101
|
Kim YJ, Cho SB, Song MH, Lee SI, Hong SM, Yun W, Lee JH, Oh HJ, Chang SY, An JW, Go YB, Song DC, Cho HA, Kim HB, Cho JH. Effects of different Bacillus licheniformis and Bacillus subtilis
ratios on nutrient digestibility, fecal microflora, and gas emissions of growing
pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:291-301. [PMID: 35530405 PMCID: PMC9039954 DOI: 10.5187/jast.2022.e12] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
The objective of this study was to evaluate the effects of different mixing
ratios of Bacillus licheniformis and Bacillus
subtilis in diets on nutrient digestibility, fecal microflora, and
odor gas emissions of growing pigs. A total of four crossbred ([Landrace
× Yorkshire] × Duroc) barrows with average body weight (BW) of
41.2 ± 0.7 kg were randomly allotted four diets over four periods in a 4
× 4 Latin square design. Treatments were as follows: Control (CON, basal
diet), CON + 0.2% probiotic complex (L4S6, B. licheniformis and
B. subtilis at a 4:6 ratio), CON + 0.2% probiotic complex
(L5S5, B. licheniformis and B. subtilis at a
5:5 ratio), CON + 0.2% probiotic complex (L6S4, B.
licheniformis and B. subtilis at a 6:4 ratio).
Dietary probiotic supplementation showed higher crude protein (CP) digestibility
values and lower Escherichia coli counts in fecal samples than
the CON group (p < 0.05). There was no significant
difference in NH3 or H2S emission until day 3. The
positive effect of H2S and NH3 emissions was detected
earlier with the L4S6 and L5S5 compared to the L6S4, which had a lower ratio of
B. subtilis. Both the L4S6 and L5S5 probiotic complexes
significantly decreased the fecal H2S and NH3 emission in
days 4 and 6 (p < 0.05). On day 7, all probiotic
complexes decreased (p < 0.05) H2S and
NH3 emissions than the CON group. Our results agreed that the
dietary supplementation of Bacillus licheniformis and
Bacillus subtilis complexes in growing pigs can
significantly improve CP digestibility and reduce fecal E. coli
counts, NH3 and H2S emissions. Notably, the higher mixing
ratio of Bacillus subtilis in probiotic supplementation is more
effective in reducing the odor of manure.
Collapse
Affiliation(s)
- Yong Ju Kim
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Sung Bo Cho
- Traditional Mongolian Medicine Research
Institute, Inner Mongolia University for Nationalities,
Tongliao 028000, China
| | - Min Ho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Sung Il Lee
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | | | - Won Yun
- Woosung Feed Co., Ltd.,
Daejeon 34379, Korea
| | - Ji Hwan Lee
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Han Jin Oh
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Se Yeon Chang
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Jae Woo An
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Young Bin Go
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Dong Cheol Song
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Hyun Ah Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Hyeun Bum Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
- Corresponding author: Hyeun Bum Kim, Department of
Animal Resource and Science, Dankook University, Cheonan 31116, Korea. Tel:
+82-41-550-3653, E-mail:
| | - Jin Ho Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
- Corresponding author: Jin Ho Cho, Division of Food
and Animal Science, Chungbuk National University, Cheongju 28644, Korea. Tel:
+82-43-261-2544, E-mail:
| |
Collapse
|
102
|
Live Performance and Microbial Load Modulation of Broilers Fed a Direct-Fed Microbials (DFM) and Xylanase Combination. Vet Sci 2022; 9:vetsci9030142. [PMID: 35324870 PMCID: PMC8955989 DOI: 10.3390/vetsci9030142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
The animal industry, which focuses on producing protein for human consumption, is continuously seeking solutions that can enhance both animal performance and health at a low cost. Several feed additives are currently being used to improve the nutritive value of feed as well as replacing the subtherapeutic levels of antibiotic growth promoters (AGP). This study was designed to investigate the effect of a feed additive that is a blend of multi-strain Bacillus spp. probiotics and a xylanase in a 2 × 2 factorial dietary treatments design, testing two levels of the feed additive blend (0 and 100 g/MT) and two cereal grain types (corn and wheat) on live performance, gut lesions, environmental Clostridium perfringens load, and pathogen load in the digesta of broiler chickens (E. tenella, total aerobic count cells (APC), E. coli, and C. perfringens). Day-old chicks were randomly placed in 10 replicate pens per treatment with 52 birds per replicate and grown to 42 d of age. Data were analyzed by two-way ANOVA. At 42 d, birds fed EnzaPro were heavier (p < 0.0004) than unsupplemented birds. An improvement in FCR (p = 0.03) was observed from 1 to 42 d by approximately two points in both corn- and wheat-based diets supplemented with EnzaPro. In wheat-based diets, supplementing EnzaPro reduced (p < 0.0001) a 21 d lesion score of intestines with a further reduction (p < 0.02) at 42 d. EnzaPro reduced (p < 0.03) litter moisture by approximately 1% compared to non-supplemented EnzaPro in both corn- and wheat-based diets. Pathogen load in digesta (C. perfringens, E. tenella, APC, and E. coli) was reduced (p < 0.0002) when EnzaPro was supplemented in diets. It can be concluded that EnzaPro (a blend of DFM Bacillus spp (1 × 105 CFU/g feed) and xylanase (10 XU/g feed)) may be used in both corn- and wheat-based diets to improve the performance and gut health of broilers.
Collapse
|
103
|
Melara EG, Avellaneda MC, Valdivié M, García-Hernández Y, Aroche R, Martínez Y. Probiotics: Symbiotic Relationship with the Animal Host. Animals (Basel) 2022; 12:719. [PMID: 35327116 PMCID: PMC8944810 DOI: 10.3390/ani12060719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Antibiotic growth-promoters in animal feeding are known to generate bacterial resistance on commercial farms and have proven deleterious effects on human health. This review addresses the effects of probiotics and their symbiotic relationship with the animal host as a viable alternative for producing healthy meat, eggs, and milk at present and in the future. Probiotics can tolerate the conditions of the gastrointestinal tract, such as the gastric acid, pH and bile salts, to exert beneficial effects on the host. They (probiotics) may also have a beneficial effect on productivity, health and wellbeing in different parameters of animal performance. Probiotics stimulate the native microbiota (microbes that are present in their place of origin) and production of short-chain fatty acids, with proven effects such as antimicrobial, hypocholesterolemic and immunomodulatory effects, resulting in better intestinal health, nutrient absorption capacity and productive responses in ruminant and non-ruminant animals. These beneficial effects of probiotics are specific to each microbial strain; therefore, the isolation and identification of beneficial microorganisms, as well as in vitro and in vivo testing in different categories of farm animals, will guarantee their efficacy, replicability and sustainability in the current production systems.
Collapse
Affiliation(s)
- Elvia Guadalupe Melara
- Master Program in Sustainable Tropical Agriculture, Graduate Department, Zamorano University, P.O. Box 93, Valle de Yeguare, San Antonio de Oriente 11101, Honduras;
| | - Mavir Carolina Avellaneda
- Plant Pathology, Diagnosis and Molecular Research Lab, Agricultural Sciences and Production Department, Zamorano University, P.O. Box 93, San Antonio de Oriente 11101, Honduras;
| | - Manuel Valdivié
- National Center for Laboratory Animal Production, P.O. Box 6240, Santiago de las Vegas, Rancho Boyeros, Havana 10900, Cuba;
| | - Yaneisy García-Hernández
- Departamento de Animales Monogástricos, Instituto de Ciencia Animal, Carretera Central km 47 ½, San José de las Lajas 32700, Cuba;
| | - Roisbel Aroche
- Department of Animal Husbandry, Faculty of Agricultural Sciences, University of Granma, Bayamo 85100, Cuba;
| | - Yordan Martínez
- Poultry Research and Teaching Center, Agricultural Science and Production Department, Zamorano University, P.O. Box 93, Valle de Yeguare, San Antonio de Oriente 11101, Honduras
| |
Collapse
|
104
|
Bacillus-Based Direct-Fed Microbial Reduces the Pathogenic Synergy of a Coinfection with Salmonella enterica Serovar Choleraesuis and Porcine Reproductive and Respiratory Syndrome Virus. Infect Immun 2022; 90:e0057421. [PMID: 35254092 PMCID: PMC9022502 DOI: 10.1128/iai.00574-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral respiratory infections predispose lungs to bacterial coinfections causing a worse outcome than either infection alone. Porcine reproductive and respiratory syndrome virus (PRRSV) causes pneumonia in pigs and is often associated with bacterial coinfections. We examined the impact of providing weanling pigs a Bacillus-based direct-fed microbial (DFM) on the syndrome resulting from infection with either Salmonella enterica serotype Choleraesuis alone, or in combination with PRRSV. Nine days after the bacterial challenge, Salmonella was isolated from ileocecal lymph nodes of all challenged pigs regardless of DFM treatment. Compared to the single bacterial challenge, the dual challenge with Salmonella and PRRSV resulted in a pathogenic synergy exhibited by a higher rate of Salmonella colonization in the lung and a more extensive and severe interstitial pneumonia. Provision of DFM to dually challenged pigs reduced the rate of lung colonization by Salmonella, eliminated or reduced the presence of PRRSV in the lung, and reduced the extent and severity of gross lung pathology. Dually challenged pigs that received DFM had increased concentrations of interleukin 1 (IL-1) and IL-8 in lung lavage fluids, accompanied by increased expression in their blood cells of nucleotide-binding oligomerization domain receptor 2 (NOD2) and triggering receptor expressed in myeloid cells 1 (TREM-1) molecules. These changes in pulmonary inflammatory cytokine production and increased expression of NOD2 and TREM-1 suggest that the DFM exerted a systemic modulating effect on innate immunity. These observations are consistent with the notion that tonic stimulation by gut-derived microbial products can poise innate immunity to fight infections in the respiratory tract.
Collapse
|
105
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
106
|
Hernandez-Patlan D, Solis-Cruz B, Latorre JD, Merino-Guzman R, Morales Rodríguez M, Ausland C, Hernandez-Velasco X, Ortiz Holguin O, Delgado R, Hargis BM, Singh P, Tellez-Isaias G. Whole-Genome Sequence and Interaction Analysis in the Production of Six Enzymes From the Three Bacillus Strains Present in a Commercial Direct-Fed Microbial (Norum™) Using a Bliss Independence Test. Front Vet Sci 2022; 9:784387. [PMID: 35274019 PMCID: PMC8902298 DOI: 10.3389/fvets.2022.784387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
Abstract
The three Bacillus strains present in Norum™ were initially selected by their excellent to good relative enzyme activity (REA) production score for amylase, protease, lipase, phytase, cellulase, β-glucanase, and xylanase. Further studies confirmed that the three isolates also showed an antibacterial activity, Gram-positive and Gram-negative poultry pathogens. Norum™ (Eco-Bio/Euxxis Bioscience LLC) is a Bacillus spore direct-fed microbial (DFM). The Bacillus isolates were screened and selected based on in vitro enzyme production profiles. Moreover, in chickens fed high non-starch polysaccharides, this DFM demonstrated to reduce digesta viscosity, bacterial translocation, increase performance, bone mineralization, and balance the intestinal microbiota. In the present study, we present the whole-genome sequence of each of the three isolates in Norum™, as well as the synergistic, additive, or antagonistic effects on the enzyme production behavior of the three Bacillus strains and their combinations when grown together vs. when grown individually. The whole-genome sequence identified isolate AM1002 as Bacillus subtilis (isolate 1), isolate AM0938 as Bacillus amyloliquefaciens (isolate 2), and isolate JD17 as Bacillus licheniformis (isolate 3). The three Bacillus isolates used in the present study produce different enzymes (xylanase, cellulase, phytase, lipase, protease, and β-glucanase). However, this production was modified when two or more Bacillus strains were combined, suggesting possible synergistic, antagonistic, or additive interactions. The Bliss analysis suggested (p < 0.05) that the combination of Bacillus strains 1–2 and 1–2–3 had intermediate effects and predicted that the combination of Bacillus strains 2–3 could have better effects than the combination of all the three Bacillus strains. In summary, the current study demonstrated the need of selecting Bacillus strains based on quantitative enzyme determination and data analysis to assess the impacts of combinations to avoid antagonistic interactions that could limit treatment efficacy. These results suggest that using Bacillus strains 2–3 together could lead to a new generation of DFMs with effects superior to those already examined in Bacillus strains 1–2–3 and, therefore, a potential alternative to growth-promoting antibiotics. More research utilizing poultry models is being considered to confirm and expand the existing findings.
Collapse
Affiliation(s)
- Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlán Izcalli, Mexico
- Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de Mexico, Tultitlán, Mexico
| | - Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlán Izcalli, Mexico
- Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de Mexico, Tultitlán, Mexico
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Miguel Morales Rodríguez
- Division de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de Mexico, Tultitlán, Mexico
| | - Catie Ausland
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | | | | | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Guillermo Tellez-Isaias
| |
Collapse
|
107
|
Transkingdom Analysis of the Female Reproductive Tract Reveals Bacteriophages form Communities. Viruses 2022; 14:v14020430. [PMID: 35216023 PMCID: PMC8878565 DOI: 10.3390/v14020430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
The female reproductive tract (FRT) microbiome plays a vital role in maintaining vaginal health. Viruses are key regulators of other microbial ecosystems, but little is known about how the FRT viruses (virome), particularly bacteriophages that comprise the phageome, impact FRT health and dysbiosis. We hypothesize that bacterial vaginosis (BV) is associated with altered FRT phageome diversity, transkingdom interplay, and bacteriophage discriminate taxa. Here, we conducted a retrospective, longitudinal analysis of vaginal swabs collected from 54 BV-positive and 46 BV-negative South African women. Bacteriome analysis revealed samples clustered into five distinct bacterial community groups (CGs), and further, bacterial alpha diversity was significantly associated with BV. Virome analysis on a subset of baseline samples showed FRT bacteriophages clustering into novel viral state types (VSTs), a viral community clustering system based on virome composition and abundance. Distinct BV bacteriophage signatures included increased alpha diversity along with discriminant Bacillus, Burkholderia, and Escherichia bacteriophages. Bacteriophage-bacteria transkingdom associations were also identified between Bacillus and Burkholderia viruses and BV-associated bacteria, providing key insights for future studies elucidating the transkingdom interactions driving BV-associated microbiome perturbations. In this cohort, bacteriophage-bacterial associations suggest complex interactions, which may play a role in the establishment and maintenance of BV.
Collapse
|
108
|
Li Y, Wang Y, Liu Y, Li X, Feng L, Li K. Optimization of an economical medium composition for the coculture of Clostridium butyricum and Bacillus coagulans. AMB Express 2022; 12:19. [PMID: 35166947 PMCID: PMC8847521 DOI: 10.1186/s13568-022-01354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Clostridium butyricum is a spore-forming probiotic which can promote the enhancement of beneficial bacteria and maintain intestinal microecological balance. However, it is difficult to improve the production level of C. butyricum by conventional fermentation process. In this study, a co-fermentation process of C. butyricum DL-1 and Bacillus coagulans ZC2-1 was established to improve the viable counts and spore yield of C. butyricum, and the formula of coculture medium was optimized by flask fermentation. The results showed that the optimum medium composition is 10 g/L bran, 15 g/L corn steep powder, 15 g/L peptone, 1 g/L K2HPO4 and 0.5 g/L MnSO4.Cultured stationarily in the optimal medium for 36 h, the number of viable bacteria of C. butyricum DL-1 reached 1.5 × 108 cfu/mL, Which was 375 times higher than that incubated in the initial medium. The sporulation rate reach 92.6%. The results revealed an economical and effective medium composition for the coculture of C. butyricum and B. coagulans, which achieved a 64.6% cost reduction. The co-fermentation process established in this study provides a new fermentation mode for the industrial production of other absolute anerobic bacteria.
Collapse
|
109
|
Luise D, Bosi P, Raff L, Amatucci L, Virdis S, Trevisi P. Bacillus spp. Probiotic Strains as a Potential Tool for Limiting the Use of Antibiotics, and Improving the Growth and Health of Pigs and Chickens. Front Microbiol 2022; 13:801827. [PMID: 35197953 PMCID: PMC8859173 DOI: 10.3389/fmicb.2022.801827] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/14/2022] [Indexed: 01/20/2023] Open
Abstract
The pressure to increasingly optimize the breeding of livestock monogastric animals resulted in antimicrobials often being misused in an attempt to improve growth performance and counteract diseases in these animals, leading to an increase in the problem of antibiotic resistance. To tackle this problem, the use of probiotics, also known as direct in-feed microbials (DFM), seems to be one of the most promising strategies. Among probiotics, the interest in Bacillus strains has been intensively increased in recent decades in pigs and poultry. The aim of the present review was to evaluate the effectiveness of Bacillus strains as probiotics and as a potential strategy for reducing the misuse of antibiotics in monogastric animals. Thus, the potential modes of action, and the effects on the performance and health of pigs (weaning pigs, lactation and gestation sows) and broilers are discussed. These searches yielded 131 articles (published before January 2021). The present review showed that Bacillus strains could favor growth in terms of the average daily gain (ADG) of post-weaning piglets and broilers, and reduce the incidence of post-weaning diarrhea in pigs by 30% and mortality in broilers by 6-8%. The benefits of Bacillus strains on these parameters showed results comparable to the benefit obtained by the use of antibiotics. Furthermore, the use of Bacillus strains gives promising results in enhancing the local adaptative immune response and in reducing the oxidative stress of broilers. Fewer data were available regarding the effect on sows. Discordant effects have been reported regarding the effect on body weight (BW) and feed intake while a number of studies have supported the hypothesis that feeding probiotics to sows could benefit their reproductive performance, namely the BW and ADG of the litters. Taken all the above-mentioned facts together, this review confirmed the effectiveness of Bacillus strains as probiotics in young pigs and broilers, favoring their health and contributing to a reduction in the misuse of direct in-feed antibiotics. The continuous development and research regarding probiotics will support a decrease in the misuse of antibiotics in livestock production in order to endorse a more sustainable rearing system in the near future.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Lena Raff
- Chr. Hansen, Animal Health and Nutrition, Hørsholm, Denmark
| | - Laura Amatucci
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Sara Virdis
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
110
|
Hu J, Kim IH. Effect of Bacillus subtilis C-3102 Spores as a Probiotic Feed Supplement on Growth Performance, Nutrient Digestibility, Diarrhea Score, Intestinal Microbiota, and Excreta Odor Contents in Weanling Piglets. Animals (Basel) 2022; 12:ani12030316. [PMID: 35158640 PMCID: PMC8833803 DOI: 10.3390/ani12030316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
It has been well-documented that the dietary supplementation of Bacillus subtilis could improve piglet performance. The present study was conducted to investigate the effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, nutrient digestibility, fecal score, intestinal microbiota, and excreta odor contents in weanling piglets. A total of 150 crossed ((Yorkshire × Landrace) × Duroc) weanling piglets (28-days-old), with an average initial body weight of 7.53 ± 1.23 kg, were divided into two treatment groups according to sex and initial body weight (BW) for a 6-week experiment. In each group, fifteen replicate pens consisting of five piglets per pen (three gilts and two barrows) were used in a randomized complete block design. Treatments consisted of (1) CON, a basal diet; (2) BSC, a diet of CON + 300 g Bacillus subtilis (B. subtilis) C-3102 spores per ton of feed. Supplementation with the B. subtilis C-3102 spores in the diet increased the BW, average daily gain (ADG), and gain-to-feed ratio (G:F) throughout the whole trial (p < 0.05). Weanling piglets that were fed B. subtilis C-3102 spores had increased dry matter (DM), crude protein (CP), and energy (E) digestibility compared to the CON group (p < 0.05). Lower diarrhea scores were observed in the B. subtilis C-3102 spores group on Day 7 (p < 0.05). Taken together, our results suggest that dietary supplementation with B. subtilis C-3102 spores could benefit the BW, ADG, and G:F of weanling piglets and improve the apparent total tract digestibility (ATTD) of the DM, CP, and E.
Collapse
Affiliation(s)
- Jing Hu
- College of Life Science, Linyi University, Shuang Ling Road Middle Section, Linyi 276400, China;
- Department of Animal Resource & Science, Dankook University, Cheonan 330-714, Choongnam, Korea
| | - In-Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan 330-714, Choongnam, Korea
- Correspondence: ; Tel.: +82-41-550-3652; Fax: +82-41-553-1618
| |
Collapse
|
111
|
Speight RE, Navone L, Gebbie LK, Blinco JAL, Bryden WL. Platforms to accelerate biomanufacturing of enzyme and probiotic animal feed supplements: discovery considerations and manufacturing implications. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
112
|
Ho LH, Tan TC, Chong LC. Designer foods as an effective approach to enhance disease preventative properties of food through its health functionalities. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
113
|
Mun D, Kyoung H, Kong M, Ryu S, Jang KB, Baek J, Park KI, Song M, Kim Y. Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1314-1327. [PMID: 34957446 PMCID: PMC8672252 DOI: 10.5187/jast.2021.e109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 01/22/2023]
Abstract
Bacillus is characterized by the formation of spores in harsh
environments, which makes it suitable for use as a probiotic for feed because of
thermostability and high survival rate, even under long-term storage. This study
was conducted to investigate the effects of Bacillus-based
probiotics on growth performance, nutrient digestibility, intestinal morphology,
immune response, and intestinal microbiota of weaned pigs. A total of 40 weaned
pigs (7.01 ± 0.86 kg body weight [BW]; 28 d old) were randomly assigned
to two treatments (4 pigs/pen; 5 replicates/treatment) in a randomized complete
block design (block = BW and sex). The dietary treatment was either a typical
nursery diet based on corn and soybean meal (CON) or CON supplemented with 0.01%
probiotics containing a mixture of Bacillus subtilis and
Bacillus licheniformis (PRO). Fecal samples were collected
daily by rectal palpation for the last 3 days after a 4-day adaptation. Blood,
ileal digesta, and intestinal tissue samples were collected from one pig in each
pen at the respective time points. The PRO group did not affect the feed
efficiency, but the average daily gain was significantly improved
(p < 0.05). The PRO group showed a trend of improved
crude protein digestibility (p < 0.10). The serum
transforming growth factor-β1 level tended to be higher
(p < 0.10) in the PRO group on days 7 and 14. There
was no difference in phylum level of the intestinal microbiota, but there were
differences in genus composition and proportions. However,
β-diversity analysis showed no statistical
differences between the CON and the PRO groups. Taken together,
Bacillus-based probiotics had beneficial effects on the
growth performance, immune system, and intestinal microbiota of weaned pigs,
suggesting that Bacillus can be utilized as a functional
probiotic for weaned pigs.
Collapse
Affiliation(s)
- Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Myunghwan Kong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 2769, USA
| | - Jangryeol Baek
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Kyeong Ii Park
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
114
|
Expression of SARS-CoV-2 Spike Protein Receptor Binding Domain on Recombinant B. subtilis on Spore Surface: A Potential COVID-19 Oral Vaccine Candidate. Vaccines (Basel) 2021; 10:vaccines10010002. [PMID: 35062663 PMCID: PMC8780001 DOI: 10.3390/vaccines10010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022] Open
Abstract
Various types of vaccines, such as mRNA, adenovirus, and inactivated virus by injection, have been developed to prevent SARS-CoV-2 infection. Although some of them have already been approved under the COVID-19 pandemic, various drawbacks, including severe side effects and the requirement for sub-zero temperature storage, may hinder their applications. Bacillus subtilis (B. subtilis) is generally recognized as a safe and endotoxin-free Gram-positive bacterium that has been extensively employed as a host for the expression of recombinant proteins. Its dormant spores are extraordinarily resistant to the harsh environment in the gastrointestinal tract. This feature makes it an ideal carrier for oral administration in resisting this acidic environment and for release in the intestine. In this study, an engineered B. subtilis spore expressing the SARS-CoV-2 spike protein receptor binding domain (sRBD) on the spore surface was developed. In a pilot test, no adverse health event was observed in either mice or healthy human volunteers after three oral courses of B. subtilis spores. Significant increases in neutralizing antibody against sRBD, in both mice and human volunteers, after oral administration were also found. These findings may enable the further clinical developments of B. subtilis spores as an oral vaccine candidate against COVID-19 in the future.
Collapse
|
115
|
Lu S, Liao X, Zhang L, Fang Y, Xiang M, Guo X. Nutrient L-Alanine-Induced Germination of Bacillus Improves Proliferation of Spores and Exerts Probiotic Effects in vitro and in vivo. Front Microbiol 2021; 12:796158. [PMID: 34925306 PMCID: PMC8675871 DOI: 10.3389/fmicb.2021.796158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
As alternatives to antibiotics in feed, probiotic Bacillus carries multiple advantages in animal production. Spores undergo strain-related germination in the gastrointestinal tract, but it is still unknown whether the probiotic function of the Bacillus depends on the germination of spores in vivo. In this study, based on 14 potential probiotic Bacillus strains from fermented food and feed, we detected the germination response of these Bacillus spores in relation to different germinating agents. The results showed the germination response was strain-specific and germinant-related, and nutrient germinant L-alanine significantly promoted the growth of strains with germination potential. Two strains of Bacillus subtilis, S-2 and 312, with or without a high spore germination response to L-alanine, were selected to study their morphological and genic differences induced by L-alanine through transmission electron microscopy and comparative transcriptomics analysis. Consequently, after L-alanine treatment, the gray phase was largely increased under microscopy, and the expression of the germination response genes was significantly up-regulated in the B. subtilis S-2 spores compared to the B. subtilis 312 spores (p < 0.05). The protective effect of L-alanine-induced spore germination of the two strains was comparatively investigated both in the IPEC-J2 cell model and a Sprague–Dawley (SD) rat model challenged by enterotoxigenic Escherichia coli K99. The result indicated that L-alanine helped B. subtilis S-2 spores, but not 312 spores, to decrease inflammatory factors (IL-6, IL-8, IL-1 β, TNF-α; p < 0.05) and promote the expression of occludin in IPEC-J2 cells. Besides, supplement with L-alanine-treated B. subtilis S-2 spores significantly improved the growth of the SD rats, alleviated histopathological GIT lesions, and improved the ratio of jejunal villus length to crypt depth in comparison to the B. subtilis S-2 spores alone (p < 0.05). Improved species diversity and abundance of fecal microbiota were only observed in the group with L-alanine-treated S-2 spores (p < 0.05). The study demonstrates L-alanine works well as a probiotic Bacillus adjuvant in improving intestinal health, and it also provides a solution for the practical and accurate regulation of their use as antibiotic alternatives in animal production.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Xianyin Liao
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Ying Fang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Meixian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaohua Guo
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
116
|
Ngo TT, Bang NN, Dart P, Callaghan M, Klieve A, McNeill D. Pellets Inoculated with Bacillus amyloliquefaciens H57 Modulates Diet Preference and Rumen Factors Associated with Appetite Regulation in Steers. Animals (Basel) 2021; 11:ani11123455. [PMID: 34944232 PMCID: PMC8697938 DOI: 10.3390/ani11123455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The probiotic Bacillus amyloliquefaciens strain H57 (H57) may reinforce preferential feeding behaviour by changing ruminal fermentation parameters. Four rumen-fistulated steers were offered feedlot pellets, with (H57) or without (Control, C) the H57 probiotic. Half of the pellets were added to the rumen, at time zero, and half were offered for oral consumption over the next six hours, to make four feeding treatments. Each steer was offered each treatment over time. Each offering was over six days, with rumen fluid sampled over the last three days for a six-hour period per day. A five-minute preference test was performed at the end of each rumen sampling period by simultaneously offering the steers 4 kg of H57 and C pellets. The steers preferred the H57 over the C pellets but the route of offering (rumen versus oral) had no effect on preference. Ruminal pH and molar proportions of iso-butyrate and iso-valerate were higher and ammonia concentrations tended to be greater for H57 compared to C. However, since the route of offering had no effect on preference, the hypothesis, that ruminal fermentation changes take precedence over oral (taste) sensations in driving preference, was not supported. Abstract This study examined whether the probiotic Bacillus amyloliquefaciens strain H57 (H57) affects ruminal fermentation parameters that exercise post-ingestive feedback appetite control mechanisms. A 4 × 4 Latin square design was used to separate pre- and post-ingestive effects of H57 in four rumen-fistulated steers. The steers were offered a set amount of feedlot pellets, inoculated with H57 or without H57 (control, C). Half of the total amount of pellets fed were introduced intra-ruminally (r), and then the remaining pellets were orally consumed (o) to make four feeding treatments: H57r/H57o, H57r/Co, Cr/H57o and Cr/Co. Rumen fluid was sampled at 2, 4 and 6 h after feeding. Preference behaviour was tested immediately after the 6 h rumen fluid sampling by simultaneously offering the steers 4 kg of each of H57 and C pellets in adjacent troughs for 5 min. Steers preferred the pellets with added H57 over the C pellets (56:44; p < 0.001) and their preferences were not affected by the treatment protocol imposed to separate post- from pre-ingestive effects (p > 0.05). Steers fed H57 pellets had higher ruminal pH, molar proportions of iso-butyrate and iso-valerate (p < 0.05) and tended to have greater ruminal ammonia concentrations compared to those fed C pellets (p < 0.1). However, post-ingestive signals did not affect diet preference more than pre-ingestive signals.
Collapse
Affiliation(s)
- Thi Thuy Ngo
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (N.N.B.); (D.M.)
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
- Correspondence:
| | - Nguyen N. Bang
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (N.N.B.); (D.M.)
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
| | - Peter Dart
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia;
| | | | - Athol Klieve
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4069, Australia;
| | - David McNeill
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (N.N.B.); (D.M.)
| |
Collapse
|
117
|
Rizou E, Kalogiouri N, Bisba M, Papadimitriou A, Kyrila G, Lazou A, Andreadis S, Hatzikamari M, Mourtzinos I, Touraki M. Amelioration of growth, nutritional value, and microbial load of Tenebrio molitor (Coleoptera: Tenebrionidae) through probiotic supplemented feed. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03925-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
118
|
Wang M, Zang Y, Hong K, Zhao X, Yu C, Liu D, An Z, Wang L, Yue W, Nie G. Preparation of pH-sensitive carboxymethyl cellulose/chitosan/alginate hydrogel beads with reticulated shell structure to deliver Bacillus subtilis natto. Int J Biol Macromol 2021; 192:684-691. [PMID: 34648802 DOI: 10.1016/j.ijbiomac.2021.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023]
Abstract
pH-sensitive hydrogels have been applied in delivering probiotics and drugs. However, pH sensitivity has been found to be contradictory with structural stability in hydrogel preparation. In this work, a novel strategy based on two systems of sodium carboxymethyl cellulose (CMC)/chitosan (CS) and sodium alginate (SA)/calcium chloride was designed to construct a reticulated shell structure stable for 3 h in simulated gastric fluid (pH 1.2) but began to break up at 2 h in simulated intestinal fluid (pH 6.8), exhibiting obvious pH sensitivity. The embedding rate of Bacillus subtilis natto reached to 67.3%, and the sustained release lasted for more than 10 h. It is implicated that the reticulated shell structure has harmoniously balanced the two incompatible properties of pH sensitivity and sustained release of CMC/CS/SA beads.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Yipeng Zang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Kangjin Hong
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Xiaofeng Zhao
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, 310036 Hangzhou, China; College of Life and Environmental Sciences, Hangzhou Normal University, 310036 Hangzhou, China
| | - Chenrui Yu
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Dandan Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Zichao An
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Liyuan Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China
| | - Wenjin Yue
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000 Wuhu, China.
| | - Guangjun Nie
- College of Biological and Food Engineering, Anhui Polytechnic University, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 241000 Wuhu, China.
| |
Collapse
|
119
|
Han H, Zhang S, Zhong R, Tang C, Yin J, Zhang J, Zhang H. Effects of chlortetracycline on growth performance and intestinal functions in weaned piglets. J Appl Microbiol 2021; 132:1760-1767. [PMID: 34787953 DOI: 10.1111/jam.15364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
AIM Weaning stress can cause serious damage to piglet's health. Chlortetracycline (CTC) is widely used to ameliorate weaning stress and prevent infectious diseases in weaned piglets. However, antibiotics as growth promoters have to be limited because of increased antimicrobial resistance. In this study, we evaluated the effects of CTC on growth performance and intestinal functions in order to provide evidence for seeking antibiotic substitutes in weaned piglets. METHODS AND RESULTS A total of 20 weaned piglets were fed a basal diet or a diet supplemented with 75 mg/kg CTC. CTC decreased the crypt depth and increased the ratio of villus height to crypt depth, whilst failing to affect growth performance and serum biochemical parameters and cytokines. 16S rRNA sequencing suggested that CTC supplementation had no effect on the diversity and composition of colonic microbiota. CONCLUSION We speculated that gut microbiota is no longer sensitive to a low concentration of CTC due to the long-term use and low bioavailability of CTC in weaned piglets.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
120
|
Susanti D, Volland A, Tawari N, Baxter N, Gangaiah D, Plata G, Nagireddy A, Hawkins T, Mane SP, Kumar A. Multi-Omics Characterization of Host-Derived Bacillus spp. Probiotics for Improved Growth Performance in Poultry. Front Microbiol 2021; 12:747845. [PMID: 34745051 PMCID: PMC8563996 DOI: 10.3389/fmicb.2021.747845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Microbial feed ingredients or probiotics have been used widely in the poultry industry to improve production efficiency. Spore-forming Bacillus spp. offer advantages over traditional probiotic strains as Bacillus spores are resilient to high temperature, acidic pH, and desiccation. This results in increased strain viability during manufacturing and feed-pelleting processes, extended product shelf-life, and increased stability within the animal’s gastrointestinal tract. Despite numerous reports on the use of Bacillus spores as feed additives, detailed characterizations of Bacillus probiotic strains are typically not published. Insufficient characterizations can lead to misidentification of probiotic strains in product labels, and the potential application of strains carrying virulence factors, toxins, antibiotic resistance, or toxic metabolites. Hence, it is critical to characterize in detail the genomic and phenotypic properties of these strains to screen out undesirable properties and to tie individual traits to clinical outcomes and possible mechanisms. Here, we report a screening workflow and comprehensive multi-omics characterization of Bacillus spp. for use in broiler chickens. Host-derived Bacillus strains were isolated and screened for desirable probiotic properties. The phenotypic, genomic and metabolomic analyses of three probiotic candidates, two Bacillus amyloliquefaciens (Ba ATCC PTA126784 and ATCC PTA126785), and a Bacillus subtilis (Bs ATCC PTA126786), showed that all three strains had promising probiotic traits and safety profiles. Inclusion of Ba ATCC PTA12684 (Ba-PTA84) in the feed of broiler chickens resulted in improved growth performance, as shown by a significantly improved feed conversion ratio (3.3%), increased of European Broiler Index (6.2%), and increased average daily gain (ADG) (3.5%). Comparison of the cecal microbiomes from Ba PTA84-treated and control animals suggested minimal differences in microbiome structure, indicating that the observed growth promotion presumably was not mediated by modulation of cecal microbiome.
Collapse
Affiliation(s)
- Dwi Susanti
- Division of Discovery Biology, Bacteriology and Microbiome, Elanco Animal Health, Greenfield, IN, United States
| | - Alyssa Volland
- Division of Discovery Biology, Bacteriology and Microbiome, Elanco Animal Health, Greenfield, IN, United States
| | - Nilesh Tawari
- Division of Global Computational Sciences, Elanco Animal Health, Greenfield, IN, United States
| | - Nielson Baxter
- Division of Nutritional Health, Elanco Animal Health, Greenfield, IN, United States
| | - Dharanesh Gangaiah
- Division of Discovery Biology, Bacteriology and Microbiome, Elanco Animal Health, Greenfield, IN, United States
| | - Germán Plata
- Division of Global Computational Sciences, Elanco Animal Health, Greenfield, IN, United States
| | - Akshitha Nagireddy
- Division of Global Computational Sciences, Elanco Animal Health, Greenfield, IN, United States
| | - Troy Hawkins
- Division of Global Computational Sciences, Elanco Animal Health, Greenfield, IN, United States
| | - Shrinivasrao P Mane
- Division of Global Computational Sciences, Elanco Animal Health, Greenfield, IN, United States
| | - Arvind Kumar
- Division of Discovery Biology, Bacteriology and Microbiome, Elanco Animal Health, Greenfield, IN, United States
| |
Collapse
|
121
|
Banaszak M, Biesek J, Adamski M. Growth performance and meat quality from broiler chickens reared with zeolite and halloysite in feed and straw pellet. Anim Sci J 2021; 92:e13649. [PMID: 34716960 DOI: 10.1111/asj.13649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 02/03/2023]
Abstract
The study's aim was to analyze the effects of different levels of halloysite (H) and zeolite (Z) in feed and pellets on the growth and meat quality in chickens; 500 Ross 308 broilers were assigned to five groups (1 g, control; 2-5 g, experimental). In Groups 2-5, different proportions of Z and H in feed (25:75 ratio; 0.5% to 2%) and pellet in kg/m2 (2, 0.650H; 3, 0.325H and 0.325Z; 4, 0.650Z; 5, 0.160H and 0.490Z) were used. Body weight was higher than 1 in all experimental groups, and carcass weight was higher, except for Group 2. The feed consumption was lower in Groups 3 and 5 than in Group 4. The breast muscle weight was higher in Group 3 than in the control group. In Groups 2, 3, and 5, the water holding capacity in the breast muscles was better than in Group 4 and in the leg muscles in Groups 3 and 4 than in Groups 1 and 5. Most of the tested characteristics indicate a beneficial effect of aluminosilicates in feed and litter on the growth and quality of meat.
Collapse
Affiliation(s)
- Mirosław Banaszak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Marek Adamski
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
122
|
Abstract
Microorganisms efficiently colonize the external and internal surfaces of the animal body establishing mutually beneficial interactions and forming site- and individual-specific microbiota. The degradation of complex polysaccharides in the animal gut, the production of useful compounds, protection against pathogenic microorganisms and contribution to the development of an efficient immune system are the main beneficial effects of a balanced microbiota. A dysbiosis, an imbalanced composition of the microbiota, has been associated with a large number of diseases from gastro-intestinal or urogenital disorders to allergies, cardiovascular and autoimmune diseases and even to the onset of certain cancers. A growing body of evidence has indicated that probiotic treatments, aimed at maintaining or rebalancing the microbiota, are useful to treat/prevent those illnesses. Lactic Acid Bacteria and Bifidobacteria are the most common microbes used in probiotic preparations; however, other bacteria and yeast cells are also widely used in commercial products. Here we focus on the use of bacterial spore formers as probiotics. Spore formers have been marketed as probiotics for over 50 years and are now extensively used for the treatment of intestinal disorders and as dietary supplements in humans, as growth promoters and competitive exclusion agents in animals.
Collapse
|
123
|
Wan Z, Sun N, Luo M, Gan B, Yao Z, Cao X, Wang H, Pan K, Shu G, Zeng Y, Zeng D, Ni X. Promotion of Egg Production Rate and Quality Using Limosilactobacillus oris BSLO 1801, a Potential Probiotic Screened from Feces of Laying Hens with Higher Egg Productive Performance. Probiotics Antimicrob Proteins 2021; 15:535-547. [PMID: 34697775 DOI: 10.1007/s12602-021-09856-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 02/08/2023]
Abstract
In this experiment, laying hens were divided into a high productive group (group H) and a low productive group (group L). The purpose of this experiment was to screen and isolate a potential probiotic associated with the laying rate from group H by comparing the results via 16S rDNA high-throughput sequencing. The high-throughput sequencing analysis results showed that there were some differences in the composition of the gut microbiome between groups H and L on the Phylum and Genus levels. Through isolation and identification, we screened 16 lactobacilli strains. Among the 16 strains, S5 showed good acid tolerance, bile salt tolerance, and cholesterol degradation. Therefore, we chose strain S5 (identified as Limosilactobacillus oris, named Limosilactobacillus oris BSLO 1801) as a potential probiotic to promote the productivity of ordinary laying hens. During the animal experiment, 288 Hy-line white hens (30 weeks old) were divided into four groups, with six replications (n = 12) per group. The control group received the basic diet, and the treatment groups received the same basic diet supplemented with 107 CFU/kg, 108 CFU/kg, and 109 CFU/kg of BSLO 1801. The laying hens were acclimated to the environment for 1 week before the initiation of the experiment. Dietary supplementation with 107 CFU/kg and 109 CFU/kg of BSLO 1801 increased the laying rate significantly, and the potential probiotic improved the egg weight in all treatment groups. Additionally, the cholesterol content of the yolk dropped significantly in the 109 CFU/kg group, and the weight of egg yolk was significantly increased in all treatment groups. However, no significant differences in eggshell strength, eggshell thickness, protein height, and Haugh unit were observed among the four groups. These results revealed that lactobacilli spp. are important bacteria of the intestinal microbiome in highly productive laying hens, and BSLO 1801 was isolated as a potential probiotic. Through these animal experiments, we also found that adding BSLO 1801 to the basic diet of laying hens could effectively improve the laying rate, average egg weight, and yolk weight and reduce the cholesterol content in egg yolk.
Collapse
Affiliation(s)
- Zhiqiang Wan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Min Luo
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Baoxing Gan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhipeng Yao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xi Cao
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hesong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
124
|
Naya-Català F, do Vale Pereira G, Piazzon MC, Fernandes AM, Calduch-Giner JA, Sitjà-Bobadilla A, Conceição LEC, Pérez-Sánchez J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream ( Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front Physiol 2021; 12:748265. [PMID: 34675821 PMCID: PMC8523787 DOI: 10.3389/fphys.2021.748265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023] Open
Abstract
New types of fish feed based on processed animal proteins (PAPs), insect meal, yeast, and microbial biomasses have been used with success in gilthead sea bream. However, some drawback effects on feed conversion and inflammatory systemic markers were reported in different degrees with PAP- and non-PAP-based feed formulations. Here, we focused on the effects of control and two experimental diets on gut mucosal-adherent microbiota, and how it correlated with host transcriptomics at the local (intestine) and systemic (liver and head kidney) levels. The use of tissue-specific PCR-arrays of 93 genes in total rendered 13, 12, and 9 differentially expressed (DE) genes in the intestine, liver, and head kidney, respectively. Illumina sequencing of gut microbiota yielded a mean of 125,350 reads per sample, assigned to 1,281 operational taxonomic unit (OTUs). Bacterial richness and alpha diversity were lower in fish fed with the PAP diet, and discriminant analysis displayed 135 OTUs driving the separation between groups with 43 taxa correlating with 27 DE genes. The highest expression of intestinal pcna and alpi was achieved in PAP fish with intermediate values in non-PAP, being the pro-inflammatory action of alpi associated with the presence of Psychrobacter piscatorii. The intestinal muc13 gene was down-regulated in non-PAP fish, with this gene being negatively correlated with anaerobic (Chloroflexi and Anoxybacillus) and metal-reducing (Pelosinus and Psychrosinus) bacteria. Other inflammatory markers (igm, il8, tnfα) were up-regulated in PAP fish, positively correlating the intestinal igm gene with the inflammasome activator Escherichia/Shigella, whereas the systemic expression of il8 and tnfα was negatively correlated with the Bacilli class in PAP fish and positively correlated with Paracoccus yeei in non-PAP fish. Overall changes in the expression pattern of il10, galectins (lgals1, lgals8), and toll-like receptors (tlr2, tlr5, tlr9) reinforced the anti-inflammatory profile of fish fed with the non-PAP diet, with these gene markers being associated with a wide range of OTUs. A gut microbiota-liver axis was also established, linking the microbial generation of short chain fatty acids with the fueling of scd1- and elovl6-mediated lipogenesis. In summary, by correlating the microbiome with host gene expression, we offer new insights in the evaluation of fish diets promoting gut and metabolism homeostasis, and ultimately, the health of farmed fish.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ana Margarida Fernandes
- SPAROS Lda, Area Empresarial de Marim, Olhăo, Portugal.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
125
|
Todorov SD, Ivanova IV, Popov I, Weeks R, Chikindas ML. Bacillus spore-forming probiotics: benefits with concerns? Crit Rev Microbiol 2021; 48:513-530. [PMID: 34620036 DOI: 10.1080/1040841x.2021.1983517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Representatives of the genus Bacillus are multifunctional microorganisms with a broad range of applications in both traditional fermentation and modern biotechnological processes. Bacillus spp. has several beneficial properties. They serve as starter cultures for various traditional fermented foods and are important biotechnological producers of enzymes, antibiotics, and bioactive peptides. They are also used as probiotics for humans, in veterinary medicine, and as feed additives for animals of agricultural importance. The beneficial effects of bacilli are well-reported and broadly acknowledged. However, with a better understanding of their positive role, many questions have been raised regarding their safety and the relevance of spore formation in the practical application of this group of microorganisms. What is the role of Bacillus spp. in the human microbial consortium? When and why did they start colonizing the gastrointestinal tract (GIT) of humans and other animals? Can spore-forming probiotics be considered as truly beneficial organisms, or should they still be approached with caution and regarded as "benefits with concerns"? In this review, we not only hope to answer the above questions but to expand the scope of the conversation surrounding bacilli probiotics.
Collapse
Affiliation(s)
| | - Iskra Vitanova Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
126
|
Kizhakkekalam VK, Chakraborty K. Marine Macroalga-associated Bacillus amyloliquefaciens as Prospective Probiotic. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1974140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vinaya Kizhakkepatt Kizhakkekalam
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Cochin, India
- Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, India
| | - Kajal Chakraborty
- Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, India
| |
Collapse
|
127
|
Gerst MM, Somogyi Á, Yang X, Yousef AE. Detection and characterization of a rare two-component lantibiotic, amyloliquecidin GF610 produced by Bacillus velezensis, using a combination of culture, molecular and bioinformatic analyses. J Appl Microbiol 2021; 132:994-1007. [PMID: 34487591 DOI: 10.1111/jam.15290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/30/2021] [Indexed: 01/26/2023]
Abstract
AIM To detect and characterize novel lantibiotics from a collection of Bacillus spp. using a multifaceted analytical approach. METHODS AND RESULTS A previously completed microassay identified 45 Bacillus isolates with anti-Listeria activity. The isolates were PCR screened using degenerate primers targeting conserved sequences in lanM-type lantibiotics. B. velezensis GF610 produced a PCR product whose sequence, along with genome mining and bioinformatics, guided the liquid chromatographic analysis of strain's cell-free extracts and the mass spectrometry of purified fractions. Results revealed a new amyloliquecidin variant (designated GF610) produced by the strain. Amyloliquecidin GF610 is a two-component lantibiotic with α and β peptides having monoisotopic masses of 3026 and 2451 Da, and molecular formulae C130 H191 N35 O39 S5 and C110 H158 N26 O30 S4 , respectively. Amyloliquecidin GF610 is active against Listeria monocytogenes, Clostridium sporogenes, Clostridioides difficile, Staphylococcus aureus and Alicyclobacillus acidoterrestris with minimum inhibitory concentrations (MICs) in the range of 0.5-7.0 µmol l-1 . CONCLUSIONS The proposed multifaceted analytical approach was valuable to provide a deep and proper characterization of a novel bacteriocin, amyloliquecidin GF610, with high antimicrobial activity against Gram-positive bacteria. SIGNIFICANCE AND IMPACT The discovered Amyloliquecidin GF610 is potentially useful in food, agricultural or medical applications. The analytical approach followed may facilitate future discoveries of two-component lantibiotics, which are challenging compounds to detect and characterize.
Collapse
Affiliation(s)
- Michelle M Gerst
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Árpád Somogyi
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio, USA
| | - Xu Yang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed E Yousef
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA.,Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
128
|
Vadopalas L, Zokaityte E, Zavistanaviciute P, Gruzauskas R, Starkute V, Mockus E, Klementaviciute J, Ruzauskas M, Lele V, Cernauskas D, Klupsaite D, Dauksiene A, Sederevicius A, Badaras S, Bartkiene E. Supplement Based on Fermented Milk Permeate for Feeding Newborn Calves: Influence on Blood, Growth Performance, and Faecal Parameters, including Microbiota, Volatile Compounds, and Fatty and Organic Acid Profiles. Animals (Basel) 2021; 11:ani11092544. [PMID: 34573514 PMCID: PMC8466287 DOI: 10.3390/ani11092544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Gastrointestinal infections and diarrhoea are the main health issues in young calves. The application of microbial products containing probiotics and prebiotics may lead to better management of the gut microbiome and improved calf health. After fermentation with selected lactic acid bacterial strains, milk permeate (a dairy industry by-product) contains lactic acid bacteria and prebiotics, both of which possess viable antimicrobial properties. We hypothesised that fermented milk permeate could be a prospective feed supplement for newborn calves. A 14-day experiment was conducted in which a group of newborn calves were given a supplement of milk permeate fermented with Lactobacillus uvarum LUHS245. A significantly higher count of lactic acid bacteria, a lower total count of enterobacteria, a higher species variety, and greater concentrations of both propionic acid and dry matter were found in the faeces of the calves fed with fermented milk permeate compared with a control group. Most of the fatty acids and volatile compounds in the faeces differed significantly between the two groups. The results suggest that supplementing the calves’ feed with fermented milk permeate has a positive effect on certain health parameters but no influence on blood parameters and growth performance. Abstract The aim of this study was to assess the effect of a feed supplement, namely milk permeate (MP) fermented with Lactobacillus uvarum LUHS245, on the newborn calves’ growth performance and blood and faecal parameters, including microbiota and volatile compound and fatty acid profiles. Ten female Holstein calves in the control group (CON group) were fed with a standard milk replacer diet and colostrum only, from day 2 to 14 of life, while 10 calves of the treated group (MP group) were fed with the same diet supplemented with 50 mL of the fermented MP. After 14 days, there were no significant differences between the groups in blood parameters, growth performance, or faecal pH. There was a significantly higher percentage of live lactic acid bacteria (by 17.02%), a lower percentage of enterobacteria (by 10.38%), a higher overall number of probiotic bacteria, a 1.7-fold higher species variety, and a higher content of dry matter in the faeces of the MP group (p < 0.05). The fatty acid and volatile compound profiles differed significantly between the groups. The results suggest that supplementing calves’ feed with fermented milk permeate has a positive effect on certain health parameters but not on blood parameters or growth performance.
Collapse
Affiliation(s)
- Laurynas Vadopalas
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
| | - Egle Zokaityte
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Romas Gruzauskas
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania;
| | - Vytaute Starkute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Ernestas Mockus
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
| | - Jolita Klementaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
| | - Modestas Ruzauskas
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
| | - Vita Lele
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Darius Cernauskas
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
| | - Dovile Klupsaite
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
| | - Agila Dauksiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
| | - Antanas Sederevicius
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
| | - Sarunas Badaras
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
| | - Elena Bartkiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (L.V.); (E.Z.); (P.Z.); (V.S.); (E.M.); (J.K.); (V.L.); (D.C.); (D.K.); (A.D.); (S.B.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-601-35837
| |
Collapse
|
129
|
Abstract
The results of the use of probiotic strains of microorganisms of the Bacillus family for the correction and formation of the microflora of the gastrointestinal tract and the impact on metabolism in calves are presented.
The aim of the study. To analyze the effect of probiotics on the microflora of the gastrointestinal tract in calves and biochemical parameters of blood in calves up to one month.
Materials and methods. The research was conducted during 2020 in the conditions of Ukrainian farms for cattle breeding. Five experimental groups of five one-week-old calves were formed in each and one control group. Calves were kept separately in the same conditions on the same diet, but with feeding together with colostrum substitute probiotics of five grams per animal: Bacillus amyloliquefaciense, Bacillus mucilaginosus, Bacillus coagulans, Bacillus megaterium, Bacillus pumilus. The strains are deposited and produced by “Kronos Agro” Ukraine.
Results. It was found that as a result of studies when feeding calves B. coagulans, B. pumilus and B. mucilaginosus the number of Lactobacillus sp. was 80 % higher than in the control group. The level of opportunistic pathogens in the experimental group with B. coagulans had minimal values. Animals in the group where B. mucilaginosus was given had a higher amount of Candida - up to 300 CFU/g and Enterobacteriaceae – 200 CFU/g; which is 50 % less compared to control groups, but more than in the experiment with B. coagulans. According to the results of biochemical examination of blood serum in calves, the absence of toxic effects of probiotic strains: Bacillus amyloliquefaciense, Bacillus mucilaginosus, Bacillus coagulans, Bacillus megaterium, Bacillus pumilus on the internal organs of animals was established.
Conclusions. It was found that the maximum positive effect on the microflora of the gastrointestinal tract of calves up to 30 days of age had B. coagulans (1×109) when fed at a dose of 5 g per animal. The amount of Lactobacillus sp. was the maximum and reached 800 CFU/g, which is 80 % more than in the control group. At the same time, the level of opportunistic pathogens in the experimental group with B. coagulans had minimal indicators and was: Clostridium by 20 %, Escherichia coli – by 70 %, Enterobacteriaceae, Staphylococcus and Candida – 100 % less than the control.
In the study of biochemical parameters, it was found that the activity of enzymes, protein and glucose levels in the serum of experimental animals fed with B. coagulans were within the physiological norm, indicating a normal metabolic process and no toxic effects.
Collapse
|
130
|
Wang H, Kim IH. Evaluation of Dietary Probiotic ( Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs. Animals (Basel) 2021; 11:ani11082232. [PMID: 34438690 PMCID: PMC8388486 DOI: 10.3390/ani11082232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Since antibiotics are banned in animal feed in many countries, probiotics have received more attention as reliable alternatives. We mainly study the effect of adding Lactobacillus plantarum BG0001 on the performance of weaned piglets for 42 days. The results: weaning pigs fed diet supplementation with L. plantarum BG0001 significantly improved the growth performance and fecal microbiota, and achieved similar effects as antibiotic growth promoters. Therefore, we consider that L. plantarum BG0001 will have a good role in replacing antibiotic growth promoters in swine feed. It can bring potentially huge economic income to the animal husbandry industry. Abstract A total of 180, 4-week-old crossbred weaning piglets ((Yorkshire × Landrace) × Duroc; 6.67 ± 1.40 kg) were used in a 42 day experiment to evaluate the effect of dietary probiotics (Lactobacillus plantarum BG0001) on growth performance, nutrient digestibility, blood profile, fecal microbiota, and noxious gas emission. All pigs were randomly allotted to one of four treatment diets in a completely randomized block design. Each treatment had nine replicates with five pigs/pen (mixed sex) Designated dietary treatments were as: (1) basal diet (NC), (2) NC + 0.2% antibiotics (chlortetracycline) (PC), (3) NC + 0.1% L. plantarum BG0001 (Lactobacillus plantarum BG0001) (NC1), (4) NC + 0.2% L. plantarum BG0001 (NC2). On d 42, BW and G:F were lower (p < 0.05) in pigs fed NC diet compared with PC diet and probiotic diets. Throughout this experiment, the average daily gain increased (p < 0.05) in pigs when fed with PC and probiotic diets than the NC diet. The average daily feed intake was higher (p < 0.05) in pigs fed PC diet during day 0–7 and 22–42, and probiotic diets during day 0–7 compared with NC diet, respectively. The Lactobacillus count was increased and Escherichia coli count was decreased (p < 0.05) in the fecal microbiota of pigs fed probiotic diets, and E. coli were decreased (p < 0.05) when fed a PC diet compared with the NC diet on day 21. Moreover, the apparent total tract nutrient digestibility, blood profile, and the concentration of noxious gas emission had no negative effects by the probiotic treatments. In conclusion, dietary supplementation with L. plantarum BG0001 significantly improved the growth performance, increased fecal Lactobacillus, and decreased E. coli counts in weaning pigs.
Collapse
Affiliation(s)
- Huan Wang
- Department of Animal Resource & Science, Dankook University, Cheonan 31116, Korea;
- School of Biology and Food Engineering, Chuzhou University, Chuzhou 239012, China
| | - In-Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan 31116, Korea;
- Correspondence:
| |
Collapse
|
131
|
Barreto MO, Soust M, Moore RJ, Olchowy TWJ, Alawneh JI. Systematic review and meta-analysis of probiotic use on inflammatory biomarkers and disease prevention in cattle. Prev Vet Med 2021; 194:105433. [PMID: 34298303 DOI: 10.1016/j.prevetmed.2021.105433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to appraise the available evidence on the effectiveness of probiotic treatment on mature cattle immunity, inflammation, and disease prevention. A systematic review with meta-analysis was conducted to analyse studies that were eligible to answer the following research question: "in cattle of at least 6-months of age, is the use of probiotics associated with immunomodulatory and inflammatory responses, and clinical disease outcomes?" Our literature search yielded 25 studies that fit the inclusion criteria. From these studies, only 19 were suitable for inclusion in the meta-analysis due to data limitations and differences in study population characteristics. Included studies were assessed for bias using a risk assessment tool adapted from the Cochrane Collaboration's tool for assessing risk of bias in randomised trials. GRADE guidelines were used to assess the quality of the body of evidence at the outcome level. The meta-analysis was performed using Review Manager and R. The overall quality of evidence at the outcome level was assessed as being very low. On average, the treatment effect on immunoglobulin G (IgG), serum amyloid A (SAA), haptoglobin (Hp) and β-hydroxybutyrate (BoHB) for cows receiving probiotics did not differ from control cows. Exposure to probiotics was not associated with reduced risk of reproductive disorders (pooled RR = 1.02 95 % CI = 0.81-1.27, P = 0.88). There is insufficient evidence to support any significant positive effects of probiotics on cattle immunity and disease prevention. This lack of consistent evidence could be due to dissimilarities in the design of the included studies such as differences in dosage, dose schedule, diet composition and/or physiological state of the host at the time of treatment.
Collapse
Affiliation(s)
- Michelle O Barreto
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, Queensland, 4573, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - Timothy W J Olchowy
- The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia; Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T3R 1J3, Canada
| | - John I Alawneh
- The University of Queensland, School of Veterinary Science, Gatton, Queensland, 4343, Australia; The University of Queensland, Good Clinical Practice Research Group (GCPRG), Gatton, Queensland, 4343, Australia; Murdoch University, School of Veterinary Medicine, Perth, Western Australia, 6150, Australia.
| |
Collapse
|
132
|
Zhao Y, Zeng D, Wang H, Qing X, Sun N, Xin J, Luo M, Khalique A, Pan K, Shu G, Jing B, Ni X. Dietary Probiotic Bacillus licheniformis H2 Enhanced Growth Performance, Morphology of Small Intestine and Liver, and Antioxidant Capacity of Broiler Chickens Against Clostridium perfringens-Induced Subclinical Necrotic Enteritis. Probiotics Antimicrob Proteins 2021; 12:883-895. [PMID: 31713770 DOI: 10.1007/s12602-019-09597-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The reduction in the use of antibiotics in the poultry industry has considerably increased the appearance of Clostridium perfringens (CP)-induced subclinical necrotic enteritis (SNE), forcing researchers to search alternatives to antibiotic growth promoters (AGP) like probiotics. This study aimed to investigate the effect and the underlying potential mechanism of dietary supplementation of Bacillus licheniformis H2 to prevent SNE. A total of 180 1-day-old male broiler chickens (Ross 308) were randomly divided into three groups, with six replicates in each group and ten broilers per pen: (a) basal diet in negative control group(NC group); (b) basal diet + SNE infection(coccidiosis vaccine + CP) (SNE group); (c) basal diet + SNE infection + H2 pre-treatment(BL group). Growth performance, morphology of small intestine and liver, and antioxidant capacity of the serum, ileum, and liver were assessed in all three groups. The results showed that H2 significantly suppressed (P < 0.05) the negative effects on growth performance induced by SNE, including loss of body weight gain, decrease of feed intake, and raise of feed conversion ratio among the different treatments at 28 days. The addition of H2 also increased (P < 0.05) the villus height: crypt depth ratio as well as villus height in the ileum. Chicks fed with H2 diet had lower malondialdehyde (MDA) concentration in the ileum in BL group than that in SNE group (P < 0.05). Moreover, compared with other treatment groups, dietary H2 improved the activities of antioxidant enzymes in the ileum, serum, and liver (P < 0.05). H2 may also prevent SNE by significantly increasing the protein content (P < 0.05) of Bcl-2 in the liver. Dietary supplementation of H2 could effectively prevent the appearance of CP-induced SNE and improve the growth performance of broiler chickens damaged by SNE, of which the mechanism may be related to intestinal development, antioxidant capacity, and apoptosis which were improved by H2.
Collapse
Affiliation(s)
- Ying Zhao
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hesong Wang
- Lab of Brain Connectivity, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaodan Qing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min Luo
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
133
|
Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol 2021; 59:627-633. [PMID: 34212287 DOI: 10.1007/s12275-021-1161-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Bacillus velezensis is a plant growth-promoting bacterium that can also inhibit plant pathogens. However, based on its properties, it is emerging as a probiotic in animal feed. This review focuses on the potential characteristics of B. velezensis for use as a probiotic in the animal feed industry. The review was conducted by collecting recently published articles from peer-reviewed journals. Google Scholar and PubMed were used as search engines to access published literature. Based on the information obtained, the data were divided into three groups to discuss the (i) probiotic characteristics of B. velezensis, (ii) probiotic potential for fish, and (iii) the future potential of this species to be developed as a probiotic for the animal feed industry. Different strains of B. velezensis isolated from different sources were found to have the ability to produce antimicrobial compounds and have a beneficial effect on the gut microbiota, with the potential to be a candidate probiotic in the animal feed industry. This review provides valuable information about the characteristics of B. velezensis, which can provide researchers with a better understanding of the use of this species in the animal feed industry.
Collapse
|
134
|
A Review of the Effects and Production of Spore-Forming Probiotics for Poultry. Animals (Basel) 2021; 11:ani11071941. [PMID: 34209794 PMCID: PMC8300232 DOI: 10.3390/ani11071941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Spore-forming probiotics are widely used in the poultry industry for their beneficial impact on host health. The main feature that separates spore-forming probiotics from the more common lactic acid probiotics is their high resistance to external and internal factors, resulting in higher viability in the host and correspondingly, greater efficiency. Their most important effect is the ability to confront pathogens, which makes them a perfect substitute for antibiotics. In this review, we cover and discuss the interactions of spore-forming probiotic bacteria with poultry as the host, their health promotion effects and mechanisms of action, impact on poultry productivity parameters, and ways to manufacture the probiotic formulation. The key focus of this review is the lack of reproducibility in poultry research studies on the evaluation of probiotics’ effects, which should be solved by developing and publishing a set of standard protocols in the professional community for conducting probiotic trials in poultry. Abstract One of the main problems in the poultry industry is the search for a viable replacement for antibiotic growth promoters. This issue requires a “one health” approach because the uncontrolled use of antibiotics in poultry can lead to the development of antimicrobial resistance, which is a concern not only in animals, but for humans as well. One of the promising ways to overcome this challenge is found in probiotics due to their wide range of features and mechanisms of action for health promotion. Moreover, spore-forming probiotics are suitable for use in the poultry industry because of their unique ability, encapsulation, granting them protection from the harshest conditions and resulting in improved availability for hosts’ organisms. This review summarizes the information on gastrointestinal tract microbiota of poultry and their interaction with commensal and probiotic spore-forming bacteria. One of the most important topics of this review is the absence of uniformity in spore-forming probiotic trials in poultry. In our opinion, this problem can be solved by the creation of standards and checklists for these kinds of trials such as those used for pre-clinical and clinical trials in human medicine. Last but not least, this review covers problems and challenges related to spore-forming probiotic manufacturing.
Collapse
|
135
|
Tang T, Li Y, Wang J, Elzo MA, Shao J, Li Y, Xia S, Fan H, Jia X, Lai S. Untargeted Metabolomics Reveals Intestinal Pathogenesis and Self-Repair in Rabbits Fed an Antibiotic-Free Diet. Animals (Basel) 2021; 11:1560. [PMID: 34071848 PMCID: PMC8228699 DOI: 10.3390/ani11061560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 01/18/2023] Open
Abstract
The prohibition of the use of growth-promoting drug additives in feeds was implemented in China in 2020. However, rabbits can experience symptoms of intestinal disease, such as diarrhea and flatulence, when switching from standard normal diets with antibiotics to antibiotic-free diets. The molecular mechanisms related to the occurrence of these diseases as well as associated physiological and metabolic changes in the intestine are unclear. Thus, the objectives of this study were to study the pathogenesis of intestinal inflammation using untargeted metabolomics. This was done to identify differential metabolites between a group of antibiotic-free feed Hyplus rabbits (Dia) whose diet was abruptly changed from a standard normal diet with antibiotics to an antibiotic-free diet, and an antibiotic diet group Hyplus rabbits (Con) that was fed a standard normal diet with antibiotics. Morphological damage to the three intestinal tissues was determined through visual microscopic examination of intestinal Dia and Con tissue samples stained with hematoxylin and eosin (HE). A total of 1969 different metabolites were identified in the three intestinal tissues from Dia and Con rabbits. The level of 1280 metabolites was significantly higher and the level of 761 metabolites was significantly lower in the Dia than in the Con group. These differential metabolites were involved in five metabolic pathways associated with intestinal inflammation (tryptophan metabolism, pyrimidine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, lysine degradation, and bile secretion). Rabbits in the Dia group developed metabolic disorders that affected the intestinal microbiota and changed the permeability of the intestinal tract, thereby triggering intestinal inflammation, affecting feed utilization, reducing production performance, and activating the intestinal tract self-repair mechanism. Thus, the abrupt transition from a diet with antibiotics to an antibiotic-free diet affected the structure and metabolism of the intestinal tract in Hyplus rabbits. Consequently, to avoid these problems, the antibiotic content in a rabbit diet should be changed gradually or alternative antibiotics should be found.
Collapse
Affiliation(s)
- Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Ya Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Huimei Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.T.); (Y.L.); (J.W.); (J.S.); (Y.L.); (S.X.); (H.F.); (X.J.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
136
|
Effects of Clostridium butyricum- and Bacillus spp.-Based Potential Probiotics on the Growth Performance, Intestinal Morphology, Immune Responses, and Caecal Microbiota in Broilers. Antibiotics (Basel) 2021; 10:antibiotics10060624. [PMID: 34073759 PMCID: PMC8225201 DOI: 10.3390/antibiotics10060624] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to investigate the effects of Clostridium butyricum-, Bacillus subtilis-, and Bacillus licheniformis-based potential probiotics on the growth performance, intestinal morphology, immune responses, and caecal short chain fatty acids (SCFAs) and microbial structure in broiler chickens. Three treatment groups containing a total of 1200 one-day-old AA broilers were included: birds fed with a basal diet only (Con), birds fed with added 1010 probiotics cfu/kg (ProL), and birds fed with added 1011 probiotics cfu/kg (ProH). The dietary probiotics significantly improved the final and average body weights and serum immunoglobulins A, M, and Y. The probiotics also enhanced the ileal morphology and improved the caecal acetate, butyrate, and propionate contents. Furthermore, 16S rRNA sequencing revealed that dietary compound probiotics modulated the caecal microflora composition as follows: (1) all birds shared 2794 observed taxonomic units; (2) treatment groups were well separated in the PCA and PCoA analysis; (3) the relative abundance of Parabacteroides, Ruminococcaceae_UCG-014, Barnesiella, Odoribacter, [Eubacterium_coprostanoligenes_group], [Ruminococcus]_torques_group, and Butyricimonas significantly varied between treatments. The compound probiotics improved the growth performance, serum immune responses, the ratio of ileal villus height to crypt depth, and major caecal SCFAs in broiler chickens. The dietary C. butyricum-, B. subtilis-, and B. licheniformis-based probiotics improved overall broiler health and would benefit the poultry industry.
Collapse
|
137
|
Bacillus subtilis-Based Probiotic Improves Skeletal Health and Immunity in Broiler Chickens Exposed to Heat Stress. Animals (Basel) 2021; 11:ani11061494. [PMID: 34064126 PMCID: PMC8224346 DOI: 10.3390/ani11061494] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High ambient temperature is a major environmental stressor affecting the physiological and behavioral status of animals, increasing stress susceptibility and immunosuppression, and consequently increasing intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or decrease stress-associated detrimental effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate that a dietary probiotic supplement, Bacillus subtilis, reduces heat stress-induced abnormal behaviors and negative effects on skeletal health in broilers through a variety of cellular responses, regulating the functioning of the microbiota–gut–brain axis and/or microbiota-modulated immunity during bone remodeling under thermoneutral and heat-stressed conditions. Abstract The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.
Collapse
|
138
|
Van der Veken W, Hautekiet V, Kimminau E, Hofacre C, Mathis G. Efficacy of probiotic Bacillus licheniformis DSM 28710 on performance and the mitigation of Clostridium perfringens-induced necrotic enteritis in broiler chickens. JOURNAL OF APPLIED ANIMAL NUTRITION 2021. [DOI: 10.3920/jaan2020.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the impact of a probiotic Bacillus licheniformis strain (DSM 28710; B-Act®) on growth performance and its capacity to mitigate necrotic enteritis (NE; induced via a Clostridium perfringens challenge) in poultry. A broiler trial was conducted, examining three treatments for 42 days under an induced NE challenge; a negative control (basal diet only); an antibiotic treated group (oxytetracycline hydrochloride (OXT), therapeutic dose of 105 mg OXT/litre in drinking water, for three days after C. perfringens challenge); and a B-Act group (500 g B-Act/tonne of feed, equalling 1.6×1012 colony forming units B. licheniformis DSM 28710/tonne of feed, supplemented from start until finish). Despite the induced NE challenge, weight gains of the B-Act and OXT groups were similar to each other but significantly higher compared to the control at the end of the study (P<0.05). Weight gain of the B-Act group was already significantly higher compared to the control on day 21 (P<0.05), indicating a potential benefit of the probiotic even before clinical establishment of NE. Feed conversion ratio (FCR) values followed a similar pattern throughout the study, with a significantly lower overall FCR for the B-Act and OXT groups compared to the control (P<0.05; d0-42). Birds fed B-Act had significantly (P<0.05) lower NE lesions compared to the control and OXT group on day 21, although OXT was not supplemented to the animals at this stage yet. Both B-Act and OXT groups had significantly (P<0.05) lower NE scores than the control on day 28, demonstrating the effectiveness of the antibiotic treatment and the mitigating effect of B-Act on the effects of a Clostridium perfringens induced NE challenge.
Collapse
Affiliation(s)
| | - V. Hautekiet
- Huvepharma NV, Uitbreidingstraat 80, 2600 Antwerp, Belgium
| | - E.A. Kimminau
- Huvepharma Inc., 525 Westpark Drive, Suite 230, Peachtree City, GA 30269, USA
| | - C. Hofacre
- Southern Poultry Research Group, 1061 Hale Road, Watkinsville, GA 30677, USA
| | - G.F. Mathis
- Southern Poultry Research Inc., 96 Roquemore Road, Athens, GA 30677, USA
| |
Collapse
|
139
|
Kan L, Guo F, Liu Y, Pham VH, Guo Y, Wang Z. Probiotics Bacillus licheniformis Improves Intestinal Health of Subclinical Necrotic Enteritis-Challenged Broilers. Front Microbiol 2021; 12:623739. [PMID: 34084155 PMCID: PMC8168541 DOI: 10.3389/fmicb.2021.623739] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Necrotic enteritis infection poses a serious threat to poultry production, and there is an urgent need for searching effective antibiotic alternatives to control it with the global ban on in-feed antibiotics. This study was conducted to investigate the effects of dietary Bacillus licheniformis replacing enramycin on the growth performance and intestinal health of subclinical necrotic enteritis (SNE)-challenged broilers. In total, 504 1-day-old Arbor Acres male chickens were selected and subsequently assigned into three treatments, including PC (basal diet + SNE challenge), PA (basal diet extra 10 mg/kg enramycin + SNE challenge), and PG (basal diet extra 3.20 × 109 and 1.60 × 109 CFU B. licheniformis per kg diet during 1-21 days and 22-42 days, respectively + SNE challenge). Results showed that B. licheniformis significantly decreased the intestinal lesion scores and down-regulated the Claudin-3 mRNA levels in jejunum of SNE-infected broilers on day 25, but increased the mucin-2 gene expression in broilers on day 42. In addition, B. licheniformis significantly up-regulated the mRNA levels of TRIF and NF-κB of SNE-challenged broilers compared with the control group on day 25 and TLR-4, TRIF compared with the control and the antibiotic group on day 42. The mRNA expression of growth factors (GLP-2 and TGF-β2) and HSPs (HSP60, HSP70, and HSP90) were up-regulated in B. licheniformis supplementary group on days 25 and 42 compared with group PC. LEfSe analysis showed that the relative abundance of Lachnospiraceae_UCG_010 was enriched in the PG group; nevertheless, Clostridiales_vadinBB60 and Rnminococcaceae_NK4A214 were in PA. PICRUSt analysis found that the metabolism of cofactors and vitamins, amino acid metabolism, and carbohydrate metabolism pathways were enriched, whereas energy metabolism, membrane transport, cell motility, and lipid metabolism were suppressed in B. licheniformis-supplemented groups as compared with the PC control. In conclusion, dietary supplementation of B. licheniformis alleviated the intestinal damage caused by SNE challenge that coincided with modulating intestinal microflora structure and barrier function as well as regulating intestinal mucosal immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
140
|
Reyes-Cortes JL, Azaola-Espinosa A, Lozano-Aguirre L, Ponce-Alquicira E. Physiological and Genomic Analysis of Bacillus pumilus UAMX Isolated from the Gastrointestinal Tract of Overweight Individuals. Microorganisms 2021; 9:microorganisms9051076. [PMID: 34067853 PMCID: PMC8156450 DOI: 10.3390/microorganisms9051076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
The study aimed to evaluate the metabolism and resistance to the gastrointestinal tract conditions of Bacillus pumilus UAMX (BP-UAMX) isolated from overweight individuals using genomic tools. Specifically, we assessed its ability to metabolize various carbon sources, its resistance to low pH exposure, and its growth in the presence of bile salts. The genomic and bioinformatic analyses included the prediction of gene and protein metabolic functions, a pan-genome and phylogenomic analysis. BP-UAMX survived at pH 3, while bile salts (0.2-0.3% w/v) increased its growth rate. Moreover, it showed the ability to metabolize simple and complex carbon sources (glucose, starch, carboxymethyl-cellulose, inulin, and tributyrin), showing a differentiated electrophoretic profile. Genome was assembled into a single contig, with a high percentage of genes and proteins associated with the metabolism of amino acids, carbohydrates, and lipids. Antibiotic resistance genes were detected, but only one beta-Lactam resistance protein related to the inhibition of peptidoglycan biosynthesis was identified. The pan-genome of BP-UAMX is still open with phylogenetic similarities with other Bacillus of human origin. Therefore, BP-UAMX seems to be adapted to the intestinal environment, with physiological and genomic analyses demonstrating the ability to metabolize complex carbon sources, the strain has an open pan-genome with continuous evolution and adaptation.
Collapse
Affiliation(s)
- José Luis Reyes-Cortes
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico;
| | - Alejandro Azaola-Espinosa
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, Ciudad de México 04960, Mexico;
| | - Luis Lozano-Aguirre
- Unidad de Análisis Bioinformáticos del Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62210, Mexico;
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico;
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|
141
|
Fermented Duckweed as a Potential Feed Additive with Poultry Beneficial Bacilli Probiotics. Probiotics Antimicrob Proteins 2021; 13:1425-1432. [PMID: 33988837 DOI: 10.1007/s12602-021-09794-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
In this study, the duckweed varieties Lemna minor, Spirodela polyrhiza, and a commercially processed duckweed food supplement were investigated as potential substrates for the propagation of two probiotic Bacillus strains, B. subtilis KATMIRA1933 and B. amyloliquefaciens B-1895. Both L. minor and S. polyrhiza were found to be suitable substrates for the propagation of both bacilli, with 8.47-9.48 Log CFU/g and 10.17-11.31 Log CFU/g after 24 and 48 h growth on the substrates, respectively. The commercial duckweed product was a less favorable substrate, with growth reaching a maximum of 7.89-8.91 CFU/g after 24 h with no further growth after 48 h. Growth and adherence of the bacilli to the three products were confirmed via electron microscopy. These strains have demonstrated health-promoting benefits for poultry and thereby have the potential to enhance duckweed as an animal feed through the process of fermentation. Duckweed has been shown to be a promising alternative resource for protein and has the opportunity to become a valuable resource in multiple industries as a potential means to increase sustainability, food security, and reduce environmental impact.
Collapse
|
142
|
Low CX, Tan LTH, Ab Mutalib NS, Pusparajah P, Goh BH, Chan KG, Letchumanan V, Lee LH. Unveiling the Impact of Antibiotics and Alternative Methods for Animal Husbandry: A Review. Antibiotics (Basel) 2021; 10:578. [PMID: 34068272 PMCID: PMC8153128 DOI: 10.3390/antibiotics10050578] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Since the 1950s, antibiotics have been used in the field of animal husbandry for growth promotion, therapy and disease prophylaxis. It is estimated that up to 80% of the antibiotics produced by the pharmaceutical industries are used in food production. Most of the antibiotics are used as feed additives at sub-therapeutic levels to promote growth. However, studies show the indiscriminate use of antibiotics has led to the emergence of multidrug-resistant pathogens that threaten both animal health and human health, including vancomycin-resistant Enterococcus (VRE), Methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae (CRE). This scenario is further complicated by the slow progress in achieving scientific breakthroughs in uncovering novel antibiotics following the 1960s. Most of the pharmaceutical industries have long diverted research funds away from the field of antibiotic discovery to more lucrative areas of drug development. If this situation is allowed to continue, humans will return to the pre-antibiotics era and potentially succumb to huge health and economic consequences. Fortunately, studies investigating various alternatives to antibiotics use in livestock show promising results. These alternatives include the application of bacteriophages and phage derived peptidoglycan degrading enzymes, engineered peptides, egg yolk antibodies, probiotics, prebiotics and synbiotics, as well as quorum quenching molecules. Therefore, this review aims to discuss the use of growth-promoting antibiotics and their impact on livestock and provide insights on the alternative approaches for animal husbandry.
Collapse
Affiliation(s)
- Chuen Xian Low
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 50603, Malaysia
| | - Priyia Pusparajah
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhenjiang University, Hangzhou 310058, China
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| |
Collapse
|
143
|
Devyatkin V, Mishurov A, Kolodina E. Probiotic effect of Bacillus subtilis B-2998D, B-3057D, and Bacillus licheniformis B-2999D complex on sheep and lambs. J Adv Vet Anim Res 2021; 8:146-157. [PMID: 33860025 PMCID: PMC8043341 DOI: 10.5455/javar.2021.h497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Objectives: Probiotics are well documented for their health benefits by developing a balanced intestinal microbiota and boosting immunity. The present study was conducted to determine the effects of a probiotic preparation EnzimsporinTM (consisting of spore-forming bacteria Bacillus subtilis B-2998D, B-3057D, and Bacillus licheniformis B-2999D) on the biochemical, hematological, immunological parameters, intestinal microbiota, and growth dynamics of sheep and lambs. Materials and Methods: Enzimsporin was fed to lambs and sheep at different doses to determine the bacteria’s probiotic effects. Sheep were divided into three groups (six each), which received 0, 1, and 3 gm of Enzimsporin/per head/day, respectively, and two groups of lambs (10 each), who received 0 gm and 1 gm of Enzimsporin/per head/day for 30 days in addition to their regular ration. On day 30, blood samples were collected, followed by the determination of biochemical, hematological, and natural resistance indicators. Fecal samples were examined to determine the intestinal microflora, and animals were weighed daily to determine their growth dynamics. Results: Supplementation of probiotics (EnzimsporinTM) improved the lambs’ body weight gain by 18.8%. Analysis of the clinical parameters showed improvements in the levels of total protein, globulins, and urea by 5.3%, 10.8%, and 6.2%, respectively, in the blood of probiotic-supplemented lambs. Similarly, an increment in the total protein, albumins, and globulins was observed in the sheep with EnzimsporinTM supplementation. The decrease in bilirubin and cholesterol levels in the blood and increased bactericidal and phagocytic index in the sheep and lambs with probiotic supplementation indicated a positive influence of EnzimsporinTM on the liver function and natural resistance. Furthermore, an increase in Lactobacillus and Bifidobacterium and a decrease in the Escherichia coli, Enterococcus, and Yeast in the fecal contents of experimental sheep and lambs indicated the potentiality of EnzimsporinTM on maintaining good gut health. Conclusion: Spore-forming bacteria B. subtilis B-2998D, B-3057D, and B. licheniformis B-2999D can be used in feeding sheep and lambs of 2 months of age to increase body weight gain, improve intestinal microbiota, strengthen the immune system, and maintain normal metabolic processes.
Collapse
Affiliation(s)
- Vladimir Devyatkin
- Department of Physiology and Biochemistry of L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Alexey Mishurov
- Department of Physiology and Biochemistry of L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Evgenia Kolodina
- Laboratory of Microbiology of L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| |
Collapse
|
144
|
Soliman ES, Hamad RT, Abdallah MS. Preventive antimicrobial action and tissue architecture ameliorations of Bacillus subtilis in challenged broilers. Vet World 2021; 14:523-536. [PMID: 33776320 PMCID: PMC7994135 DOI: 10.14202/vetworld.2021.523-536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Background and Aim: Probiotics improve intestinal balance through bacterial antagonism and competitive exclusion. This study aimed to investigate the in vitro antimicrobial activity, as well as the in vivo preventive, immunological, productive, and histopathological modifications produced by probiotic Bacillus subtilis. Materials and Methods: The in vitro antimicrobial activities of B. subtilis (5×106 CFU/g; 0.5, 1.0*, 1.5, and 2.0 g/L) were tested against Escherichia coli O157: H7, Salmonella Typhimurium, Candida albicans, and Trichophyton mentagrophytes after exposure times of 0.25, 0.5, 1, and 2 h using minimal inhibitory concentration procedures. A total of 320 1-day-old female Ross broiler chickens were divided into five groups. Four out of the five groups were supplemented with 0.5, 1.0*, 1.5, and 2.0 g/L probiotic B. subtilis from the age of 1 day old. Supplemented 14-day-old broiler chickens were challenged with only E. coli O157: H7 (4.5×1012 CFU/mL) and S. Typhimurium (1.2×107 CFU/mL). A total of 2461 samples (256 microbial-probiotic mixtures, 315 sera, 315 duodenal swabs, and 1575 organs) were collected. Results: The in vitro results revealed highly significant (p<0.001) killing rates at all-time points in 2.0 g/L B. subtilis: 99.9%, 90.0%, 95.6%, and 98.8% against E. coli, S. Typhimurium, C. albicans, and T. mentagrophytes, respectively. Broilers supplemented with 1.5 and 2.0 g/L B. subtilis revealed highly significant increases (p<0.01) in body weights, weight gains, carcass weights, edible organs’ weights, immune organs’ weights, biochemical profile, and immunoglobulin concentrations, as well as highly significant declines (p<0.01) in total bacterial, Enterobacteriaceae, and Salmonella counts. Histopathological photomicrographs revealed pronounced improvements and near-normal pictures of the livers and hearts of broilers with lymphoid hyperplasia in the bursa of Fabricius, thymus, and spleen after supplementation with 2.0 g/L B. subtilis. Conclusion: The studies revealed that 1.5-2.0 g of probiotic B. subtilis at a concentration of 5×106 CFU/g/L water was able to improve performance, enhance immunity, and tissue architecture, and produce direct antimicrobial actions.
Collapse
Affiliation(s)
- Essam S Soliman
- Department of Animal Hygiene, Zoonosis, and Animal Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rania T Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Al Minufya 33511, Egypt
| | - Mona S Abdallah
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
145
|
Ruiz Sella SRB, Bueno T, de Oliveira AAB, Karp SG, Soccol CR. Bacillus subtilis natto as a potential probiotic in animal nutrition. Crit Rev Biotechnol 2021; 41:355-369. [PMID: 33563053 DOI: 10.1080/07388551.2020.1858019] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The growing global demand for animal products and processed meat has created a challenge for the livestock sector to enhance animal productivity without compromising product quality. The restriction of antibiotics in animal feeds as growth promoters makes the use of probiotics a natural and safe alternative to obtain functional foods that provide animal health and quality and to maintain food safety for consumers. To incorporate these additives into the diet, detailed studies are required, in which in vitro and in vivo assays are used to prove the efficacy and to ensure the safety of probiotic candidate strains. Studies on the use of Bacillus subtilis natto as a spore-forming probiotic bacterium in animal nutrition have shown no hazardous effects and have demonstrated the effectiveness of its use as a probiotic, mainly due to its proven antimicrobial, anti-inflammatory, antioxidant, enzymatic, and immunomodulatory activity. This review summarizes the recent scientific background on the probiotic effects of B. subtilis natto in animal nutrition. It focuses on its safety assessment, host-associated efficacy, and industrial requirements.
Collapse
Affiliation(s)
- Sandra R B Ruiz Sella
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Departament of Research and Development, Production and Research Centre of Immunobiological Products, Secretaria de Estado da Saúde, Piraquara, Brazil
| | - Tarcila Bueno
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Biotechnology Coordination, Federal Institute of Paraná, Curitiba, Brazil
| | - Angelo A B de Oliveira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
146
|
Donnik IM, Popov IV, Sereda SV, Popov IV, Chikindas ML, Ermakov AM. Coronavirus Infections of Animals: Future Risks to Humans. BIOL BULL+ 2021; 48:26-37. [PMID: 33679117 PMCID: PMC7917535 DOI: 10.1134/s1062359021010052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/27/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023]
Abstract
Coronaviruses have tremendous evolutionary potential, and three major outbreaks of new human coronavirus infections have occurred in the recent history of humankind. In this paper, the patterns of occurrence of new zoonotic coronavirus infections and the role of bioveterinary control in preventing their potential outbreaks in the future are determined. The possibility of SARS-CoV-2 infection in companion animals is considered. Diverse human activities may trigger various interactions between animal species and their viruses, sometimes causing the emergence of new viral pathogens. In addition, the possibility of using probiotics for the control of viral infections in animals is discussed.
Collapse
Affiliation(s)
- I. M. Donnik
- Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ig. V. Popov
- Don State Technical University, 344000 Rostov-on-Don, Russia ,Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - S. V. Sereda
- Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Il. V. Popov
- Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - M. L. Chikindas
- Don State Technical University, 344000 Rostov-on-Don, Russia ,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 08901 New Brunswick, NJ USA
| | - A. M. Ermakov
- Don State Technical University, 344000 Rostov-on-Don, Russia
| |
Collapse
|
147
|
Kwon J, Kim SG, Kim HJ, Giri SS, Kim SW, Lee SB, Park SC. Isolation and Characterization of Salmonella Jumbo-Phage pSal-SNUABM-04. Viruses 2020; 13:v13010027. [PMID: 33375688 PMCID: PMC7823757 DOI: 10.3390/v13010027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages.
Collapse
|
148
|
Rajput DS, Zeng D, Khalique A, Rajput SS, Wang H, Zhao Y, Sun N, Ni X. Pretreatment with probiotics ameliorate gut health and necrotic enteritis in broiler chickens, a substitute to antibiotics. AMB Express 2020; 10:220. [PMID: 33336284 PMCID: PMC7746796 DOI: 10.1186/s13568-020-01153-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Necrotic enteritis (NE) is being considered as one of the most important intestinal diseases in the recent poultry production systems, which causes huge economic losses globally. NE is caused by Clostridium perfringens, a pathogenic bacterium, and normal resident of the intestinal microflora of healthy broiler chickens. Gastrointestinal tract (GIT) of broiler chicken is considered as the most integral part of pathogen's entrance, their production and disease prevention. Interaction between C. perfringens and other pathogens such as Escherichia coli and Salmonella present in the small intestine may contribute to the development of NE in broiler chickens. The antibiotic therapy was used to treat the NE; however European Union has imposed a strict ban due to the negative implications of drug resistance. Moreover, antibiotic growth promoters cause adverse effects on human health as results of withdrawal of antibiotic residues in the chicken meat. After restriction on use of antibiotics, numerous studies have been carried out to investigate the alternatives to antibiotics for controlling NE. Thus, possible alternatives to prevent NE are bio-therapeutic agents (Probiotics), prebiotics, organic acids and essential oils which help in nutrients digestion, immunity enhancement and overall broiler performance. Recently, probiotics are extensively used alternatives to antibiotics for improving host health status and making them efficient in production. The aim of review is to describe a replacement to antibiotics by using different microbial strains as probiotics such as bacteria and yeasts etc. having bacteriostatic properties which inhibit growth of pathogens and neutralize the toxins by different modes of action.
Collapse
|
149
|
Deng F, Chen Y, Sun T, Wu Y, Su Y, Liu C, Zhou J, Deng Y, Wen J. Antimicrobial resistance, virulence characteristics and genotypes of Bacillus spp. from probiotic products of diverse origins. Food Res Int 2020; 139:109949. [PMID: 33509502 DOI: 10.1016/j.foodres.2020.109949] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/10/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022]
Abstract
Spore-forming probiotic Bacillus spp. have received extensively increasing scientific and commercial interest, but raised the concerns in the potential risks and pathogenesis. In this study, 50 commercial probiotic products were collected from all over the country and Bacillus spp. isolated from products were evaluated for the safety on the aspects of hemolytic activity, contamination profiles, toxin genes, cytotoxicity, antimicrobial resistance, and genotyping. 34 probiotic products (68%) exhibited hemolysis, including 19 human probiotics, 9 animal probiotics, and 6 plant probiotics. 28 products (56%) contained other bacteria not labeled in the ingredients. 48 strains in Bacillus spp. including 17 B. subtilis group isolates, 28 B. cereus, and 3 other Bacillus spp. were isolated from human, food animal, and plant probiotic products. Detection rates of enterotoxin genes, nheABC and hblCDA, and cytotoxin cytK2 in 48 Bacillus spp. isolates were 58%, 31%, and 46%, respectively. Also, one isolate B. cereus 34b from an animal probiotic product was positive for ces, encoding cereulide. 28 of 48 Bacillus spp. isolates were cytotoxic. 19 of 28 B. cereus isolates maintained to exhibit hemolysis after heat treatment. All 48 Bacillus spp. isolates exhibited resistance to lincomycin, and 5 were resistant to tetracycline. The genotyping of commercial probiotic Bacillus spp. reported in this study showed that ces existed in B. cereus 34b with the specific sequence type (ST1066). These findings support the hypothesis that probiotic products were frequently contaminated and that some commercial probiotics consisted of Bacillus spp. may possess toxicity and antimicrobial resistance genes. Thus, the further efforts are needed in regarding the surveillance of virulence factors, toxins, and antibiotic resistance determinants in probiotic Bacillus spp.
Collapse
Affiliation(s)
- Fengru Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yunsheng Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Tianyu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yuting Wu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yiting Su
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Changyue Liu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Junyu Zhou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
150
|
Kawarizadeh A, Pourmontaseri M, Farzaneh M, Hosseinzadeh S, Ghaemi M, Tabatabaei M, Pourmontaseri Z, Pirnia MM. Interleukin-8 gene expression and apoptosis induced by Salmonella Typhimurium in the presence of Bacillus probiotics in the epithelial cell. J Appl Microbiol 2020; 131:449-459. [PMID: 33058340 DOI: 10.1111/jam.14898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
AIMS This study aimed to evaluate the effects of three Bacillus probiotics on Salmonella Typhimurium, and interleukin-8 (IL-8) gene expression in the co-culture of the Bacillus and the pathogen in vitro. METHODS AND RESULTS Bacillus subtilis, Bacillus indicus and Bacillus coagulans were initially turned to spore and heat-inactivated forms. The cellular damages of the probiotics on the HT-29 cells were investigated individually and in combination with S. Typhimurium using 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and fluorescence assays. To extract cell free supernatants (CFS) of the probiotics, they were cultured in selective media. The inhibitory activity of CFSs were then assayed against the pathogen. The gene expression of IL-8 of the HT-29 cells was evaluated by real-time PCR in all the groups. The results showed that the CFSs of three probiotics could inhibit the growth of S. Typhimurium by more than 50%. Inhibitory effects of B. indicus and B. subtilis CFSs were related to the production of pepsin-sensitive compounds, except B. coagulans in which the high inhibitory effect was due to organic acids. The spores of the three probiotics and the heat-inactivated forms of B. subtilis and B. coagulans could reduce the cytotoxicity of S. Typhimurium. The cell viability also increased applying both forms probiotics against the pathogen. In all co-culture groups, the IL-8 gene expression induced by S. Typhimurium was reduced. CONCLUSIONS The three Bacillus probiotics can be considered as proper candidates for the prevention and treatment of S. Typhimurium food poisoning. SIGNIFICANCE AND IMPACT OF THE STUDY Applying probiotics as live bacteria is universally noted in foods. This study tried to discover the effects of Bacillus probiotics in the form of spore or even heat-killed bacteria against S. Typhimurium and evaluate ratio of IL-8 gene expression in cell culture. The most effective Bacillus probiotic will be recommended. This approach will help to use probiotics as nonvegetative cells in foods to fight gastrointestinal pathogens.
Collapse
Affiliation(s)
- A Kawarizadeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.,Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Pourmontaseri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Farzaneh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - S Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Ghaemi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Tabatabaei
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Z Pourmontaseri
- Department of Infectious Diseases and Tropical Medicine, Fasa University of Medical Science, Fasa, Iran
| | - M M Pirnia
- Institute of Biophysics and Biochemistry Research, Tehran University, Tehran, Iran
| |
Collapse
|