101
|
Liu S, Fang S, Cong B, Li T, Yi D, Zhang Z, Zhao L, Zhang P. The Antarctic Moss Pohlia nutans Genome Provides Insights Into the Evolution of Bryophytes and the Adaptation to Extreme Terrestrial Habitats. FRONTIERS IN PLANT SCIENCE 2022; 13:920138. [PMID: 35783932 PMCID: PMC9247546 DOI: 10.3389/fpls.2022.920138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 05/09/2023]
Abstract
The Antarctic continent has extreme natural environment and fragile ecosystem. Mosses are one of the dominant floras in the Antarctic continent. However, their genomic features and adaptation processes to extreme environments remain poorly understood. Here, we assembled the high-quality genome sequence of the Antarctic moss (Pohlia nutans) with 698.20 Mb and 22 chromosomes. We found that the high proportion of repeat sequences and a recent whole-genome duplication (WGD) contribute to the large size genome of P. nutans when compared to other bryophytes. The genome of P. nutans harbors the signatures of massive segmental gene duplications and large expansions of gene families, likely facilitating neofunctionalization. Genomic characteristics that may support the Antarctic lifestyle of this moss comprise expanded gene families involved in phenylpropanoid biosynthesis, unsaturated fatty acid biosynthesis, and plant hormone signal transduction. Additional contributions include the significant expansion and upregulation of several genes encoding DNA photolyase, antioxidant enzymes, flavonoid biosynthesis enzymes, possibly reflecting diverse adaptive strategies. Notably, integrated multi-omic analyses elucidate flavonoid biosynthesis may function as the reactive oxygen species detoxification under UV-B radiation. Our studies provide insight into the unique features of the Antarctic moss genome and their molecular responses to extreme terrestrial environments.
Collapse
Affiliation(s)
- Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Shuo Fang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Bailin Cong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
| | - Tingting Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Dan Yi
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- School of Advanced Manufacturing, Fuzhou University, Jinjiang, China
- *Correspondence: Linlin Zhao,
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences and Shandong University, Qingdao, China
- Pengying Zhang,
| |
Collapse
|
102
|
da Silva TH, Câmara PEAS, Pinto OHB, Carvalho-Silva M, Oliveira FS, Convey P, Rosa CA, Rosa LH. Diversity of Fungi Present in Permafrost in the South Shetland Islands, Maritime Antarctic. MICROBIAL ECOLOGY 2022; 83:58-67. [PMID: 33733305 DOI: 10.1007/s00248-021-01735-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
We assess the fungal diversity present in permafrost from different islands in the South Shetland Islands archipelago, maritime Antarctic, using next-generation sequencing (NGS). We detected 1,003,637 fungal DNA reads representing, in rank abundance order, the phyla Ascomycota, Mortierellomycota, Basidiomycota, Chytridiomycota, Rozellomycota, Mucoromycota, Calcarisporiellomycota and Zoopagomycota. Ten taxa were dominant these being, in order of abundance, Pseudogymnoascus appendiculatus, Penicillium sp., Pseudogymnoascus roseus, Penicillium herquei, Curvularia lunata, Leotiomycetes sp., Mortierella sp. 1, Mortierella fimbricystis, Fungal sp. 1 and Fungal sp. 2. A further 38 taxa had intermediate abundance and 345 were classified as rare. The total fungal community detected in the permafrost showed high indices of diversity, richness and dominance, although these varied between the sampling locations. The use of a metabarcoding approach revealed the presence of DNA of a complex fungal assemblage in the permafrost of the South Shetland Islands including taxa with a range of ecological functions among which were multiple animal, human and plant pathogenic fungi. Further studies are required to determine whether the taxa identified are present in the form of viable cells or propagules and which might be released from melting permafrost to other Antarctic habitats and potentially dispersed more widely.
Collapse
Affiliation(s)
- Thamar Holanda da Silva
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | | | | | | - Fábio Soares Oliveira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Luiz Henrique Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
103
|
FONZO CARLADI, ANSALDO MARTIN. Blood biochemistry and antioxidant status altered by anthropogenic impact in Adélie penguins (Pygoscelis adeliae). AN ACAD BRAS CIENC 2022; 94:e20210579. [DOI: 10.1590/0001-3765202220210579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- CARLA DI FONZO
- Laboratorio de Ecofisiología y Ecotoxicología, Argentina
| | - MARTIN ANSALDO
- Laboratorio de Ecofisiología y Ecotoxicología, Argentina
| |
Collapse
|
104
|
Franco ALC, Adams BJ, Diaz MA, Lemoine NP, Dragone NB, Fierer N, Lyons WB, Hogg I, Wall DH. Response of Antarctic soil fauna to climate-driven changes since the Last Glacial Maximum. GLOBAL CHANGE BIOLOGY 2022; 28:644-653. [PMID: 34657350 DOI: 10.1111/gcb.15940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Understanding how terrestrial biotic communities have responded to glacial recession since the Last Glacial Maximum (LGM) can inform present and future responses of biota to climate change. In Antarctica, the Transantarctic Mountains (TAM) have experienced massive environmental changes associated with glacial retreat since the LGM, yet we have few clues as to how its soil invertebrate-dominated animal communities have responded. Here, we surveyed soil invertebrate fauna from above and below proposed LGM elevations along transects located at 12 features across the Shackleton Glacier region. Our transects captured gradients of surface ages possibly up to 4.5 million years and the soils have been free from human disturbance for their entire history. Our data support the hypothesis that soils exposed during the LGM are now less suitable habitats for invertebrates than those that have been exposed by deglaciation following the LGM. Our results show that faunal abundance, community composition, and diversity were all strongly affected by climate-driven changes since the LGM. Soils more recently exposed by the glacial recession (as indicated by distances from present ice surfaces) had higher faunal abundances and species richness than older exposed soils. Higher abundances of the dominant nematode Scottnema were found in older exposed soils, while Eudorylaimus, Plectus, tardigrades, and rotifers preferentially occurred in more recently exposed soils. Approximately 30% of the soils from which invertebrates could be extracted had only Scottnema, and these single-taxon communities occurred more frequently in soils exposed for longer periods of time. Our structural equation modeling of abiotic drivers highlighted soil salinity as a key mediator of Scottnema responses to soil exposure age. These changes in soil habitat suitability and biotic communities since the LGM indicate that Antarctic terrestrial biodiversity throughout the TAM will be highly altered by climate warming.
Collapse
Affiliation(s)
- André L C Franco
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Byron J Adams
- Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum Provo, Brigham Young University, Provo, Utah, USA
| | - Melisa A Diaz
- School of Earth Sciences, Byrd Polar and Climate Research Center Columbus, The Ohio State University, Columbus, Ohio, USA
| | - Nathan P Lemoine
- Department of Biological Sciences Milwaukee, Marquette University, Milwaukee, Wisconsin, USA
- Milwaukee Public Museum Department of Zoology Milwaukee, Milwaukee, Wisconsin, USA
| | - Nicholas B Dragone
- Department of Ecology and Evolutionary Biology, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - W Berry Lyons
- School of Earth Sciences, Byrd Polar and Climate Research Center Columbus, The Ohio State University, Columbus, Ohio, USA
| | - Ian Hogg
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Diana H Wall
- Department of Biology & School of Global Environmental Sustainability, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
105
|
Liu S, Fang S, Liu C, Zhao L, Cong B, Zhang Z. Transcriptomics Integrated With Metabolomics Reveal the Effects of Ultraviolet-B Radiation on Flavonoid Biosynthesis in Antarctic Moss. FRONTIERS IN PLANT SCIENCE 2021; 12:788377. [PMID: 34956286 PMCID: PMC8692278 DOI: 10.3389/fpls.2021.788377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/12/2021] [Indexed: 05/24/2023]
Abstract
Bryophytes are the dominant vegetation in the Antarctic continent. They have suffered more unpleasant ultraviolet radiation due to the Antarctic ozone layer destruction. However, it remains unclear about the molecular mechanism of Antarctic moss acclimation to UV-B light. Here, the transcriptomics and metabolomics approaches were conducted to uncover transcriptional and metabolic profiling of the Antarctic moss Leptobryum pyriforme under UV-B radiation. Totally, 67,290 unigenes with N50 length of 2,055 bp were assembled. Of them, 1,594 unigenes were significantly up-regulated and 3353 unigenes were markedly down-regulated under UV-B radiation. These differentially expressed genes (DEGs) involved in UV-B signaling, flavonoid biosynthesis, ROS scavenging, and DNA repair. In addition, a total of 531 metabolites were detected, while flavonoids and anthocyanins accounted for 10.36% of the total compounds. There were 49 upregulated metabolites and 41 downregulated metabolites under UV-B radiation. Flavonoids were the most significantly changed metabolites. qPCR analysis showed that UVR8-COP1-HY5 signaling pathway genes and photolyase genes (i.e., LpUVR3, LpPHR1, and LpDPL) were significantly up-regulated under UV-B light. In addition, the expression levels of JA signaling pathway-related genes (i.e., OPR and JAZ) and flavonoid biosynthesis-related genes were also significantly increased under UV-B radiation. The integrative data analysis showed that UVR8-mediated signaling, jasmonate signaling, flavonoid biosynthesis pathway and DNA repair system might contribute to L. pyriforme acclimating to UV-B radiation. Therefore, these findings present a novel knowledge for understanding the adaption of Antarctic moss to polar environments and provide a foundation for assessing the impact of global climate change on Antarctic land plants.
Collapse
Affiliation(s)
- Shenghao Liu
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuo Fang
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
| | - Chenlin Liu
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bailin Cong
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
106
|
Kim D, Park HJ, Kim M, Lee S, Hong SG, Kim E, Lee H. Temperature sensitivity of Antarctic soil-humic substance degradation by cold-adapted bacteria. Environ Microbiol 2021; 24:265-275. [PMID: 34837290 DOI: 10.1111/1462-2920.15849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 01/04/2023]
Abstract
Heteropolymer humic substances (HS) are the largest constituents of soil organic matter and are key components that affect plant and microbial growth in maritime Antarctic tundra. We investigated HS decomposition in Antarctic tundra soils from distinct sites by incubating samples at 5°C or 8°C (within a natural soil thawing temperature range of -3.8°C to 9.6°C) for 90 days (average Antarctic summer period). This continuous 3-month artificial incubation maintained a higher total soil temperature than that in natural conditions. The long-term warming effects rapidly decreased HS content during the initial incubation, with no significant difference between 5°C and 8°C. In the presence of Antarctic tundra soil heterogeneity, the relative abundance of Proteobacteria (one of the major bacterial phyla in cold soil environments) increased during HS decomposition, which was more significant at 8°C than at 5°C. Contrasting this, the relative abundance of Actinobacteria (another major group) did not exhibit any significant variation. This microcosm study indicates that higher temperatures or prolonged thawing periods affect the relative abundance of cold-adapted bacterial communities, thereby promoting the rate of microbial HS decomposition. The resulting increase in HS-derived small metabolites will possibly accelerate warming-induced changes in the Antarctic tundra ecosystem.
Collapse
Affiliation(s)
- Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Ha Ju Park
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seulah Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Soon Gyu Hong
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Eungbin Kim
- Department of Systems Biology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| |
Collapse
|
107
|
Figuerola B, Valiente N, Barbosa A, Brasier MJ, Colominas-Ciuró R, Convey P, Liggett D, Fernández-Martínez MA, Gonzalez S, Griffiths HJ, Jawak SD, Merican F, Noll D, Prudencio J, Quaglio F, Pertierra LR. Shifting Perspectives in Polar Research: Global Lessons on the Barriers and Drivers for Securing Academic Careers in Natural Sciences. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.777009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The polar regions provide valuable insights into the functioning of the Earth’s regulating systems. Conducting field research in such harsh and remote environments requires strong international cooperation, extended planning horizons, sizable budgets and long-term investment. Consequently, polar research is particularly vulnerable to societal and economic pressures during periods of austerity. The global financial crisis of 2008, and the ensuing decade of economic slowdown, have already adversely affected polar research, and the current COVID-19 pandemic has added further pressure. In this article we present the outcomes of a community survey that aimed to assess the main barriers and success factors identified by academic researchers at all career stages in response to these global crises. The survey results indicate that the primary barriers faced by polar early and mid-career researchers (EMCRs) act at institutional level, while mitigating factors are developed at individual and group levels. Later career scientists report pressure toward taking early retirement as a means of institutions saving money, reducing both academic leadership and the often unrecognized but vital mentor roles that many play. Gender and social inequalities are also perceived as important barriers. Reorganization of institutional operations and more effective strategies for long-term capacity building and retaining of talent, along with reduction in non-research duties shouldered by EMCRs, would make important contributions toward ensuring continued vitality and innovation in the polar research community.
Collapse
|
108
|
Krucon T, Dziewit L, Drewniak L. Insight Into Ecology, Metabolic Potential, and the Taxonomic Composition of Bacterial Communities in the Periodic Water Pond on King George Island (Antarctica). Front Microbiol 2021; 12:708607. [PMID: 34690951 PMCID: PMC8531505 DOI: 10.3389/fmicb.2021.708607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Polar regions contain a wide variety of lentic ecosystems. These include periodic ponds that have a significant impact on carbon and nitrogen cycling in polar environments. This study was conducted to assess the taxonomic and metabolic diversity of bacteria found in Antarctic pond affected by penguins and sea elephants and to define their role in ongoing processes. Metabolic assays showed that of the 168 tested heterotrophic bacteria present in the Antarctic periodic pond, 96% are able to degrade lipids, 30% cellulose, 26% proteins, and 26% starch. The taxonomic classification of the obtained isolates differs from that based on the composition of the 16S rRNA relative abundances in the studied pond. The dominant Actinobacteria constituting 45% of isolates represents a low proportion of the community, around 4%. With the addition of run-off, the proportions of inhabiting bacteria changed, including a significant decrease in the abundance of Cyanobacteria, from 2.38 to 0.33%, increase of Firmicutes from 9.32 to 19.18%, and a decreasing richness (Chao1 index from 1299 to 889) and diversity (Shannon index from 4.73 to 4.20). Comparative studies of communities found in different Antarctic environments indicate a great role for penguins in shaping bacterial populations.
Collapse
Affiliation(s)
- Tomasz Krucon
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
109
|
Zucconi L, Buzzini P. Editorial: Microbial Communities of Polar and Alpine Soils. Front Microbiol 2021; 12:713067. [PMID: 34630347 PMCID: PMC8495314 DOI: 10.3389/fmicb.2021.713067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences - Industrial Yeasts Collection DBVPG, University of Perugia, Perugia, Italy
| |
Collapse
|
110
|
Majewski W, Holzmann M, Gooday AJ, Majda A, Mamos T, Pawlowski J. Cenozoic climatic changes drive evolution and dispersal of coastal benthic foraminifera in the Southern Ocean. Sci Rep 2021; 11:19869. [PMID: 34615927 PMCID: PMC8494791 DOI: 10.1038/s41598-021-99155-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Antarctic coastal fauna is characterized by high endemism related to the progressive cooling of Antarctic waters and their isolation by the Antarctic Circumpolar Current. The origin of the Antarctic coastal fauna could involve either colonization from adjoining deep-sea areas or migration through the Drake Passage from sub-Antarctic areas. Here, we tested these hypotheses by comparing the morphology and genetics of benthic foraminifera collected from Antarctica, sub-Antarctic coastal settings in South Georgia, the Falkland Islands and Patagonian fjords. We analyzed four genera (Cassidulina, Globocassidulina, Cassidulinoides, Ehrenbergina) of the family Cassidulinidae that are represented by at least nine species in our samples. Focusing on the genera Globocassidulina and Cassidulinoides, our results showed that the first split between sub-Antarctic and Antarctic lineages took place during the mid-Miocene climate reorganization, probably about 20 to 17 million years ago (Ma). It was followed by a divergence between Antarctic species ~ 10 Ma, probably related to the cooling of deep water and vertical structuring of the water-column, as well as broadening and deepening of the continental shelf. The gene flow across the Drake Passage, as well as between South America and South Georgia, seems to have occurred from the Late Miocene to the Early Pliocene. It appears that climate warming during 7-5 Ma and the migration of the Polar Front breached biogeographic barriers and facilitated inter-species hybridization. The latest radiation coincided with glacial intensification (~ 2 Ma), which accelerated geographic fragmentation of populations, demographic changes, and genetic diversification in Antarctic species. Our results show that the evolution of Antarctic and sub-Antarctic coastal benthic foraminifera was linked to the tectonic and climatic history of the area, but their evolutionary response was not uniform and reflected species-specific ecological adaptations that influenced the dispersal patterns and biogeography of each species in different ways.
Collapse
Affiliation(s)
- Wojciech Majewski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Maria Holzmann
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, 1211, Geneve 4, Switzerland
| | - Andrew J Gooday
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Aneta Majda
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Jan Pawlowski
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| |
Collapse
|
111
|
Abstract
AbstractThere is considerable scientific interest as to how terrestrial biodiversity in Antarctica might respond, or be expected to respond, to climate change. The two species of vascular plant confined to the Antarctic Peninsula have shown clear gains in density and range extension. However, little information exists for the dominant components of the flora, lichens and bryophytes. One approach has been to look at change in biodiversity using altitude as a proxy for temperature change and previous results for Livingston Island suggested that temperature was the controlling factor. We have extended this study at the same site by using chlorophyll fluorometers to monitor activity and microclimate of the lichen, Usnea aurantiaco-atra, and the moss, Hymenoloma crispulum. We confirmed the same lapse rate in temperature but show that changes in water relations with altitude is probably the main driver. There were differences in water source with U. aurantiaco-atra benefitting from water droplet harvesting and the species performed substantially better at the summit. In contrast, activity duration, chlorophyll fluorescence and photosynthetic modelling all show desiccation to have a large negative impact on the species at the lowest site. We conclude that water relations are the main drivers of biodiversity change along the altitudinal gradient with nutrients, not measured here, as another possible contributor.
Collapse
|
112
|
Aulus-Giacosa L, Guéraud F, Gaudin P, Buoro M, Aymes JC, Labonne J, Vignon M. Human influence on brown trout juvenile body size during metapopulation expansion. Biol Lett 2021; 17:20210366. [PMID: 34699739 PMCID: PMC8548077 DOI: 10.1098/rsbl.2021.0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Change in body size can be driven by social (density) and non-social (environmental and spatial variation) factors. In expanding metapopulations, spatial sorting by means of dispersal on the expansion front can further drive the evolution of body size. However, human intervention can dramatically affect these founder effects. Using long-term monitoring of the colonization of the remote Kerguelen islands by brown trout, a facultative anadromous salmonid, we analyse body size variation in 32 naturally founded and 10 human-introduced populations over 57 years. In naturally founded populations, we find that spatial sorting promotes slow positive changes in body size on the expansion front, then that body size decreases as populations get older and local density increases. This pattern is, however, completely different in human-introduced populations, where body size remains constant or even increases as populations get older. The present findings confirm that changes in body size can be affected by metapopulation expansion, but that human influence, even in very remote environments, can fully alter this process.
Collapse
Affiliation(s)
- L. Aulus-Giacosa
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - F. Guéraud
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - P. Gaudin
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - M. Buoro
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - J. C. Aymes
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - J. Labonne
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| | - M. Vignon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-Nivelle ou Anglet, France
| |
Collapse
|
113
|
Effects of Diesel, Heavy Metals and Plastics Pollution on Penguins in Antarctica: A Review. Animals (Basel) 2021; 11:ani11092505. [PMID: 34573474 PMCID: PMC8465831 DOI: 10.3390/ani11092505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Antarctica is contaminated by anthropogenic pollution. Due to the persistent low temperatures, the toxic impacts of pollution to the environment can be extensive. The severity of the effects varies according to the animal species, chemical type and level of exposure. Penguins are at major risk as they are the most prominent group of animals in Antarctica. This review highlights the background of penguins in Antarctica, the anthropogenic pollution and cases, as well as the toxic effects of diesel, heavy metals and microplastics toward penguins. A bibliometric analysis is also included. Abstract Antarctica is a relatively pristine continent that attracts scientists and tourists alike. However, the risk of environmental pollution in Antarctica is increasing with the increase in the number of visitors. Recently, there has been a surge in interest regarding diesel, heavy metals and microplastics pollution. Contamination from these pollutants poses risks to the environment and the health of organisms inhabiting the continent. Penguins are one of the most prominent and widely distributed animals in Antarctica and are at major risk due to pollution. Even on a small scale, the impacts of pollution toward penguin populations are extensive. This review discusses the background of penguins in Antarctica, the anthropogenic pollution and cases, as well as the impacts of diesel, heavy metals and microplastics toxicities on penguins. The trends of the literature for the emerging risks of these pollutants are also reviewed through a bibliometric approach and network mapping analysis. A sum of 27 articles are analyzed on the effects of varying pollutants on penguins in Antarctica from 2000 to 2020 using the VOSviewer bibliometric software, Microsoft Excel and Tableau Public. Research articles collected from the Scopus database are evaluated for the most applicable research themes according to the bibliometric indicators (articles, geography distribution, annual production, integrated subject areas, key source journals and keyword or term interactions). Although bibliometric studies on the present research theme are not frequent, our results are sub-optimal due to the small number of search query matches from the Scopus database. As a result, our findings offer only a fragmentary comprehension of the topics in question. Nevertheless, this review provides valuable inputs regarding prospective research avenues for researchers to pursue in the future.
Collapse
|
114
|
Cuthbert RN, Briski E. Temperature, not salinity, drives impact of an emerging invasive species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146640. [PMID: 33774308 DOI: 10.1016/j.scitotenv.2021.146640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Biological invasions are a growing ecological and socioeconomic problem worldwide. While robust predictions of impactful future invaders are urgently needed, understandings of invader impacts have been challenged by context-dependencies. In aquatic systems in particular, future climate change could alter the impacts of invasive non-native species. Widespread warming coupled with sea freshening may exacerbate ecological impacts of invaders in marine environments, compromising ecosystem structure, function and stability. We examined how multiple abiotic changes affect the potential ecological impact of an emerging invasive non-native species from the Ponto-Caspian region - a notorious origin hotspot for invaders, characterised by high salinity and temperature variation. Using a comparative functional response (feeding rates across prey densities) approach, the potential ecological impacts of the gammarid Pontogammarus maeoticus towards native chironomid prey were examined across a range of current and future temperature (18, 22 °C) and salinity (14, 10, 6, 2 ppt) regimes in a factorial design. Feeding rates of P. maeoticus on prey significantly increased with temperature (by 60%), but were not significantly affected by salinity regime. Gammarids displayed significant Type II functional responses, with attack rates not significantly affected by warming across all salinities. Handling times were, however, shortened by warming, and thus maximum feeding rates significantly increased, irrespective of salinity regime. Functional responses were significantly different following warming at high prey densities under all salinities, except under the ambient 10 ppt. Euryhalinity of invasive non-native species from the Ponto-Caspian region thus could allow sustained ecological impacts across a range of salinity regimes. These results corroborate high invasion success and field impacts of Ponto-Caspian gammarids in brackish through to freshwater ecosystems. Climate warming will likely worsen the potential ecological impact of P. maeoticus. With invasions growing worldwide, quantifications of how combined elements of climate change will alter the impacts of emerging invasive non-native species are needed.
Collapse
Affiliation(s)
- Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany.
| | | |
Collapse
|
115
|
Severgnini M, Canini F, Consolandi C, Camboni T, Paolo D'Acqui L, Mascalchi C, Ventura S, Zucconi L. Highly differentiated soil bacterial communities in Victoria Land macro-areas (Antarctica). FEMS Microbiol Ecol 2021; 97:6307020. [PMID: 34151349 DOI: 10.1093/femsec/fiab087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Ice-free areas of Victoria Land, in Antarctica, are characterized by different terrestrial ecosystems, that are dominated by microorganisms supporting highly adapted communities. Despite the unique conditions of these ecosystems, reports on their bacterial diversity are still fragmentary. From this perspective, 60 samples from 14 localities were analyzed. These localities were distributed in coastal sites with differently developed biological soil crusts, inner sites in the McMurdo Dry Valleys with soils lacking of plant coverage, and a site called Icarus Camp, with a crust developed on a thin locally weathered substrate of the underlying parent granitic-rock. Bacterial diversity was studied through 16S rRNA metabarcoding sequencing. Communities diversity, composition and the abundance and composition of different taxonomic groups were correlated to soil physicochemical characteristics. Firmicutes, Bacteroidetes, Cyanobacteria and Proteobacteria dominated these communities. Most phyla were mainly driven by soil granulometry, an often disregarded parameter and other abiotic parameters. Bacterial composition differed greatly among the three macrohabitats, each having a distinct bacterial profile. Communities within the two main habitats (coastal and inner ones) were well differentiated from each other as well, therefore depending on site-specific physicochemical characteristics. A core community of the whole samples was observed, mainly represented by Firmicutes and Bacteroidetes.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), via f.lli Cervi, 93, 20054, Segrate, Italy
| | - Luigi Paolo D'Acqui
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Cristina Mascalchi
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Stefano Ventura
- Terrestria Ecosystems Research Institute, National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.,The Italian Embassy in Israel, Trade Tower, 25 Hamered Street, 68125, Tel Aviv, Israel
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
116
|
Antarctica as an evolutionary arena during the Cenozoic global cooling. Proc Natl Acad Sci U S A 2021; 118:2108886118. [PMID: 34183404 DOI: 10.1073/pnas.2108886118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
117
|
Rosa LH, Pinto OHB, Convey P, Carvalho-Silva M, Rosa CA, Câmara PEAS. DNA Metabarcoding to Assess the Diversity of Airborne Fungi Present over Keller Peninsula, King George Island, Antarctica. MICROBIAL ECOLOGY 2021; 82:165-172. [PMID: 33161522 DOI: 10.1007/s00248-020-01627-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 05/06/2023]
Abstract
We assessed fungal diversity present in air samples obtained from King George Island, Antarctica, using DNA metabarcoding through high-throughput sequencing. We detected 186 fungal amplicon sequence variants (ASVs) dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, and Chytridiomycota. Fungi sp. 1, Agaricomycetes sp. 1, Mortierella parvispora, Mortierella sp. 2, Penicillium sp., Pseudogymnoascus roseus, Microdochium lycopodinum, Mortierella gamsii, Arrhenia sp., Cladosporium sp., Mortierella fimbricystis, Moniliella pollinis, Omphalina sp., Mortierella antarctica, and Pseudogymnoascus appendiculatus were the most dominant ASVs. In addition, several ASVs could only be identified at higher taxonomic levels and may represent previously unknown fungi and/or new records for Antarctica. The fungi detected in the air displayed high indices of diversity, richness, and dominance. The airborne fungal diversity included saprophytic, mutualistic, and plant and animal opportunistic pathogenic taxa. The diversity of taxa detected reinforces the hypothesis that the Antarctic airspora includes fungal propagules of both intra- and inter-continental origin. If regional Antarctic environmental conditions ameliorate further in concert with climate warming, these fungi might be able to reactivate and colonize different Antarctic ecosystems, with as yet unknown consequences for ecosystem function in Antarctica. Further aeromycological studies are necessary to understand how and from where these fungi arrive and move within Antarctica and if environmental changes will encourage the development of non-native fungal species in Antarctica.
Collapse
Affiliation(s)
- Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, CB3 0ET, Cambridge, UK
| | | | - Carlos Augusto Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
118
|
Zakaria NN, Gomez-Fuentes C, Abdul Khalil K, Convey P, Roslee AFA, Zulkharnain A, Sabri S, Shaharuddin NA, Cárdenas L, Ahmad SA. Statistical Optimisation of Diesel Biodegradation at Low Temperatures by an Antarctic Marine Bacterial Consortium Isolated from Non-Contaminated Seawater. Microorganisms 2021; 9:microorganisms9061213. [PMID: 34205164 PMCID: PMC8227063 DOI: 10.3390/microorganisms9061213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/03/2022] Open
Abstract
Hydrocarbon pollution is widespread around the globe and, even in the remoteness of Antarctica, the impacts of hydrocarbons from anthropogenic sources are still apparent. Antarctica’s chronically cold temperatures and other extreme environmental conditions reduce the rates of biological processes, including the biodegradation of pollutants. However, the native Antarctic microbial diversity provides a reservoir of cold-adapted microorganisms, some of which have the potential for biodegradation. This study evaluated the diesel hydrocarbon-degrading ability of a psychrotolerant marine bacterial consortium obtained from the coast of the north-west Antarctic Peninsula. The consortium’s growth conditions were optimised using one-factor-at-a-time (OFAT) and statistical response surface methodology (RSM), which identified optimal growth conditions of pH 8.0, 10 °C, 25 ppt NaCl and 1.5 g/L NH4NO3. The predicted model was highly significant and confirmed that the parameters’ salinity, temperature, nitrogen concentration and initial diesel concentration significantly influenced diesel biodegradation. Using the optimised values generated by RSM, a mass reduction of 12.23 mg/mL from the initial 30.518 mg/mL (4% (w/v)) concentration of diesel was achieved within a 6 d incubation period. This study provides further evidence for the presence of native hydrocarbon-degrading bacteria in non-contaminated Antarctic seawater.
Collapse
Affiliation(s)
- Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.Z.); (A.F.A.R.); (N.A.S.)
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Región de Magallanes y Antártica Chilena, Chile;
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Región de Magallanes y Antártica Chilena, Chile
| | - Khalilah Abdul Khalil
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia;
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Ahmad Fareez Ahmad Roslee
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.Z.); (A.F.A.R.); (N.A.S.)
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama 337-8570, Japan;
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.Z.); (A.F.A.R.); (N.A.S.)
| | - Leyla Cárdenas
- Centro Fondap Ideal, Insituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile;
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.Z.); (A.F.A.R.); (N.A.S.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Región de Magallanes y Antártica Chilena, Chile
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
119
|
León MRD, Hughes KA, Morelli E, Convey P. International Response under the Antarctic Treaty System to the Establishment of A Non-native Fly in Antarctica. ENVIRONMENTAL MANAGEMENT 2021; 67:1043-1059. [PMID: 33860349 PMCID: PMC8106607 DOI: 10.1007/s00267-021-01464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Antarctica currently has few non-native species, compared to other regions of the planet, due to the continent's isolation, extreme climatic conditions and the lack of habitat. However, human activity, particularly the activities of national government operators and tourism, increasingly contributes to the risk of non-native species transfer and establishment. Trichocera (Saltitrichocera) maculipennis Meigen, 1888 (Diptera, Trichoceridae) is a non-native fly originating from the Northern Hemisphere that was unintentionally introduced to King George Island in the maritime Antarctic South Shetland Islands around 15 years ago, since when it has been reported within or in the vicinity of several research stations. It is not explicitly confirmed that T. maculipennis has established in the natural environment, but life-history characteristics make this likely, thereby making potential eradication or control a challenge. Antarctic Treaty Parties active in the region are developing a coordinated and expanding international response to monitor and control T. maculipennis within and around stations in the affected area. However, there remains no overarching non-native invasive species management plan for the island or the wider maritime Antarctic region (which shares similar environmental conditions and habitats to those of King George Island). Here we present some options towards the development of such a plan. We recommend the development of (1) clear mechanisms for the timely coordination of response activities by multiple Parties operating in the vicinity of the introduction location and (2) policy guidance on acceptable levels of environmental impacts resulting from eradication attempts in the natural environment, including the use of pesticides.
Collapse
Affiliation(s)
- Mónica Remedios-De León
- Entomology Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Kevin Andrew Hughes
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Enrique Morelli
- Entomology Section, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Peter Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
120
|
Rapid changes in spectral composition after darkness influences nitric oxide, glucose and hydrogen peroxide production in the Antarctic diatom Fragilariopsis cylindrus. Polar Biol 2021. [DOI: 10.1007/s00300-021-02867-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
121
|
Masello JF, Barbosa A, Kato A, Mattern T, Medeiros R, Stockdale JE, Kümmel MN, Bustamante P, Belliure J, Benzal J, Colominas-Ciuró R, Menéndez-Blázquez J, Griep S, Goesmann A, Symondson WOC, Quillfeldt P. How animals distribute themselves in space: energy landscapes of Antarctic avian predators. MOVEMENT ECOLOGY 2021; 9:24. [PMID: 34001240 PMCID: PMC8127181 DOI: 10.1186/s40462-021-00255-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Energy landscapes provide an approach to the mechanistic basis of spatial ecology and decision-making in animals. This is based on the quantification of the variation in the energy costs of movements through a given environment, as well as how these costs vary in time and for different animal populations. Organisms as diverse as fish, mammals, and birds will move in areas of the energy landscape that result in minimised costs and maximised energy gain. Recently, energy landscapes have been used to link energy gain and variable energy costs of foraging to breeding success, revealing their potential use for understanding demographic changes. METHODS Using GPS-temperature-depth and tri-axial accelerometer loggers, stable isotope and molecular analyses of the diet, and leucocyte counts, we studied the response of gentoo (Pygoscelis papua) and chinstrap (Pygoscelis antarcticus) penguins to different energy landscapes and resources. We compared species and gentoo penguin populations with contrasting population trends. RESULTS Between populations, gentoo penguins from Livingston Island (Antarctica), a site with positive population trends, foraged in energy landscape sectors that implied lower foraging costs per energy gained compared with those around New Island (Falkland/Malvinas Islands; sub-Antarctic), a breeding site with fluctuating energy costs of foraging, breeding success and populations. Between species, chinstrap penguins foraged in sectors of the energy landscape with lower foraging costs per bottom time, a proxy for energy gain. They also showed lower physiological stress, as revealed by leucocyte counts, and higher breeding success than gentoo penguins. In terms of diet, we found a flexible foraging ecology in gentoo penguins but a narrow foraging niche for chinstraps. CONCLUSIONS The lower foraging costs incurred by the gentoo penguins from Livingston, may favour a higher breeding success that would explain the species' positive population trend in the Antarctic Peninsula. The lower foraging costs in chinstrap penguins may also explain their higher breeding success, compared to gentoos from Antarctica but not their negative population trend. Altogether, our results suggest a link between energy landscapes and breeding success mediated by the physiological condition.
Collapse
Affiliation(s)
- Juan F Masello
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany.
| | - Andres Barbosa
- Department Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-Université La Rochelle, 79360, Villiers en Bois, France
| | - Thomas Mattern
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
- New Zealand Penguin Initiative, PO Box 6319, Dunedin, 9022, New Zealand
| | - Renata Medeiros
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Av, Cardiff, CF10 3AX, UK
- Cardiff School of Dentistry, Heath Park, Cardiff, CF14 4XY, UK
| | - Jennifer E Stockdale
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Av, Cardiff, CF10 3AX, UK
| | - Marc N Kümmel
- Institute for Bioinformatics & Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, 17000, La Rochelle, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| | - Josabel Belliure
- GLOCEE - Global Change Ecology and Evolution Group, Universidad de Alcalá, Madrid, Spain
| | - Jesús Benzal
- Estación Experimental de Zonas Áridas, CSIC, Almería, Spain
| | - Roger Colominas-Ciuró
- Department Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Javier Menéndez-Blázquez
- Department Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Sven Griep
- Institute for Bioinformatics & Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics & Systems Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 58, D-35392, Giessen, Germany
| | - William O C Symondson
- Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Av, Cardiff, CF10 3AX, UK
| | - Petra Quillfeldt
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392, Giessen, Germany
| |
Collapse
|
122
|
Varrella S, Barone G, Tangherlini M, Rastelli E, Dell’Anno A, Corinaldesi C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J Fungi (Basel) 2021; 7:391. [PMID: 34067750 PMCID: PMC8157204 DOI: 10.3390/jof7050391] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Antarctic Ocean is one of the most remote and inaccessible environments on our planet and hosts potentially high biodiversity, being largely unexplored and undescribed. Fungi have key functions and unique physiological and morphological adaptations even in extreme conditions, from shallow habitats to deep-sea sediments. Here, we summarized information on diversity, the ecological role, and biotechnological potential of marine fungi in the coldest biome on Earth. This review also discloses the importance of boosting research on Antarctic fungi as hidden treasures of biodiversity and bioactive molecules to better understand their role in marine ecosystem functioning and their applications in different biotechnological fields.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giulio Barone
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca, 60125 Ancona, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
123
|
Ramoneda J, Hawes I, Pascual-García A, J Mackey T, Y Sumner D, D Jungblut A. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiol Ecol 2021; 97:6174672. [PMID: 33729491 DOI: 10.1093/femsec/fiab044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/14/2021] [Indexed: 11/14/2022] Open
Abstract
Freshwater ecosystems are considered hotspots of biodiversity in Antarctic polar deserts. Anticipated warming is expected to change the hydrology of these systems due to increased meltwater and reduction of ice cover, with implications for environmental conditions and physical connectivity between habitats. Using 16S rRNA gene sequencing, we evaluated microbial mat and planktonic communities within a connected freshwater system in the McMurdo Wright Valley, Antarctica, to determine the roles of connectivity and habitat conditions in controlling microbial assemblage composition. We examined communities from glacial Lake Brownworth, the perennially ice-covered Lake Vanda and the Onyx River, which connects the two. In Lake Vanda, we found distinct microbial assemblages occupying sub-habitats at different lake depths, while the communities from Lake Brownworth and Onyx River were structurally similar. Despite the higher physical connectivity and dispersal opportunities between bacterial communities in the shallow parts of the system, environmental abiotic conditions dominated over dispersal in driving community structure. Functional metabolic pathway predictions suggested differences in the functional gene potential between the microbial mat communities located in shallower and deeper water depths. The findings suggest that increasing temperatures and meltwater due to future climate change will affect bacterial diversity and functioning in Antarctic freshwater ecosystems.
Collapse
Affiliation(s)
- Josep Ramoneda
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga 3110, New Zealand
| | - Alberto Pascual-García
- Theoretical Biology, Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich 8006, Switzerland
| | - Tyler J Mackey
- Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95618, USA
| | - Dawn Y Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95618, USA
| | - Anne D Jungblut
- Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
124
|
Souza JS, Pacyna-Kuchta AD, Teixeira da Cunha LS, Costa ES, Niedzielski P, Machado Torres JP. Interspecific and intraspecific variation in organochlorine pesticides and polychlorinated biphenyls using non-destructive samples from Pygoscelis penguins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116590. [PMID: 33582630 DOI: 10.1016/j.envpol.2021.116590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
As humans are present in Antarctica only for scientific and tourism-related purposes, it is often described as a pristine region. However, studies have identified measurable levels of Persistent Organic Pollutants (POPs), such as organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), in the Antarctic region. These are highly toxic anthropogenic compounds with tendency to travel long distances and reach remote environments, where they can bioaccumulate in the biota. Penguins are exposed to POPs mainly through their diet, which they partially eliminate via feathers. Species of the genus Pygoscelis occur around Antarctic continent and its surrounding regions, and can act as indicators of contaminants that reach the continent. Here, we report OCP and PCB levels in feathers of male and female penguins of P. adeliae, P. antarcticus and P. papua from King George Island, South Shetland Islands, Antarctica. Interspecific, sex- and body-size-related differences were investigated in the contamination profiles of PCBs and OCPs. Feather samples were collected from adult penguins (n = 41). Quantification of compounds was performed by gas chromatography-tandem mass spectrometry. The three Pygoscelis species presented similar contamination profiles, with higher concentrations of dichlorodiphenyltrichloroethane (∑DDT; 1.56-3.82 ng g-1 dw), lighter PCB congeners (∑PCB: 11.81-18.65 ng g-1 dw) and HCB (hexachlorobenzene: 1.65-4.06 ng g-1 dw). Amongst the three penguin species, P. antarcticus had lower and P. papua higher concentrations of most of the compounds identified. We found interspecific differences in POPs accumulation as well as sex differences in POP concentrations. Our data indicate a small but significant positive correlation between body size and the concentrations of some compounds. Despite the overall low concentrations found, this study increases knowledge of the occurrence of POPs in Antarctic penguins, thereby reinforcing concerns that Antarctica, although remote and perceived to be protected, is not free from the impact of anthropogenic pollutants.
Collapse
Affiliation(s)
- Juliana Silva Souza
- Laboratório de Radioisótopos Eduardo Penna Franca e de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco G, Sala G0-61, CEP 21941-902, Rio de Janeiro, Rio de Janeiro, Brazil; Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Aneta Dorota Pacyna-Kuchta
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233, Gdańsk, Poland
| | - Larissa Schmauder Teixeira da Cunha
- Laboratório de Radioisótopos Eduardo Penna Franca e de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco G, Sala G0-61, CEP 21941-902, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erli Schneider Costa
- Mestrado Profissional em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul. Unidade Universitária Hortênsias. Rua Assis Brasil, 842 - Centro., CEP: 95400-000, São Francisco de Paula, Rio Grande do Sul, Brazil
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - João Paulo Machado Torres
- Laboratório de Radioisótopos Eduardo Penna Franca e de Micropoluentes Jan Japenga, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco G, Sala G0-61, CEP 21941-902, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
125
|
|
126
|
Intra-specific variation in lichen secondary compounds across environmental gradients on Signy Island, maritime Antarctic. Polar Biol 2021. [DOI: 10.1007/s00300-021-02839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractLichens produce various carbon-based secondary compounds (CBSCs) in response to abiotic conditions and herbivory. Although lichen CBSCs have received considerable attention with regard to responses to UV-B exposure, very little is known about intra-specific variation across environmental gradients and their role in protection against herbivory in the Antarctic. Here we report on the variation in CBSCs of two widely distributed and common Antarctic lichens, Usnea antarctica and Umbilicaria antarctica, between sites with different solar exposure (NW–SE) and along natural nitrogen (N) gradients which are associated with changing lichen-invertebrate associations on Signy Island (South Orkney Islands, maritime Antarctic). Fumarprotocetraric and usnic acid concentrations in Usnea showed no relationships with solar exposure, lichen-N or associated invertebrate abundance. However, fumarprotocetraric acid concentration was 13 times higher at inland sites compared to coastal sites along the N-gradients. Gyrophoric acid concentration in Umbilicaria was 33% lower in sun-facing (northerly exposed) habitats compared to more shaded (south-facing) rocks and declined with elevation. Gyrophoric acid concentration was positively correlated with the abundance and species richness of associated microarthropods, similar to the patterns found with lichen N. This initial investigation indicates that there can be large intraspecific variation in lichen CBSC concentrations across relative short distances (< 500 m) on Signy Island and raises further questions regarding current understanding of the role of CBSCs in Antarctic lichens in relation to biotic and abiotic pressures.
Collapse
|
127
|
Cecchetto M, Di Cesare A, Eckert E, Fassio G, Fontaneto D, Moro I, Oliverio M, Sciuto K, Tassistro G, Vezzulli L, Schiaparelli S. Antarctic coastal nanoplankton dynamics revealed by metabarcoding of desalination plant filters: Detection of short-term events and implications for routine monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143809. [PMID: 33257075 DOI: 10.1016/j.scitotenv.2020.143809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
One of the main requirements of any sound biological monitoring is the availability of long term and, possibly, temporal data with a high resolution. This is often difficult to be achieved, especially in Antarctica, due to a variety of logistic constraints, which make continuous sampling and monitoring activities generally unfeasible. Here we focus on the 5 μm filters used in the desalination plant of the Italian research base "Mario Zucchelli" in the Terra Nova Bay area (Ross Sea, Antarctica) to evaluate intra-annual coastal nanoplankton dynamics. These filters, together with others of larger mesh sizes, are used to decrease the amount of organisms and debris in the input seawater before the desalination processes take place, hence automatically collect the plankton present in the water column around the desalination system intake. We have used a DNA metabarcoding approach to characterize the communities retained by filters' sets collected in January 2012 and 2013. Intra-annual dynamics were disclosed with an unprecedented detail, that would not have been possible by using standard sampling approaches, and highlighted the importance of extreme, stochastic events such as katabatic wind pulses, which triggered dramatic, short-term shifts in coastal nanoplankton composition. This method, by combining a cost-effective sampling and molecular techniques, may represent a viable solution for long-term monitoring programs focusing on Antarctic coastal communities.
Collapse
Affiliation(s)
- Matteo Cecchetto
- Italian National Antarctic Museum (MNA, Section of Genoa), University of Genoa, Genoa, Italy; Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy.
| | - Andrea Di Cesare
- National Research Council of Italy, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy
| | - Ester Eckert
- National Research Council of Italy, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Diego Fontaneto
- National Research Council of Italy, Water Research Institute (CNR-IRSA), Verbania Pallanza, Italy
| | - Isabella Moro
- Department of Biology, University of Padova, Padua, Italy
| | - Marco Oliverio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Katia Sciuto
- Department of Biology, University of Padova, Padua, Italy
| | - Giovanni Tassistro
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Stefano Schiaparelli
- Italian National Antarctic Museum (MNA, Section of Genoa), University of Genoa, Genoa, Italy; Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
128
|
Barbosa A, Varsani A, Morandini V, Grimaldi W, Vanstreels RET, Diaz JI, Boulinier T, Dewar M, González-Acuña D, Gray R, McMahon CR, Miller G, Power M, Gamble A, Wille M. Risk assessment of SARS-CoV-2 in Antarctic wildlife. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143352. [PMID: 33162142 PMCID: PMC7598351 DOI: 10.1016/j.scitotenv.2020.143352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 04/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pathogen has spread rapidly across the world, causing high numbers of deaths and significant social and economic impacts. SARS-CoV-2 is a novel coronavirus with a suggested zoonotic origin with the potential for cross-species transmission among animals. Antarctica can be considered the only continent free of SARS-CoV-2. Therefore, concerns have been expressed regarding the potential human introduction of this virus to the continent through the activities of research or tourism to minimise the effects on human health, and the potential for virus transmission to Antarctic wildlife. We assess the reverse-zoonotic transmission risk to Antarctic wildlife by considering the available information on host susceptibility, dynamics of the infection in humans, and contact interactions between humans and Antarctic wildlife. The environmental conditions in Antarctica seem to be favourable for the virus stability. Indoor spaces such as those at research stations, research vessels or tourist cruise ships could allow for more transmission among humans and depending on their movements between different locations the virus could be spread across the continent. Among Antarctic wildlife previous in silico analyses suggested that cetaceans are at greater risk of infection whereas seals and birds appear to be at a low infection risk. However, caution needed until further research is carried out and consequently, the precautionary principle should be applied. Field researchers handling animals are identified as the human group posing the highest risk of transmission to animals while tourists and other personnel pose a significant risk only when in close proximity (< 5 m) to Antarctic fauna. We highlight measures to reduce the risk as well as identify of knowledge gaps related to this issue.
Collapse
Affiliation(s)
- Andrés Barbosa
- Evolutionary Ecology Dpt. Museo Nacional de Ciencias Naturales, CSIC, C/José Gutierrez Abascal, 2, 28006 Madrid, Spain.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Virginia Morandini
- Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Oregon, USA
| | | | - Ralph E T Vanstreels
- Institute of Research and Rehabilitation of Marine Animals (IPRAM), Rodovia, Cariacica, Brazil
| | - Julia I Diaz
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Thierry Boulinier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, EPHE, Université Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Meagan Dewar
- School of Science, Psychology and Sport, Federation University Australia, Australia
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, Australia
| | - Clive R McMahon
- IMOS Animal Satellite Tagging, Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Gary Miller
- Discipline of Microbiology and Immunology, University of Western Australia, Crawley, WA 6009, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Amandine Gamble
- Department of Ecology and Evolution, University of California Los Angeles, CA, USA
| | - Michelle Wille
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
129
|
Zhang W, Li H, Xiao Q, Li X. Urban rivers are hotspots of riverine greenhouse gas (N 2O, CH 4, CO 2) emissions in the mixed-landscape chaohu lake basin. WATER RESEARCH 2021; 189:116624. [PMID: 33242788 DOI: 10.1016/j.watres.2020.116624] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Growing evidence shows that riverine networks surrounding urban landscapes may be hotspots of riverine greenhouse gas (GHG) emissions. This study strengthens the evidence by investigating the spatial variability of diffusive GHG (N2O, CH4, CO2) emissions from river reaches that drain from different types of landscapes (i.e., urban, agricultural, mixed, and forest landscapes), in the Chaohu Lake basin of eastern China. Our results showed that almost all the rivers were oversaturated with dissolved GHGs. Urban rivers were identified as emission hotspots, with mean fluxes of 470 μmol m-2d-1 for N2O, 7 mmol m-2d-1 for CH4, and 900 mmol m-2d-1 for CO2, corresponding to ~14, seven, and two times of those from the non-urban rivers in the Chaohu Lake basin, respectively. Factors related to the high N2O and CH4 emissions in urban rivers included large nutrient supply and hypoxic environments. The factors affecting CO2 were similar in all the rivers, which were temperature-dependent with suitable environments that allowed rapid decomposition of organic matter. Overall, this study highlights that better recognition of the influence that river networks have on global warming is required-particularly when it comes to urban rivers, as urban land cover and populations will continue to expand in the future. Management measures should incorporate regional hotspots to more efficiently mitigate GHG emissions.
Collapse
Affiliation(s)
- Wangshou Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hengpeng Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinyan Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
130
|
Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
131
|
Androsiuk P, Chwedorzewska KJ, Dulska J, Milarska S, Giełwanowska I. Retrotransposon-based genetic diversity of Deschampsia antarctica Desv. from King George Island (Maritime Antarctic). Ecol Evol 2021; 11:648-663. [PMID: 33437458 PMCID: PMC7790655 DOI: 10.1002/ece3.7095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Deschampsia antarctica Desv. can be found in diverse Antarctic habitats which may vary considerably in terms of environmental conditions and soil properties. As a result, the species is characterized by wide ecotypic variation in terms of both morphological and anatomical traits. The species is a unique example of an organism that can successfully colonize inhospitable regions due to its phenomenal ability to adapt to both the local mosaic of microhabitats and to general climatic fluctuations. For this reason, D. antarctica has been widely investigated in studies analyzing morphophysiological and biochemical responses to various abiotic stresses (frost, drought, salinity, increased UV radiation). However, there is little evidence to indicate whether the observed polymorphism is accompanied by the corresponding genetic variation. In the present study, retrotransposon-based iPBS markers were used to trace the genetic variation of D. antarctica collected in nine sites of the Arctowski oasis on King George Island (Western Antarctic). The genotyping of 165 individuals from nine populations with seven iPBS primers revealed 125 amplification products, 15 of which (12%) were polymorphic, with an average of 5.6% polymorphic fragments per population. Only one of the polymorphic fragments, observed in population 6, was represented as a private band. The analyzed specimens were characterized by low genetic diversity (uHe = 0.021, I = 0.030) and high population differentiation (F ST = 0.4874). An analysis of Fu's F S statistics and mismatch distribution in most populations (excluding population 2, 6 and 9) revealed demographic/spatial expansion, whereas significant traces of reduction in effective population size were found in three populations (1, 3 and 5). The iPBS markers revealed genetic polymorphism of D. antarctica, which could be attributed to the mobilization of random transposable elements, unique features of reproductive biology, and/or geographic location of the examined populations.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and BiotechnologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | | | - Justyna Dulska
- Department of Plant Physiology, Genetics and BiotechnologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Sylwia Milarska
- Department of Plant Physiology, Genetics and BiotechnologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and BiotechnologyFaculty of Biology and BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
132
|
Gutt J, Isla E, Xavier JC, Adams BJ, Ahn IY, Cheng CHC, Colesie C, Cummings VJ, di Prisco G, Griffiths H, Hawes I, Hogg I, McIntyre T, Meiners KM, Pearce DA, Peck L, Piepenburg D, Reisinger RR, Saba GK, Schloss IR, Signori CN, Smith CR, Vacchi M, Verde C, Wall DH. Antarctic ecosystems in transition - life between stresses and opportunities. Biol Rev Camb Philos Soc 2020; 96:798-821. [PMID: 33354897 DOI: 10.1111/brv.12679] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Enrique Isla
- Institute of Marine Sciences-CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Coimbra, Portugal.,British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Byron J Adams
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, U.S.A
| | - In-Young Ahn
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - C-H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, IL, U.S.A
| | - Claudia Colesie
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF, U.K
| | - Vonda J Cummings
- National Institute of Water and Atmosphere Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Huw Griffiths
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3100, New Zealand
| | - Ian Hogg
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.,Canadian High Antarctic Research Station, Polar Knowledge Canada, PO Box 2150, Cambridge Bay, NU, X0B 0C0, Canada
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Klaus M Meiners
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, and Australian Antarctic Program Partnership, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - David A Pearce
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle upon Tyne, NE1 8ST, U.K
| | - Lloyd Peck
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Ryan R Reisinger
- Centre d'Etudes Biologique de Chizé, UMR 7372 du Centre National de la Recherche Scientifique - La Rochelle Université, Villiers-en-Bois, 79360, France
| | - Grace K Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, U.S.A
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina
| | - Camila N Signori
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-900, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, U.S.A
| | - Marino Vacchi
- Institute for the Study of the Anthropic Impacts and the Sustainability of the Marine Environment (IAS), National Research Council of Italy (CNR), Via de Marini 6, Genoa, 16149, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, U.S.A
| |
Collapse
|
133
|
Souza JS, Kasper D, da Cunha LST, Soares TA, de Lira Pessoa AR, de Carvalho GO, Costa ES, Niedzielski P, Torres JPM. Biological factors affecting total mercury and methylmercury levels in Antarctic penguins. CHEMOSPHERE 2020; 261:127713. [PMID: 32738710 DOI: 10.1016/j.chemosphere.2020.127713] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Penguins in Antarctica occupy high trophic levels, thus accumulating high amounts of mercury (Hg) through bioaccumulation and biomagnification. Blood reflects the current levels of contaminants circulating in the body, while feathers are known as the main route of Hg elimination in birds. Studies sampling chicks and adults can provide a comprehensive picture of bioaccumulation and local contamination. Three pygoscelid species (Pygoscelis adeliae, Pygoscelis antarcticus and Pygoscelis papua) have circumpolar distributions being the ideal sentinels of Antarctic environmental pollution. This study aimed to assess Hg contamination of the pristine Antarctic region using non-destructive penguin samples. Fieldwork was carried out during the austral summer of 2013/2014 in the South Shetland Islands, off the north-west Antarctic Peninsula. Concentrations of total Hg (ng.g-1 dw) in blood ranged from 39 to 182 in chicks and 45 to 581 in adults, while concentrations in feathers ranged from 73 to 598 in chicks and 156 to 1648 in adults. Most Hg in feathers (about 70%) is accumulated in the form of methylmercury. Differences were demonstrated in mercury bioaccumulation were related to species and age, but not to sex. To our knowledge this is the first study to report MeHg levels in both juvenile and adult pygoscelid penguins.
Collapse
Affiliation(s)
- Juliana Silva Souza
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil; Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Daniele Kasper
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Larissa Schmauder Teixeira da Cunha
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Tuany Alves Soares
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Adriana Rodrigues de Lira Pessoa
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Gabriel Oliveira de Carvalho
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| | - Erli Schneider Costa
- Programa de Pós-Graduação em Ambiente e Sustentabilidade, Universidade Estadual do Rio Grande do Sul, Unidade Universitária Hortênsias, Rua Assis Brasil 842, 95400-000, Rio Grande do Sul, Brazil
| | - Przemysław Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - João Paulo Machado Torres
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
134
|
Nizovoy P, Bellora N, Haridas S, Sun H, Daum C, Barry K, Grigoriev IV, Libkind D, Connell LB, Moliné M. Unique genomic traits for cold adaptation in Naganishia vishniacii, a polyextremophile yeast isolated from Antarctica. FEMS Yeast Res 2020; 21:6000217. [PMID: 33232451 DOI: 10.1093/femsyr/foaa056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Cold environments impose challenges to organisms. Polyextremophile microorganisms can survive in these conditions thanks to an array of counteracting mechanisms. Naganishia vishniacii, a yeast species hitherto only isolated from McMurdo Dry Valleys, Antarctica, is an example of a polyextremophile. Here we present the first draft genomic sequence of N. vishniacii. Using comparative genomics, we unraveled unique characteristics of cold associated adaptations. 336 putative genes (total: 6183) encoding solute transfers and chaperones, among others, were absent in sister species. Among genes shared by N. vishniacii and its closest related species we found orthologs encompassing possible evidence of positive selection (dN/dS > 1). Genes associated with photoprotection were found in agreement with high solar irradiation exposure. Also genes coding for desaturases and genomic features associated with cold tolerance (i.e. trehalose synthesis and lipid metabolism) were explored. Finally, biases in amino acid usage (namely an enrichment of glutamine and a trend in proline reduction) were observed, possibly conferring increased protein flexibility. To the best of our knowledge, such a combination of mechanisms for cold tolerance has not been previously reported in fungi, making N. vishniacii a unique model for the study of the genetic basis and evolution of cold adaptation strategies.
Collapse
Affiliation(s)
- Paula Nizovoy
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Nicolás Bellora
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Hui Sun
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Laurie B Connell
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Martín Moliné
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| |
Collapse
|
135
|
Lauritano C, Roncalli V, Ambrosino L, Cieslak MC, Ianora A. First De Novo Transcriptome of the Copepod Rhincalanus gigas from Antarctic Waters. BIOLOGY 2020; 9:biology9110410. [PMID: 33266516 PMCID: PMC7700397 DOI: 10.3390/biology9110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
Simple Summary Compared to more accessible sites, organisms inhabiting Antarctic waters have been poorly investigated. This study provides the first molecular resource (transcriptome from whole individual) for the eucalanoid copepod Rhincalanus gigas, one of the predominant zooplankton species of Antarctic waters. Sequence analyses identified possible adaptation strategies adopted by the organism to cope with cold environments. Among those, we identified in R. gigas transcriptome three predicted genes encoding for antifreeze proteins and gene duplication within the glutathione metabolism pathway. This new molecular resource, provided here, will be useful to study the physiology, ecology, and biology of R. gigas and it increases the information available for polar environments. Abstract Antarctic waters are the largest almost untapped diversified resource of our planet. Molecular resources for Antarctic organisms are very limited and mostly represented by sequences used for species genotyping. In this study, we present the first transcriptome for the copepod Rhincalanus gigas, one of the predominant zooplankton species of Antarctic waters. This transcriptome represents also the first molecular resource for an eucalanoid copepod. The transcriptome is of high quality and completeness. The presence of three predicted genes encoding antifreeze proteins and gene duplication within the glutathione metabolism pathway are suggested as possible adaptations to cope with this harsh environment. The R. gigas transcriptome represents a powerful new resource for investigating the molecular basis associated with polar biological processes and ecology.
Collapse
Affiliation(s)
- Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: ; Tel.: +39-081-5833-221
| | - Vittoria Roncalli
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Luca Ambrosino
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Matthew C. Cieslak
- Pacific Biosciences Research Center, University of Hawai’i at Manoa, 1993 East-West Rd., Honolulu, HI 96822, USA;
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
136
|
Sutherland WJ, Atkinson PW, Broad S, Brown S, Clout M, Dias MP, Dicks LV, Doran H, Fleishman E, Garratt EL, Gaston KJ, Hughes AC, Le Roux X, Lickorish FA, Maggs L, Palardy JE, Peck LS, Pettorelli N, Pretty J, Spalding MD, Tonneijck FH, Walpole M, Watson JEM, Wentworth J, Thornton A. A 2021 Horizon Scan of Emerging Global Biological Conservation Issues. Trends Ecol Evol 2020; 36:87-97. [PMID: 33213887 DOI: 10.1016/j.tree.2020.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022]
Abstract
We present the results from our 12th annual horizon scan of issues likely to impact biological conservation in the future. From a list of 97 topics, our global panel of 25 scientists and practitioners identified the top 15 issues that we believe society may urgently need to address. These issues are either novel in the biological conservation sector or represent a substantial positive or negative step-change in impact at global or regional level. Six issues, such as coral reef deoxygenation and changes in polar coastal productivity, affect marine or coastal ecosystems and seven relate to human and ecosystem-level responses to climate change. Identification of potential forthcoming issues for biological conservation may enable increased preparedness by researchers, practitioners, and decision-makers.
Collapse
Affiliation(s)
- William J Sutherland
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK.
| | | | - Steven Broad
- TRAFFIC, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| | - Sam Brown
- Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Mick Clout
- Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland, PB 90129 Auckland, New Zealand
| | - Maria P Dias
- BirdLife International, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; MARE Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisboa, Portugal
| | - Lynn V Dicks
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Helen Doran
- Natural England, Eastbrook, Shaftesbury Road, Cambridge CB2 8DR, UK
| | - Erica Fleishman
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Elizabeth L Garratt
- UK Research and Innovation, Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan 666303, PR China
| | - Xavier Le Roux
- Microbial Ecology Centre, UMR1418 INRAE, CNRS, University Lyon 1, VetAgroSup, 69622 Villeurbanne, France; BiodivERsA, Fondation pour la Recherche sur la Biodiversité, 195 rue Saint Jacques, 75005 Paris, France
| | - Fiona A Lickorish
- UK Research and Consultancy Services (RCS) Ltd, Valletts Cottage, Westhope, Hereford HR4 8BU, UK
| | - Luke Maggs
- Natural Resources Wales, Cambria House, 29 Newport Road, Cardiff CF24 0TP, UK
| | - James E Palardy
- The Pew Charitable Trusts, 901 E St NW, Washington, DC 20004, USA
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Nathalie Pettorelli
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Jules Pretty
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Mark D Spalding
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK; The Nature Conservancy, Department of Physical, Earth and Environmental Sciences, University of Siena, Pian dei Mantellini, Siena 53100, Italy
| | | | - Matt Walpole
- Fauna and Flora International, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| | - James E M Watson
- School of Earth and Environmental Sciences, University of Queensland, St Lucia, QLD, 4072, Australia; Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Jonathan Wentworth
- Parliamentary Office of Science and Technology, 14 Tothill Street, Westminster, London SW1H 9NB, UK
| | - Ann Thornton
- Conservation Science Group, Department of Zoology, Cambridge University, The David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK
| |
Collapse
|
137
|
Dickey JWE, Cuthbert RN, Steffen GT, Dick JTA, Briski E. Sea freshening may drive the ecological impacts of emerging and existing invasive non‐native species. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- James W. E. Dickey
- Institute for Global Food Security School of Biological Sciences Queen’s University Belfast Belfast UK
| | - Ross N. Cuthbert
- Institute for Global Food Security School of Biological Sciences Queen’s University Belfast Belfast UK
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel Kiel Germany
| | | | - Jaimie T. A. Dick
- Institute for Global Food Security School of Biological Sciences Queen’s University Belfast Belfast UK
| | | |
Collapse
|
138
|
Bestley S, Ropert-Coudert Y, Bengtson Nash S, Brooks CM, Cotté C, Dewar M, Friedlaender AS, Jackson JA, Labrousse S, Lowther AD, McMahon CR, Phillips RA, Pistorius P, Puskic PS, Reis AODA, Reisinger RR, Santos M, Tarszisz E, Tixier P, Trathan PN, Wege M, Wienecke B. Marine Ecosystem Assessment for the Southern Ocean: Birds and Marine Mammals in a Changing Climate. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.566936] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
139
|
Horton AA, Barnes DKA. Microplastic pollution in a rapidly changing world: Implications for remote and vulnerable marine ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140349. [PMID: 32806379 DOI: 10.1016/j.scitotenv.2020.140349] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 05/27/2023]
Abstract
Ecosystems in remote regions tend to be highly specific, having historically evolved over long timescales in relatively constant environmental conditions, with little human influence. Such regions are amongst those most physically altering and biologically threatened by global climate change. In addition, they are increasingly receiving anthropogenic pollution. Microplastic pollution has now been found in these most remote places on earth, far from most human activities. Microplastics can induce complex and wide-ranging physical and chemical effects but little to date is known of their long-term biological impacts. In combination with climate-induced stress, microplastics may lead to enhanced multi-stress impacts, potentially affecting the health and resilience of species and ecosystems. While species in historically populated areas have had some opportunity to adapt to mounting human influence over centuries and millennia, the relatively rapid intensification of widespread anthropogenic activities in recent decades has provided species in previously 'untouched' regions little such opportunities. The characteristics of remote ecosystems and the species therein suggest that they could be more sensitive to the combined effects of microplastic pollution, global physical change and other stressors than elsewhere. Here we discuss how species and ecosystems within two remote yet contrasting regions, coastal Antarctica and the deep sea, might be especially vulnerable to harm from microplastic pollution in the context of a rapidly changing environment.
Collapse
Affiliation(s)
- Alice A Horton
- National Oceanography Centre, European Way, Southampton SO14 3ZH, UK.
| | - David K A Barnes
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK
| |
Collapse
|
140
|
Thermal sensitivity of cell metabolism of different Antarctic fish species mirrors organism temperature tolerance. Polar Biol 2020. [DOI: 10.1007/s00300-020-02752-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractDespite cold adaptation, Antarctic fish show lower growth than expected from the van’t Hoff’s Q10 rule. Protein synthesis is one of the main energy-consuming processes, which is downregulated under energy deficiency. Considering the effect of temperature on growth performance, we tested if temperature-dependent cellular energy allocation to protein synthesis correlates with temperature-dependent whole-animal growth and thus thermal tolerance. Cell respiration and energy expenditure for protein synthesis were determined in hepatocytes of the circumpolar-distributed Antarctic eelpout Pachycara brachycephalum after warm acclimation (0 °C vs 5 °C) and, of two notothenioids the sub-Antarctic Lepidonotothen squamifrons and the high-Antarctic icefish Chionodraco hamatus. We used intermittent-flow respirometry to analyse cellular response to acute warming from 5 to 10 °C (P. brachycephalum) and from 1 to 5 °C (L. squamifrons, C. hamatus). Warming-induced rise in respiration was similar between 0- and 5 °C-acclimated P. brachycephalum and between L. squamifrons and C. hamatus. Irrespective of acclimation, warming decreased energy expenditure for protein synthesis in P. brachycephalum, which corresponds to reduced whole-animal growth at temperatures > 5 °C. Warming doubled energy expenditure for protein synthesis in L. squamifrons but had no effect on C. hamatus indicating that L. squamifrons might benefit from warmer waters. The species-specific temperature effect on energy expenditure for protein synthesis is discussed to mirror thermal sensitivity of whole-animal growth performance, thereby paralleling the degree of cold adaptation. Clearly more data are necessary including measurements at narrower temperature steps particularly for C. hamatus and an increased species’ number per ecotype to reinforce presented link between cellular and whole-animal thermal sensitivity.
Collapse
|
141
|
Todgham AE, Mandic M. Understanding the Metabolic Capacity of Antarctic Fishes to Acclimate to Future Ocean Conditions. Integr Comp Biol 2020; 60:1425-1437. [PMID: 32814956 DOI: 10.1093/icb/icaa121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antarctic fishes have evolved under stable, extreme cold temperatures for millions of years. Adapted to thrive in the cold environment, their specialized phenotypes will likely render them particularly susceptible to future ocean warming and acidification as a result of climate change. Moving from a period of stability to one of environmental change, species persistence will depend on maintaining energetic equilibrium, or sustaining the increased energy demand without compromising important biological functions such as growth and reproduction. Metabolic capacity to acclimate, marked by a return to metabolic equilibrium through physiological compensation of routine metabolic rate (RMR), will likely determine which species will be better poised to cope with shifts in environmental conditions. Focusing on the suborder Notothenioidei, a dominant group of Antarctic fishes, and in particular four well-studied species, Trematomus bernacchii, Pagothenia borchgrevinki, Notothenia rossii, and N. coriiceps, we discuss metabolic acclimation potential to warming and CO2-acidification using an integrative and comparative framework. There are species-specific differences in the physiological compensation of RMR during warming and the duration of acclimation time required to achieve compensation; for some species, RMR fully recovered within 3.5 weeks of exposure, such as P. borchgrevinki, while for other species, such as N. coriiceps, RMR remained significantly elevated past 9 weeks of exposure. In all instances, added exposure to increased PCO2, further compromised the ability of species to return RMR to pre-exposure levels. The period of metabolic imbalance, marked by elevated RMR, was underlined by energetic disturbance and elevated energetic costs, which shifted energy away from fitness-related functions, such as growth. In T. bernacchii and N. coriiceps, long duration of elevated RMR impacted condition factor and/or growth rate. Low growth rate can affect development and ultimately the timing of reproduction, severely compromising the species' survival potential and the biodiversity of the notothenioid lineage. Therefore, the ability to achieve full compensation of RMR, and in a short-time frame, in order to avoid long term consequences of metabolic imbalance, will likely be an important determinant in a species' capacity to persist in a changing environment. Much work is still required to develop our understanding of the bioenergetics of Antarctic fishes in the face of environmental change, and a targeted approach of nesting a mechanistic focus in an ecological and comparative framework will better aid our predictions on the effect of global climate change on species persistence in the polar regions.
Collapse
Affiliation(s)
- Anne E Todgham
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
142
|
Selecting environmental descriptors is critical for modelling the distribution of Antarctic benthic species. Polar Biol 2020. [DOI: 10.1007/s00300-020-02714-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
143
|
Otani S, Miyaoka Y, Ikeda A, Ohno G, Imura S, Watanabe K, Kurozawa Y. Evaluating Health Impact at High Altitude in Antarctica and Effectiveness of Monitoring Oxygen Saturation. Yonago Acta Med 2020; 63:163-172. [PMID: 32884435 DOI: 10.33160/yam.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 11/05/2022]
Abstract
Background The Japanese Antarctic Research Expedition (JARE) has been conducting research activities in inland Antarctica, which is extremely cold dryland covered with a thick ice sheet. This environment may cause a health disorder called acute mountain sickness (AMS). To improve the safety of expedition members, we evaluated the impact of extreme environmental conditions on human health and the effectiveness of monitoring of hypoxia for the early detection of AMS. Methods In total, 9 members from JARE 59 were studied. Dome Fuji Station (Dome F), located 3,810 m above sea level (ASL), was the destination of the research party. We analyzed daily AMS scores (higher values correspond to more severe AMS-related symptoms), physiological findings, and percutaneous arterial blood oxygen saturation (SpO2) during the inland activity. We also determined the factors related to AMS scores. Results The average AMS score on arrival at Dome F was significantly higher than that at the departure point (560 m ASL). The average SpO2 level was significantly lower than that at other points. The SpO2 level correlated negatively with the AMS score in Spearman's rank correlation. Generalized estimating equations analysis showed that the AMS score was negatively associated with SpO2 level and positively associated with age. Conclusion Hypoxia is a contributory factor to AMS which we can easily assess by measuring the SpO2 level with a pulse oximeter. SpO2 monitoring is a potentially useful health management tool for members in inland Antarctic expeditions. In addition, our results are helpful for understanding physiological responses and health issues in extreme environments.
Collapse
Affiliation(s)
- Shinji Otani
- International Platform for Dryland Research and Education, Tottori University, Tottori 680-0001, Japan
| | - Yoichi Miyaoka
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo 060-8648, Japan
| | - Atsushi Ikeda
- Department of Urology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Giichiro Ohno
- Department of Surgery, Tokatsu Hospital, Nagareyama 270-0153, Japan.,National Institute of Polar Research, Tachikawa 190-8518, Japan
| | - Satoshi Imura
- National Institute of Polar Research, Tachikawa 190-8518, Japan
| | | | - Youichi Kurozawa
- Division of Health Administration and Promotion, Department of Social Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
144
|
Pertierra LR, Segovia NI, Noll D, Martinez PA, Pliscoff P, Barbosa A, Aragón P, Raya Rey A, Pistorius P, Trathan P, Polanowski A, Bonadonna F, Le Bohec C, Bi K, Wang‐Claypool CY, González‐Acuña D, Dantas GPM, Bowie RCK, Poulin E, Vianna JA. Cryptic speciation in gentoo penguins is driven by geographic isolation and regional marine conditions: Unforeseen vulnerabilities to global change. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Luis R. Pertierra
- Departamento de Ecología Evolutiva Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
| | - Nicolás I. Segovia
- Departamento de Ciencias Ecológicas Instituto de Ecología y Biodiversidad Universidad de Chile Santiago Chile
- Departamento de Biología Marina Facultad de Ciencias del Mar Universidad Católica del Norte Coquimbo Chile
| | - Daly Noll
- Departamento de Ciencias Ecológicas Instituto de Ecología y Biodiversidad Universidad de Chile Santiago Chile
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile Santiago Chile
| | - Pablo A. Martinez
- PIBi‐Lab Departamento de Biologia Universidade Federal de Sergipe São Cristóvão Brazil
| | - Patricio Pliscoff
- Departamento de Ecología Instituto de Geografía Pontificia Universidad Católica de Chile Santiago Chile
| | - Andrés Barbosa
- Departamento de Ecología Evolutiva Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
| | - Pedro Aragón
- Departamento de Ecología Evolutiva Museo Nacional de Ciencias NaturalesCSIC Madrid Spain
- Facultad de Ciecias Biológicas Departamento de Biodiversidad, Ecología y Evolución Universidad Complutense de Madrid Madrid Spain
| | - Andrea Raya Rey
- Centro Austral de Investigaciones Científicas – Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC‐CONICET) Ushuaia Argentina
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales Universidad Nacional de Tierra del Fuego Ushuaia Argentina
- Wildlife Conservation Society Buenos Aires Argentina
| | - Pierre Pistorius
- DST/NRF Centre of Excellence at the Percy FitzPatrick Institute for African Ornithology Department of Zoology Nelson Mandela University Port Elizabeth South Africa
| | | | | | - Francesco Bonadonna
- CEFE UMR 5175CNRSUniversité de MontpellierUniversité Paul‐Valéry MontpellierEPHE Montpellier Cedex 5 France
| | - Céline Le Bohec
- Universit de Strasbourg, CNRSIPHC UMR 7178F-67000 Strasbourg France
- Centre Scientifique de Monaco Département de Biologie Polaire Monaco City Monaco
| | - Ke Bi
- Department of Integrative Biology Museum of Vertebrate Zoology University of California Berkeley CA USA
| | - Cynthia Y. Wang‐Claypool
- Department of Integrative Biology Museum of Vertebrate Zoology University of California Berkeley CA USA
| | - Daniel González‐Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna Silvestre Facultad de Ciencias Veterinarias Universidad de Concepción Chillán Santiago Chile
| | - Gisele P. M. Dantas
- PPG in Vertebrate Zoology Pontificia Universidade Católica de Minas Gerais Belo Horizonte Brazil
| | - Rauri C. K. Bowie
- Department of Integrative Biology Museum of Vertebrate Zoology University of California Berkeley CA USA
| | - Elie Poulin
- Departamento de Ciencias Ecológicas Instituto de Ecología y Biodiversidad Universidad de Chile Santiago Chile
| | - Juliana A. Vianna
- Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
145
|
Carapelli A, Greenslade P, Nardi F, Leo C, Convey P, Frati F, Fanciulli PP. Evidence for Cryptic Diversity in the "Pan-Antarctic" Springtail Friesea antarctica and the Description of Two New Species. INSECTS 2020; 11:insects11030141. [PMID: 32106429 PMCID: PMC7143604 DOI: 10.3390/insects11030141] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/05/2023]
Abstract
The invertebrate terrestrial fauna of Antarctica is being investigated with increasing interest to discover how life interacts with the extreme polar environment and how millions of years of evolution have shaped their biodiversity. Classical taxonomic approaches, complemented by molecular tools, are improving our understanding of the systematic relationships of some species, changing the nomenclature of taxa and challenging the taxonomic status of others. The springtail Friesea grisea has previously been described as the only species with a “pan-Antarctic” distribution. However, recent genetic comparisons have pointed to another scenario. The latest morphological study has confined F. grisea to the sub-Antarctic island of South Georgia, from which it was originally described, and resurrected F. antarctica as a congeneric species occurring on the continental mainland. Molecular data demonstrate that populations of this taxon, ostensibly occurring across Maritime and Continental Antarctica, as well as on some offshore islands, are evolutionarily isolated and divergent and cannot be included within a single species. The present study, combining morphological with molecular data, attempts to validate this hypothesis and challenges the taxonomic status of F. antarctica, suggesting that two additional new species, described here as Friesea gretae sp. nov. and Friesea propria sp. nov., are present in Continental Antarctica.
Collapse
Affiliation(s)
- Antonio Carapelli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (F.N.); (C.L.); (F.F.); (P.P.F.)
- Correspondence: ; Tel.: +39-0577-234-410
| | - Penelope Greenslade
- Environmental Management, School of Health and Life Sciences, Federation University, Ballarat, VIC 3350, Australia;
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (F.N.); (C.L.); (F.F.); (P.P.F.)
| | - Chiara Leo
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (F.N.); (C.L.); (F.F.); (P.P.F.)
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
| | - Francesco Frati
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (F.N.); (C.L.); (F.F.); (P.P.F.)
| | - Pietro Paolo Fanciulli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy; (F.N.); (C.L.); (F.F.); (P.P.F.)
| |
Collapse
|
146
|
Marquet PA, Naeem S, Jackson JBC, Hodges K. Navigating transformation of biodiversity and climate. SCIENCE ADVANCES 2019; 5:eaba0969. [PMID: 31832538 PMCID: PMC6891924 DOI: 10.1126/sciadv.aba0969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 05/28/2023]
Affiliation(s)
- Pablo A Marquet
- Pablo A. Marquet, Pontificia Universidad Católica de Chile, CP 8331150, Santiago, Chile.
- Shahid Naeem, Columbia University, NY 10027, USA.
- Jeremy B. C. Jackson, Smithsonian Institution, Washington, DC 20013-7012, USA.
- Kip Hodges, Arizona State University, Tempe, AZ 85287, USA.
| | - Shahid Naeem
- Pablo A. Marquet, Pontificia Universidad Católica de Chile, CP 8331150, Santiago, Chile.
- Shahid Naeem, Columbia University, NY 10027, USA.
- Jeremy B. C. Jackson, Smithsonian Institution, Washington, DC 20013-7012, USA.
- Kip Hodges, Arizona State University, Tempe, AZ 85287, USA.
| | - Jeremy B C Jackson
- Pablo A. Marquet, Pontificia Universidad Católica de Chile, CP 8331150, Santiago, Chile.
- Shahid Naeem, Columbia University, NY 10027, USA.
- Jeremy B. C. Jackson, Smithsonian Institution, Washington, DC 20013-7012, USA.
- Kip Hodges, Arizona State University, Tempe, AZ 85287, USA.
| | - Kip Hodges
- Pablo A. Marquet, Pontificia Universidad Católica de Chile, CP 8331150, Santiago, Chile.
- Shahid Naeem, Columbia University, NY 10027, USA.
- Jeremy B. C. Jackson, Smithsonian Institution, Washington, DC 20013-7012, USA.
- Kip Hodges, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|