1 receptor agonists bias therapeutic dendritic cells to induce type 1 immunity by licensing host dendritic cells to produce IL-12. Blood 2013; 121:2923-33. [PMID: 23365459 DOI: 10.1182/blood-2012-07-446054] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Substance-P and hemokinin-1 are proinflammatory neuropeptides with potential to promote type 1 immunity through agonistic binding to neurokinin-1 receptor (NK1R). Dendritic cells (DCs) are professional antigen-presenting cells that initiate and regulate the outcome of innate and adaptive immune responses. Immunostimulatory DCs are highly desired for the development of positive immunization techniques. DCs express functional NK1R; however, regardless of their potential DC-stimulatory function, the ability of NK1R agonists to promote immunostimulatory DCs remains unexplored. Here, we demonstrate that NK1R signaling activates therapeutic DCs capable of biasing type 1 immunity by inhibition of interleukin-10 (IL-10) synthesis and secretion, without affecting their low levels of IL-12 production. The potent type 1 effector immune response observed following cutaneous administration of NK1R-signaled DCs required their homing in skin-draining lymph nodes (sDLNs) where they induced inflammation and licensed endogenous-conventional sDLN-resident and -recruited inflammatory DCs to secrete IL-12. Our data demonstrate that NK1R signaling promotes immunostimulatory DCs, and provide relevant insight into the mechanisms used by neuromediators to regulate innate and adaptive immune responses.
Collapse
|
131
|
Spitsin S, Tuluc F, Meshki J, Lai JP, Tustin R, Douglas SD. Analog of somatostatin vapreotide exhibits biological effects in vitro via interaction with neurokinin-1 receptor. Neuroimmunomodulation 2013; 20:247-55. [PMID: 23921645 PMCID: PMC3839635 DOI: 10.1159/000350468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Vapreotide, a synthetic analog of somatostatin, has analgesic activity most likely mediated through the blockade of neurokinin-1 receptor (NK1R), the substance P (SP)-preferring receptor. The ability of vapreotide to interfere with other biological effects of SP has yet to be investigated. METHODS We studied the ability of vapreotide to antagonize NK1R in three different cell types: immortalized U373MG human astrocytoma cells, human monocyte-derived macrophages (MDM) and a human embryonic kidney cell line, HEK293. Both U373MG and MDM express endogenous NK1R while HEK293 cells, which normally do not express NK1R, are stably transformed to express human NK1R (HEK293-NK1R). RESULTS Vapreotide attenuates SP-triggered intracellular calcium increases and nuclear factor-κB activation in a dose-dependent manner. Vapreotide also inhibits SP-induced interleukin-8 and monocyte chemotactic protein-1 production in HEK293-NK1R and U373MG cell lines. Vapreotide inhibits HIV-1 infection of human MDM in vitro, an effect that is reversible by SP pretreatment. CONCLUSIONS Our findings indicate that vapreotide has NK1R antagonist activity and may have a potential application as a therapeutic intervention in HIV-1 infection.
Collapse
Affiliation(s)
- Sergei Spitsin
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Florin Tuluc
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Meshki
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Jian Ping Lai
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Richard Tustin
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Steven D. Douglas
- Division of Allergy and Immunology at The Children’s Hospital of Philadelphia, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Address correspondence and reprints to: Steven D. Douglas, MD, Professor of Pediatrics, Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, 34th Street & Civic Center Blvd., Philadelphia, PA 19104, Telephone: 215-590-1978, Fax: 215-590-3044,
| |
Collapse
|
132
|
Neuropeptide Expression and T-Lymphocyte Recruitment in Facial Nucleus After Facial Nerve Axotomy. J Craniofac Surg 2012; 23:1479-83. [DOI: 10.1097/scs.0b013e31825e4aa8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
133
|
Fang X, Hu H, Xie J, Zhu H, Zhang D, Mo W, Zhang R, Yu M. An involvement of neurokinin-1 receptor in FcεRΙ-mediated RBL-2H3 mast cell activation. Inflamm Res 2012; 61:1257-63. [PMID: 22820943 PMCID: PMC3472057 DOI: 10.1007/s00011-012-0523-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/02/2012] [Accepted: 06/28/2012] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE AND DESIGN To determine whether the neurokinin-1 receptor (NK1R) plays a role in the activation of RBL-2H3 mast cells after FcεRΙ aggregation. MATERIALS AND METHODS NK1R expression in RBL-2H3 cells was inhibited by small hairpin RNA (shRNA) against NK1R, and determined by western blotting. For activation, both NK1R knockdown and control RBL-2H3 cells were sensitized by dinitrophenol (DNP)-specific IgE and stimulated with the antigen DNP-bovine serum albumin (BSA). Following the activation of RBL-2H3 cells, monocyte chemoattractant protein (MCP-1) production and intracellular calcium flux were monitored by ELISA and confocal microscopy assay, respectively. For investigation of the signaling mechanism, phosphorylation of mitogen-activated protein kinases (MAPKs) after RBL-2H3 cell activation was assessed by western blotting. RESULTS shRNA-NK1R mediated an effective inhibition of NK1R expression in RBL-2H3 cells. Protein production of MCP-1 was reduced by more than 55 % in NK1R knockdown RBL-2H3 cells compared with control RBL-2H3 cells. In addition, both calcium mobilization and phosphorylation levels of MAPKs (Erk1/2, JNK, and p38) after DNP-BSA stimulation (via FcεRΙ) were decreased due to the inhibition of NK1R expression. CONCLUSION NK1R is required for the activation of RBL-2H3 cells following FcεRΙ engagement and involved in the regulation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiaoyun Fang
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai, 200032 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Hua Hu
- Department of Otolaryngology, Huadong Hospital of Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
- Department of Otolaryngology, EENT Hospital of Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jianhui Xie
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Haiyan Zhu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Dongmei Zhang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wei Mo
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai, 200032 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital of Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Min Yu
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai, 200032 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
134
|
Kitamura H, Kobayashi M, Wakita D, Nishimura T. Neuropeptide signaling activates dendritic cell-mediated type 1 immune responses through neurokinin-2 receptor. THE JOURNAL OF IMMUNOLOGY 2012; 188:4200-8. [PMID: 22474018 DOI: 10.4049/jimmunol.1102521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurokinin A (NKA), a neurotransmitter distributed in the central and peripheral nervous system, strictly controls vital responses, such as airway contraction, by intracellular signaling through neurokinin-2 receptor (NK2R). However, the function of NKA-NK2R signaling on involvement in immune responses is less-well defined. We demonstrate that NK2R-mediated neuropeptide signaling activates dendritic cell (DC)-mediated type 1 immune responses. IFN-γ stimulation significantly induced NK2R mRNA and remarkably enhanced surface protein expression levels of bone marrow-derived DCs. In addition, the DC-mediated NKA production level was significantly elevated after IFN-γ stimulation in vivo and in vitro. We found that NKA treatment induced type 1 IFN mRNA expressions in DCs. Transduction of NK2R into DCs augmented the expression level of surface MHC class II and promoted Ag-specific IL-2 production by CD4(+) T cells after NKA stimulation. Furthermore, blockade of NK2R by an antagonist significantly suppressed IFN-γ production by both CD4(+) T and CD8(+) T cells stimulated with the Ag-loaded DCs. Finally, we confirmed that stimulation with IFN-γ or TLR3 ligand (polyinosinic-polycytidylic acid) significantly induced both NK2R mRNA and surface protein expression of human PBMC-derived DCs, as well as enhanced human TAC1 mRNA, which encodes NKA and Substance P. Thus, these findings indicate that NK2R-dependent neuropeptide signaling regulates Ag-specific T cell responses via activation of DC function, suggesting that the NKA-NK2R cascade would be a promising target in chronic inflammation caused by excessive type 1-dominant immunity.
Collapse
Affiliation(s)
- Hidemitsu Kitamura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | |
Collapse
|
135
|
Khan MM, Douglas SD, Benton TD. Substance P-neurokinin-1 receptor interaction upregulates monocyte tissue factor. J Neuroimmunol 2011; 242:1-8. [PMID: 22115773 DOI: 10.1016/j.jneuroim.2011.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/24/2011] [Accepted: 10/28/2011] [Indexed: 11/24/2022]
Abstract
Monocytes play an important role in hemostasis. In this study, the prothrombotic effects of the neuropeptide substance P (SP) on human monocytes through neurokinin-1 receptor (NK1-R) were characterized. SP upregulated monocyte tissue factor (TF), the major coagulation cascade stimulator, in a concentration and time dependent manner. Specific inhibition of NK1-R completely blocked TF expression. Monocytes stimulated by SP released cytokines and chemokines. When monocytes were stimulated with cytokines or chemokines, TF was expressed by the cytokines (GM-CSF, IFN-γ and TNF-α). Cytokines may play a major role in the mechanism of SP induced monocyte TF expression. NK1-R antagonists (NK1-RA) may have a role in developing novel therapeutic approaches to patients vulnerable to vaso-occlusive disorders.
Collapse
Affiliation(s)
- Mohammad M Khan
- Department of Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
| | | | | |
Collapse
|