101
|
Peesapati S, Roy D. Structural and spectroscopic details of polysaccharide-bile acid composites from molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:8782-8794. [PMID: 36310090 DOI: 10.1080/07391102.2022.2137242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
Abstract
Interactions of a prototypical bile acid (cholic acid, 'Ch') and its corresponding sodium salt (sodium cholate, 'NaCh') with a standard dietary β-glucan (β-G), bearing β-D-glucopyranose units having mixed 1-4/1-3 glycosidic linkages are studied using molecular dynamics simulation and density functional theory (DFT) calculations. Self-aggregation of the biliary components and their interaction with fifteen strands of the decameric mixed linkage β-glucan is elucidated by estimating varieties of physical properties like the coordination number, moment of inertia and shape anisotropy of the biggest cluster formed at different time instants. Small angle scattering profiles indicate formation of compact spheroidal aggregates. The simulated results of small angle scattering and 1H NMR chemical shifts are compared to spectroscopic data, wherever available. Density functional theory calculations and estimation of the 1H NMR chemical shifts of Ch-protons lying close to the β-G chains reveal change in chemical shift values from that in absence of the polysaccharide. Hydrogen bonding and non-bonding interactions, primarily short range van der Waals interactions and some extent of inter-molecular charge transfer are found to play significant role in stabilizing the complex soft assemblies of bile acid aggregates and β-G.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sruthi Peesapati
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| |
Collapse
|
102
|
Qu Y, Park SH, Dallas DC. The Role of Bovine Kappa-Casein Glycomacropeptide in Modulating the Microbiome and Inflammatory Responses of Irritable Bowel Syndrome. Nutrients 2023; 15:3991. [PMID: 37764775 PMCID: PMC10538225 DOI: 10.3390/nu15183991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder marked by chronic abdominal pain, bloating, and irregular bowel habits. Effective treatments are still actively sought. Kappa-casein glycomacropeptide (GMP), a milk-derived peptide, holds promise because it can modulate the gut microbiome, immune responses, gut motility, and barrier functions, as well as binding toxins. These properties align with the recognized pathophysiological aspects of IBS, including gut microbiota imbalances, immune system dysregulation, and altered gut barrier functions. This review delves into GMP's role in regulating the gut microbiome, accentuating its influence on bacterial populations and its potential to promote beneficial bacteria while inhibiting pathogenic varieties. It further investigates the gut microbial shifts observed in IBS patients and contemplates GMP's potential for restoring microbial equilibrium and overall gut health. The anti-inflammatory attributes of GMP, especially its impact on vital inflammatory markers and capacity to temper the low-grade inflammation present in IBS are also discussed. In addition, this review delves into current research on GMP's effects on gut motility and barrier integrity and examines the changes in gut motility and barrier function observed in IBS sufferers. The overarching goal is to assess the potential clinical utility of GMP in IBS management.
Collapse
Affiliation(s)
- Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
| | - David C. Dallas
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
103
|
Snauwaert E, Paglialonga F, Vande Walle J, Wan M, Desloovere A, Polderman N, Renken-Terhaerdt J, Shaw V, Shroff R. The benefits of dietary fiber: the gastrointestinal tract and beyond. Pediatr Nephrol 2023; 38:2929-2938. [PMID: 36471146 DOI: 10.1007/s00467-022-05837-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Dietary fiber is considered an essential constituent of a healthy child's diet. Diets of healthy children with adequate dietary fiber intake are characterized by a higher diet quality, a higher nutrient density, and a higher intake of vitamins and minerals in comparison to the diets of children with poor dietary fiber intake. Nevertheless, a substantial proportion of children do not meet the recommended dietary fiber intake. This is especially true in those children with kidney diseases, as traditional dietary recommendations in kidney diseases have predominantly focused on the quantities of energy and protein, and often restricting potassium and phosphate, while overlooking the quality and diversity of the diet. Emerging evidence suggests that dietary fiber and, by extension, a plant-based diet with its typically higher dietary fiber content are just as important for children with kidney diseases as for healthy children. Dietary fiber confers several health benefits such as prevention of constipation and fewer gastrointestinal symptoms, reduced inflammatory state, and decreased production of gut-derived uremic toxins. Recent studies have challenged the notion that a high dietary fiber intake confers an increased risk of hyperkalemia or nutritional deficits in children with kidney diseases. There is an urgent need of new studies and revised guidelines that address the dietary fiber intake in children with kidney diseases.
Collapse
Affiliation(s)
| | - Fabio Paglialonga
- Policlinico of Milan: Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Mandy Wan
- Evelina London Children's Hospital Paediatrics, London, UK
| | | | | | - José Renken-Terhaerdt
- Wilhelmina Children's Hospital University Medical Centre: Universitair Medisch Centrum Utrecht - Locatie Wilhelmina Kinderziekenhuis, Utrecht, Netherlands
| | - Vanessa Shaw
- Great Ormond Street Hospital NHS Trust: Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Rukshana Shroff
- Great Ormond Street Hospital NHS Trust: Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| |
Collapse
|
104
|
McIntyre CL, Temesgen A, Lynch L. Diet, nutrient supply, and tumor immune responses. Trends Cancer 2023; 9:752-763. [PMID: 37400315 DOI: 10.1016/j.trecan.2023.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
Nutrients are essential for cell function. Immune cells operating in the complex tumor microenvironment (TME), which has a unique nutrient composition, face challenges of adapting their metabolism to support effector functions. We discuss the impact of nutrient availability on immune function in the tumor, competition between immune cells and tumor cells for nutrients, and how this is altered by diet. Understanding which diets can promote antitumor immune responses could open a new era of treatment, where dietary modifications can be used as an adjunct to boost the success of existing cancer therapies.
Collapse
Affiliation(s)
- Claire L McIntyre
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayantu Temesgen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
105
|
Dias MTS, Aguilar EC, Campos GP, do Couto NF, Capettini LDSA, Braga WF, Andrade LDO, Alvarez-Leite J. Butyrate inhibits LPC-induced endothelial dysfunction by regulating nNOS-produced NO and ROS production. Nitric Oxide 2023; 138-139:42-50. [PMID: 37308032 DOI: 10.1016/j.niox.2023.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
Lipids oxidation is a key risk factor for cardiovascular diseases. Lysophosphatidylcholine (LPC), the major component of oxidized LDL, is an important triggering agent for endothelial dysfunction and atherogenesis. Sodium butyrate, a short-chain fatty acid, has demonstrated atheroprotective properties. So, we evaluate the role of butyrate in LPC-induced endothelial dysfunction. Vascular response to phenylephrine (Phe) and acetylcholine (Ach) was performed in aortic rings from male mice (C57BL/6J). The aortic rings were incubated with LPC (10 μM) and butyrate (0.01 or 0.1 Mm), with or without TRIM (an nNOS inhibitor). Endothelial cells (EA.hy296) were incubated with LPC and butyrate to evaluate nitric oxide (NO) and reactive oxygen species (ROS) production, calcium influx, and the expression of total and phosphorylated nNOS and ERK½. We found that butyrate inhibited LPC-induced endothelial dysfunction by improving nNOS activity in aortic rings. In endothelial cells, butyrate reduced ROS production and increased nNOS-related NO release, by improving nNOS activation (phosphorylation at Ser1412). Additionally, butyrate prevented the increase in cytosolic calcium and inhibited ERk½ activation by LPC. In conclusion, butyrate inhibited LPC-induced vascular dysfunction by increasing nNOS-derived NO and reducing ROS production. Butyrate restored nNOS activation, which was associated with calcium handling normalization and reduction of ERK½ activation.
Collapse
Affiliation(s)
- Melissa Tainan Silva Dias
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Edenil Costa Aguilar
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Gianne Paul Campos
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Natalia Fernanda do Couto
- Department of Medicine. University of Illinois Chicago, Center of Cardiovascular Research, 909 South Wolcott Avenue, MC801 Chicago, IL, 60612, USA.
| | - Luciano Dos Santos Aggum Capettini
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Weslley Fernandes Braga
- Icahn School of Medicine. Mount Sinai, Nova Iorque, Gustave L. Levy Place, New York, NY, 10029-5674, USA.
| | - Luciana de Oliveira Andrade
- Department of Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
106
|
Nouri M, Shateri Z, Vali M, Faghih S. The relationship between the intake of fruits, vegetables, and dairy products with hypertension: findings from the STEPS study. BMC Nutr 2023; 9:99. [PMID: 37592349 PMCID: PMC10433612 DOI: 10.1186/s40795-023-00756-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The current research aimed to evaluate the relationship between fruit, vegetable (FV), and dairy consumption with the odds of developing hypertension based on nationwide Stepwise approach to surveillance (STEPS) data in Iran. METHODS This cross-sectional study was accomplished by the research center of non-communicable diseases (NCDs) in Tehran. In total, 29,378 individuals' data were analyzed. Participants were classified into normal, elevated BP, stage I, and stage II hypertension according to systolic blood pressure (SBP) and diastolic blood pressure (DBP) examinations. Based on the STEPS questionnaire, the consumption of FVs and dairy products was evaluated. Multinomial logistic regression was applied to assess the relationship between the consumption of FVs and dairy products with hypertension. RESULTS The findings revealed that only fruit consumption (≥ 2 servings/day) was negatively related to stage I hypertension (odds ratio (OR) = 0.81; 95% confidence interval (CI): 0.69-0.95) in two servings per day and OR = 0.81; 95% CI: 0.68-0.96 in > two servings per day) in the adjusted model. There was no significant relationship between consuming vegetables and dairy products with elevated BP and hypertension. CONCLUSION Our study showed that increasing fruit consumption was related to reducing hypertension odds. Regarding the consumption of dairy products and vegetables, no significant relationship was found with the odds of hypertension. More studies, especially cohorts, are needed to evaluate the impacts of FV and dairy products on the risk of hypertension.
Collapse
Affiliation(s)
- Mehran Nouri
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohebat Vali
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Faghih
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
107
|
Fabiano GA, Shinn LM, Antunes AEC. Relationship between Oat Consumption, Gut Microbiota Modulation, and Short-Chain Fatty Acid Synthesis: An Integrative Review. Nutrients 2023; 15:3534. [PMID: 37630725 PMCID: PMC10459712 DOI: 10.3390/nu15163534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota consists of a set of microorganisms that colonizes the intestine and ferment fibers, among other nutrients, from the host's diet. A healthy gut microbiota, colonized mainly by beneficial microorganisms, has a positive effect on digestion and plays a role in disease prevention. However, dysregulation of the gut microbiota can contribute to various diseases. The nutrition of the host plays an important role in determining the composition of the gut microbiota. A healthy diet, rich in fiber, can beneficially modulate the gut microbiota. In this sense, oats are a source of both soluble and insoluble fiber. Oats are considered a functional ingredient with prebiotic potential and contain plant proteins, unsaturated fats, and antioxidant compounds. The impact of oat consumption on the gut microbiota is still emerging. Associations between oat consumption and the abundance of Akkermansia muciniphila, Roseburia, Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii have already been observed. Therefore, this integrative review summarizes the findings from studies on the relationship between oat consumption, the gut microbiota, and the metabolites, mainly short-chain fatty acids, it produces.
Collapse
Affiliation(s)
- Giovanna Alexandre Fabiano
- School of Applied Sciences (FCA), State University of Campinas, 1300 Pedro Zaccaria St., Limeira 13484-350, SP, Brazil;
| | | | | |
Collapse
|
108
|
Joo KH, Kerr WL, Cavender GA. The Effects of Okara Ratio and Particle Size on the Physical Properties and Consumer Acceptance of Tofu. Foods 2023; 12:3004. [PMID: 37628003 PMCID: PMC10453527 DOI: 10.3390/foods12163004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Okara, the solid byproduct of soymilk production, poses a sustainability concern, despite being rich in fiber and other healthful compounds. In this study, the physical properties of tofu made from soymilk fortified with differing levels of okara-either whole or fine (<180 µm)-and made with the traditional coagulant nigari were examined. The yield increased linearly with the okara concentration with values of 18.2-29.5% compared to 14.5% for the control. The initial moisture in the fortified samples was higher than the control (79.69-82.78% versus 76.78%), and both the expressible moisture and total moisture after compression were also greater in the fortified samples. With a few exceptions, the texture parameters did not differ between samples. Dynamic rheology showed that all samples had G' > G″. The storage moduli increased at different rates during each gelling step, with G' before and after gelling increasing with the fortification level, and was greater for the samples with fine particles than with whole particles. Consumer sensory panels using the hedonic scale showed traditional tofu had a slightly higher acceptability, but the panelists indicated they would be more willing to purchase okara-fortified tofu because of the health and sustainability benefits it might have. Thus, tofu could be produced with added okara with predictable but not profound changes in its physical properties.
Collapse
Affiliation(s)
- Kay Hyun Joo
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA; (K.H.J.); (W.L.K.)
| | - William L. Kerr
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA; (K.H.J.); (W.L.K.)
| | - George A. Cavender
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
109
|
Martín-Esparza ME, Raigón MD, García-Martínez MD, Albors A. Toward the Development of Potentially Healthy Low-Energy-Density Snacks for Children Based on Pseudocereal and Pulse Flours. Foods 2023; 12:2873. [PMID: 37569142 PMCID: PMC10417511 DOI: 10.3390/foods12152873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The main objective of this study was the development of gluten-free cracker-type snacks with a balanced supply of essential amino acids, a lower glycemic index, and a lower caloric intake that were sensorially acceptable. For this purpose, chickpea flour was replaced by quinoa (10, 20, 30, 40, and 50%) and the fat was partially (75%) replaced by chicory inulin. The flours were characterized in terms of their proximate composition, individual mineral content, particle size distribution, and functional properties. The parameters analyzed for the crackers, once baked, were the water content, water activity, weight, dimensions, color, and texture. A sensory analysis was performed as well, using the formulations containing 50% chickpea flour and 50% quinoa flour (g/100 g flour), with and without inulin, as well as those made with 100% chickpea flour. From the analysis of the raw flours, it can be concluded that snack products developed from them could be a nutritive option for children, in terms of the protein, magnesium, and fiber content. The functional properties revealed that both flours are suitable for producing doughs and baked products. The obtained results indicate that snacks made with 50% quinoa flour (g/100 g flour) and 75% chicory inulin (g/100 g high oleic sunflower oil) could be an interesting alternative for children as, in addition to offering a very interesting nutritional contribution, the energy intake from fat is reduced by 57%.
Collapse
Affiliation(s)
- Maria Eugenia Martín-Esparza
- Institute of Food Engineering for Development, Food Technology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - María Dolores Raigón
- Institute for the Preservation and Improvement of Valencian Agro-Diversity, Food Chemistry Department, Universitat Politècnica de València, 46022 Valencia, Spain; (M.D.R.); (M.D.G.-M.)
| | - María Dolores García-Martínez
- Institute for the Preservation and Improvement of Valencian Agro-Diversity, Food Chemistry Department, Universitat Politècnica de València, 46022 Valencia, Spain; (M.D.R.); (M.D.G.-M.)
| | - Ana Albors
- Institute of Food Engineering for Development, Food Technology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|
110
|
Yu D, Zhu L, Gao M, Yin Z, Zhang Z, Zhu L, Zhan X. A Comparative Study of the Effects of Whole Cereals and Refined Cereals on Intestinal Microbiota. Foods 2023; 12:2847. [PMID: 37569116 PMCID: PMC10418403 DOI: 10.3390/foods12152847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cereals are one of the most important foods on which human beings rely to sustain basic life activities and are closely related to human health. This study investigated the effects of different steamed buns on intestinal microbiota. Three steamed buns were prepared using refined flour (RF), 1:1 mixed flour (MF), and whole wheat flour (WF). In vitro digestion simulations were conducted using a bionic gastrointestinal reactor (BGR) to examine their influence on intestinal microbiota. The results showed that at 0.5% addition, butyric acid and short-chain fatty acids in WF were significantly different from those in RF and MF (p < 0.05). WF also promoted the proliferation of beneficial microbiota, such as Megamonas and Subdoligranulum. At 0.5%, 1.0%, and 1.5% additions of WF, acetic acid and short-chain fatty acids at 1.5% WF increased by 1167.5% and 11.4% from 0.5% WF, respectively, and by 20.2% and 7.6% from 1.0% WF, respectively. WF also promoted the proliferation of Bifidobacterium, Lactobacillus, and Bacteroides and inhibited the growth of pathogenic microbiota, such as Streptococcus, Enterococcus, and Klebsiella. These findings support the consumption of whole cereals and offer insights into the development of new functional foods derived from wheat.
Collapse
Affiliation(s)
- Dan Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Li Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
- A & F Biotech. Ltd., Burnaby, BC V5A 3P6, Canada
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Zhongwei Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Zijian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Ling Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (D.Y.); (L.Z.); (M.G.); (Z.Y.); (Z.Z.); (L.Z.)
| |
Collapse
|
111
|
Peña-Jorquera H, Cid-Jofré V, Landaeta-Díaz L, Petermann-Rocha F, Martorell M, Zbinden-Foncea H, Ferrari G, Jorquera-Aguilera C, Cristi-Montero C. Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome-A Comprehensive Review. Nutrients 2023; 15:3244. [PMID: 37513660 PMCID: PMC10386413 DOI: 10.3390/nu15143244] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis, chronic non-communicable diseases, and metabolic syndrome are highly interconnected and collectively contribute to global health concerns that reduce life expectancy and quality of life. These conditions arise from multiple risk factors, including inflammation, insulin resistance, impaired blood lipid profile, endothelial dysfunction, and increased cardiovascular risk. Adopting a plant-based diet has gained popularity as a viable alternative to promote health and mitigate the incidence of, and risk factors associated with, these three health conditions. Understanding the potential benefits of a plant-based diet for human health is crucial, particularly in the face of the rising prevalence of chronic diseases like diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Thus, this review focused on the plausible advantages of consuming a type of food pattern for the prevention and/or treatment of chronic diseases, emphasizing the dietary aspects that contribute to these conditions and the evidence supporting the benefits of a plant-based diet for human health. To facilitate a more in-depth analysis, we present separate evidence for each of these three concepts, acknowledging their intrinsic connection while providing a specific focus on each one. This review underscores the potential of a plant-based diet to target the underlying causes of these chronic diseases and enhance health outcomes for individuals and populations.
Collapse
Affiliation(s)
- Humberto Peña-Jorquera
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Viña del Mar 2530388, Chile
| | - Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9160019, Chile
| | - Leslie Landaeta-Díaz
- Facultad de Salud y Ciencias Sociales, Universidad de las Américas, Santiago 7500975, Chile
- Núcleo en Ciencias Ambientales y Alimentarias, Universidad de las Américas, Santiago 7500975, Chile
| | - Fanny Petermann-Rocha
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago 8370068, Chile
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Hermann Zbinden-Foncea
- Laboratorio de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago 7500000, Chile
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Gerson Ferrari
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia 7500912, Chile
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Carlos Jorquera-Aguilera
- Escuela de Nutrición y Dietética, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Carlos Cristi-Montero
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Viña del Mar 2530388, Chile
| |
Collapse
|
112
|
Badjona A, Bradshaw R, Millman C, Howarth M, Dubey B. Faba Bean Processing: Thermal and Non-Thermal Processing on Chemical, Antinutritional Factors, and Pharmacological Properties. Molecules 2023; 28:5431. [PMID: 37513301 PMCID: PMC10383711 DOI: 10.3390/molecules28145431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The food industry, academia, food technologists, and consumers have become more interested in using faba bean seeds in the formulation of new products because of their nutritional content, accessibility, low costs, environmental advantages, and beneficial impacts on health. In this review, a systematic and up-to-date report on faba bean seeds' antinutrients and bioactive and processing techniques is comprehensively presented. The chemical composition, including the oil composition and carbohydrate constituents, is discussed. Factors influencing the reduction of antinutrients and improvement of bioactive compounds, including processing techniques, are discussed. Thermal treatments (cooking, autoclaving, extrusion, microwaving, high-pressure processing, irradiation) and non-thermal treatments (soaking, germination, extraction, fermentation, and enzymatic treatment) are identified as methods to reduce the levels of antinutrients in faba bean seeds. Appropriate processing methods can reduce the antinutritional factors and enrich the bioactive components, which is useful for the seeds' efficient utilization in developing functional foods. As a result, this evaluation focuses on the technologies that are employed to reduce the amounts of toxins in faba bean seeds. Additionally, a comparison of these methods is performed in terms of their advantages, disadvantages, viability, pharmacological activity, and potential for improvement using emerging technologies. Future research is expected in this area to fill the knowledge gap in exploiting the nutritional and health benefits of faba bean seeds and increase the utilization of faba bean seeds for different applications.
Collapse
Affiliation(s)
- Abraham Badjona
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Robert Bradshaw
- Bimolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Caroline Millman
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Martin Howarth
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Bipro Dubey
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
113
|
Sztupecki W, Rhazi L, Depeint F, Aussenac T. Functional and Nutritional Characteristics of Natural or Modified Wheat Bran Non-Starch Polysaccharides: A Literature Review. Foods 2023; 12:2693. [PMID: 37509785 PMCID: PMC10379113 DOI: 10.3390/foods12142693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat bran (WB) consists mainly of different histological cell layers (pericarp, testa, hyaline layer and aleurone). WB contains large quantities of non-starch polysaccharides (NSP), including arabinoxylans (AX) and β-glucans. These dietary fibres have long been studied for their health effects on management and prevention of cardiovascular diseases, cholesterol, obesity, type-2 diabetes, and cancer. NSP benefits depend on their dose and molecular characteristics, including concentration, viscosity, molecular weight, and linked-polyphenols bioavailability. Given the positive health effects of WB, its incorporation in different food products is steadily increasing. However, the rheological, organoleptic and other problems associated with WB integration are numerous. Biological, physical, chemical and combined methods have been developed to optimise and modify NSP molecular characteristics. Most of these techniques aimed to potentially improve food processing, nutritional and health benefits. In this review, the physicochemical, molecular and functional properties of modified and unmodified WB are highlighted and explored. Up-to-date research findings from the clinical trials on mechanisms that WB have and their effects on health markers are critically reviewed. The review points out the lack of research using WB or purified WB fibre components in randomized, controlled clinical trials.
Collapse
Affiliation(s)
| | | | | | - Thierry Aussenac
- Institut Polytechnique Unilasalle, Université d’Artois, ULR 7519, 60026 Beauvais, France; (W.S.); (L.R.); (F.D.)
| |
Collapse
|
114
|
Lara-Abia S, Lobo G, Pérez-Pascual N, Welti-Chanes J, Cano MP. Improvement in the Stability and Bioaccessibility of Carotenoid and Carotenoid Esters from a Papaya By-Product Using O/W Emulsions. Foods 2023; 12:2654. [PMID: 37509746 PMCID: PMC10379124 DOI: 10.3390/foods12142654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of the present work was to improve the stability and bioaccessibility of carotenoids from green oil extracts obtained from papaya by-products using oil-in-water (O/W) emulsions. The effects of different concentrations of pectin (1%, 2%, and 3%), a high-molecular-size emulsifier, together with Tween 20, a low-molecular-size emulsifier, high-speed homogenization conditions (time: 2, 3, 4, and 5 min; rpm: 9500, 12,000, 14,000, and 16,000 rpm), and high-pressure homogenization (HPH) (100 MPa for five cycles) were evaluated to determine the optimal conditions for obtaining O/W stable emulsions with encapsulated carotenoids. Soybean, sunflower, and coconut oils were used to formulate these O/W emulsions. The bioaccessibility of the main individual encapsulated papaya carotenoids was evaluated using the INFOGEST digestion methodology. In addition, the microstructures (confocal and optical microscopy) of the O/W carotenoid emulsions and their behavior during in vitro digestion phases were studied. Sunflower O/W carotenoid emulsions showed smaller mean particle size, higher negative ζ-potential, and higher viscosity than soybean O/W emulsions. Particle size reduction in the O/W emulsions using the HPH process improved the bioaccessibility of papaya encapsulated carotenoids. In these O/W emulsions, depending on the vegetable oil, lycopene was the carotenoid with the highest bioaccessibility (71-64%), followed by (all-E)-β-carotene (18%), (all-E)-β-cryptoxanthin (15%), and (all-E)-β-cryptoxanthin laurate (7-4%). These results highlight the potential of using green carotenoid papaya extracts to formulate O/W emulsions to enhance carotenoid bioactivity by efficiently preventing degradation and increasing in vitro bioaccessibility.
Collapse
Affiliation(s)
- Sara Lara-Abia
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
- School of Sciences and Engineering, Tecnologico de Monterrey (ITESM), Monterrey 64849, NL, Mexico
| | - Gloria Lobo
- Department of Crop Production in Tropical and Subtropical Areas, Instituto Canario de Investigaciones Agrarias (ICIA), 38297 Tenerife, Spain
| | - Noelia Pérez-Pascual
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Jorge Welti-Chanes
- School of Sciences and Engineering, Tecnologico de Monterrey (ITESM), Monterrey 64849, NL, Mexico
| | - M Pilar Cano
- Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolas Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
115
|
Lionetti P, Wine E, Ran Ressler R, Minor GJ, Major G, Zemrani B, Gottrand F, Romano C. Use of fiber-containing enteral formula in pediatric clinical practice: an expert opinion review. Expert Rev Gastroenterol Hepatol 2023; 17:665-675. [PMID: 37278084 DOI: 10.1080/17474124.2023.2217355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Children who require enteral nutrition often report gastrointestinal symptoms. There is a growing interest in nutrition formulas that meet nutritional requirements and also maintain gut ecology and function. Fiber-containing enteral formulas can improve bowel function, promote the growth of healthy gut microbiota, and improve immune homeostasis. Nonetheless, guidance in clinical practice is lacking. AREAS COVERED This expert opinion article summarizes the available literature and collects the opinion of eight experts on the importance and use of fiber-containing enteral formulas in pediatrics. The present review was supported by a bibliographical literature search on Medline via PubMed to collect the most relevant articles. EXPERT OPINION The current evidence supports using fibers in enteral formulas as first-line nutrition therapy. Dietary fibers should be considered for all patients receiving enteral nutrition and can be slowly introduced from six months of age. Fiber properties that define the functional/physiological properties of the fiber must be considered. Clinicians should balance the dose of fiber with tolerability and feasibility. Introducing fiber-containing enteral formulas should be considered when initiating tube feeding. Dietary fiber should be introduced gradually, especially in fiber-naïve children, with an individualized symptom-based approach. Patients should continue with the fiber-containing enteral formulas they tolerate best.
Collapse
Affiliation(s)
- Paolo Lionetti
- Department Neurofarba, University of Florence - Gastroenterology and Nutrition Unit, Meyer Children's Hospital, Firenze, Italy
| | - Eytan Wine
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Rinat Ran Ressler
- Nestle Product Technology Center, Nestlé Health Sciences, Bridgewater, NJ, US
| | - Gerard J Minor
- Pediatric Gastroenterology Hepatology and Nutrition, Kidz Medical Services, Florida, USA
| | - Giles Major
- Department Gastrointestinal Health, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Boutaina Zemrani
- Clinical Research and Development, Pediatric Medical Nutrition, Nestlé Health Science, Lausanne, Switzerland
| | - Frédéric Gottrand
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Institute for Translational Research in Inflammation, University Lille, Lille, France
| | - Claudio Romano
- Pediatric Gastroenterology and Cystic Fibrosis Unit, University of Messina, Italy
| |
Collapse
|
116
|
Zhang D, Rudjito RC, Pietiäinen S, Chang SC, Idström A, Evenäs L, Vilaplana F, Jiménez-Quero A. Arabinoxylan supplemented bread: From extraction of fibers to effect of baking, digestion, and fermentation. Food Chem 2023; 413:135660. [PMID: 36787668 DOI: 10.1016/j.foodchem.2023.135660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
The intake of dietary fibers is related with important benefits for human health. We produced two different arabinoxylan fibers with (FAX) and without ferulic acid linked (AX), 12.5 and 0.1 mg g-1 of ferulic acid respectively, by subcritical water extraction of wheat bran. Both FAX and AX fibers were used as supplement in bread production, while non-supplemented bread was used as control. Through an enzymatic deconstruction process we investigated the effect of bread making on the fibers, the preservation of their molecular structure (A/X ratio of 0.13 and Mw of 105 Da) and the interaction with other macromolecules in the bread. By mimicking the upper track digestion, we could confirm the non-digestability of the fibers and we used them for the fermentation with B. ovatus and B. adolescentis. The presence of AX fibers during fermentation showed specific substrate adaptation by the probiotic bacteria in correlation with its potential prebiotic effect.
Collapse
Affiliation(s)
- Dongming Zhang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91, Stockholm, Sweden; Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, 000 14 Helsinki, Finland
| | - Reskandi C Rudjito
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91, Stockholm, Sweden.
| | - Solja Pietiäinen
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, 750 07 Uppsala, Sweden
| | - Shu-Chieh Chang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91, Stockholm, Sweden
| | - Alexander Idström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91, Stockholm, Sweden
| | - Amparo Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
117
|
Lira MM, Oliveira Filho JGD, Sousa TLD, Costa NMD, Lemes AC, Fernandes SS, Egea MB. Selected plants producing mucilage: Overview, composition, and their potential as functional ingredients in the development of plant-based foods. Food Res Int 2023; 169:112822. [PMID: 37254398 DOI: 10.1016/j.foodres.2023.112822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
The increase in the preference for vegan and vegetarian diets is directly related to changing eating habits and the need for plant-based alternatives to animal-based products, which are better for health, due to the high content of essential amino acids and lipid profile rich in polyunsaturated fatty acids, and have lower environmental impacts. In this scenario, there is a growing demand for plant-based foods, making it necessary to find new plant-based ingredients for application in foods and beverages. Flaxseed, chia seed, and Barbados gooseberry contain mucilage, a component with potential application in plant-based products. These hydrocolloids can be used as gelling agents, texture modifiers, stabilizers, and emulsifiers in solid and semi-solid foods. This review presents the extraction, characterization, and application of flaxseed, chia seed, and Barbados gooseberry mucilage for use in plant-based foods. It was found that mucilage composition varies due to the extraction method used, extraction conditions, and geographic location of the seed or leaf. However, applications in plant-based foods are currently limited, mainly focused on applying chia mucilage in bakery products and packaging. Research on applying flaxseed and Barbados gooseberry mucilage to plant-based products is limited, though it has been shown to have potential applications in packaging. Mucilage may also increase the nutritional profile of the product and provide better technological, functional, and sensory characteristics. Therefore, because of mucilage's excellent functional and technological properties, it is a promising candidate to act as an ingredient in plant-based food products.
Collapse
Affiliation(s)
- Michelle Monteiro Lira
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil
| | - Josemar Gonçalves de Oliveira Filho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú Km 1, 14800-903 Araraquara, São Paulo, Brazil
| | - Tainara Leal de Sousa
- Federal University of Goiás (UFG), Agronomy Department, Agronomy School, Street 235, s/n - East University Sector, CEP 74605-450 Goiânia/GO, Brazil
| | - Nair Mota da Costa
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil
| | - Ailton Cesar Lemes
- Federal University of Rio de Janeiro (UFRJ), School of Chemistry, Department of Biochemical Engineering, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sibele Santos Fernandes
- Federal University of Rio Grande, School of Chemistry and Food, Av Italy km 8, Carreiros 96203-900, Rio Grande, Brazil
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rodovia Sul Goiana, 75901-970, Rio Verde, Goiás, Brazil.
| |
Collapse
|
118
|
Shimizu Y, Inoue M, Yasuda N, Yamagishi K, Iwasaki M, Tsugane S, Sawada N. Bowel movement frequency, stool consistency, and risk of disabling dementia: a population-based cohort study in Japan. Public Health 2023; 221:31-38. [PMID: 37392635 DOI: 10.1016/j.puhe.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES This population-based study aimed to evaluate the association between bowel habits from midlife and dementia. STUDY DESIGN This was a cohort study using certification records for national long-term care insurance in Japan. METHODS Participants aged 50 to 79 years who reported bowel habits from eight districts within the Japan Public Health Center-based Prospective Study (JPHC Study) were followed from 2006 to 2016 for incident dementia. Hazard ratio (HR) and 95% confidence interval (CI) were estimated for men and women separately using Cox proportional hazards models accounting for various lifestyle factors and medical histories. RESULTS Among 19,396 men and 22,859 women, 1889 men and 2685 women were diagnosed with dementia. In men, the multivariable-adjusted HRs compared with bowel movement frequency (BMF) of once/day were 1.00 (95% CI: 0.87-1.14) for twice/day or more, 1.38 (1.16-1.65) for 5-6 times/week, 1.46 (1.18-1.80) for 3-4 times/week, and 1.79 (1.34-2.39) for <3 times/week (P for trend <0.001). In women, the corresponding HRs were 1.14 (0.998-1.31), 1.03 (0.91-1.17), 1.16 (1.01-1.33), and 1.29 (1.08-1.55) (P for trend = 0.043). Harder stool was associated with higher risk (P for trend: 0.0030 for men and 0.024 for women), with adjusted HRs compared to normal stool of 1.30 (1.08-1.57) for hard stool and 2.18 (1.23-3.85) for very hard stool in men, and 1.15 (1.002-1.32) and 1.84 (1.29-2.63) in women. CONCLUSIONS Lower BMF and harder stool were each associated with higher risk of dementia.
Collapse
Affiliation(s)
- Y Shimizu
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - M Inoue
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan; Division of Prevention, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - N Yasuda
- Department of Public Health, Kochi University Medical School, Kochi, Japan
| | - K Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - M Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan; Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - S Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan; National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - N Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.
| |
Collapse
|
119
|
Guan Y, Xie C, Zhang R, Zhang Z, Tian Z, Feng J, Shen X, Li H, Chang S, Zhao C, Chai R. Characterization and the cholesterol-lowering effect of dietary fiber from fermented black rice ( Oryza sativa L.). Food Funct 2023. [PMID: 37334479 DOI: 10.1039/d3fo01308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Black rice was fermented with Neurospora crassa, after which the dietary fiber (DF) extracted from it was characterized and evaluated for its cholesterol-lowering effect in mice. The findings demonstrated that fermentation increased the level of soluble DF from 17.27% ± 0.12 to 29.69% ± 0.26 and increased the adsorption capacity of DF for water, oil, cholesterol, glucose and sodium cholate. The fermented DF had a more loose and porous structure than that extracted from unfermented rice. Additionally, feeding with DF from the fermented black rice significantly reduced body weight, lowered total cholesterol levels and improved the lipid profile in mice gavaged with a high dose (5 g per kg bw) or a low dose (2.5 g per kg·bw). ELISA showed that the hepatic expression of typical proteins and enzymes that are involved in cholesterol metabolism was regulated by the fermented rice DF, leading to reduced cholesterol production and increased cholesterol clearance. The fermented DF also modified the gut microbiota composition (e.g. Firmicutes reduced and Akkermansia increased), which promoted the production of short-chain fatty acids. In conclusion, fermentation can modify the structure and function of DF in black rice and the fermented dietary fiber has excellent cholesterol lowering effects possibly by cholesterol adsorption, cholesterol metabolism modulation, and intestinal microflora regulation.
Collapse
Affiliation(s)
- Yuting Guan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Chanyuan Xie
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Rui Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Ziyang Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Zhenyang Tian
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Jianing Feng
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Xiaoyong Shen
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Haiqin Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Shimin Chang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| | - Changhui Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Ran Chai
- College of Life Sciences and Food Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056000, China.
- Handan Key Laboratory of Natural Products and Functional Foods, 19 Taiji Road, Handan, Hebei 056000, China
| |
Collapse
|
120
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023; 15:2749. [PMID: 37375654 PMCID: PMC10302286 DOI: 10.3390/nu15122749] [Citation(s) in RCA: 200] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The Western diet is a modern dietary pattern characterized by high intakes of pre-packaged foods, refined grains, red meat, processed meat, high-sugar drinks, candy, sweets, fried foods, conventionally raised animal products, high-fat dairy products, and high-fructose products. The present review aims to describe the effect of the Western pattern diet on the metabolism, inflammation, and antioxidant status; the impact on gut microbiota and mitochondrial fitness; the effect of on cardiovascular health, mental health, and cancer; and the sanitary cost of the Western diet. To achieve this goal, a consensus critical review was conducted using primary sources, such as scientific articles, and secondary sources, including bibliographic indexes, databases, and web pages. Scopus, Embase, Science Direct, Sports Discuss, ResearchGate, and the Web of Science were used to complete the assignment. MeSH-compliant keywords such "Western diet", "inflammation", "metabolic health", "metabolic fitness", "heart disease", "cancer", "oxidative stress", "mental health", and "metabolism" were used. The following exclusion criteria were applied: (i) studies with inappropriate or irrelevant topics, not germane to the review's primary focus; (ii) Ph.D. dissertations, proceedings of conferences, and unpublished studies. This information will allow for a better comprehension of this nutritional behavior and its effect on an individual's metabolism and health, as well as the impact on national sanitary systems. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
121
|
Cohen Y, Elinav E. Dietary fibers & immunity-more than meets the eye. Cell Res 2023; 33:411-412. [PMID: 36646763 PMCID: PMC10235049 DOI: 10.1038/s41422-022-00770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yotam Cohen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
122
|
Wu X, Boulos S, Syryamina V, Nyström L, Yulikov M. Interaction of barley β-glucan with food dye molecules - An insight from pulse dipolar EPR spectroscopy. Carbohydr Polym 2023; 309:120698. [PMID: 36906364 DOI: 10.1016/j.carbpol.2023.120698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The interactions between dietary fibers (DFs) and small molecules are of great interest to food chemistry and nutrition science. However, the corresponding interaction mechanisms and structural rearrangements of DFs at the molecular level are still opaque due to the usually weak binding and the lack of appropriate techniques to determine details of conformational distributions in such weakly organized systems. By combining our previously established methodology on stochastic spin-labelling of DFs with the appropriately revised set of pulse electron paramagnetic resonance techniques, we present here a toolkit to determine the interactions between DFs and small molecules, using barley β-glucan as an example for neutral DF and a selection of food dye molecules as examples for small molecules. The proposed here methodology allowed us to observe subtle conformational changes of β-glucan by detecting multiple details of the local environment of the spin labels. Substantial variations of binding propensities were detected for different food dyes.
Collapse
Affiliation(s)
- Xiaowen Wu
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Samy Boulos
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Victoria Syryamina
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia.
| | - Laura Nyström
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland.
| |
Collapse
|
123
|
Hariri Z, Hekmatdoost A, Pashayee-khamene F, Karimi S, Ahmadzadeh S, Yari Z. Dietary fiber intake and mortality among survivors of liver cirrhosis: A prospective cohort study. Heliyon 2023; 9:e16170. [PMID: 37251456 PMCID: PMC10220317 DOI: 10.1016/j.heliyon.2023.e16170] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Background Liver cirrhosis is associated with significant nutritional risks and poor survival rates. Little is known about the impact of dietary factors on metabolic complications and mortality from cirrhosis. Aim The present study investigated the potential associations between dietary fibers and the risk of cirrhosis-related mortality. Methods In this prospective study, 121 ambulatory cirrhotic patients with more than six months of cirrhosis diagnosis were followed-up for 4 years. Dietary intakes were assessed using a 168-item semi-quantitative validated food frequency questionnaire. Crude and multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated through cox proportional hazards regression models. Results Comparing the highest versus the lowest tertile, soluble and insoluble fiber intake was associated with 62% (HR = 0.38, 95% CI = 0.045-3.5, p trend = 0.047) and 73% (HR = 0.27, 95% CI = 0.06-1.2, p trend = 0.021) lower mortality risk, respectively, after full adjustment for potential confounders. Higher intakes of total fiber were inversely but non-significantly associated with mortality risk. Conclusion Comprehensive assessment of dietary fiber intake associations with cirrhosis-related mortality showed that higher intakes of soluble and insoluble fiber were significantly associated with reduced mortality risk.
Collapse
Affiliation(s)
- Zahra Hariri
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran
| | - Azita Hekmatdoost
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran
| | - Fereshteh Pashayee-khamene
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran
| | - Sara Karimi
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran
| | - Salehe Ahmadzadeh
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran
| |
Collapse
|
124
|
Oliveira-Alves SC, Andrade F, Sousa J, Bento-Silva A, Duarte B, Caçador I, Salazar M, Mecha E, Serra AT, Bronze MR. Soilless Cultivated Halophyte Plants: Volatile, Nutritional, Phytochemical, and Biological Differences. Antioxidants (Basel) 2023; 12:1161. [PMID: 37371891 PMCID: PMC10295272 DOI: 10.3390/antiox12061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The use of halophyte plants appears as a potential solution for degraded soil, food safety, freshwater scarcity, and coastal area utilization. These plants have been considered an alternative crop soilless agriculture for sustainable use of natural resources. There are few studies carried out with cultivated halophytes using a soilless cultivation system (SCS) that report their nutraceutical value, as well as their benefits on human health. The objective of this study was to evaluate and correlate the nutritional composition, volatile profile, phytochemical content, and biological activities of seven halophyte species cultivated using a SCS (Disphyma crassifolium L., Crithmum maritimum L., Inula crithmoides L., Mesembryanthemum crystallinum L., Mesembryanthemum nodiflorum L., Salicornia ramosissima J. Woods, and Sarcocornia fruticosa (Mill.) A. J. Scott.). Among these species, results showed that S. fruticosa had a higher content in protein (4.44 g/100 g FW), ash (5.70 g/100 g FW), salt (2.80 g/100 g FW), chloride (4.84 g/100 g FW), minerals (Na, K, Fe, Mg, Mn, Zn, Cu), total phenolics (0.33 mg GAE/g FW), and antioxidant activity (8.17 µmol TEAC/g FW). Regarding the phenolic classes, S. fruticosa and M. nodiflorum were predominant in the flavonoids, while M. crystallinum, C. maritimum, and S. ramosissima were in the phenolic acids. Moreover, S. fruticosa, S. ramosissima, M. nodiflorum, M. crystallinum, and I. crithmoides showed ACE-inhibitory activity, an important target control for hypertension. Concerning the volatile profile, C. maritimum, I. crithmoides, and D. crassifolium were abundant in terpenes and esters, while M. nodiflorum, S. fruticosa, and M. crystallinum were richer in alcohols and aldehydes, and S. ramosissima was richer in aldehydes. Considering the environmental and sustainable roles of cultivated halophytes using a SCS, these results indicate that these species could be considered an alternative to conventional table salt, due to their added nutritional and phytochemical composition, with potential contribution for the antioxidant and anti-hypertensive effects.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - João Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - Andreia Bento-Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Salazar
- Riafresh, Sítio do Besouro, CX 547-B, 8005-421 Faro, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Elsa Mecha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
125
|
Zang Y, Du C, Xin R, Cao Y, Zuo F. Anti-diabetic effect of modified 'Guanximiyou' pummelo peel pectin on type 2 diabetic mice via gut microbiota. Int J Biol Macromol 2023; 242:124865. [PMID: 37207756 DOI: 10.1016/j.ijbiomac.2023.124865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
This study aimed to investigate the mechanisms of nature and modified 'Guanximiyou' pummelo peel pectin (GGP and MGGP) in alleviating T2DM through in vitro and in vivo. After modification, pectin was transformed from high methoxy pectin (HMP) to low methoxy pectin (LMP), and the content of galacturonic acid was increased. These made MGGP have stronger antioxidant capacity and better inhibition effect on corn starch digestion in vitro. In vivo experiments have shown that both GGP and MGGP inhibited the development of diabetes after 4 weeks of ingestion. However, MGGP can more effectively reduce blood glucose and regulate lipid metabolism, and has significant antioxidant capacity and the ability to promote SCFAs secretion. In addition, 16S rRNA analysis showed that MGGP changed the composition of intestinal microbiota in diabetic mice, decreased the abundance of Proteobacteria, and increased the relative abundance of Akkermansia, Lactobacillus, Oscillospirales and Ruminococcaceae. The phenotypes of the gut microbiome also changed accordingly, indicating that MGGP can inhibit the growth of pathogenic bacteria, alleviate intestinal functional metabolic disorders and reverse the potential risk of related complications. Altogether, our findings demonstrate that MGGP, as a dietary polysaccharide, may inhibit the development of diabetes by reversing the imbalance of gut microbiota.
Collapse
Affiliation(s)
- Yanqing Zang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Chao Du
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Ru Xin
- Heilongjiang Nursing College, Daqing, Heilongjiang 150086, China
| | - Yang Cao
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Feng Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
126
|
Noda T, Ishiguro K, Suzuki T, Morishita T. Tartary Buckwheat Bran: A Review of Its Chemical Composition, Processing Methods and Food Uses. PLANTS (BASEL, SWITZERLAND) 2023; 12:1965. [PMID: 37653882 PMCID: PMC10222156 DOI: 10.3390/plants12101965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 09/02/2023]
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) containing large amounts of functional compounds with antioxidant activity, such as rutin, has attracted substantial research attention due to its industrial applications. Particularly, the functional compounds in Tartary buckwheat bran, an unexploited byproduct of the buckwheat flour milling process, are more concentrated than those in Tartary buckwheat flour. Thus, Tartary buckwheat bran is deemed to be a potential material for making functional foods. However, a review that comprehensively summarizes the research on Tartary buckwheat bran is lacking. Therefore, we highlighted current studies on the chemical composition of Tartary buckwheat bran. Moreover, the processing method and food uses of Tartary buckwheat bran are also discussed.
Collapse
Affiliation(s)
- Takahiro Noda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| | - Koji Ishiguro
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| | - Tatsuro Suzuki
- Kyushu-Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Suya, Koshi, Kumamoto 861-1192, Japan
| | - Toshikazu Morishita
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei, Memuro, Kasai-gun 082-0081, Japan
| |
Collapse
|
127
|
Méndez-Ancca S, Pepe-Victoriano R, Gonzales HHS, Zambrano-Cabanillas AW, Marín-Machuca O, Rojas JCZ, Maquera MM, Huanca RF, Aguilera JG, Zuffo AM, Ratke RF. Physicochemical Evaluation of Cushuro ( Nostoc sphaericum Vaucher ex Bornet & Flahault) in the Region of Moquegua for Food Purposes. Foods 2023; 12:1939. [PMID: 37238756 PMCID: PMC10217000 DOI: 10.3390/foods12101939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
The cyanobacterium Nostoc sp. contains considerable amounts of protein, iron, and calcium that could mitigate the problems of anemia and malnutrition in humans. However, the nutritional value of the edible species Nostoc sphaericum Vaucher ex Bornet & Flahault, which grows in the Moquegua region, is unknown. Descriptive research was developed, and samples were obtained from the community of Aruntaya, located in the region of Moquegua. Water samples were taken at two different points (spring and reservoir), and samples of the cyanobacteria were taken in the reservoir. The design used was completely randomized, with three repetitions. Sixteen characteristics associated with the water collected at two points were evaluated, and from the nutritional point of view, seven characteristics were evaluated in the collected algae. The physicochemical characteristics were determined using methods established in the Codex Alimentarius. For the morphological characterization at the macroscopic level, it was observed that the seaweed collected was spherical in shape, grayish-green in color, soft to the touch, and palatable. After carrying out the physicochemical and morphological characterization of the collected samples, it was verified that all were of N. sphaericum. When comparing the sixteen characteristics related to water at the two collection sites, highly significant differences (p < 0.01) were observed for most of the variables evaluated. The average data of the characteristics of the algae showed protein values of 28.18 ± 0.33%, carbohydrates of 62.07 ± 0.69%, fat of 0.71 ± 0.02%, fiber of 0.91 ± 0.02%, ash of 7.68 ± 0.10%, and moisture of 0.22 ± 0.01%. Likewise, calcium reported an average value of 377.80 ± 1.43 mg/100 g and iron of 4.76 ± 0.08 mg/100 g. High correlations (positive and negative) were obtained by evaluating seven characteristics associated with the reservoir water where the algae grew in relation to eight nutritional characteristics of the algae. In relation to the nutritional value, the amounts of protein, iron, and calcium exceed the main foods of daily intake. Therefore, it could be considered a nutritious food to combat anemia and malnutrition.
Collapse
Affiliation(s)
- Sheda Méndez-Ancca
- Area of Marine Biology and Aquaculture, Faculty of Renewable Natural Resources, Arturo Prat University, Arica 1000000, Chile;
- Master’s Program in Aquaculture, Mention in Aquaculture of Hydrobiological Resources, Mention in Aquaponics, Arturo Prat University, Arica 1000000, Chile
- National University of Moquegua (UNAM), Ilo 18601, Peru; (H.H.S.G.); (M.M.M.); (R.F.H.)
| | - Renzo Pepe-Victoriano
- Area of Marine Biology and Aquaculture, Faculty of Renewable Natural Resources, Arturo Prat University, Arica 1000000, Chile;
| | | | - Abel Walter Zambrano-Cabanillas
- Faculty of Oceanography, Fisheries, Food Science and Aquaculture, Academic Departments of Aquaculture and Food Science, Universidad Nacional Federico Villarreal, Lima 15001, Peru; (A.W.Z.-C.); (O.M.-M.)
| | - Olegario Marín-Machuca
- Faculty of Oceanography, Fisheries, Food Science and Aquaculture, Academic Departments of Aquaculture and Food Science, Universidad Nacional Federico Villarreal, Lima 15001, Peru; (A.W.Z.-C.); (O.M.-M.)
| | | | | | | | - Jorge González Aguilera
- Department of Agronomy, Universidad Estadual de Mato Grosso do Sul (UEMS), Cassilândia 79540-000, MS, Brazil;
| | - Alan Mario Zuffo
- Department of Agronomy, State University of Maranhão, Campus de Balsas, Balsas 65800-000, MA, Brazil;
| | - Rafael Felippe Ratke
- Department of Agronomy, Universidade Federal de Mato Grosso do Sul, Chapadão do Sul 79650-000, MS, Brazil
| |
Collapse
|
128
|
Gibb RD, Sloan KJ, McRorie JW. Psyllium is a natural nonfermented gel-forming fiber that is effective for weight loss: A comprehensive review and meta-analysis. J Am Assoc Nurse Pract 2023:01741002-990000000-00118. [PMID: 37163454 PMCID: PMC10389520 DOI: 10.1097/jxx.0000000000000882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Psyllium is a natural, predominantly soluble fiber that forms a viscous gel when hydrated and is not digested or fermented. In the small intestine, psyllium gel increases chyme viscosity, slowing the degradation and absorption of nutrients. Psyllium has a significant effect in patients with metabolic syndrome and type-2 diabetes on glycemic control, while lowering serum cholesterol in hypercholesterolemic patients. Some randomized controlled studies have shown that psyllium also facilitates weight loss in overweight and obese participants. OBJECTIVES A comprehensive review and meta-analysis assessing psyllium's impact on body weight, body mass index (BMI), and waist circumference in overweight and obese participants. DATA SOURCES A comprehensive search was performed (Medline, Scopus, Cochrane Database) through March 21, 2022, using search terms to identify randomized, controlled, clinical studies designed to assess weight loss in overweight and obese participants over at least 2 months. Data were analyzed using the inverse variance method with random effects models. CONCLUSIONS Six studies meeting inclusion criteria were identified (total n = 354). The meta-analysis showed that psyllium, dosed just before meals (mean dose 10.8 g/day, mean duration 4.8 months), was effective for decreasing body weight (MD = -2.1 kg [95% confidence interval [CI]: -2.6 to -1.6]; p < .001), BMI (MD = -0.8 kg/m2 [95% CI: -1.0 to -0.6]; p < .001) and waist circumference (MD = -2.2 cm [95% CI: -2.9 to -1.4]; p < .001) in overweight and obese populations. IMPLICATIONS FOR PRACTICE Gel-forming nonfermented psyllium fiber, dosed just before meals, is effective in facilitating weight loss in overweight and obese participants.
Collapse
|
129
|
Han Y, Wu H, Sun S, Zhao R, Deng Y, Zeng S, Chen J. Effect of High Fat Diet on Disease Development of Polycystic Ovary Syndrome and Lifestyle Intervention Strategies. Nutrients 2023; 15:2230. [PMID: 37432488 PMCID: PMC10180647 DOI: 10.3390/nu15092230] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder that affects premenopausal women. The etiology of PCOS is multifaceted, involving various genetic and epigenetic factors, hypothalamic-pituitary-ovarian dysfunction, androgen excess, insulin resistance, and adipose-related mechanisms. High-fat diets (HFDs) has been linked to the development of metabolic disorders and weight gain, exacerbating obesity and impairing the function of the hypothalamic-pituitary-ovarian axis. This results in increased insulin resistance, hyperinsulinemia, and the release of inflammatory adipokines, leading to heightened fat synthesis and reduced fat breakdown, thereby worsening the metabolic and reproductive consequences of PCOS. Effective management of PCOS requires lifestyle interventions such as dietary modifications, weight loss, physical activity, and psychological well-being, as well as medical or surgical interventions in some cases. This article systematically examines the pathological basis of PCOS and the influence of HFDs on its development, with the aim of raising awareness of the connection between diet and reproductive health, providing a robust approach to lifestyle interventions, and serving as a reference for the development of targeted drug treatments.
Collapse
Affiliation(s)
- Yingxue Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Rong Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifan Deng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
130
|
Yusuf EH. Comparison of life cycle assessments and nutritional contents of soy protein and wheat protein (seitan) based vegan bacon products for human and environmental health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3315-3321. [PMID: 36794485 DOI: 10.1002/jsfa.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/12/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND High amounts of meat consumption cause cardiometabolic diseases and higher mortality rates. Animal farming creates the highest amounts of methane emissions as a result of manure. Therefore, plant-based meat analogues are popular among flexitarian, vegetarian and vegan consumers. Similar to other meat substitutes, plant-based pork products are attractive both for manufacturers and consumers who are looking for healthy and environmentally friendly food solutions. RESULTS In the present study, soy protein and seitan protein-based bacon food products were evaluated by life cycle assessment (LCA) for global warming, terrestrial acidification, terrestrial toxicity, water consumption, freshwater eutrophication and human carcinogenic toxicity. Moreover, the nutritional characteristics of plant-based bacon products were compared with each other, and seitan protein-based bacon demonstrated more elevated amounts of protein content than pork bacon. According to LCA, the present study has demonstrated the heating of plant-based bacon products with induction, ceramic and electric stoves before consumption. The packaging and packaging materials of plant-based bacon products showed lower environmental impacts compared to the high-risk factors such as petroleum production and diesel combustion. CONCLUSION Soy protein and seitan-based bacon alternatives were low in fat content, and seitan protein-based bacon provides more protein content than original bacon. Moreover, the highest risks of environmental and human health effects of bacon substitutes have not come from individual activities and/or food production, but from side industries that cause the highest amounts of environmental issues crucial for food production and transportation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Emel Hasan Yusuf
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, The Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
131
|
Lama Tamang R, Juritsch AF, Ahmad R, Salomon JD, Dhawan P, Ramer-Tait AE, Singh AB. The diet-microbiota axis: a key regulator of intestinal permeability in human health and disease. Tissue Barriers 2023; 11:2077069. [PMID: 35603609 PMCID: PMC10161950 DOI: 10.1080/21688370.2022.2077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 01/21/2023] Open
Abstract
The intestinal barrier orchestrates selective permeability to nutrients and metabolites while excluding noxious stimuli. Recent scientific advances establishing a causal role for the gut microbiota in human health outcomes have generated a resurgent interest toward intestinal permeability. Considering the well-established role of the gut barrier in protection against foreign antigens, there is mounting evidence for a causal link between gut permeability and the microbiome in regulating human health. However, an understanding of the dynamic host-microbiota interactions that govern intestinal barrier functions remains poorly defined. Furthermore, the system-level mechanisms by which microbiome-targeted therapies, such as probiotics and prebiotics, simultaneously promote intestinal barrier function and host health remain an area of active investigation. This review summarizes the recent advances in understanding the dynamics of intestinal permeability in human health and its integration with gut microbiota. We further summarize mechanisms by which probiotics/prebiotics influence the gut microbiota and intestinal barrier functions.
Collapse
Affiliation(s)
- Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony F. Juritsch
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jeffrey D. Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| |
Collapse
|
132
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
133
|
Gan L, Han J, Li C, Tang J, Wang X, Ma Y, Chen Y, Xiao D, Guo X. Tibetan highland barley fiber improves obesity and regulates gut microbiota in high-fat diet-fed mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
134
|
Feng C, Jin C, Liu K, Yang Z. Microbiota-derived short chain fatty acids: Their role and mechanisms in viral infections. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
135
|
Chen Z, Luo C, Wang K, Chen Y, Zhuang X. Insight into the Mechanism of Porcine Myofibrillar Protein Gel Properties Modulated by κ-Carrageenan. Foods 2023; 12:foods12071444. [PMID: 37048265 PMCID: PMC10094032 DOI: 10.3390/foods12071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this study is to explain the mechanism of porcine myofibrillar protein gel properties modulated by κ-carrageenan. The textural properties results showed that the stress at fracture of the composite gel with 0.4% κ-carrageenan had the highest value (91.33 g), which suggested that the 0.4% κ-carrageenan addition was the limitation. The strain at fracture was significantly reduced with κ-carrageenan addition. The composite gel with 0.4% κ-carrageenan had the lowest proportion of T22 (7.85%) and the shortest T21 relaxation time (252.81 ms). The paraffin section showed that the phase separation behavior of the composite gel transformed from single-phase behavior to dispersed phase behavior to bi-continuous phase behavior, and the ratio of CG/MP phase area significantly increased from 0.06 to 1.73. The SEM showed that the three-dimensional network of myofibrillar protein transformed from a loose structure to a compact structure to an unaggregated structure with κ-carrageenan addition. The myofibrillar protein network of the treatment with 0.4% κ-carrageenan had the highest DF value (1.7858) and lowest lacunary value (0.452). The principal component analysis was performed on the data of microstructure and textural properties, and the results showed that the dispersed phase behavior and moisture stabilization promoted the aggregation of myofibrillar protein and the composite gel had better water holding capacity and textural properties, while bi-continuous phase behavior hindered the aggregation of myofibrillar protein and the composite gel had worse water holding capacity and textural properties.
Collapse
|
136
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
137
|
Lie-Piang A, Yang J, Schutyser MAI, Nikiforidis CV, Boom RM. Mild Fractionation for More Sustainable Food Ingredients. Annu Rev Food Sci Technol 2023; 14:473-493. [PMID: 36972157 DOI: 10.1146/annurev-food-060721-024052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
With the rising problems of food shortages, energy costs, and raw materials, the food industry must reduce its environmental impact. We present an overview of more resource-efficient processes to produce food ingredients, describing their environmental impact and the functional properties obtained. Extensive wet processing yields high purities but also has the highest environmental impact, mainly due to heating for protein precipitation and dehydration. Milder wet alternatives exclude, for example, low pH-driven separation and are based on salt precipitation or water only. Drying steps are omitted during dry fractionation using air classification or electrostatic separation. Benefits of milder methods are enhanced functional properties. Therefore, fractionation and formulation should be focused on the desired functionality instead of purity. Environmental impact is also strongly reduced by milder refining. Antinutritional factors and off-flavors remain challenges in more mildly produced ingredients. The benefits of less refining motivate the increasing trend toward mildly refined ingredients.
Collapse
Affiliation(s)
- A Lie-Piang
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| | - J Yang
- Laboratory for Biobased Chemistry and Technology, Wageningen University, Wageningen, The Netherlands
| | - M A I Schutyser
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| | - C V Nikiforidis
- Laboratory for Biobased Chemistry and Technology, Wageningen University, Wageningen, The Netherlands
| | - R M Boom
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| |
Collapse
|
138
|
Xu Y, Mo G, Yao Y, Li C. The effects of vegetarian diets on glycemia and lipid parameters in adult patients with overweight and obesity: a systematic review and meta-analysis. Eur J Clin Nutr 2023:10.1038/s41430-023-01283-x. [PMID: 36964271 DOI: 10.1038/s41430-023-01283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/26/2023]
Abstract
Several randomized controlled trials have reported the effects of vegetarian diets on blood lipids and glucose homeostasis in adults, but not in overweight or obese individuals. Thus, the purpose of this study was to evaluate the effects of vegetarian diets on blood lipids and glucose homeostasis in overweight or obese adults by systematic review and meta-analysis. We searched Medline, Embase, and the Cochrane Library through October 2021. We chose to include overweight or obese patients in the studies of the vegetarian diet for metabolic control. Seven trials with a total of 783 overweight or obese adult were included in the meta-analysis. The analysis of the data revealed that the vegetarian diets significantly reduced low-density lipoprotein cholesterol (LDL-C) (WMD, -0.31; 95% CI, -0.46 to -0.16), total cholesterol (TC) (WMD, -0.37; 95% CI, -0.52 to -0.22), and HbA1c (WMD (%), -0.33; 95% CI, -0.55 to -0.11). The vegetarian diets had an elevated effect on blood triglycerides (WMD, 0.29; 95% CI, 0.11-0.47). However, there were no significant effects of vegetarian diets on high-density lipoprotein cholesterol (HDLC), Fasting plasma glucose(FPG), and HOMA-IR in these individuals. The results of this study suggest that vegetarian diets effectively reduce LDL-C, TC, and HbA1c levels, thus functioning as a promising therapeutic strategy for improving the metabolic dysfunction in overweight or obese individuals. However, further large-scale clinical trials are required to confirm the validity of these findings.
Collapse
Affiliation(s)
- Yang Xu
- The First College for Clinical Medicine, Guangxi Medical University, Guangxi, China
| | - Guli Mo
- The First College for Clinical Medicine, Guangxi Medical University, Guangxi, China
| | - Yu Yao
- The First College for Clinical Medicine, Guangxi Medical University, Guangxi, China
| | - Chuan Li
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China.
| |
Collapse
|
139
|
Wang L, Xu J, Wang H, Chen T, You E, Bian H, Chen W, Zhang B, Shen Y. Population structure analysis and genome-wide association study of a hexaploid oat landrace and cultivar collection. FRONTIERS IN PLANT SCIENCE 2023; 14:1131751. [PMID: 37025134 PMCID: PMC10070682 DOI: 10.3389/fpls.2023.1131751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Oat (Avena sativa L.) is an important cereal crop grown worldwide for grain and forage, owing to its high adaptability to diverse environments. However, the genetic and genomics research of oat is lagging behind that of other staple cereal crops. METHODS In this study, a collection of 288 oat lines originating worldwide was evaluated using 2,213 single nucleotide polymorphism (SNP) markers obtained from an oat iSelect 6K-beadchip array to study its genetic diversity, population structure, and linkage disequilibrium (LD) as well as the genotype-phenotype association for hullessness and lemma color. RESULTS The average gene diversity and polymorphic information content (PIC) were 0.324 and 0.262, respectively. The first three principal components (PCs) accounted for 30.33% of the genetic variation, indicating that the population structure of this panel of oat lines was stronger than that reported in most previous studies. In addition, accessions could be classified into two subpopulations using a Bayesian clustering approach, and the clustering pattern of accessions was closely associated with their region of origin. Additionally, evaluation of LD decay using 2,143 mapped markers revealed that the intrachromosomal whole-genome LD decayed rapidly to a critical r2 value of 0.156 for marker pairs separated by a genetic distance of 1.41 cM. Genome-wide association study (GWAS) detected six significant associations with the hullessness trait. Four of these six markers were located on the Mrg21 linkage group between 194.0 and 205.7 cM, while the other two significant markers mapped to Mrg05 and Mrg09. Three significant SNPs, showing strong association with lemma color, were located on linkage groups Mrg17, Mrg18, and Mrg20. DISCUSSION Our results discerned relevant patterns of genetic diversity, population structure, and LD among members of a worldwide collection of oat landraces and cultivars proposed to be 'typical' of the Qinghai-Tibetan Plateau. These results have important implications for further studies on association mapping and practical breeding in high-altitude oat.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Jinqing Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Handong Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tongrui Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - En You
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Bian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Wenjie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, China
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, China
| | - Yuhu Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Laboratory for Research and Utilization of Qinghai Tibetan Plateau Germplasm Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
140
|
Tailor R, Medara N, Chopra A, Swarnamali H, Eberhard J, Jayasinghe TN. Role of prebiotic dietary fiber in periodontal disease: A systematic review of animal studies. Front Nutr 2023; 10:1130153. [PMID: 36998913 PMCID: PMC10043215 DOI: 10.3389/fnut.2023.1130153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundPeriodontitis is a chronic inflammatory condition affecting the supporting structures of a tooth in the oral cavity. The relationship between dietary fiber and periodontitis is poorly understood. The objective of this systematic review is to investigate if an intake of dietary fiber modulates periodontal disease in animal models and any concomitant effects on systemic inflammation, microbiota and their metabolites.MethodsAnimal studies using periodontitis models with any form of fiber intervention were included. Studies with comorbidities that were mutually inclusive with periodontitis and animals with physiological conditions were excluded. Search strategy with MeSH and free-text search terms were finalized and performed on the 22nd of September 2021.CINAHL Complete, EMBASE, MEDLINE, SciVerse Scopus® and Web of Science Core Collection databases were used to identify studies. SYRCLE’s risk of bias tool and CAMARADES were used for quality assessment. Results were synthesized utilizing Covidence© web-based platform software to remove duplicates, and the remaining studies were manually filtered.ResultsA total of 7,141 articles were retrieved from all databases. Out of 24 full-text articles assessed for eligibility, four studies (n = 4) were included. Four studies involved the use of β-(1,3/1,6)-glucan (n = 3) and mannan oligosaccharide (n = 1) at differing dosages for different study durations. All studies utilized a ligature-induced model of periodontitis in rats, either Wistar (n = 3) or Sprague–Dawley (n = 1). A dose-dependent relationship between the increased fiber intake and decrease in alveolar bone loss and pro-inflammatory markers was observed.ConclusionThe number of included studies is limited and narrow in scope. They highlight the importance of pre-clinical trials in this field with broader dietary fiber intervention groups before proceeding to clinical trials. The use of dietary fiber as an intervention shows promise in the reduction of inflammatory conditions like periodontitis. However, further research is required to delineate the relationship between diet and its effects on microbiota and their metabolites such as short chain fatty acids in animal models of periodontitis.
Collapse
Affiliation(s)
- Rohan Tailor
- The Charles Perkins Centre, The University of Sydney, Darlington, NSW, Australia
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Nidhi Medara
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hasinthi Swarnamali
- Health and Wellness Unit, Faculty of Medicine, University of Colombo, Colombo, Western Province, Sri Lanka
| | - Joerg Eberhard
- The Charles Perkins Centre, The University of Sydney, Darlington, NSW, Australia
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Thilini N. Jayasinghe
- The Charles Perkins Centre, The University of Sydney, Darlington, NSW, Australia
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
- *Correspondence: Thilini N. Jayasinghe,
| |
Collapse
|
141
|
Ito M, Yoshimoto J, Maeda T, Ishii S, Wada Y, Kishi M, Koikeda T. Effects of high-fiber food product consumption and personal health record use on body mass index and bowel movement. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
142
|
Pectin fractions extracted sequentially from Cerasus humilis: their compositions, structures, functional properties and antioxidant activities. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
143
|
Ben Hsouna A, Sadaka C, Generalić Mekinić I, Garzoli S, Švarc-Gajić J, Rodrigues F, Morais S, Moreira MM, Ferreira E, Spigno G, Brezo-Borjan T, Akacha BB, Saad RB, Delerue-Matos C, Mnif W. The Chemical Variability, Nutraceutical Value, and Food-Industry and Cosmetic Applications of Citrus Plants: A Critical Review. Antioxidants (Basel) 2023; 12:481. [PMID: 36830039 PMCID: PMC9952696 DOI: 10.3390/antiox12020481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Citrus fruits occupy an important position in the context of the fruit trade, considering that both fresh fruits and processed products are produced on a large scale. Citrus fruits are recognized as an essential component of the human diet, thanks to their high content of beneficial nutrients such as vitamins, minerals, terpenes, flavonoids, coumarins and dietary fibers. Among these, a wide range of positive biological activities are attributed to terpenes and flavonoids derivatives. In this review, a list of bibliographic reports (from 2015 onwards) on the phytochemical composition, beneficial effects and potential applications of citrus fruits and their by-products is systematically summarized. In detail, information regarding the nutraceutical and medicinal value closely linked to the presence of numerous bioactive metabolites and their growing use in the food industry and food packaging, also considering any technological strategies such as encapsulation to guarantee their stability over time, were evaluated. In addition, since citrus fruit, as well as its by-products, are interesting alternatives for the reformulation of natural cosmetic products, the sector of the cosmetic industry is also explored. More in-depth knowledge of the latest information in this field will contribute to future conscious use of citrus fruits.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | | | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Jaroslava Švarc-Gajić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Francisca Rodrigues
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Manuela M. Moreira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Eduarda Ferreira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Giorgia Spigno
- DiSTAS, Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Tanja Brezo-Borjan
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| |
Collapse
|
144
|
Li L, Zhai S, Wang R, Kong F, Yang A, Wang C, Yu H, Li Y, Wang D. Anti-Obesity Effect of Auricularia delicate Involves Intestinal-Microbiota-Mediated Oxidative Stress Regulation in High-Fat-Diet-Fed Mice. Nutrients 2023; 15:nu15040872. [PMID: 36839230 PMCID: PMC9962468 DOI: 10.3390/nu15040872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Auricularia delicate (ADe), an edible fungus belonging to the family Auriculariaceae and order Auriculariales, possesses antimicrobial, hepatoprotective, and antioxidant effects. In this study, after systematic analysis of its composition, ADe was administered to high-fat-diet (HFD)-fed mice to investigate its anti-obesity effect. ADe significantly controlled body weight; alleviated hepatic steatosis and adipocyte hypertrophy; reduced aspartate aminotransferase, total cholesterol, insulin, and resistin; and increased adiponectin levels in HFD-fed mice serum. Based on intestinal microbiota and lipidomics analysis, ADe treatment regulated the composition and abundance of 49 intestinal microorganisms and influenced the abundance of 8 lipid species compared with HFD-fed mice. Based on a correlation analysis of the intestinal microbiota and lipids, Coprococcus showed significant negative associations with ceramide (d18:0 20:0+O), phosphatidylserine (39:4), sphingomyelin (d38:4), and zymosterol (20:2). Moreover, ADe treatment decreased the levels of ROS and MDA and increased the levels of Nrf2, HO-1, and three antioxidant enzymes in HFD-fed mice livers. Collectively, the anti-obesity effect of ADe involves the regulation of oxidative stress and is mediated by the intestinal microbiota. Hence, this study provides a reference for the application of ADe as a candidate food for obesity.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- School of Life Sciences, Jilin University, Changchun 130012, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Siyu Zhai
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ruochen Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fange Kong
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Anhui Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunyue Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Han Yu
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (H.Y.); (D.W.)
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Di Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- School of Life Sciences, Jilin University, Changchun 130012, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (H.Y.); (D.W.)
| |
Collapse
|
145
|
Reiners S, Hebestreit S, Wedekind L, Kiehntopf M, Klink A, Rummler S, Glei M, Lorkowski S, Schlörmann W, Dawczynski C. Effect of a regular consumption of traditional and roasted oat and barley flakes on blood lipids and glucose metabolism-A randomized crossover trial. Front Nutr 2023; 10:1095245. [PMID: 36819683 PMCID: PMC9932717 DOI: 10.3389/fnut.2023.1095245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background Regular consumption of the soluble dietary fiber β-glucan is associated with decreased total cholesterol (TC), low-density lipoprotein (LDL) cholesterol and blood glucose. Barley and oat flakes as natural sources of β-glucan were roasted to improve sensory quality. The aim of this study was to investigate whether roasting of barley and oat flakes changes the physiological impact of the β-glucan-rich flakes on glucose and lipid metabolism. Method A five-armed randomized crossover trial design was used. The intervention study was conducted from May 2018 to May 2019 and included 32 healthy subjects with moderately increased LDL cholesterol (≥2.5 mmol/L). During the 3-week intervention periods, 80 g of roasted or traditional barley or oat flakes, or four slices of white toast bread per day were consumed for breakfast. At the start and the end of each intervention, fasting and postprandial blood was taken. The intervention periods were separated by 3-week wash-out periods. Results During the interventions with the cereal flakes, TC and LDL cholesterol concentrations were significantly reduced compared to baseline values by mean differences of 0.27-0.33 mmol/L and 0.21-0.30 mmol/L, respectively (p < 0.05), while high-density lipoprotein (HDL) cholesterol was only reduced after the intervention with barley flakes (p < 0.05). After the intervention period with toast, TC and HDL cholesterol increased (p < 0.05). The fasting levels of triglycerides, fasting blood glucose and insulin did not change in any group. The effects of traditional and roasted varieties on blood lipids did not differ between the groups. Conclusion The regular consumption of traditional or roasted barley and oat flakes contributes to the management of cardiovascular diseases by improving TC and LDL cholesterol. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT03648112, identifier NCT03648112.
Collapse
Affiliation(s)
- Sarah Reiners
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Sandra Hebestreit
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Lisa Wedekind
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Anne Klink
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Michael Glei
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Wiebke Schlörmann
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Dawczynski
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| |
Collapse
|
146
|
Meeusen REH, van der Voorn B, Berk KA. Nudging strategies to improve food choices of healthcare workers in the workplace cafeteria: A pragmatic field study. Clin Nutr ESPEN 2023; 53:126-133. [PMID: 36657903 DOI: 10.1016/j.clnesp.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Dutch healthcare workers experience the highest workload and absenteeism rates compared to all other professions. This has been associated with a more unhealthy diet. Nudging strategies in the workplace have been shown to improve food choices. We studied the potential of a combination of evidence and practice-based nudging strategies; determined their feasibility in a real-life setting; and explored their effectiveness on healthier purchases over a two-month period in a hospital workplace cafeteria. METHODS We conducted an explorative, prospective field study. Based on information gathered through a literature search and a qualitative field study, we selected the potentially most effective and feasible nudges. These were subsequently implemented in a commercial workplace cafeteria of a Dutch academic medical centre. The selected nudging strategies included product placement, increasing the ratio of healthy to unhealthy product options, and providing nutritional information and motivational statements. Data on the products purchased was collected using photographs of the lunch trays of healthcare workers, with the products then labelled and their nutritional value calculated. Effects were evaluated after one and two months. Chi-square analyses were used to analyse differences over time. RESULTS A total of 905 photographs of lunches were analysed (approximately 300 at each time point). The nudging strategies implemented resulted in a 41% increase in the purchase of whole-wheat products at the expense of non-whole-wheat products, between baseline and final measurement (p = 0.012). The purchases of healthy and unhealthy bread fillings and beverages did not significantly change during the study period. CONCLUSION This explorative study showed that a combination of three nudging strategies partly improved healthy food choices for lunch in a Dutch healthcare setting. These results may help guide other professionals to implement nudging strategies to improve employee food choices. Future research should evaluate the effect over a longer period of time, thereby identifying the most effective combination of nudging strategies and investigate how these effect the health of hospital employees.
Collapse
Affiliation(s)
- Renate E H Meeusen
- Department of Internal Medicine, Obesity Center CGG, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Internal Medicine, Division of Dietetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bibian van der Voorn
- Department of Internal Medicine, Obesity Center CGG, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kirsten A Berk
- Department of Internal Medicine, Division of Dietetics, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
147
|
Renoldi N, Melchior S, Calligaris S, Peressini D. Application of high-pressure homogenization to steer the technological functionalities of chia fibre-protein concentrate. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
148
|
Gelation mechanism of high soluble dietary fiber okara-egg tofu induced by combined treatment of steam explosion and enzymatic hydrolysis. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
149
|
Romão B, Botelho RBA, Torres ML, Maynard DDC, de Holanda MEM, Borges VRP, Raposo A, Zandonadi RP. Nutritional Profile of Commercialized Plant-Based Meat: An Integrative Review with a Systematic Approach. Foods 2023; 12:448. [PMID: 36765980 PMCID: PMC9914738 DOI: 10.3390/foods12030448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Given the high cost of production of animal-based meats and the increase in the number of adepts of meatless diets, the need for plant-based meat substitutes is growing. In this prosperously growing market, there is a lack of knowledge about the nutritional value of these meat substitutes and their ingredients. This study aims to review the nutritional composition and ingredients of meat substitutes commercialized worldwide. An integrative review was performed with a systematic literature search in PubMed, EMBASE, Scopus, Science Direct, Web of Science, and 11 studies were selected to compose the sample of this review. Data on meat substitutes' nutritional composition and ingredients from different categories were collected and analyzed. The results showed that meat substitutes commonly present lower energy values and higher amounts of carbohydrates and dietary fiber. Protein values varied according to the meat substitute category, with some showing a higher concentration than others, more specifically in substitutes for bovine meat. Higher values were found in the Pieces category and lower in Seafood substitutes. Unlike animal meat, vegan meat has a proportion of carbohydrates higher than protein in most samples, except for chicken substitutes. Meat substitutes presented similar total and saturated fat content compared to their animal-based counterparts. Higher amounts of fat were found in the "Various" category and lower in "Pieces". Ingredients such as soy, pea, and wheat were the primary protein sources in meat substitutes, and vegetable oils were their primary fat source. Methylcellulose, various gums, and flavorings were the most used food additives. In general, meat substitutes presented high concentrations of sodium, possibly collaborating with an excessive sodium intake, highlighting the need for developing sodium-reduced or sodium-free alternatives. Most of the included samples did not describe the concentration of iron, zinc, and vitamin B12. Further studies are needed to develop meat substitutes with better nutritional composition, fulfilling the need for equivalent substitutes for animal-based meat.
Collapse
Affiliation(s)
- Bernardo Romão
- Department of Nutrition, University of Brasília, Brasília 70910-900, Brazil
| | | | - Maria Luiza Torres
- Faculty of Health Sciences, University Center of Brasilia (CEUB), Brasília 70790-075, Brazil
| | | | | | | | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | | |
Collapse
|
150
|
Tucker LA. Legume Intake, Body Weight, and Abdominal Adiposity: 10-Year Weight Change and Cross-Sectional Results in 15,185 U.S. Adults. Nutrients 2023; 15:nu15020460. [PMID: 36678331 PMCID: PMC9864712 DOI: 10.3390/nu15020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
There were three objectives: (1) evaluate the relationship between legume intake and weight change across the previous 10 years, (2) examine the cross-sectional associations between legume consumption, BMI, and abdominal adiposity, and (3) determine if the relationship between legume intake and the outcomes were influenced by multiple covariates, particularly fiber intake. The sample included 15,185 randomly selected adults representative of the U.S. population. Percent change in weight was used as the outcome measure for the 10-year analysis. BMI, and waist circumference, corrected for height, were employed as the outcomes for the cross-sectional analyses. Legume, fiber, and energy intakes were measured using the average of two 24-h dietary recalls. Legume intake was divided into three categories. Five demographic and five lifestyle covariates were controlled statistically. There was an inverse dose-response relationship between legume intake and percent weight change over the previous 10 years after adjusting for 9 of the covariates (F = 6.5, p = 0.0028). However, after controlling for fiber with the other covariates, there were no differences across the three legume intake groups (F = 1.9, p = 0.1626). The cross-sectional findings showed similar inverse dose-response results until fiber intake was controlled. Then the associations became non-significant. In conclusion, legume intake is a good predictor of percent weight change over the previous 10 years, and it is also a significant predictor of BMI and abdominal adiposity cross-sectionally. These relationships are strongly influenced by fiber consumption. Evidently, legumes have dietary advantages, especially high fiber levels, that seem to be valuable in the battle against weight gain and obesity.
Collapse
Affiliation(s)
- Larry A Tucker
- College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|