101
|
Che H, Wang Y, Li H, Li Y, Sahil A, Lv J, Liu Y, Yang Z, Dong R, Xue H, Wang L. Melatonin alleviates cardiac fibrosis via inhibiting lncRNA MALAT1/miR-141-mediated NLRP3 inflammasome and TGF-β1/Smads signaling in diabetic cardiomyopathy. FASEB J 2020; 34:5282-5298. [PMID: 32067273 DOI: 10.1096/fj.201902692r] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023]
Abstract
Melatonin is a hormone produced by the pineal gland, and it has extensive beneficial effects on various tissue and organs; however, whether melatonin has any effect on cardiac fibrosis in the pathogenesis of diabetic cardiomyopathy (DCM) is still unknown. Herein, we found that melatonin administration significantly ameliorated cardiac dysfunction and reduced collagen production by inhibiting TGF-β1/Smads signaling and NLRP3 inflammasome activation, as manifested by downregulating the expression of TGF-β1, p-Smad2, p-Smad3, NLRP3, ASC, cleaved caspase-1, mature IL-1β, and IL-18 in the heart of melatonin-treated mice with diabetes mellitus (DM). Similar beneficial effects of melatonin were consistently observed in high glucose (HG)-treated cardiac fibroblasts (CFs). Moreover, we also found that lncRNA MALAT1 (lncR-MALAT1) was increased along with concomitant decrease in microRNA-141 (miR-141) in DM mice and HG-treated CFs. Furthermore, we established NLRP3 and TGF-β1 as target genes of miR-141 and lncR-MALAT1 as an endogenous sponge or ceRNA to limit the functional availability of miR-141. Finally, we observed that knockdown of miR-141 abrogated anti-fibrosis action of melatonin in HG-treated CFs. Our findings indicate that melatonin produces an antifibrotic effect via inhibiting lncR-MALAT1/miR-141-mediated NLRP3 inflammasome activation and TGF-β1/Smads signaling, and it might be considered a potential agent for the treatment of DCM.
Collapse
Affiliation(s)
- Hui Che
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueqiu Wang
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Li
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Li
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, China
| | - Abbas Sahil
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Lv
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yining Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenyu Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ruixue Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongru Xue
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lihong Wang
- Department of Endocrinology, The Second affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
102
|
Effects of melatonin on cardiovascular risk factors and metabolic syndrome: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:521-536. [DOI: 10.1007/s00210-020-01822-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
|
103
|
Melatonin Ameliorates MI-Induced Cardiac Remodeling and Apoptosis through a JNK/p53-Dependent Mechanism in Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1535201. [PMID: 32411318 PMCID: PMC7199622 DOI: 10.1155/2020/1535201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus, a worldwide health threat, is considered an independent risk factor for cardiovascular diseases. The overall cardiovascular risk of diabetes is similar to the one having one myocardial infarction (MI) attack although the precise impact of diabetes on MI-induced myocardial anomalies remains elusive. Given that mortality following MI is much greater in diabetic patients compared to nondiabetic patients, this study was designed to examine the effect of melatonin on MI injury-induced myocardial dysfunction in diabetes. Adult mice were made diabetic using high-fat feeding and streptozotocin (100 mg/kg body weight) prior to MI and were treated with melatonin (50 mg/kg/d, p.o.) for 4 weeks prior to assessment of cardiac geometry and function. The MI procedure in diabetes displayed overt changes in cardiac geometry (chamber dilation and interstitial fibrosis) and functional anomalies (reduced fractional shortening and cardiomyocyte contractile capacity) in association with elevated c-Jun N-terminal kinase (JNK) phosphorylation and p53 level. Melatonin treatment markedly attenuated cardiac dysfunction and myocardial fibrosis in post-MI diabetic mice. Furthermore, melatonin decreased JNK phosphorylation, reduced p53 levels, and suppressed apoptosis in hearts from the post-MI diabetic group. In vitro findings revealed that melatonin effectively counteracted high-glucose/high fat-hypoxia-induced cardiomyocyte apoptosis and contractile dysfunction through a JNK-mediated mechanism, the effects of which were impaired by the JNK activator anisomycin. In summary, our study suggests that melatonin protects against myocardial injury in post-MI mice with diabetes, which offers a new therapeutic strategy for the management of MI-induced cardiac injury in diabetes.
Collapse
|
104
|
Bizzarri M. Advances in Characterizing Recently-Identified Molecular Actions of Melatonin: Clinical Implications. APPROACHING COMPLEX DISEASES 2020. [PMCID: PMC7164543 DOI: 10.1007/978-3-030-32857-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melatonin, N-acetyl-5-methoxy-tryptamine, was discovered to be a product of serotonin metabolism in the mammalian pineal gland where its synthesis is under control of the light:dark cycle. Besides its regulatory pathway involving ganglion cells in the retina, the neural connections between the eyes and the pineal gland include the master circadian clock, the suprachiasmatic nuclei, and the central and peripheral nervous systems. Since pineal melatonin is released into the blood and into the cerebrospinal fluid, it has access to every cell in an organism and it mediates system-wide effects. Subsequently, melatonin was found in several extrapineal organs and, more recently, perhaps in every cell of every organ. In contrast to the pinealocytes, non-pineal cells do not discharge melatonin into the blood; rather it is used locally in an intracrine, autocrine, or paracrine manner. Melatonin levels in non-pineal cells do not exhibit a circadian rhythm and do not depend on circulating melatonin concentrations although when animals are treated with exogenous melatonin it is taken up by presumably all cells. Mitochondria are the presumed site of melatonin synthesis in all cells; the enzymatic machinery for melatonin synthesis has been identified in mitochondria. The association of melatonin with mitochondria, because of its ability to inhibit oxidative stress, is very fortuitous since these organelles are a major site of damaging reactive oxygen species generation. In this review, some of the actions of non-pineal-derived melatonin are discussed in terms of cellular and subcellular physiology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
105
|
Yu LM, Dong X, Xue XD, Zhang J, Li Z, Wu HJ, Yang ZL, Yang Y, Wang HS. Naringenin improves mitochondrial function and reduces cardiac damage following ischemia-reperfusion injury: the role of the AMPK-SIRT3 signaling pathway. Food Funct 2019; 10:2752-2765. [PMID: 31041965 DOI: 10.1039/c9fo00001a] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction contributed greatly to myocardial ischemia-reperfusion (MI/R)-induced cardiomyocyte apoptosis. Naringenin is a flavonoid exhibiting potential protective effects on myocardial mitochondria under stress conditions. However, the detailed down-stream signaling pathway involved remains uncovered. This study was designed to elucidate naringenin's mitochondrial protective actions during MI/R with a focus on AMPK-SIRT3 signaling. Sprague-Dawley rats were administered with naringenin (50 mg kg-1 d-1) and subjected to MI/R surgery in the presence or absence of compound C (0.25 mg kg-1, Com.C, an AMPK inhibitor) co-treatment. An in vitro study was performed on H9c2 cardiomyoblasts subjected to simulated ischemia-reperfusion treatment. Before the treatment, the cells were administered with naringenin (80 μmol L-1) with or without SIRT3 siRNA/AMPK1α siRNA transfection. Naringenin improved post-reperfusion left ventricular systolic pressure and the instantaneous first derivative of left ventricular pressure, and reduced the infarction size and myocardial apoptosis index by suppressing mitochondrial oxidative stress damage (as evidenced by decreased mitochondrial cytochrome c release and oxidative markers) and enhancing mitochondrial biogenesis [as evidenced by increased NRF1, TFAM and oxidative phosphorylation subunit complexes (II, III and IV)]. These protective actions were abolished by Com.C (in vivo) or SIRT3 siRNA (in vitro) administration. Further investigation revealed that Com.C (in vivo) or AMPK1α siRNA (in vitro) markedly suppressed PGC-1α and SIRT3 levels while SIRT3 siRNA (in vitro) inhibited SIRT3 expression without significantly changing AMPK phosphorylation and PGC-1α levels. Taken together, we found that naringenin directly inhibits mitochondrial oxidative stress damage and preserves mitochondrial biogenesis, thus attenuating MI/R injury. Importantly, AMPK-SIRT3 signaling played a key role in this process.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, , Liaoning 110016, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Liu L, Chen H, Jin J, Tang Z, Yin P, Zhong D, Li G. Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. Life Sci 2019; 239:117036. [PMID: 31697951 DOI: 10.1016/j.lfs.2019.117036] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
AIMS Previous literature has shown that melatonin plays a critical role in protecting against cerebral ischemia/reperfusion (I/R) injury. Sirtuin3(SIRT3), as one member of the sirtuin family, protects against oxidative stress-related diseases. However, the association between melatonin and SIRT3 in cerebral I/R injury is not well understood. Our experiment was planned to investigate whether melatonin protects against cerebral I/R injury through SIRT3 activation. MAIN METHODS We selected transient middle cerebral artery occlusion (tMCAO) mice as the model of cerebral I/R injury. Male C57/BL6 mice were pre-treated with or without a selective SIRT3 inhibitor and then subjected to tMCAO surgery. Melatonin (20 mg/kg) was given to mice by intraperitoneal injection after ischemia and before reperfusion. Then, we observed the changes in the SIRT3 and downstream relative proteins, infarction volume, neurological score, Nissl, H&E and TUNEL staining, and the expression of apoptosis proteins after tMCAO. KEY FINDINGS Melatonin upregulated the expression of SIRT3 after tMCAO, and alleviated the neurological dysfunction and cell apoptosis through SIRT3 activation. SIGNIFICANCE Our research proved that melatonin promoted SIRT3 expression after tMCAO and alleviated cerebral I/R injury by activating the SIRT3 signaling pathway. This study provides novel therapeutic targets and mechanisms for the treatment of ischemic stroke in the clinic, especially during cerebrovascular reperfusion.
Collapse
Affiliation(s)
- Lili Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Jing Jin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Zhanbin Tang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Pengqi Yin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, Heilongjiang Province, PR China.
| |
Collapse
|
107
|
Dube K, Dhanabalan K, Salie R, Blignaut M, Huisamen B, Lochner A. Melatonin has profound effects on mitochondrial dynamics in myocardial ischaemia/reperfusion. Heliyon 2019; 5:e02659. [PMID: 31720456 PMCID: PMC6838907 DOI: 10.1016/j.heliyon.2019.e02659] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/11/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Research focus recently shifted to mitochondrial dynamics and the role of fusion and fission in cardioprotection. The aim of this study was to evaluate (i) the function and dynamics of mitochondria isolated from hearts exposed to ischaemia/reperfusion (I/R) (ii) the effects of melatonin, a powerful cardioprotectant, on mitochondrial dynamics in I/R. Isolated perfused rat hearts were stabilized for 30 min, subjected to 20 min global ischaemia, followed by 30 min reperfusion. Tissue was collected, mitochondria isolated for measurement of mitochondrial oxidative function and lysates from mitochondrial and cytosolic fractions prepared for western blotting. Melatonin (0.3 or 50 μM) was administered for 10 min immediately before the onset of ischaemia and for 10 min at the onset of reperfusion. Infarct size was assessed after 35 min regional ischaemia/60 min reperfusion using triphenyltetrazolium staining. The results show that reperfusion significantly reduced mitochondrial QO2 (states 3 and 4), with minor effects by melatonin. Cytosolic Beclin 1 and the LC3 II/I ratio were reduced by ischaemia and increased by reperfusion. Both ischaemia and reperfusion reduced mitochondrial PINK1 and Parkin levels, while reperfusion increased p62. An alternative mitophagy pathway mediated by Rab9 is activated during myocardial ischaemia/reperfusion. Ischaemia reduced and reperfusion increased cytosolic ULK1 expression, associated with redistribution of Rab9 and Drp1 between the cytosol and mitochondria. Melatonin significantly reduced mitochondrial p62 expression upon reperfusion. Throughout the protocol, melatonin significantly (i) increased cytosolic total (t) and phospho (p) ULK1, and Rab9 levels (ii) increased the cytosolic and reduced the mitochondrial pDrp1 levels and p/t Drp1 ratio, suggesting inhibition of mitochondrial fission. Fusion was affected to a lesser extent. Cardioprotection by melatonin is associated with substantial effects on mitophagy, the significance thereof remains to be established.
Collapse
|
108
|
Xu L, Su Y, Zhao Y, Sheng X, Tong R, Ying X, Gao L, Ji Q, Gao Y, Yan Y, Yuan A, Wu F, Lan F, Pu J. Melatonin differentially regulates pathological and physiological cardiac hypertrophy: Crucial role of circadian nuclear receptor RORα signaling. J Pineal Res 2019; 67:e12579. [PMID: 30958896 DOI: 10.1111/jpi.12579] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Exercise-induced physiological hypertrophy provides protection against cardiovascular disease, whereas disease-induced pathological hypertrophy leads to heart failure. Emerging evidence suggests pleiotropic roles of melatonin in cardiac disease; however, the effects of melatonin on physiological vs pathological cardiac hypertrophy remain unknown. Using swimming-induced physiological hypertrophy and pressure overload-induced pathological hypertrophy models, we found that melatonin treatment significantly improved pathological hypertrophic responses accompanied by alleviated oxidative stress in myocardium but did not affect physiological cardiac hypertrophy and oxidative stress levels. As an important mediator of melatonin, the retinoid-related orphan nuclear receptor-α (RORα) was significantly decreased in human and murine pathological hypertrophic cardiomyocytes, but not in swimming-induced physiological hypertrophic murine hearts. In vivo and in vitro loss-of-function experiments indicated that RORα deficiency significantly aggravated pathological cardiac hypertrophy, and notably weakened the anti-hypertrophic effects of melatonin. Mechanistically, RORα mediated the cardioprotection of melatonin in pathological hypertrophy mainly by transactivation of manganese-dependent superoxide dismutase (MnSOD) via binding to the RORα response element located in the promoter region of the MnSOD gene. Furthermore, MnSOD overexpression reversed the pro-hypertrophic effects of RORα deficiency, while MnSOD silencing abolished the anti-hypertrophic effects of RORα overexpression in pathological cardiac hypertrophy. Collectively, our findings provide the first evidence that melatonin exerts an anti-hypertrophic effect on pathological but not physiological cardiac hypertrophy via alleviating oxidative stress through transactivation of the antioxidant enzyme MnSOD in a RORα-dependent manner.
Collapse
Affiliation(s)
- Longwei Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Su
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Zhao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xincheng Sheng
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Renyang Tong
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoying Ying
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lingchen Gao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqi Ji
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Gao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ancai Yuan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Fujian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
109
|
Wang S, Zhao Z, Fan Y, Zhang M, Feng X, Lin J, Hu J, Cheng Z, Sun C, Liu T, Xiong Z, Yang Z, Wang H, Sun D. Mst1 inhibits Sirt3 expression and contributes to diabetic cardiomyopathy through inhibiting Parkin-dependent mitophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1905-1914. [DOI: 10.1016/j.bbadis.2018.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
|
110
|
Wu M, Liu F, Guo Q. Quercetin attenuates hypoxia-ischemia induced brain injury in neonatal rats by inhibiting TLR4/NF-κB signaling pathway. Int Immunopharmacol 2019; 74:105704. [PMID: 31228815 DOI: 10.1016/j.intimp.2019.105704] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
Neonatal hypoxic ischemia (HI) is a kind of brain damage that occurs when an infant's brain does not receive enough oxygen and blood. The unrepairable damage leads to newborn death and short/long term brain dysfunctions. Due to the complicated causes and the variety of brain damages, there is no definitive treatment of neonatal HI. In this study, we set up a HI injury model of newborn rat and administrated Quercetin (Que) to treat rat pups before and after HI injury. We performed immunohistochemistry, quantitative PCR and immunoblot experiments to examine whether Que. has a role in attenuating brain injury after HI. We found that Que. treatment could clearly attenuate cortical cell apoptosis, as well as suppress apoptosis marker Bax, and activate anti-apoptosis marker Bcl-2. Moreover, Que. treatment decreased the number of cortical cells microgliosis and astrogliosis induced by HI injury. Furthermore, Que. treatment decreased cortical inflammation. Finally, it is suggested that Que. played a neuroprotective function on HI brain injury via inhibiting the TLR4/NF-κB signaling pathway. From these results, we conclude that Que. treatment may be a used as a therapeutic drug to prevent and decrease the newborn brain damage caused by HI.
Collapse
Affiliation(s)
- Meiyan Wu
- The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan 250033, Shandong, China
| | - Fengting Liu
- Yidu Central Hospital of Weifang, No. 4138 Linglongshan Road, Qingzhou 262500, Shandong, China
| | - Qinghui Guo
- The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan 250033, Shandong, China.
| |
Collapse
|
111
|
Geng C, Wei J, Wu C. Mammalian STE20-like Kinase 1 Knockdown Attenuates TNFα-Mediated Neurodegenerative Disease by Repressing the JNK Pathway and Mitochondrial Stress. Neurochem Res 2019; 44:1653-1664. [PMID: 30949935 DOI: 10.1007/s11064-019-02791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
Neuroinflammation has been acknowledged as a primary factor contributing to the pathogenesis of neurodegenerative disease. However, the molecular mechanism underlying inflammation stress-mediated neuronal dysfunction is not fully understood. The aim of our study was to explore the influence of mammalian STE20-like kinase 1 (Mst1) in neuroinflammation using TNFα and CATH.a cells in vitro. The results of our study demonstrated that the expression of Mst1 was dose-dependently increased after TNFα treatment. Interestingly, knockdown of Mst1 using siRNA transfection significantly repressed TNFα-induced neuronal death. We also found that TNFα treatment was associated with mitochondrial stress, including mitochondrial ROS overloading, mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential reduction, and mitochondrial pro-apoptotic factor release. Interestingly, loss of Mst1 attenuated TNFα-triggered mitochondrial stress and sustained mitochondrial function in CATH.a cells. We found that Mst1 modulated mitochondrial homeostasis and cell viability via the JNK pathway in a TNFα-induced inflammatory environment. Inhibition of the JNK pathway abolished TNFα-mediated CATH.a cell death and mitochondrial malfunction, similar to the results obtained via silencing of Mst1. Taken together, our results indicate that inflammation-mediated neuronal dysfunction is implicated in Mst1 upregulation, which promotes mitochondrial stress and neuronal death by activating the JNK pathway. Accordingly, our study identifies the Mst1-JNK-mitochondria axis as a novel signaling pathway involved in neuroinflammation.
Collapse
Affiliation(s)
- Chizi Geng
- Neurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Jianchao Wei
- Neurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chengsi Wu
- Neurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
112
|
Li J, Li N, Yan S, Lu Y, Miao X, Gu Z, Shao Y. Liraglutide protects renal mesangial cells against hyperglycemia‑mediated mitochondrial apoptosis by activating the ERK‑Yap signaling pathway and upregulating Sirt3 expression. Mol Med Rep 2019; 19:2849-2860. [PMID: 30816450 DOI: 10.3892/mmr.2019.9946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 01/11/2019] [Indexed: 11/05/2022] Open
Abstract
Diabetic nephropathy results from hyperglycemia‑mediated renal glomerular cell death via mitochondrial apoptosis. There is an emerging requirement for novel approaches with mitochondrial protective effects that alleviate the hyperglycemia‑induced loss of functional cells during diabetic renal damage. Liraglutide, a type of glucagon‑like peptide‑1 agonist, has been suggested to inhibit the progression of obesity and hyperglycemia. However, the contributions and mechanism of action of liraglutide on hyperglycemia‑mediated cell mitochondrial apoptosis in diabetic kidneys have not been illustrated. The present study demonstrated that liraglutide may protect human renal mesangial cells (HRMCs) against hyperglycemia‑induced cell death by inhibiting mitochondrial apoptosis. Liraglutide administration also maintained HRMC viability and promoted HRMC proliferation within a high glucose stress environment. Functional studies demonstrated that hyperglycemia triggered mitochondrial dysfunction, including mitochondrial potential reduction, mitochondrial permeability transition pore opening, reactive oxygen species overproduction and the activation of the mitochondrial apoptotic pathway. However, liraglutide treatment preserved mitochondrial function and prevented activation of mitochondrial apoptosis by upregulating sirtuin 3 (Sirt3) expression. Deletion of Sirt3 abrogated the protective effects of liraglutide on mitochondrial homeostasis following high glucose challenge. In addition, molecular analysis confirmed that liraglutide upregulated Sirt3 via activating the extracellular signal‑regulated kinase‑Yes‑associated protein (ERK‑Yap) signaling pathway. Inhibition of the ERK‑Yap axis negated the action of liraglutide on Sirt3 activation, leading to mitochondrial injury and HRMC apoptosis. Taken together, the present study illustrated that liraglutide protected renal mesangial cells from hyperglycemia‑mediated mitochondrial apoptosis by upregulating Sirt3 expression and activation of the ERK‑Yap signaling pathway.
Collapse
Affiliation(s)
- Jian Li
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Nan Li
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shuangtong Yan
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yanhui Lu
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xinyu Miao
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zhaoyan Gu
- Department of Geriatric Endocrinology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yinghong Shao
- Department of Outpatients, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
113
|
Li Z, Li X, Bi J, Chan MTV, Wu WKK, Shen J. Melatonin protected against the detrimental effects of microRNA-363 in a rat model of vitamin A-associated congenital spinal deformities: Involvement of Notch signaling. J Pineal Res 2019; 66:e12558. [PMID: 30653707 DOI: 10.1111/jpi.12558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022]
Abstract
Congenital spinal deformities are a result of defective somitogenesis and are associated with vitamin A deficiency (VAD). However, the molecular mechanisms of VAD-associated congenital spinal deformities remain largely unknown. Increasing number of studies suggested that microRNAs and melatonin played important roles in the development of congenital spinal deformities. In this study, we showed that the whole-embryo expression of miR-363 was upregulated in VAD rats. Furthermore, we demonstrated that miR-363 inhibited the proliferation and neuronal differentiation of primary cultured NSCs, accompanied by downregulation of Notch1. To this end, melatonin suppressed miR-363 expression and rescued the effects of miR-363 on NSC proliferation and neuronal differentiation together with restoration of Notch signaling. The present study provided new insights into the mechanism of VAD-associated spinal deformities and the therapeutic effect of melatonin that may lead to novel understanding of the molecular mechanisms of congenital spinal deformities.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Jiaqi Bi
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
114
|
Zhou T, Chang L, Luo Y, Zhou Y, Zhang J. Mst1 inhibition attenuates non-alcoholic fatty liver disease via reversing Parkin-related mitophagy. Redox Biol 2019; 21:101120. [PMID: 30708325 PMCID: PMC6357900 DOI: 10.1016/j.redox.2019.101120] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
Obesity-related non-alcoholic fatty liver disease (NAFLD) is connected with mitochondrial stress and hepatocyte apoptosis. Parkin-related mitophagy sustains mitochondrial homeostasis and hepatocyte viability. However, the contribution and regulatory mechanisms of Parkin-related mitophagy in NAFLD are incompletely understood. Macrophage stimulating 1 (Mst1) is a novel mitophagy upstream regulator which excerbates heart and cancer apoptosisn via repressing mitophagy activity. The aim of our study is to explore whether Mst1 contributes to NAFLD via disrupting Parkin-related mitophagy. A NAFLD model was generated in wild-type (WT) mice and Mst1 knockout (Mst1-KO) mice using high-fat diet (HFD). Cell experiments were conducted via palmitic acid (PA) treatment in the primary hepatocytes. The results in our study demonstrated that Mst1 was significantly upregulated in HFD-treated livers. Genetic ablation of Mst1 attenuated HFD-mediated hepatic injury and sustained hepatocyte viability. Functional studies illustrated that Mst1 knockdown reversed Parkin-related mitophagy and the latter protected mitochondria and hepatocytes against HFD challenge. Besides, we further figured out that Mst1 modulated Parkin expression via the AMPK pathway; blockade of AMPK repressed Parkin-related mitophagy and recalled hepatocytes mitochondrial apoptosis. Altogether, our data identified that NAFLD was closely associated with the defective Parkin-related mitophagy due to Mst1 upregulation. This finding may pave the road to new therapeutic modalities for the treatment of fatty liver disease. Mst1 deletion prevents diet-induced NAFLD. Mst1 deficiency increases Parkin expression and thus reverses mitophagy activity. Loss of Parkin-related mitophagy abrogates the protective effect of Mst1 deletion on hepatocyte mitochondrial stress. Mst1 modulates Parkin via activating AMPK pathway.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Chang
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhou
- Department of Gastroenterology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
115
|
Li H, Zhang Y, Liu S, Li F, Wang B, Wang J, Cao L, Xia T, Yao Q, Chen H, Zhang Y, Zhu X, Li Y, Li G, Wang J, Li X, Ni S. Melatonin Enhances Proliferation and Modulates Differentiation of Neural Stem Cells Via Autophagy in Hyperglycemia. Stem Cells 2019; 37:504-515. [PMID: 30644149 DOI: 10.1002/stem.2968] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Dysfunction of neural stem cells (NSCs) has been linked to fetal neuropathy, one of the most devastating complications of gestational diabetes. Several studies have demonstrated that melatonin (Mel) exerted neuroprotective actions in various stresses. However, the role of autophagy and the involvement of Mel in NSCs in hyperglycemia (HG) have not yet been fully established. Here, we found that HG increased autophagy and autophagic flux of NSCs as evidenced by increasing LC3B II/I ratio, Beclin-1 expression, and autophagosomes. Moreover, Mel enhanced NSCs proliferation and self-renewal in HG with decreasing autophagy and activated mTOR signaling. Consistently, inhibition of autophagy by 3-Methyladenine (3-Ma) could assist Mel effects above, and induction of autophagy by Rapamycin (Rapa) could diminish Mel effects. Remarkably, HG induced premature differentiation of NSCs into neurons (Map2 positive cells) and astrocytes (GFAP positive cells). Furthermore, Mel diminished HG-induced premature differentiation and assisted NSCs in HG differentiation as that in normal condition. Coincidentally, inhibiting of NSCs autophagy by 3-Ma assisted Mel to modulate differentiation. However, increasing NSCs autophagy by Rapa disturbed the Mel effects and retarded NSCs differentiation. These findings suggested that Mel supplementation could contribute to mimicking normal NSCs proliferation and differentiation in fetal central nervous system by inhibiting autophagy in the context of gestational diabetes. Stem Cells 2019;37:504-515.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yanmin Zhang
- Brain Science Research Institute, Shandong University, Jinan, People's Republic of China.,Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Basic Medical Sciences, Jinan, People's Republic of China
| | - Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Basic Medical Sciences, Jinan, People's Republic of China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Fengpeng Li
- Department of Neurosurgery, Yinan County People's Hospital, Linyi, People's Republic of China
| | - Benlin Wang
- Department of Neurosurgery, PLA No. 970 Hospital, Yantai, Shandong, People's Republic of China
| | - Jianjie Wang
- Shandong University School of Medicine, Jinan, People's Republic of China
| | - Lanfang Cao
- Department of Infection Management, The Second People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Tongliang Xia
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Qingyu Yao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, People's Republic of China
| | - Haijun Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xiaodong Zhu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| | - Yang Li
- Shandong University School of Medicine, Jinan, People's Republic of China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Brain Science Research Institute, Shandong University, Jinan, People's Republic of China
| | - Jian Wang
- Brain Science Research Institute, Shandong University, Jinan, People's Republic of China.,KG Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Brain Science Research Institute, Shandong University, Jinan, People's Republic of China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, People's Republic of China.,Brain Science Research Institute, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
116
|
Feng J, Chen X, Liu R, Cao C, Zhang W, Zhao Y, Nie S. Melatonin protects against myocardial ischemia-reperfusion injury by elevating Sirtuin3 expression and manganese superoxide dismutase activity. Free Radic Res 2019; 52:840-849. [PMID: 30208798 DOI: 10.1080/10715762.2018.1461215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Myocardial ischemia-reperfusion (MI/R) injury is a crucial cause for mortality throughout the world. Recent studies indicated that melatonin might exert profound cardio-protective effect in MI/R injury. However, the underlying mechanisms are not completely understood. In the current study, we aimed to explore the potential effect of melatonin in the pathological process of MI/R. Both in vivo MI/R model and in vitro H9c2 cell line simulated I/R (SIR) model were applied with or without melatonin supplementation. We found that Sirtuin3 (Sirt3) expression and activity were markedly decreased under MI/R and SIR conditions. Melatonin treatment significantly increased myocardial Sirt3 expression, and alleviated MI/R-induced cardiac morphology changes and cardiac dysfunction, as well as myocardial apoptosis level. In addition, DHE and JC-1 staining results demonstrated that melatonin reduced mitochondrial reactive oxygen species (ROS) generation and restored ATP production after SIR injury via elevating Sirt3 expression. By using siRNA targeting Sirt3, we confirmed that the beneficial effects of melatonin were dependent on Sirt3, which in turn deacetylated and activated manganese superoxide dismutase (MnSOD). Collectively, the current study demonstrated the protective effect of melatonin against MI/R injury via alleviating myocardial oxidative stress. Moreover, these beneficial effects were associated with the deacetylation modification of Sirt3 on MnSOD.
Collapse
Affiliation(s)
- Jing Feng
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Xin Chen
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Rui Liu
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Changkui Cao
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Wei Zhang
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Yang Zhao
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| | - Shinan Nie
- a Department of Emergency Medicine , Jinling Hospital, Medical School of Nanjing University , Nanjing , PR China
| |
Collapse
|
117
|
Zhang W, Liu K, Pei Y, Ma J, Tan J, Zhao J. Mst1 regulates non-small cell lung cancer A549 cell apoptosis by inducing mitochondrial damage via ROCK1/F‑actin pathways. Int J Oncol 2018; 53:2409-2422. [PMID: 30320378 PMCID: PMC6203146 DOI: 10.3892/ijo.2018.4586] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Mammalian STE20-like kinase 1 (Mst1) is well recognized as a major tumor suppressor in cancer development, growth, metabolic reprogramming, metastasis, cell death and recurrence. However, the roles of Mst1 in non-small cell lung cancer (NSCLC) A549 cell phenotypic alterations remain to be elucidated. The present study aimed to explore the functional role and underlying mechanisms of Mst1 with regards to A549 cell proliferation, migration and apoptosis; this study focused on mitochondrial homeostasis and Rho-associated coiled-coil containing protein kinase 1 (ROCK1)/F‑actin pathways. The results demonstrated that Mst1 was downregulated in A549 cells compared with in a normal pulmonary epithelial cell line. Subsequently, overexpression of Mst1 in A549 cells reduced cell viability and promoted cell apoptosis. Furthermore, overexpression of Mst1 suppressed A549 cell proliferation and migration. At the molecular level, the reintroduction of Mst1 in A549 cells led to activation of mitochondrial apoptosis, as evidenced by a reduction in mitochondrial potential, overproduction of ROS, cytochrome c release from the mitochondria into the nucleus, and upregulation of pro-apoptotic protein expression. In addition, Mst1 overexpression was closely associated with impaired mitochondrial respiratory function and suppressed cellular energy metabolism. Functional studies illustrated that Mst1 overexpression activated ROCK1/F-actin pathways, which highly regulate mitochondrial function. Inhibition of ROCK1/F-actin pathways in A549 cells sustained mitochondrial homeostasis, alleviated caspase-9-dependent mitochondrial apoptosis, enhanced cancer cell migration and increased cell proliferation. In conclusion, these data firmly established the regulatory role of Mst1 in NSCLC A549 cell survival via the modulation of ROCK1/F-actin pathways, which may provide opportunities for novel treatment modalities in clinical practice.
Collapse
Affiliation(s)
- Weiqiang Zhang
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Keiqiang Liu
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Yingxin Pei
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Jingbo Ma
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Jiang Tan
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| | - Jing Zhao
- Department of Thoracic Surgery, Army General Hospital of PLA, Beijing 100700, P. R. China
| |
Collapse
|
118
|
Yao S, Yan W. Overexpression of Mst1 reduces gastric cancer cell viability by repressing the AMPK-Sirt3 pathway and activating mitochondrial fission. Onco Targets Ther 2018; 11:8465-8479. [PMID: 30555239 PMCID: PMC6278716 DOI: 10.2147/ott.s180851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Mammalian sterile 20-like kinase 1 (Mst1) plays a critical role in regulating cell survival and apoptosis. However, its influence on gastric cancer cell viability is not understood. Our study aims to explore the specific role of Mst1 in gastric cancer. MATERIALS AND METHODS Cellular viability was measured via TUNEL staining, MTT assays, and Western blotting. Immunofluorescence was performed to observe mitochondrial fission. Mst1 overexpression assays were conducted to observe the regulatory mechanisms of Mst1 in mitochondrial fission and cell apoptosis. RESULTS The results demonstrated that Mst1 was downregulated in AGS cells when compared with GES-1 cells. However, overexpression of Mst1 reduced cell viability and increased apoptosis in AGS cells. Molecular experiments showed that Mst1 overexpression mediated mitochondrial damage, as evidenced by decreased ATP production, increased ROS generation, more cyt-c translocation from the mitochondria into the cytoplasm and nucleus, and activated the caspase-9-related apoptotic pathway. Furthermore, we found that mitochondrial fission was required for Mst1-induced mitochondrial dysfunction; inhibition of mitochondrial fission sustained mitochondrial homeostasis in response to Mst1 overexpression. In addition, our data revealed that Mst1 controlled mitochondrial fission via repressing the AMPK-Sirt3 pathway. Activation of the AMPK-Sirt3 pathway negated the promoting effect of Mst1 overexpression on mitochondrial fission. CONCLUSION Altogether, our data identified Mst1 as a novel tumor-suppressive factor in promoting cell death in gastric cancer cells by triggering mitochondrial fission and blocking the AMPK-Sirt3 axis.
Collapse
Affiliation(s)
- Shiwei Yao
- Department of Gastroenterology, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China,
| | - Wei Yan
- Department of Gastroenterology, The First Hospital of Tsinghua University, Beijing, China
| |
Collapse
|
119
|
Wu A, Hu P, Lin J, Xia W, Zhang R. Activating Cannabinoid Receptor 2 Protects Against Diabetic Cardiomyopathy Through Autophagy Induction. Front Pharmacol 2018; 9:1292. [PMID: 30459625 PMCID: PMC6232417 DOI: 10.3389/fphar.2018.01292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Cannabinoid receptor 2 (CB2) has been reported to produce a cardio-protective effect in cardiovascular diseases such as myocardial infarction. Here in this study, we investigated the role of CB2 in diabetic cardiomyopathy (DCM) and its underlying mechanisms. HU308 was used for the selective activation of CB2. Bafilomycin A1 was used for the blockade of autophagy and compound C was used to inhibit AMPK signaling. An streptozotocin (STZ)-induced mice model and high glucose (HG)-challenged cardiomyocytes were applied for study. Cardiac function was detected by echocardiography and Western blot for the detection of autophagy-related and its signaling-related proteins. Transmission electron microscopy was used for the analysis of autophagosome number. Cell viability was detected by Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays. We found that activating CB2 by HU308 improved cardiac function in DCM as well as cell viability in cardiomyocytes under HG challenge, while the administration of bafilomycin A1 attenuated the protective effects. HU308 enhanced the level of autophagy in the heart tissues from DCM mice as well as cardiomyocytes under HG challenge. HU308 triggered the AMPK-mTOR-p70S6K signaling pathway, while the administration of compound C attenuated the cardio-protective effect of HU308 in cardiomyocytes under HG challenge. In conclusion, we initially demonstrated that activating CB2 produced a cardio-protective effect in DCM as well as cardiomyocytes under HG challenge through inducing the AMPK-mTOR-p70S6K signaling-mediated autophagy.
Collapse
Affiliation(s)
- Aiping Wu
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian Lin
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou, China
| | - Wan Xia
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou, China
| | - Rui Zhang
- Department of Rehabilitation Medicine, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
120
|
Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65:e12525. [PMID: 30242884 DOI: 10.1111/jpi.12525] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
121
|
Zhang Z, Lin J, Tian N, Wu Y, Zhou Y, Wang C, Wang Q, Jin H, Chen T, Nisar M, Zheng G, Xu T, Gao W, Zhang X, Wang X. Melatonin protects vertebral endplate chondrocytes against apoptosis and calcification via the Sirt1-autophagy pathway. J Cell Mol Med 2018; 23:177-193. [PMID: 30353656 PMCID: PMC6307776 DOI: 10.1111/jcmm.13903] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin is reportedly associated with intervertebral disc degeneration (IDD). Endplate cartilage is vitally important to intervertebral discs in physiological and pathological conditions. However, the effects and mechanism of melatonin on endplate chondrocytes (EPCs) are still unclear. Herein, we studied the effects of melatonin on EPC apoptosis and calcification and elucidated the underlying mechanism. Our study revealed that melatonin treatment decreases the incidence of apoptosis and inhibits EPC calcification in a dose-dependent manner. We also found that melatonin upregulates Sirt1 expression and activity and promotes autophagy in EPCs. Autophagy inhibition by 3-methyladenine reversed the protective effect of melatonin on apoptosis and calcification, while the Sirt1 inhibitor EX-527 suppressed melatonin-induced autophagy and the protective effects of melatonin against apoptosis and calcification, indicating that the beneficial effects of melatonin in EPCs are mediated through the Sirt1-autophagy pathway. Furthermore, melatonin may ameliorate IDD in vivo in rats. Collectively, this study revealed that melatonin reduces EPC apoptosis and calcification and that the underlying mechanism may be related to Sirt1-autophagy pathway regulation, which may help us better understand the association between melatonin and IDD.
Collapse
Affiliation(s)
- Zengjie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jialiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tingting Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Majid Nisar
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tianzhen Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,The Third Affiliated Hospital and Ruian People's Hospital of Wenzhou Medical University, Ruian, Zhejiang Province, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Chinese Orthopaedic Regenerative Medicine Society, Zhejiang University of School Medicne, HangZhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
122
|
Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol Res 2018; 137:11-24. [PMID: 30223086 DOI: 10.1016/j.phrs.2018.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.
Collapse
|
123
|
Mst1 knockout enhances cardiomyocyte autophagic flux to alleviate angiotensin II-induced cardiac injury independent of angiotensin II receptors. J Mol Cell Cardiol 2018; 125:117-128. [PMID: 30193956 DOI: 10.1016/j.yjmcc.2018.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/19/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022]
Abstract
AIMS Angiotension II (Ang II) plays a central role in the pathogenesis of renin-angiotensin-aldosterone system (RAAS)-induced heart failure. Mst1 exerts its function in cardiomyocytes subjected to pathological stimuli via inhibiting autophagy and aggravating apoptosis, but its role in RAAS-mediated cardiac injury is still unknown. Here, we aimed to determine whether cardiomyocyte-specific Mst1 knockout can alleviate Ang II-induced cardiac injury by improving cardiomyocyte autophagy and whether these functions depend on Ang II receptors. RESULTS Mst1 knockout alleviated Ang II-induced heart failure, without affecting blood pressure and compensatory concentric hypertrophy. Mst1 specific knockout improved the effects of Ang II on cardiomyocyte autophagy, as evidenced by further increased LC3-II expression and decreased P62 expression. More typical autophagosomes accompanied by less damaged mitochondria were also observed by electron microscopy in Ang II-treated Mst1Δ/Δ mice. In vitro, Mst1 knockdown promoted cardiomyocyte autophagic flux, as demonstrated by more GFP-mRFP-LC3 puncta per cell. Increased LC3-II and decreased P62 expression both in the presence and absence of chloroquine were observed in Mst1 knockdown cardiomyocytes administered with Ang II. Treatment with 3-MA, an inhibitor of autophagy, abolished the beneficial effects of Mst1 knockout against Ang II-induced cardiac dysfunction. The compensatory effects of Ang II on upregulated autophagy were associated with Mst1 inhibition. Interestingly, the knockdown or antagonization of AT1R inhibited cardiomyocyte autophagy, which may represent a threat to cardiac function. Importantly, Mst1 knockout consistently enhanced cardiomyocyte autophagy following the knockdown or blocking of AT1R and AT2R. CONCLUSION Cardiomyocyte-specific Mst1 knockout alleviates Ang II-induced cardiac injury by enhancing cardiomyocyte autophagy. Mst1 inhibition may counteract the undesirable effects of Ang II receptors blockage on cardiomyocyte autophagy and represent a promising complementary treatment strategy against Ang II-induced cardiac injury.
Collapse
|
124
|
Ding M, Feng N, Tang D, Feng J, Li Z, Jia M, Liu Z, Gu X, Wang Y, Fu F, Pei J. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J Pineal Res 2018; 65:e12491. [PMID: 29575122 PMCID: PMC6099285 DOI: 10.1111/jpi.12491] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Myocardial contractile dysfunction is associated with an increase in mitochondrial fission in patients with diabetes. However, whether mitochondrial fission directly promotes diabetes-induced cardiac dysfunction is still unknown. Melatonin exerts a substantial influence on the regulation of mitochondrial fission/fusion. This study investigated whether melatonin protects against diabetes-induced cardiac dysfunction via regulation of mitochondrial fission/fusion and explored its underlying mechanisms. Here, we show that melatonin prevented diabetes-induced cardiac dysfunction by inhibiting dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Melatonin treatment decreased Drp1 expression, inhibited mitochondrial fragmentation, suppressed oxidative stress, reduced cardiomyocyte apoptosis, improved mitochondrial function and cardiac function in streptozotocin (STZ)-induced diabetic mice, but not in SIRT1-/- diabetic mice. In high glucose-exposed H9c2 cells, melatonin treatment increased the expression of SIRT1 and PGC-1α and inhibited Drp1-mediated mitochondrial fission and mitochondria-derived superoxide production. In contrast, SIRT1 or PGC-1α siRNA knockdown blunted the inhibitory effects of melatonin on Drp1 expression and mitochondrial fission. These data indicated that melatonin exerted its cardioprotective effects by reducing Drp1-mediated mitochondrial fission in a SIRT1/PGC-1α-dependent manner. Moreover, chromatin immunoprecipitation analysis revealed that PGC-1α directly regulated the expression of Drp1 by binding to its promoter. Inhibition of mitochondrial fission with Drp1 inhibitor mdivi-1 suppressed oxidative stress, alleviated mitochondrial dysfunction and cardiac dysfunction in diabetic mice. These findings show that melatonin attenuates the development of diabetes-induced cardiac dysfunction by preventing mitochondrial fission through SIRT1-PGC1α pathway, which negatively regulates the expression of Drp1 directly. Inhibition of mitochondrial fission may be a potential target for delaying cardiac complications in patients with diabetes.
Collapse
Affiliation(s)
- Mingge Ding
- Department of Cardiology and Department of GeriatricsXi'an Central HospitalXi'an Jiaotong UniversityXi'anChina
| | - Na Feng
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Daishi Tang
- Department of EndocrinologyAffiliated Zhongshan Hospital of Dalian UniversityDalianChina
| | - Jiahao Feng
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Zeyang Li
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Min Jia
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Zhenhua Liu
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Xiaoming Gu
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Yuemin Wang
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Feng Fu
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jianming Pei
- Department of PhysiologyNational Key Discipline of Cell BiologySchool of Basic MedicineFourth Military Medical UniversityXi'anChina
| |
Collapse
|
125
|
Hu J, Wang S, Xiong Z, Cheng Z, Yang Z, Lin J, Wang T, Feng X, Gao E, Wang H, Sun D. Exosomal Mst1 transfer from cardiac microvascular endothelial cells to cardiomyocytes deteriorates diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3639-3649. [PMID: 30251683 DOI: 10.1016/j.bbadis.2018.08.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 01/28/2023]
Abstract
Diabetic cardiomyopathy (DCM) is characterized by cardiac microvascular endothelial cells (CMECs) injury and cardiomyocyte (CM) dysfunction. Exosomes mediated cellular communication between CMECs and CM has emerging roles in the pathogenesis of DCM, but the underlining mechanisms are unclear. Mammalian sterile 20-like kinase 1 (Mst1), a key component in Hippo pathway which participates in regulating organ size, apoptosis and autophagy, is involved in the development of DCM. We generated the endothelial-specific Mst1 transgenic mice (Tg-Mst1EC) and constructed diabetic model with streptozotocin (STZ). Interestingly, Tg-Mst1EC mice suffered from worse cardiac function and aggravated insulin resistance compared with non-transgenic (NTg) diabetic mice. The content of Mst1 protein was increased, while Mst1 mRNA had no significant change in CM isolated from diabetic Tg-Mst1EC mice. In vitro, CMECs-derived exosomes were taken up by CM and increased Mst1 protein content which inhibited autophagy, as well as enhanced apoptosis in high glucose (HG) cultured CM as evidenced by immunofluorescence and western blot analysis. In addition, Mst1 inhibited glucose uptake under diabetic condition by disrupting the glucose transporter type 4 (GLUT4) membrane translocation through decreasing the interaction between Daxx and GLUT4, as well as enhancing the association of Mst1 and Daxx. Our study exemplifies pleiotropic effects of Mst1-enriched exosomes released from CMECs on inhibiting autophagy, promoting apoptosis and suppressing the glucose metabolism in CM.
Collapse
Affiliation(s)
- Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanjie Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenyu Xiong
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
126
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
127
|
Gao Y, Zhao Y, Yuan A, Xu L, Huang X, Su Y, Gao L, Ji Q, Pu J, He B. Effects of farnesoid-X-receptor SUMOylation mutation on myocardial ischemia/reperfusion injury in mice. Exp Cell Res 2018; 371:301-310. [PMID: 30098335 DOI: 10.1016/j.yexcr.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury induces excessive cellular apoptosis and contributes significantly to final infarct size. We previously demonstrated that a nuclear receptor, Farnesoid X receptor (FXR), plays a crucial role in mediating myocardial apoptosis. The FXR functions are regulated by post translational modifications (PTM). However, whether the proapoptotic effect of FXR in MI/R injury is regulated by PTM remains unclear. Here, we aimed to study the effect of SUMOylation, a PTM involved in the pathogenesis of MI/R injury per se, on the proapoptotic effect of FXR in MI/R injury. We observed that FXR could be SUMOylated in heart tissues, and FXR SUMOylation levels were downregulated in ischemia reperfused myocardium. By overexpression of SUMOylation-defective FXR mutant, it was demonstrated that decreased SUMOylation augmented the detrimental effect of FXR, via activation of mitochondrial apoptosis pathway and autophagy dysfunction in MI/R injury. Further mechanistic studies suggested that decreased SUMOylation levels increased the transcription activity of FXR, and the subsequently upregulated FXR target gene SHP mediated the proapoptotic effects of FXR. Taken together, we provided the first evidence that the cardiac effects of FXR could be regulated by SUMOylation, and that manipulating FXR SUMOylation levels may hold therapeutic promise for constraining MI/R injury.
Collapse
Affiliation(s)
- Yi Gao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yichao Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ancai Yuan
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Longwei Xu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, China
| | - Yuanyuan Su
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lingchen Gao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qingqi Ji
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Ben He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
128
|
Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: What's new? A review. J Pineal Res 2018; 65:e12490. [PMID: 29570845 DOI: 10.1111/jpi.12490] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a pleiotropic hormone with several functions. It binds to specific receptors and to a number of cytosolic proteins, activating a vast array of signalling pathways. Its potential to protect the heart against ischaemia/reperfusion damage has attracted much attention, particularly in view of its possible clinical applications. This review will focus mainly on the possible signalling pathways involved in melatonin-induced cardioprotection. In particular, the role of the melatonin receptors and events downstream of receptor activation, for example, the reperfusion injury salvage kinase (RISK), survivor activating factor enhancement (SAFE) and Notch pathways, the sirtuins, nuclear factor E2-related factor 2 (Nrf2) and translocases in the outer membrane (TOM70) will be discussed. Particular attention is given to the role of the mitochondrion in melatonin-induced cardioprotection. In addition, a brief overview will be given regarding the status quo of the clinical application of melatonin in humans.
Collapse
Affiliation(s)
- Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Barbara Huisamen
- Biomedical Research and Innovation Platform, SA Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
129
|
Wang S, Zhao Z, Feng X, Cheng Z, Xiong Z, Wang T, Lin J, Zhang M, Hu J, Fan Y, Reiter RJ, Wang H, Sun D. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med 2018; 22:5132-5144. [PMID: 30063115 PMCID: PMC6156356 DOI: 10.1111/jcmm.13802] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Mitophagy eliminates dysfunctional mitochondria and thus plays a cardinal role in diabetic cardiomyopathy (DCM). We observed the favourable effects of melatonin on cardiomyocyte mitophagy in mice with DCM and elucidated their underlying mechanisms. Electron microscopy and flow cytometric analysis revealed that melatonin reduced the number of impaired mitochondria in the diabetic heart. Other than decreasing mitochondrial biogenesis, melatonin increased the clearance of dysfunctional mitochondria in mice with DCM. Melatonin increased LC3 II expression as well as the colocalization of mitochondria and lysosomes in HG‐treated cardiomyocytes and the number of typical autophagosomes engulfing mitochondria in the DCM heart. These results indicated that melatonin promoted mitophagy. When probing the mechanism, increased Parkin translocation to the mitochondria may be responsible for the up‐regulated mitophagy exerted by melatonin. Parkin knockout counteracted the beneficial effects of melatonin on the cardiac mitochondrial morphology and bioenergetic disorders, thus abolishing the substantial effects of melatonin on cardiac remodelling with DCM. Furthermore, melatonin inhibited Mammalian sterile 20‐like kinase 1 (Mst1) phosphorylation, thus enhancing Parkin‐mediated mitophagy, which contributed to mitochondrial quality control. In summary, this study confirms that melatonin rescues the impaired mitophagy activity of DCM. The underlying mechanism may be attributed to activation of Parkin translocation via inhibition of Mst1.
Collapse
Affiliation(s)
- Shanjie Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Cheng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Tingting Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianqiang Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
130
|
Nduhirabandi F, Maarman GJ. Melatonin in Heart Failure: A Promising Therapeutic Strategy? Molecules 2018; 23:molecules23071819. [PMID: 30037127 PMCID: PMC6099639 DOI: 10.3390/molecules23071819] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure is a multifactorial clinical syndrome characterized by the inability of the heart to pump sufficient blood to the body. Despite recent advances in medical management, poor outcomes in patients with heart failure remain very high. This highlights a need for novel paradigms for effective, preventive and curative strategies. Substantial evidence supports the importance of endogenous melatonin in cardiovascular health and the benefits of melatonin supplementation in various cardiac pathologies and cardiometabolic disorders. Melatonin plays a crucial role in major pathological processes associated with heart failure including ischemic injury, oxidative stress, apoptosis, and cardiac remodeling. In this review, available evidence for the role of melatonin in heart failure is discussed. Current challenges and possible limitations of using melatonin in heart failure are also addressed. While few clinical studies have investigated the role of melatonin in the context of heart failure, current findings from experimental studies support the potential use of melatonin as preventive and adjunctive curative therapy in heart failure.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| | - Gerald J Maarman
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa.
| |
Collapse
|
131
|
Melatonin therapy for diabetic cardiomyopathy: A mechanism involving Syk-mitochondrial complex I-SERCA pathway. Cell Signal 2018; 47:88-100. [DOI: 10.1016/j.cellsig.2018.03.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
|
132
|
Ardestani A, Lupse B, Maedler K. Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism. Trends Endocrinol Metab 2018; 29:492-509. [PMID: 29739703 DOI: 10.1016/j.tem.2018.04.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022]
Abstract
The evolutionarily conserved Hippo pathway is a key regulator of organ size and tissue homeostasis. Its dysregulation is linked to multiple pathological disorders. In addition to regulating development and growth, recent studies show that Hippo pathway components such as MST1/2 and LATS1/2 kinases, as well as YAP/TAZ transcriptional coactivators, are regulated by metabolic pathways and that the Hippo pathway controls metabolic processes at the cellular and organismal levels in physiological and metabolic disease states such as obesity, type 2 diabetes (T2D), nonalcoholic fatty liver disease (NAFLD), cardiovascular disorders, and cancer. In this review we summarize the connection between key Hippo components and metabolism, and how this interplay regulates cellular metabolism and metabolic pathways. The emerging function of Hippo in the regulation of metabolic homeostasis under physiological and pathological conditions is highlighted.
Collapse
Affiliation(s)
- Amin Ardestani
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| | - Blaz Lupse
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany
| | - Kathrin Maedler
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| |
Collapse
|
133
|
Roohbakhsh A, Shamsizadeh A, Hayes A, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: The role of autophagy. Pharmacol Res 2018; 133:265-276. [DOI: 10.1016/j.phrs.2018.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
|
134
|
Yang S, Chen X, Li S, Sun B, Hang C. Melatonin Treatment Regulates SIRT3 Expression in Early Brain Injury (EBI) Due to Reactive Oxygen Species (ROS) in a Mouse Model of Subarachnoid Hemorrhage (SAH). Med Sci Monit 2018; 24:3804-3814. [PMID: 29872034 PMCID: PMC6018454 DOI: 10.12659/msm.907734] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background A mouse model of subarachnoid hemorrhage (SAH) investigated the effects of melatonin treatment on the generation of reactive oxygen species (ROS) and the activation of the SIRT3 gene in early brain injury (EBI). Material/Methods Male C57BL/6J mice were assigned to three groups: the SAH group; the sham group; and the SAH + melatonin-treated group (intraperitoneal dose, 150 mg/kg). TUNEL was used to study apoptosis of neuronal cells, Western-blot and immunohistochemistry detected expression of Sirt3, Bcl-2, superoxide dismutase 2 (SOD2), Bax, and cleaved caspase-3. Real-time polymerase chain reaction (PCR) and a luciferase reporter assay evaluated the effects of melatonin on SIRT3 gene expression. Malondialdehyde (MDA) and the reactive oxygen species (ROS) scavenger, reduced glutathione (GSH), and its ratio with oxidized glutathione (GSSG) was measured. Results The increase in neurological score and increase in cerebral edema following SAH were reduced in the SAH + melatonin-treated group. Neuronal apoptosis following SAH was reduced in the SAH + melatonin-treated group. Increased levels of SOD2, Bax, and cleaved caspase-3 following SAH were reduced in the SAH + melatonin-treated group; reduced levels of Sirt3 and Bcl-2 following SAH were increased in the SAH + melatonin-treated group. The GSH: GSSG ratio was increased, and the MDA level was decreased when melatonin treatment was used following SAH. Melatonin upregulated SIRT3 expression by increasing the transcription efficiency of the SIRT3 promoter in human glioma cell lines U87 and U251. Conclusions Melatonin provided protection from the effects of EBI following SAH by regulating the expression of murine SIRT3.
Collapse
Affiliation(s)
- Song Yang
- Department of Neurosurgery, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Neurosurgery, Suqian First Hospital, Suqian, Jiangsu, China (mainland)
| | - Xiuping Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Shengli Li
- Department of Neurosurgery, Municipal Hospital, Qingdao, Shandong, China (mainland)
| | - Bin Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, China (mainland)
| | - Chunhua Hang
- Department of Neurosurgery, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
135
|
Jiki Z, Lecour S, Nduhirabandi F. Cardiovascular Benefits of Dietary Melatonin: A Myth or a Reality? Front Physiol 2018; 9:528. [PMID: 29867569 PMCID: PMC5967231 DOI: 10.3389/fphys.2018.00528] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
The role of the diet as well as the impact of the dietary habits on human health and disease is well established. Apart from its sleep regulatory effect, the indoleamine melatonin is a well-established antioxidant molecule with multiple health benefits. Convincing evidence supports the presence of melatonin in plants and foods with the intake of such foods affecting circulating melatonin levels in humans. While numerous actions of both endogenous melatonin and melatonin supplementation are well described, little is known about the influence of the dietary melatonin intake on human health. In the present review, evidence for the cardiovascular health benefits of melatonin supplementation and dietary melatonin is discussed. Current knowledge on the biological significance as well as the underlying physiological mechanism of action of the dietary melatonin is also summarized. Whether dietary melatonin constitutes an alternative preventive treatment for cardiovascular disease is addressed.
Collapse
Affiliation(s)
- Zukiswa Jiki
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
136
|
Ma S, Zhang M, Zhang S, Wang J, Zhou X, Guo G, Wang L, Wang M, Peng Z, Guo C, Zheng X, Zhou X, Wang J, Han Y. Characterisation of Lamp2-deficient rats for potential new animal model of Danon disease. Sci Rep 2018; 8:6932. [PMID: 29720683 PMCID: PMC5932014 DOI: 10.1038/s41598-018-24351-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Danon disease (DD) is caused by the absence or malfunction of lysosomal-associated membrane protein 2 (LAMP2). Although Lamp2-deficient mice and DD patients have similar characteristics, these mice have clear limitations and are clinically inconsistent. The aim of our paper is to outline the characteristics of Lamp2-deficient rats and to contrast this model with currently available DD mouse models. The baseline levels of some serum enzymes were elevated in Lamp2y/- rats along with hypercholesterolemia and hyperglycaemia at 8 weeks. Echocardiography showed that IVSd (1.500 ± 0.071 vs. 2.200 ± 1.147, P < 0.01) and LVPWd (1.575 ± 0.063 vs. 1.850 ± 0.029, P < 0.01) were significantly increased, and GCS (-13.20 ± 0.4814 vs. -6.954 ± 0.665) and GRS (21.42 ± 1.807 vs. 7.788 ± 1.140) were sharply decreased. Meanwhile, substantial myocyte disruption, hypertrophic muscle fibres, interstitial fibrosis and microvascular hyperplasia could be observed in the heart tissue. Lamp2y/- rats also displayed abnormal behaviours in the open field and fear conditioning tests. Notably, Lamp2y/- rats manifested other system dysfunctions, such as retinopathy, chronic kidney injury and sterility. Based on these results, Lamp2-deficient rats exhibited greater similarity to DD patients in terms of onset and multisystem lesions than did mouse models, and these rats could be used as a valuable animal model for DD.
Collapse
Affiliation(s)
- Shuoyi Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Shuai Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Division of Ultrasonography, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Lu Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Min Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Zhengwu Peng
- Division of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Changcun Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaohong Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
137
|
Chen Y, Zheng Z, Wang J, Tang C, Khor S, Chen J, Chen X, Zhang Z, Tang Q, Wang C, Lou Y, Wang Z, Xiao J, Wang X. Berberine suppresses apoptosis and extracellular matrix (ECM) degradation in nucleus pulposus cells and ameliorates disc degeneration in a rodent model. Int J Biol Sci 2018; 14:682-692. [PMID: 29904282 PMCID: PMC6001656 DOI: 10.7150/ijbs.24081] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/13/2018] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a chronic disease with complicated pathology involving nucleus pulposus (NP) cell apoptosis and extracellular matrix (ECM) degradation. Previous studies have shown that moderate autophagy has a protective effect against apoptosis in NP cells. Berberine (BBR) is an alkaloid compound with many beneficial properties including antimicrobial, anti-inflammatory, antioxidative, and anti-apoptotic activity. Recently, it was found to induce autophagy in various tissues as well. Thus, we hypothesized that BBR may exert a therapeutic effect on IVDD through autophagy activation. In this study, we investigated the effects of BBR on IVDD and delineated a potential mechanism. BBR treatment in vitro inhibited the expression of pro-apoptotic proteins induced by tert-butyl hydroperoxide (TBHP), and increased the expression of anti-apoptotic Bcl-2. Furthermore, it prevented ECM degradation by inhibiting the production of matrix-degrading enzymes. Additionally, BBR treatment significantly activated autophagy in NP cells. However, autophagy inhibition markedly suppressed BBR's effects on NP cell apoptosis and ECM degeneration, indicating that autophagy activation with BBR treatment is protective against IVDD. In vivo, BBR treatment increased the expression of LC3 in disc cells and prevented the development of IVDD in a needle puncture-induced rat model. Thus, BBR stimulates autophagy as a protective mechanism against NP cell apoptosis and ECM degeneration, revealing its therapeutic potential in the treatment of IVDD.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Zengming Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jianle Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Chengxuan Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Xibang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Zengjie Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Qian Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Chenggui Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Yiting Lou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jian Xiao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| |
Collapse
|
138
|
mTORC2 Signaling: A Path for Pancreatic β Cell's Growth and Function. J Mol Biol 2018; 430:904-918. [PMID: 29481838 DOI: 10.1016/j.jmb.2018.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is an evolutionary conserved pathway that senses signals from nutrients and growth factors to regulate cell growth, metabolism and survival. mTOR acts in two biochemically and functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which differ in terms of regulatory mechanisms, substrate specificity and functional outputs. While mTORC1 signaling has been extensively studied in islet/β-cell biology, recent findings demonstrate a distinct role for mTORC2 in the regulation of pancreatic β-cell function and mass. mTORC2, a key component of the growth factor receptor signaling, is declined in β cells under diabetogenic conditions and in pancreatic islets from patients with type 2 diabetes. β cell-selective mTORC2 inactivation leads to glucose intolerance and acceleration of diabetes as a result of reduced β-cell mass, proliferation and impaired glucose-stimulated insulin secretion. Thereby, many mTORC2 targets, such as AKT, PKC, FOXO1, MST1 and cell cycle regulators, play an important role in β-cell survival and function. This indicates mTORC2 as important pathway for the maintenance of β-cell homeostasis, particularly to sustain proper β-cell compensatory response in the presence of nutrient overload and metabolic demand. This review summarizes recent emerging advances on the contribution of mTORC2 and its associated signaling on the regulation of glucose metabolism and functional β-cell mass under physiological and pathophysiological conditions in type 2 diabetes.
Collapse
|
139
|
SIRT3: A New Regulator of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7293861. [PMID: 29643974 PMCID: PMC5831850 DOI: 10.1155/2018/7293861] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 01/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide, and defects in mitochondrial function contribute largely to the occurrence of CVDs. Recent studies suggest that sirtuin 3 (SIRT3), the mitochondrial NAD+-dependent deacetylase, may regulate mitochondrial function and biosynthetic pathways such as glucose and fatty acid metabolism and the tricarboxylic acid (TCA) cycle, oxidative stress, and apoptosis by reversible protein lysine deacetylation. SIRT3 regulates glucose and lipid metabolism and maintains myocardial ATP levels, which protects the heart from metabolic disturbances. SIRT3 can also protect cardiomyocytes from oxidative stress-mediated cell damage and block the development of cardiac hypertrophy. Recent reports show that SIRT3 is involved in the protection of several heart diseases. This review discusses the progress in SIRT3-related research and the role of SIRT3 in the prevention and treatment of CVDs.
Collapse
|
140
|
Zhou W, Zhao M. How Hippo Signaling Pathway Modulates Cardiovascular Development and Diseases. J Immunol Res 2018; 2018:3696914. [PMID: 29577047 PMCID: PMC5822808 DOI: 10.1155/2018/3696914] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/12/2017] [Indexed: 01/26/2023] Open
Abstract
Cardiovascular disease remains the leading cause of death around the globe. Cardiac deterioration is associated with irreversible cardiomyocyte loss. Understanding how the cardiovascular system develops and the pathological processes of cardiac disease will contribute to finding novel and preventive therapeutic methods. The canonical Hippo tumor suppressor pathway in mammalian cells is primarily composed of the MST1/2-SAV1-LATS1/2-MOB1-YAP/TAZ cascade. Continuing research on this pathway has identified other factors like RASSF1A, Nf2, MAP4Ks, and NDR1/2, further enriching our knowledge of the Hippo-YAP pathway. YAP, the core effecter of the Hippo pathway, may accumulate in the nucleus and initiate transcriptional activity if the pathway is inhibited. The role of Hippo signaling has been widely investigated in organ development and cancers. A heart of normal size and function which is critical for survival could not be generated without the proper regulation of the Hippo tumor suppressor pathway. Recent research has demonstrated a novel role of Hippo signaling in cardiovascular disease in the context of development, hypertrophy, angiogenesis, regeneration, apoptosis, and autophagy. In this review, we summarize the current knowledge of how Hippo signaling modulates pathological processes in cardiovascular disease and discuss potential molecular therapeutic targets.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
- Guangzhou Medical University, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
141
|
Wang S, Fan Y, Feng X, Sun C, Shi Z, Li T, Lv J, Yang Z, Zhao Z, Sun D. Nicorandil alleviates myocardial injury and post-infarction cardiac remodeling by inhibiting Mst1. Biochem Biophys Res Commun 2018; 495:292-299. [PMID: 29127009 DOI: 10.1016/j.bbrc.2017.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cardiomyocyte autophagy and apoptosis are crucial events underlying the development of cardiac abnormalities and dysfunction after myocardial infarction (MI). A better understanding of the cell signaling pathways involved in cardiac remodeling may support the development of new therapeutic strategies for the treatment of heart failure (HF) after MI. METHODS A cardiac MI injury model was constructed by ligating the left anterior descending (LAD) coronary artery. Neonatal cardiomyocytes were isolated and cultured to investigate the mechanisms underlying the protective effects of nicorandil on MI-induced injury. RESULTS Nicorandil reduced cardiac enzyme release, mitigated left ventricular enlargement and cardiac dysfunction after MI, as evaluated by echocardiography and hemodynamic measurements. According to the results of the western blot analysis and immunofluorescence staining, nicorandil enhanced autophagic flux and reduced apoptosis in cardiomyocytes subjected to hypoxic injury. Interestingly, nicorandil increased Mst1 and p-Mst1 levels in cardiomyocytes subjected to MI injury. Mst1 knockout abolished the protective effects of nicorandil on cardiac remodeling and dysfunction after MI. Mst1 knockout also abolished the beneficial effects of nicorandil on cardiac enzyme release and cardiomyocyte autophagy and apoptosis. CONCLUSIONS Nicorandil alleviates post-MI cardiac dysfunction and remodeling. The mechanisms were associated with enhancing autophagy and inhibiting apoptosis through Mst1 inhibition.
Collapse
Affiliation(s)
- Shanjie Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chuang Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhaofeng Shi
- Department of Traditional Chinese Medicine, Xijing Hospital Affiliated to Fourth Military Medical University, Xi'an, China
| | - Tian Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianjun Lv
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhijing Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|