101
|
Russian A, Dentz M, Gouze P. Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media. Phys Rev E 2017; 96:022156. [PMID: 28950545 DOI: 10.1103/physreve.96.022156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 06/07/2023]
Abstract
Diffusion in natural and engineered media is quantified in terms of stochastic models for the heterogeneity-induced fluctuations of particle motion. However, fundamental properties such as ergodicity and self-averaging and their dependence on the disorder distribution are often not known. Here, we investigate these questions for diffusion in quenched disordered media characterized by spatially varying retardation properties, which account for particle retention due to physical or chemical interactions with the medium. We link self-averaging and ergodicity to the disorder sampling efficiency R_{n}, which quantifies the number of disorder realizations a noise ensemble may sample in a single disorder realization. Diffusion for disorder scenarios characterized by a finite mean transition time is ergodic and self-averaging for any dimension. The strength of the sample to sample fluctuations decreases with increasing spatial dimension. For an infinite mean transition time, particle motion is weakly ergodicity breaking in any dimension because single particles cannot sample the heterogeneity spectrum in finite time. However, even though the noise ensemble is not representative of the single-particle time statistics, subdiffusive motion in q≥2 dimensions is self-averaging, which means that the noise ensemble in a single realization samples a representative part of the heterogeneity spectrum.
Collapse
Affiliation(s)
- Anna Russian
- Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milano, Italy
| | - Marco Dentz
- Spanish National Research Council (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Philippe Gouze
- Géosciences, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
102
|
Schoen I, Aires L, Ries J, Vogel V. Nanoscale invaginations of the nuclear envelope: Shedding new light on wormholes with elusive function. Nucleus 2017; 8:506-514. [PMID: 28686487 DOI: 10.1080/19491034.2017.1337621] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recent advances in fluorescence microscopy have opened up new possibilities to investigate chromosomal and nuclear 3D organization on the nanoscale. We here discuss their potential for elucidating topographical details of the nuclear lamina. Single molecule localization microscopy (SMLM) in combination with immunostainings of lamina proteins readily reveals tube-like invaginations with a diameter of 100-500 nm. Although these invaginations have been established as a frequent and general feature of interphase nuclei across different cell types, their formation mechanism and function have remained largely elusive. We critically review the current state of research, propose possible connections to lamina associated domains (LADs), and revisit the discussion about the potential role of these invaginations for accelerating mRNA nuclear export. Illustrative studies using 3D super-resolution imaging are shown and will be instrumental to decipher the physiological role of these nanoscale invaginations.
Collapse
Affiliation(s)
- Ingmar Schoen
- a ETH Zurich, Department of Health Sciences and Technology, Laboratory of Applied Mechanobiology , Zurich , Switzerland
| | - Lina Aires
- a ETH Zurich, Department of Health Sciences and Technology, Laboratory of Applied Mechanobiology , Zurich , Switzerland
| | - Jonas Ries
- b European Molecular Biology Laboratory, Cell Biology and Biophysics Unit , Heidelberg , Germany
| | - Viola Vogel
- a ETH Zurich, Department of Health Sciences and Technology, Laboratory of Applied Mechanobiology , Zurich , Switzerland
| |
Collapse
|
103
|
Rybka J, Kärger J, Tallarek U. Single-Molecule and Ensemble Diffusivities in Individual Nanopores with Spatially Dependent Mobility. Chemphyschem 2017; 18:2094-2102. [DOI: 10.1002/cphc.201700231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/19/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Julia Rybka
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Jörg Kärger
- Faculty of Physics and Earth Sciences; Universität Leipzig; Linnéstrasse 5 04103 Leipzig Germany
| | - Ulrich Tallarek
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
104
|
Huang YF, Zhuo GY, Chou CY, Lin CH, Chang W, Hsieh CL. Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells. ACS NANO 2017; 11:2575-2585. [PMID: 28067508 DOI: 10.1021/acsnano.6b05601] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Yi-Fan Huang
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Guan-Yu Zhuo
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chun-Yu Chou
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Cheng-Hao Lin
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Wen Chang
- Institute
of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Lung Hsieh
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
105
|
Zeng C, Moller-Tank S, Asokan A, Dragnea B. Probing the Link among Genomic Cargo, Contact Mechanics, and Nanoindentation in Recombinant Adeno-Associated Virus 2. J Phys Chem B 2017; 121:1843-1853. [PMID: 28142241 DOI: 10.1021/acs.jpcb.6b10131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant adeno-associated virus (AAV) is a promising gene therapy vector. To make progress in this direction, the relationship between the characteristics of the genomic cargo and the capsid stability must be understood in detail. The goal of this study is to determine the role of the packaged vector genome in the response of AAV particles to mechanical compression and adhesion to a substrate. Specifically, we used atomic force microscopy to compare the mechanical properties of empty AAV serotype 2 (AAV2) capsids and AAV2 vectors packaging single-stranded DNA or self-complementary DNA. We found that all species underwent partial deformation upon adsorption from buffer on an atomically flat graphite surface. Upon adsorption, a preferred orientation toward the twofold symmetry axis on the capsid, relative to the substrate, was observed. The magnitude of the bias depended on the cargo type, indicating that the interfacial properties may be influenced by cargo. All particles showed a significant relative strain before rupture. Different from interfacial interactions, which were clearly cargo-dependent, the elastic response to directional stress was largely dominated by the capsid properties. Nevertheless, small differences between particles laden with different cargo were measurable; scAAV vectors were the most resilient to external compression. We also show how elastic constant and rupture force data sets can be analyzed according a multivariate conditional probability approach to determine the genome content on the basis of a database of mechanical properties acquired from nanoindentation assays. Implications for understanding how recombinant AAV capsid-genome interactions can affect vector stability and effectiveness of gene therapy applications are discussed.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | | | | - Bogdan Dragnea
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
106
|
Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chem Rev 2017; 117:4342-4375. [PMID: 28156096 DOI: 10.1021/acs.chemrev.6b00638] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.
Collapse
Affiliation(s)
- Kamilla Norregaard
- Cluster for Molecular Imaging, Department of Biomedical Science and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam , 14476 Potsdam-Golm, Germany
| | - Christine M Ritter
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| |
Collapse
|
107
|
Lysy M, Pillai NS, Hill DB, Forest MG, Mellnik JWR, Vasquez PA, McKinley SA. Model Comparison and Assessment for Single Particle Tracking in Biological Fluids. J Am Stat Assoc 2017. [DOI: 10.1080/01621459.2016.1158716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Natesh S. Pillai
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - David B. Hill
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M. Gregory Forest
- Department of Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Paula A. Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC, USA
| | | |
Collapse
|
108
|
Kowalik P, Elbaum D, Mikulski J, Fronc K, Kamińska I, Morais PC, Eduardo de Souza P, Nunes RB, Veiga-Souza FH, Gruzeł G, Minikayev R, Wojciechowski T, Mosiniewicz-Szablewska E, Szewczyk M, Pawlyta M, Sienkiewicz A, Łapiński M, Zajdel K, Stępień P, Szczepkowski J, Jastrzębski W, Frontczak-Baniewicz M, Paszkowicz W, Sikora B. Upconversion fluorescence imaging of HeLa cells using ROS generating SiO2-coated lanthanide-doped NaYF4 nanoconstructs. RSC Adv 2017. [DOI: 10.1039/c6ra25383k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multicolor upconversion of SiO2-coated nanoparticles using for cells imaging and reactive oxygen species generation.
Collapse
|
109
|
Safdari H, Cherstvy AG, Chechkin AV, Bodrova A, Metzler R. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation. Phys Rev E 2017; 95:012120. [PMID: 28208482 DOI: 10.1103/physreve.95.012120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Indexed: 06/06/2023]
Abstract
We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble- and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.
Collapse
Affiliation(s)
- Hadiseh Safdari
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Department of Physics, Shahid Beheshti University, 19839 Tehran, Iran
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Aleksei V Chechkin
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Institute for Theoretical Physics, Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
- Department of Physics & Astronomy, University of Padova, "Galileo Galilei" - DFA, 35131 Padova, Italy
| | - Anna Bodrova
- Institute of Physics, Humboldt University Berlin, 12489 Berlin, Germany
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
110
|
Dai H, Cao Z, Wang Y, Li H, Sang M, Yuan W, Chen F, Chen X. Concentric Circular Grating Generated by the Patterning Trapping of Nanoparticles in an Optofluidic Chip. Sci Rep 2016; 6:32018. [PMID: 27550743 PMCID: PMC4994086 DOI: 10.1038/srep32018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/01/2016] [Indexed: 11/15/2022] Open
Abstract
Due to the field enhancement effect of the hollow-core metal-cladded optical waveguide chip, massive nanoparticles in a solvent are effectively trapped via exciting ultrahigh order modes. A concentric ring structure of the trapped nanoparticles is obtained since the excited modes are omnidirectional at small incident angle. During the process of solvent evaporation, the nanoparticles remain well trapped since the excitation condition of the optical modes is still valid, and a concentric circular grating consisting of deposited nanoparticles can be produced by this approach. Experiments via scanning electron microscopy, atomic force microscopy and diffraction of a probe laser confirmed the above hypothesis. This technique provides an alternative strategy to enable effective trapping of dielectric particles with low-intensity nonfocused illumination, and a better understanding of the correlation between the guided modes in an optical waveguide and the nanoparticles in a solvent.
Collapse
Affiliation(s)
- Hailang Dai
- The State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Department of Physics and Astronomy, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Zhuangqi Cao
- The State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Department of Physics and Astronomy, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Yuxing Wang
- The State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Department of Physics and Astronomy, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Honggen Li
- The State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Department of Physics and Astronomy, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Minghuang Sang
- College of Physics & Communication Electronics, Jiangxi Normal University, Nanchang, Jiangxi, 330027, China
| | - Wen Yuan
- College of Physics & Communication Electronics, Jiangxi Normal University, Nanchang, Jiangxi, 330027, China
| | - Fan Chen
- Photonlabs Company, Shanghai, 200240, China
| | - Xianfeng Chen
- The State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication Systems, Department of Physics and Astronomy, Shanghai JiaoTong University, Shanghai, 200240, China
| |
Collapse
|
111
|
Mistry B, D'Orsogna MR, Webb NE, Lee B, Chou T. Quantifying the Sensitivity of HIV-1 Viral Entry to Receptor and Coreceptor Expression. J Phys Chem B 2016; 120:6189-99. [PMID: 27137677 DOI: 10.1021/acs.jpcb.6b02102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection by many viruses begins with fusion of viral and cellular lipid membranes, followed by entry of viral contents into the target cell and ultimately, after many biochemical steps, integration of viral DNA into that of the host cell. The early steps of membrane fusion and viral capsid entry are mediated by adsorption to the cell surface, and receptor and coreceptor binding. HIV-1 specifically targets CD4+ helper T-cells of the human immune system and binds to the receptor CD4 and coreceptor CCR5 before fusion is initiated. Previous experiments have been performed using a cell line (293-Affinofile) in which the expressions of CD4 and CCR5 concentration were independently controlled. After exposure to HIV-1 of various strains, the resulting infectivity was measured through the fraction of infected cells. To design and evaluate the effectiveness of drug therapies that target the inhibition of the entry processes, an accurate functional relationship between the CD4/CCR5 concentrations and infectivity is desired in order to more quantitatively analyze experimental data. We propose three kinetic models describing the possible mechanistic processes involved in HIV entry and fit their predictions to infectivity measurements, contrasting and comparing different outcomes. Our approach allows interpretation of the clustering of infectivity of different strains of HIV-1 in the space of mechanistic kinetic parameters. Our model fitting also allows inference of nontrivial stoichiometries of receptor and coreceptor binding and provides a framework through which to quantitatively investigate the effectiveness of fusion inhibitors and neutralizing antibodies.
Collapse
Affiliation(s)
- Bhaven Mistry
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States
| | - Maria R D'Orsogna
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States.,Department of Mathematics, California State University , Northridge, California 91330, United States
| | - Nicholas E Webb
- Department of Infectious Disease, Children's Hospital Los Angeles , Los Angeles, California 90027, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Tom Chou
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States.,Department of Mathematics, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
112
|
Magaña-Álvarez A, Vencioneck Dutra JC, Carneiro T, Pérez-Brito D, Tapia-Tussell R, Ventura JA, Higuera-Ciapara I, Fernandes PMB, Fernandes AAR. Physical Characteristics of the Leaves and Latex of Papaya Plants Infected with the Papaya meleira Virus. Int J Mol Sci 2016; 17:574. [PMID: 27092495 PMCID: PMC4849030 DOI: 10.3390/ijms17040574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/24/2016] [Accepted: 03/23/2016] [Indexed: 01/25/2023] Open
Abstract
Sticky disease, which is caused by Papaya meleira virus (PMeV), is a significant papaya disease in Brazil and Mexico, where it has caused severe economic losses, and it seems to have spread to Central and South America. Studies assessing the pathogen-host interaction at the nano-histological level are needed to better understand the mechanisms that underlie natural resistance. In this study, the topography and mechanical properties of the leaf midribs and latex of healthy and PMeV-infected papaya plants were observed by atomic force microscopy and scanning electron microscopy. Healthy plants displayed a smooth surface with practically no roughness of the leaf midribs and the latex and a higher adhesion force than infected plants. PMeV promotes changes in the leaf midribs and latex, making them more fragile and susceptible to breakage. These changes, which are associated with increased water uptake and internal pressure in laticifers, causes cell disruption that leads to spontaneous exudation of the latex and facilitates the spread of PMeV to other laticifers. These results provide new insights into the papaya-PMeV interaction that could be helpful for controlling papaya sticky disease.
Collapse
Affiliation(s)
- Anuar Magaña-Álvarez
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Calle 43 # 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97200, Mexico.
| | - Jean Carlos Vencioneck Dutra
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
| | - Tarcio Carneiro
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
| | - Daisy Pérez-Brito
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Calle 43 # 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97200, Mexico.
| | - Raúl Tapia-Tussell
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán A.C., Calle 43 # 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97200, Mexico.
| | - Jose Aires Ventura
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, R. Afonso Sarlo 160, Vitória, Espírito Santo 29052-010, Brazil.
| | - Inocencio Higuera-Ciapara
- Unidad de Tecnología de Alimentos, Centro de Investigación y Asistencia Tecnológica y Diseño del Estado de Jalisco A.C., Ave. Normalistas # 800, Col. Colinas de la Norma, Guadalajara, Jalisco 44270, Mexico.
| | - Patricia Machado Bueno Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
| | - Antonio Alberto Ribeiro Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Vitória, Espírito Santo 29040-090, Brazil.
| |
Collapse
|
113
|
Balakrishnan B, Jayandharan GR. Intracellular Trafficking of AAV5 Vectors. Hum Gene Ther Methods 2016; 27:47-8. [PMID: 26949995 DOI: 10.1089/hgtb.2016.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study was designed to visualize the cellular trafficking of adeno-associated virus (AAV) vectors in general and AAV5 serotype vectors in particular. We fluorescently labeled AAV5 wild-type and a mutant (S652A) virus and studied their infection process by live cell imaging and confocal microscopy. Our data demonstrate considerable difference in the ability of these vectors to reach the nuclear compartment within the first 6 hr after infection.
Collapse
Affiliation(s)
- Balaji Balakrishnan
- 1 Department of Hematology, Christian Medical College and Hospital , Vellore, Tamil Nadu, India.,2 Department of Biological Sciences and Bioengineering, Indian Institute of Technology , Kanpur, Uttar Pradesh, India
| | - Giridhara R Jayandharan
- 1 Department of Hematology, Christian Medical College and Hospital , Vellore, Tamil Nadu, India.,2 Department of Biological Sciences and Bioengineering, Indian Institute of Technology , Kanpur, Uttar Pradesh, India
| |
Collapse
|
114
|
Kumberger P, Frey F, Schwarz US, Graw F. Multiscale modeling of virus replication and spread. FEBS Lett 2016; 590:1972-86. [PMID: 26878104 DOI: 10.1002/1873-3468.12095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/21/2016] [Accepted: 02/07/2016] [Indexed: 01/16/2023]
Abstract
Replication and spread of human viruses is based on the simultaneous exploitation of many different host functions, bridging multiple scales in space and time. Mathematical modeling is essential to obtain a systems-level understanding of how human viruses manage to proceed through their life cycles. Here, we review corresponding advances for viral systems of large medical relevance, such as human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV). We will outline how the combination of mathematical models and experimental data has advanced our quantitative knowledge about various processes of these pathogens, and how novel quantitative approaches promise to fill remaining gaps.
Collapse
Affiliation(s)
- Peter Kumberger
- BioQuant-Center, Heidelberg University, Germany.,Center for Modeling and Simulation in the Biosciences (BIOMS), Heidelberg University, Germany
| | - Felix Frey
- BioQuant-Center, Heidelberg University, Germany.,Institute for Theoretical Physics, Heidelberg University, Germany
| | - Ulrich S Schwarz
- BioQuant-Center, Heidelberg University, Germany.,Institute for Theoretical Physics, Heidelberg University, Germany
| | - Frederik Graw
- BioQuant-Center, Heidelberg University, Germany.,Center for Modeling and Simulation in the Biosciences (BIOMS), Heidelberg University, Germany
| |
Collapse
|
115
|
Goychuk I. Molecular machines operating on the nanoscale: from classical to quantum. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:328-50. [PMID: 27335728 PMCID: PMC4901870 DOI: 10.3762/bjnano.7.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
The main physical features and operating principles of isothermal nanomachines in the microworld, common to both classical and quantum machines, are reviewed. Special attention is paid to the dual, constructive role of dissipation and thermal fluctuations, the fluctuation-dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic efficiency at maximum power. Several basic models are considered and discussed to highlight generic physical features. This work examines some common fallacies that continue to plague the literature. In particular, the erroneous beliefs that one should minimize friction and lower the temperature for high performance of Brownian machines, and that the thermodynamic efficiency at maximum power cannot exceed one-half are discussed. The emerging topic of anomalous molecular motors operating subdiffusively but very efficiently in the viscoelastic environment of living cells is also discussed.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
116
|
Development of double-generation gold nanoparticle chip-based dengue virus detection system combining fluorescence turn-on probes. Biosens Bioelectron 2016; 77:90-8. [DOI: 10.1016/j.bios.2015.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
|
117
|
Metzler R, Jeon JH, Cherstvy AG. Non-Brownian diffusion in lipid membranes: Experiments and simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2451-2467. [PMID: 26826272 DOI: 10.1016/j.bbamem.2016.01.022] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 12/14/2022]
Abstract
The dynamics of constituents and the surface response of cellular membranes-also in connection to the binding of various particles and macromolecules to the membrane-are still a matter of controversy in the membrane biophysics community, particularly with respect to crowded membranes of living biological cells. We here put into perspective recent single particle tracking experiments in the plasma membranes of living cells and supercomputing studies of lipid bilayer model membranes with and without protein crowding. Special emphasis is put on the observation of anomalous, non-Brownian diffusion of both lipid molecules and proteins embedded in the lipid bilayer. While single component, pure lipid bilayers in simulations exhibit only transient anomalous diffusion of lipid molecules on nanosecond time scales, the persistence of anomalous diffusion becomes significantly longer ranged on the addition of disorder-through the addition of cholesterol or proteins-and on passing of the membrane lipids to the gel phase. Concurrently, experiments demonstrate the anomalous diffusion of membrane embedded proteins up to macroscopic time scales in the minute time range. Particular emphasis will be put on the physical character of the anomalous diffusion, in particular, the occurrence of ageing observed in the experiments-the effective diffusivity of the measured particles is a decreasing function of time. Moreover, we present results for the time dependent local scaling exponent of the mean squared displacement of the monitored particles. Recent results finding deviations from the commonly assumed Gaussian diffusion patterns in protein crowded membranes are reported. The properties of the displacement autocorrelation function of the lipid molecules are discussed in the light of their appropriate physical anomalous diffusion models, both for non-crowded and crowded membranes. In the last part of this review we address the upcoming field of membrane distortion by elongated membrane-binding particles. We discuss how membrane compartmentalisation and the particle-membrane binding energy may impact the dynamics and response of lipid membranes. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- R Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany; Department of Physics, Tampere University of Technology, 33101 Tampere, Finland.
| | - J-H Jeon
- Korea Institute for Advanced Study (KIAS), Seoul, Republic of Korea
| | - A G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
118
|
Gomez EJ, Gerhardt K, Judd J, Tabor JJ, Suh J. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery. ACS NANO 2016; 10:225-237. [PMID: 26618393 DOI: 10.1021/acsnano.5b05558] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts.
Collapse
Affiliation(s)
- Eric J Gomez
- Department of Bioengineering, ‡Systems, Synthetic, and Physical Biology Program, and §Department of Biochemistry and Cell Biology, Rice University , Houston, Texas 77005, United States
| | - Karl Gerhardt
- Department of Bioengineering, ‡Systems, Synthetic, and Physical Biology Program, and §Department of Biochemistry and Cell Biology, Rice University , Houston, Texas 77005, United States
| | - Justin Judd
- Department of Bioengineering, ‡Systems, Synthetic, and Physical Biology Program, and §Department of Biochemistry and Cell Biology, Rice University , Houston, Texas 77005, United States
| | - Jeffrey J Tabor
- Department of Bioengineering, ‡Systems, Synthetic, and Physical Biology Program, and §Department of Biochemistry and Cell Biology, Rice University , Houston, Texas 77005, United States
| | - Junghae Suh
- Department of Bioengineering, ‡Systems, Synthetic, and Physical Biology Program, and §Department of Biochemistry and Cell Biology, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
119
|
Cherstvy AG, Metzler R. Anomalous diffusion in time-fluctuating non-stationary diffusivity landscapes. Phys Chem Chem Phys 2016; 18:23840-52. [DOI: 10.1039/c6cp03101c] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigate the diffusive and ergodic properties of massive and confined particles in a model disordered medium, in which the local diffusivity fluctuates in time while its mean has a power law dependence on the diffusion time.
Collapse
Affiliation(s)
- Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| |
Collapse
|
120
|
Liu SL, Wang ZG, Zhang ZL, Pang DW. Tracking single viruses infecting their host cells using quantum dots. Chem Soc Rev 2016; 45:1211-24. [DOI: 10.1039/c5cs00657k] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the implementation of quantum dot-based single-virus tracking and show how to use this technique to acquire meaningful information.
Collapse
Affiliation(s)
- Shu-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
| | - Zhi-Gang Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- State Key Laboratory of Virology
- The Institute for Advanced Studies, and Wuhan Institute of Biotechnology
- Wuhan University
| |
Collapse
|
121
|
Hong ZY, Lv C, Liu AA, Liu SL, Sun EZ, Zhang ZL, Lei AW, Pang DW. Clicking Hydrazine and Aldehyde: The Way to Labeling of Viruses with Quantum Dots. ACS NANO 2015; 9:11750-60. [PMID: 26549044 DOI: 10.1021/acsnano.5b03256] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Real-time tracking of fluorophore-tagged viruses in living cells can help uncover virus infection mechanisms. Certainly, the indispensable prerequisite for virus-tracking is to label viruses with some bright and photostable beacons such as quantum dots (QDs) via an appropriate labeling strategy. Herein, we devise a convenient hydrazine-aldehyde based strategy to label viruses with QDs through the conjugation of 4-formylbenzoate (4FB) modified QDs to 6-hydrazinonicotinate acetone hydrazone (HyNic) modified viruses under mild conditions. On the basis of this strategy, viruses can be successfully labeled with QDs with high selectivity, stable conjugation, good reproducibility, high labeling efficiency of 92-93% and maximum retention of both fluorescence properties of QDs and infectivity of viruses, which is very meaningful to tracking and statistical analysis of virus infection processes. By further comparing with the most widely used labeling strategy based on the Biotin-SA system, this new strategy has advantages of both high labeling efficiency and good retention of virus infectivity, thus offering a promising alternative for virus-labeling. Moreover, due to the ubiquitous presence of exposed amino groups on the surface of various viruses, this selective, efficient, reproducible and biofriendly strategy should have good universality for labeling both enveloped and nonenveloped viruses.
Collapse
Affiliation(s)
- Zheng-Yuan Hong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Cheng Lv
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - An-An Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Shu-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - En-Ze Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Ai-Wen Lei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, People's Republic of China
| |
Collapse
|
122
|
Pisarev AS, Rukolaine SA, Samsonov AM, Samsonova MG. Numerical analysis of particle trajectories in living cells under uncertainty conditions. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915050176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
123
|
Zhang C, Yao T, Zheng Y, Li Z, Zhang Q, Zhang L, Zhou D. Development of next generation adeno-associated viral vectors capable of selective tropism and efficient gene delivery. Biomaterials 2015; 80:134-145. [PMID: 26708090 DOI: 10.1016/j.biomaterials.2015.11.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/11/2015] [Accepted: 11/29/2015] [Indexed: 12/12/2022]
Abstract
Virus-based nanoparticles have shown promise as vehicles for delivering therapeutic genes. However, the rational design of viral vectors that enable selective tropism towards particular types of cells and tissues remains challenging. Here, we explored structural-functional relationships of the adeno-associated virus 2 (AAV2) vector by expanding its genetic code during production. As a proof-of-principle, an azide moiety was strategically displayed on the vector capsid as a bioorthogonal chemical reporter. Upon bioorthogonal conjugation of AAV2 with fluorophores and cyclic arginyl-glycyl-aspartic acid ligands at certain modifiable sites, we characterized in vitro and in vivo AAV2 movement and enhanced tropism selectivity towards integrin-expressing tumor cells. Targeting AAV2 vectors resulted in selective killing of U87 glioblastoma cells and derived xenografts via the herpes simplex virus suicide gene thymidine kinase, with the potency of ganciclovir being increased by 25-fold. Our results demonstrated successful rational modification of AAV2 as a targeting delivery vehicle, establishing a facile platform for precision engineering of virus-based nanoparticles in basic research and therapeutic applications.
Collapse
Affiliation(s)
- Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tianzhuo Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yongxiang Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
124
|
Super-resolution imaging of nuclear import of adeno-associated virus in live cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15047. [PMID: 26665132 PMCID: PMC4667716 DOI: 10.1038/mtm.2015.47] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/12/2015] [Accepted: 10/26/2015] [Indexed: 01/18/2023]
Abstract
Adeno-associated virus (AAV) has been developed as a promising human gene therapy vector. Particularly, recombinant AAV vector (rAAV) achieves its transduction of host cells by crossing at least three physiological barriers including plasma membrane, endosomal membrane, and nuclear envelope (NE). So far, the AAV transduction mechanism has not been explored thoroughly at the single viral particle level. In this study, we employed high-speed super-resolution single-point edge-excitation sub-diffraction (SPEED) microscopy to map the events of single rAAV2 particles infecting live human cells with an unprecedented spatiotemporal resolution of 9–12 nm and 2–20 ms. Data reveal that rAAV2 particles are imported through nuclear pore complexes (NPCs) rather than nuclear membrane budding into the nucleus. Moreover, approximately 17% of the rAAV2 molecules starting from the cytoplasm successfully transverse the NPCs to reach the nucleoplasm, revealing that the NPCs act as a strict selective step for AAV delivery. This study lastly suggests a new pathway to improve AAV vectors for human gene therapy.
Collapse
|
125
|
Rey-Rico A, Venkatesan JK, Frisch J, Rial-Hermida I, Schmitt G, Concheiro A, Madry H, Alvarez-Lorenzo C, Cucchiarini M. PEO-PPO-PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater 2015; 27:42-52. [PMID: 26320543 DOI: 10.1016/j.actbio.2015.08.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 11/28/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vectors are clinically adapted gene transfer vectors for direct human cartilage regenerative medicine. Their appropriate use in patients is still limited by a relatively low efficacy of vector penetration inside the cells, by the pre-existing humoral immune responses against the viral capsid proteins in a large part of the human population, and by possible inhibition of viral uptake by clinical compounds such as heparin. The delivery of rAAV vectors to their targets using optimized vehicles is therefore under active investigation. Here, we evaluated the possibility of providing rAAV to human bone marrow-derived mesenchymal stem cells (hMSCs), a potent source of cartilage regenerative cells, via self-assembled poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers as linear poloxamers or X-shaped poloxamines. Encapsulation in poloxamer PF68 and poloxamine T908 polymeric micelles allowed for an effective, durable, and safe modification of hMSCs via rAAV to levels similar to or even higher than those noted upon direct vector application. The copolymers were capable of restoring the transduction of hMSCs with rAAV in conditions of gene transfer inhibition, i.e. in the presence of heparin or of a specific antibody directed against the rAAV capsid, enabling effective therapeutic delivery of a chondrogenic sox9 sequence leading to an enhanced chondrocyte differentiation of the cells. The present findings highlight the value of PEO-PPO copolymers as powerful tools for rAAV-based cartilage regenerative medicine. STATEMENT OF SIGNIFICANCE While recombinant adeno-associated viral (rAAV) vectors are adapted vectors to treat a variety of human disorders, their clinical use is still restricted by pre-existing antiviral immune responses, by a low efficacy of natural vector entry in the target cells, and by inhibition of viral uptake by clinically used compounds like heparin. The search for alternative routes of rAAV delivery is thus becoming a new field of investigation. In the present study, we describe the strong benefits of providing rAAV to human mesenchymal stem cells, a potent source of cells for regenerative medicine, encapsulated in polymeric micelles based on poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers as novel, effective and safe delivery systems for human gene therapy.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany.
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Isabel Rial-Hermida
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany; Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Carmen Alvarez-Lorenzo
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
126
|
|
127
|
Büning H, Huber A, Zhang L, Meumann N, Hacker U. Engineering the AAV capsid to optimize vector–host-interactions. Curr Opin Pharmacol 2015; 24:94-104. [DOI: 10.1016/j.coph.2015.08.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
|
128
|
Lawley SD, Tuft M, Brooks HA. Coarse-graining intermittent intracellular transport: Two- and three-dimensional models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042709. [PMID: 26565274 DOI: 10.1103/physreve.92.042709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 06/05/2023]
Abstract
Viruses and other cellular cargo that lack locomotion must rely on diffusion and cellular transport systems to navigate through a biological cell. Indeed, advances in single particle tracking have revealed that viral motion alternates between (a) diffusion in the cytoplasm and (b) active transport along microtubules. This intermittency makes quantitative analysis of trajectories difficult. Therefore, the purpose of this paper is to construct mathematical methods to approximate intermittent dynamics by effective stochastic differential equations. The coarse-graining method that we develop is more accurate than existing techniques and applicable to a wide range of intermittent transport models. In particular, we apply our method to two- and three-dimensional cell geometries (disk, sphere, and cylinder) and demonstrate its accuracy. In addition to these specific applications, we also explain our method in full generality for use on future intermittent models.
Collapse
Affiliation(s)
- Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Marie Tuft
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Heather A Brooks
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
129
|
Hasnain S, Bandyopadhyay P. An analytical correlated random walk model and its application to understand subdiffusion in crowded environment. J Chem Phys 2015; 143:114104. [PMID: 26395684 DOI: 10.1063/1.4930275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Subdiffusion in crowded environment such as movement of macromolecule in a living cell has often been observed experimentally. The primary reason for subdiffusion is volume exclusion by the crowder molecules. However, other effects such as hydrodynamic interaction may also play an important role. Although there are a large number of computer simulation studies on understanding molecular crowding, there is a lack of theoretical models that can be connected to both experiment and simulation. In the current work, we have formulated a one-dimensional correlated random walk model by connecting this to the motion in a crowded environment. We have found the exact solution of the probability distribution function of the model by solving it analytically. The parameters of our model can be obtained either from simulation or experiment. It has been shown that this analytical model captures some of the general features of diffusion in crowded environment as given in the previous literature and its prediction for transient subdiffusion closely matches the observations of a previous study of computer simulation of Escherichia coli cytoplasm. It is likely that this model will open up more development of theoretical models in this area.
Collapse
Affiliation(s)
- Sabeeha Hasnain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
130
|
Schuster BS, Ensign LM, Allan DB, Suk JS, Hanes J. Particle tracking in drug and gene delivery research: State-of-the-art applications and methods. Adv Drug Deliv Rev 2015; 91:70-91. [PMID: 25858664 DOI: 10.1016/j.addr.2015.03.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/17/2023]
Abstract
Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle tracking's applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful.
Collapse
Affiliation(s)
- Benjamin S Schuster
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura M Ensign
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniel B Allan
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218 USA
| | - Jung Soo Suk
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- Center for Nanomedicine, Johns Hopkins University School of Medicine , Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
131
|
Reigh SY. Multiple external field effects on diffusion-limited reversible reactions for a geminate pair with no interparticle interactions. J Chem Phys 2015; 143:084118. [DOI: 10.1063/1.4928641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
132
|
Nasir W, Bally M, Zhdanov VP, Larson G, Höök F. Interaction of Virus-Like Particles with Vesicles Containing Glycolipids: Kinetics of Detachment. J Phys Chem B 2015; 119:11466-72. [PMID: 26260011 DOI: 10.1021/acs.jpcb.5b04160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many viruses interact with their host cells via glycosphingolipids (GSLs) and/or glycoproteins present on the outer cell membrane. This highly specific interaction includes virion attachment and detachment. The residence time determined by the detachment is particularly interesting, since it is directly related to internalization and infection as well as to virion egress and spreading. In an attempt to deepen the understanding of virion detachment kinetics, we have used total internal reflection fluorescence (TIRF) microscopy to probe the interaction between individual fluorescently labeled GSL-containing lipid vesicles and surface-bound virus-like particles (VLPs) of a norovirus genotype II.4 strain. The distribution of the VLP-vesicle residence time was investigated for seven naturally occurring GSLs, all of which are candidates for the not yet identified receptor(s) mediating norovirus entry into host cells. As expected for interactions involving multiple GSL binding sites at a viral capsid, the detachment kinetics displayed features typical for a broad activation-energy distribution for all GSLs. Detailed inspection of these distributions revealed significant differences among the different GSLs. The results are discussed in terms of strength of the interaction, vesicle size, as well as spatial distribution and clustering of GSLs in the vesicle membrane.
Collapse
Affiliation(s)
- Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Marta Bally
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden.,Institut Curie, Centre de Recherche, CNRS, UMR 168, Physico-Chimie Curie, F-75248 Paris, France
| | - Vladimir P Zhdanov
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden.,Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| |
Collapse
|
133
|
Tsekouras K, Siegel AP, Day RN, Pressé S. Inferring diffusion dynamics from FCS in heterogeneous nuclear environments. Biophys J 2015; 109:7-17. [PMID: 26153697 PMCID: PMC4572512 DOI: 10.1016/j.bpj.2015.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/20/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show-first using synthetic data-that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell's nucleus as well as 2) in the cell's cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins.
Collapse
Affiliation(s)
| | - Amanda P Siegel
- Integrated Nanosystems Development Institute, IUPUI, Indianapolis Indiana
| | - Richard N Day
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steve Pressé
- Department of Physics, IUPUI, Indianapolis Indiana; Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
134
|
Moerner WEWE. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture). Angew Chem Int Ed Engl 2015. [PMID: 26088273 DOI: 10.1103/revmodphys.87.1183] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.
Collapse
Affiliation(s)
- W E William E Moerner
- Departments of Chemistry and (by Courtesy) of Applied Physics, Stanford University, Stanford, California 94305 (USA)
| |
Collapse
|
135
|
Godec A, Metzler R. Signal focusing through active transport. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:010701. [PMID: 26274108 DOI: 10.1103/physreve.92.010701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 06/04/2023]
Abstract
The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing-faster and more precise signaling-are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.
Collapse
Affiliation(s)
- Aljaž Godec
- Institute of Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Laboratory for Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
| |
Collapse
|
136
|
Moerner WEWE. Spektroskopie, Visualisierung und Photomanipulation einzelner Moleküle: die Grundlage für superhochauflösende Mikroskopie (Nobel-Aufsatz). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
137
|
Moerner WEWE. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture). Angew Chem Int Ed Engl 2015; 54:8067-93. [PMID: 26088273 DOI: 10.1002/anie.201501949] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/10/2022]
Abstract
The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.
Collapse
Affiliation(s)
- W E William E Moerner
- Departments of Chemistry and (by Courtesy) of Applied Physics, Stanford University, Stanford, California 94305 (USA)
| |
Collapse
|
138
|
Pan Y, Wang S, Shan Y, Zhang D, Gao J, Zhang M, Liu S, Cai M, Xu H, Li G, Qin Q, Wang H. Ultrafast Tracking of a Single Live Virion During the Invagination of a Cell Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2782-2788. [PMID: 25689837 DOI: 10.1002/smll.201403491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/18/2015] [Indexed: 06/04/2023]
Abstract
The first step in most viral infections is the penetration of the cell membrane via endocytosis. However, the underlying mechanism of this important process has not been quantitatively characterized; for example, the velocity and force of a single virion during invagination remain unknown. Here, the endocytosis of a single live virion (Singapore grouper iridovirus, SGIV) through the apical membranes of a host cell is monitored by developing and using a novel ultrafast (at the microsecond level) tracking technique: force tracing. For the first time, these results unambiguously reveal that the maximum velocity during the cell entry of a single SGIV by membrane invagination is approximately 200 nm s(-1), the endocytic force is approximately 60.8 ± 18.5 pN, and the binding energy density increases with the engulfment depth. This report utilizing high temporospatial resolution (subnanometer and microsecond levels) approaches provides new insight into the dynamic process of viral infection via endocytosis and the mechanism of membrane invagination at the single-particle level.
Collapse
Affiliation(s)
- Yangang Pan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shaowen Wang
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, 510301, P.R. China
| | - Yuping Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
- Department of Chemistry and Biochemistry, University of South Carolina, SC, 29208, USA
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun, 130012, China
| | - Dinglin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning, 116023, P.R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Min Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Shuheng Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian, Liaoning, 116023, P.R. China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, 510301, P.R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
139
|
Nieves DJ, Li Y, Fernig DG, Lévy R. Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140454. [PMID: 26543570 PMCID: PMC4632534 DOI: 10.1098/rsos.140454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/19/2015] [Indexed: 05/28/2023]
Abstract
Raster image correlation spectroscopy (RICS) measures the diffusion of fluorescently labelled molecules from stacks of confocal microscopy images by analysing correlations within the image. RICS enables the observation of a greater and, thus, more representative area of a biological system as compared to other single molecule approaches. Photothermal microscopy of gold nanoparticles allows long-term imaging of the same labelled molecules without photobleaching. Here, we implement RICS analysis on a photothermal microscope. The imaging of single gold nanoparticles at pixel dwell times short enough for RICS (60 μs) with a piezo-driven photothermal heterodyne microscope is demonstrated (photothermal raster image correlation spectroscopy, PhRICS). As a proof of principle, PhRICS is used to measure the diffusion coefficient of gold nanoparticles in glycerol : water solutions. The diffusion coefficients of the nanoparticles measured by PhRICS are consistent with their size, determined by transmission electron microscopy. PhRICS was then used to probe the diffusion speed of gold nanoparticle-labelled fibroblast growth factor 2 (FGF2) bound to heparan sulfate in the pericellular matrix of live fibroblast cells. The data are consistent with previous single nanoparticle tracking studies of the diffusion of FGF2 on these cells. Importantly, the data reveal faster FGF2 movement, previously inaccessible by photothermal tracking, and suggest that inhomogeneity in the distribution of bound FGF2 is dynamic.
Collapse
Affiliation(s)
- D. J. Nieves
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
- EMBL Australia Node in Single Molecule Science, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Y. Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - D. G. Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - R. Lévy
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
140
|
Fedotov S, Korabel N. Subdiffusion in an external potential: Anomalous effects hiding behind normal behavior. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042112. [PMID: 25974444 DOI: 10.1103/physreve.91.042112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 06/04/2023]
Abstract
We propose a model of subdiffusion in which an external force is acting on a particle at all times not only at the moment of jump. The implication of this assumption is the dependence of the random trapping time on the force with the dramatic change of particles behavior compared to the standard continuous time random walk model in the long time limit. Constant force leads to the transition from non-ergodic subdiffusion to ergodic diffusive behavior. However, we show this behavior remains anomalous in a sense that the diffusion coefficient depends on the external force and on the anomalous exponent. For quadratic potential we find that the system remains non-ergodic. The anomalous exponent in this case defines not only the speed of convergence but also the stationary distribution which is different from standard Boltzmann equilibrium.
Collapse
Affiliation(s)
- Sergei Fedotov
- School of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nickolay Korabel
- School of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
141
|
Goychuk I. Anomalous transport of subdiffusing cargos by single kinesin motors: the role of mechano-chemical coupling and anharmonicity of tether. Phys Biol 2015; 12:016013. [PMID: 25635368 DOI: 10.1088/1478-3975/12/1/016013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Here we generalize our previous model of molecular motors trafficking subdiffusing cargos in viscoelastic cytosol by (i) including mechano-chemical coupling between cyclic conformational fluctuations of the motor protein driven by the reaction of ATP hydrolysis and its translational motion within the simplest two-state model of hand-over-hand motion of kinesin, and also (ii) by taking into account the anharmonicity of the tether between the motor and the cargo (its maximally possible extension length). It is shown that the major earlier results such as occurrence of normal versus anomalous transport depending on the amplitude of binding potential, cargo size and the motor turnover frequency not only survive in this more realistic model, but the results also look very similar for the correspondingly adjusted parameters. However, this more realistic model displays a substantially larger thermodynamic efficiency due to a bidirectional mechano-chemical coupling. For realistic parameters, the maximal thermodynamic efficiency can transiently be about 50% as observed for kinesins, and even larger, surprisingly also in a novel strongly anomalous (sub)transport regime, where the motor enzymatic turnovers become also anomalously slow and cannot be characterized by a turnover rate. Here anomalously slow dynamics of the cargo enforces anomalously slow cyclic kinetics of the motor protein.
Collapse
Affiliation(s)
- Igor Goychuk
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
142
|
Ghosh SK, Cherstvy AG, Metzler R. Non-universal tracer diffusion in crowded media of non-inert obstacles. Phys Chem Chem Phys 2015; 17:1847-58. [DOI: 10.1039/c4cp03599b] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
For tracer motion in an array of attractive obstacles we observe transient, non-ergodic anomalous diffusion depending on the obstacle density.
Collapse
Affiliation(s)
- Surya K. Ghosh
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Andrey G. Cherstvy
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy
- University of Potsdam
- 14476 Potsdam-Golm
- Germany
- Department of Physics
| |
Collapse
|
143
|
Wei Q, Luo W, Chiang S, Kappel T, Mejia C, Tseng D, Chan RYL, Yan E, Qi H, Shabbir F, Ozkan H, Feng S, Ozcan A. Imaging and sizing of single DNA molecules on a mobile phone. ACS NANO 2014; 8:12725-33. [PMID: 25494442 DOI: 10.1021/nn505821y] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
DNA imaging techniques using optical microscopy have found numerous applications in biology, chemistry and physics and are based on relatively expensive, bulky and complicated set-ups that limit their use to advanced laboratory settings. Here we demonstrate imaging and length quantification of single molecule DNA strands using a compact, lightweight and cost-effective fluorescence microscope installed on a mobile phone. In addition to an optomechanical attachment that creates a high contrast dark-field imaging setup using an external lens, thin-film interference filters, a miniature dovetail stage and a laser-diode for oblique-angle excitation, we also created a computational framework and a mobile phone application connected to a server back-end for measurement of the lengths of individual DNA molecules that are labeled and stretched using disposable chips. Using this mobile phone platform, we imaged single DNA molecules of various lengths to demonstrate a sizing accuracy of <1 kilobase-pairs (kbp) for 10 kbp and longer DNA samples imaged over a field-of-view of ∼2 mm2.
Collapse
Affiliation(s)
- Qingshan Wei
- Electrical Engineering Department, University of California , Los Angeles, California 90095, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
ABSTRACT Viruses are a diverse class of nanoparticles. However, they have evolved a few common mechanisms that enable successful infection of their host cells. The first stage of this process involves entry into the cell. For enveloped viruses this process has been well characterized. For nonenveloped viruses, the focus of this review, the entry mechanisms are less well understood. For these viruses, a typical pathway involves receptor attachment followed by internalization into cellular vesicles and subsequent viral escape to the cytosol and transport to the site of genome replication. Significantly, these viruses have evolved numerous mechanisms to fulfill this seemingly simple infection scheme. We focus on the latest observations for several families of nonenveloped viruses and highlight specific members for eukaryotic families: Adenoviridae, Papillomaviridae, Parvoviridae, Picornaviridae, Polyomaviridae and Reoviridae; and prokaryotic families: Microviridae, Myoviridae, Podoviridae and Siphoviridae.
Collapse
Affiliation(s)
- Bridget Lins
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
145
|
Klasse PJ. Molecular determinants of the ratio of inert to infectious virus particles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:285-326. [PMID: 25595808 DOI: 10.1016/bs.pmbts.2014.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ratio of virus particles to infectious units is a classic measurement in virology and ranges widely from several million to below 10 for different viruses. Much evidence suggests a distinction be made between infectious and infecting particles or virions: out of many potentially infectious virions, few infect under regular experimental conditions, largely because of diffusion barriers. Still, some virions are inert from the start; others become defective through decay. And with increasing cell- and molecular-biological knowledge of each step in the replicative cycle for different viruses, it emerges that many processes entail considerable losses of potential viral infectivity. Furthermore, all-or-nothing assumptions about virion infectivity are flawed and should be replaced by descriptions that allow for spectra of infectious propensities. A more realistic understanding of the infectivity of individual virions has both practical and theoretical implications for virus neutralization, vaccine research, antiviral therapy, and the use of viral vectors.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA.
| |
Collapse
|
146
|
Sun C, Cao Z, Wu M, Lu C. Intracellular tracking of single native molecules with electroporation-delivered quantum dots. Anal Chem 2014; 86:11403-9. [PMID: 25341054 DOI: 10.1021/ac503363m] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Quantum dots (QDs) have found a wide range of biological applications as fluorophores due to their extraordinary brightness and high photostability that are far superior to those of conventional organic dyes. These traits are particularly appealing for studying cell biology under a cellular autofluorescence background and with a long observation period. However, it remains the most important open challenge to target QDs at native intracellular molecules and organelles in live cells. Endocytosis-based delivery methods lead to QDs encapsulated in vesicles that have their surface biorecognition element hidden from the intracellular environment. The probing of native molecules using QDs has been seriously hindered by the lack of consistent approaches for delivery of QDs with exposed surface groups. In this study, we demonstrate that electroporation (i.e., the application of short electric pulses for cell permeabilization) generates reproducible results for delivering QDs into cells. We show evidence that electroporation-based delivery does not involve endocytosis or vesicle encapsulation of QDs. The amount of QD loading and the resulting cell viability can be adjusted by varying the parameters associated with the electroporation operation. To demonstrate the application of our approach for intracellular targeting, we study single-molecule motility of kinesin in live cells by labeling native kinesins using electroporation-delivered QDs. We envision that electroporation may serve as a simple and universal tool for delivering QDs into cells to label and probe native molecules and organelles.
Collapse
Affiliation(s)
- Chen Sun
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University , Blacksburg, Virginia 24061, United States
| | | | | | | |
Collapse
|
147
|
Lewis EEL, Child HW, Hursthouse A, Stirling D, McCully M, Paterson D, Mullin M, Berry CC. The influence of particle size and static magnetic fields on the uptake of magnetic nanoparticles into three dimensional cell-seeded collagen gel cultures. J Biomed Mater Res B Appl Biomater 2014; 103:1294-301. [PMID: 25358626 DOI: 10.1002/jbm.b.33302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 08/18/2014] [Accepted: 10/01/2014] [Indexed: 12/31/2022]
Abstract
Over recent decades there has been and continues to be major advances in the imaging, diagnosis and potential treatment of medical conditions, by the use of magnetic nanoparticles. However, to date the majority of cell delivery studies employ a traditional 2D monolayer culture. This article aims to determine the ability of various sized magnetic nanoparticles to penetrate and travel through a cell seeded collagen gel model, in the presence or absence of a magnetic field. Three different sized (100, 200, and 500 nm) nanoparticles were employed in the study. The results showed cell viability was unaffected by the presence of nanoparticles over a 24-h test period. The initial uptake of the 100 nm nanoparticle into the collagen gel structure was superior compared to the larger sized nanoparticles under the influence of a magnetic field and incubated for 24 h. Interestingly, it was the 200 nm nanoparticles, which proved to penetrate the gel furthest, under the influence of a magnetic field, during the initial culture stage after 1-h incubation.
Collapse
Affiliation(s)
- Emily E L Lewis
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK, G12 8QQ
| | - Hannah W Child
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK, G12 8QQ
| | - Andrew Hursthouse
- School of Science, University of the West of Scotland, Paisley, UK, PA1 2BE
| | - David Stirling
- School of Science, University of the West of Scotland, Paisley, UK, PA1 2BE
| | - Mark McCully
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK, G12 8QQ
| | - David Paterson
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK, G12 8QQ
| | - Margaret Mullin
- Electron Microscopy Unit, University of Glasgow, Glasgow, UK, G12 8QQ
| | - Catherine C Berry
- Centre for Cell Engineering, University of Glasgow, Glasgow, UK, G12 8QQ
| |
Collapse
|
148
|
Entry of a novel marine DNA virus, Singapore grouper iridovirus, into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner. J Virol 2014; 88:13047-63. [PMID: 25165116 DOI: 10.1128/jvi.01744-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Iridoviruses are nucleocytoplasmic DNA viruses which cause great economic losses in the aquaculture industry but also show significant threat to global biodiversity. However, a lack of host cells has resulted in poor progress in clarifying iridovirus behavior. We investigated the crucial events during virus entry using a combination of single-virus tracking and biochemical assays, based on the established virus-cell infection model for Singapore grouper iridovirus (SGIV). SGIV infection in host cells was strongly inhibited when cells were pretreated with drugs blocking clathrin-mediated endocytosis, including sucrose and chlorpromazine. Inhibition of key regulators of macropinocytosis, including Na(+)/H(+) exchanger, Rac1 GTPase, p21-activated kinase 1 (PAK1), protein kinase C (PKC), and myosin II, significantly reduced SGIV uptake. Cy5-labeled SGIV particles were observed to colocalize with clathrin and macropinosomes. In contrast, disruption of cellular cholesterol by methyl-β-cyclodextrin and nystatin had no effect on virus infection, suggesting that SGIV entered grouper cells via the clathrin-mediated endocytic pathway and macropinocytosis but not via caveola-dependent endocytosis. Furthermore, inhibitors of endosome acidification such as chloroquine and bafilomycin A1 blocked virus infection, indicating that SGIV entered cells in a pH-dependent manner. In addition, SGIV particles were observed to be transported along both microtubules and actin filaments, and intracellular SGIV motility was remarkably impaired by depolymerization of microtubules or actin filaments. The results of this study for the first time demonstrate that not only the clathrin-dependent pathway but also macropinocytosis are involved in fish DNA enveloped virus entry, thus providing a convenient tactic for exploring the life cycle of DNA viruses. IMPORTANCE Virus entry into host cells is critically important for initiating infections and is usually recognized as an ideal target for the design of antiviral strategies. Iridoviruses are large DNA viruses which cause serious threats to ecological diversity and the aquaculture industry worldwide. However, the current understanding of iridovirus entry is limited and controversial. Singapore grouper iridovirus (SGIV) is a novel marine fish DNA virus which belongs to genus Ranavirus, family Iridoviridae. Here, using single-virus tracking technology in combination with biochemical assays, we investigated the crucial events during SGIV entry and demonstrated that SGIV entered grouper cells via the clathrin-mediated endocytic pathway in a pH-dependent manner but not via caveola-dependent endocytosis. Furthermore, we propose for the first time that macropinocytosis is involved in iridovirus entry. Together, this work not only contributes greatly to understating iridovirus pathogenesis but also provides an ideal model for exploring the behavior of DNA viruses in living cells.
Collapse
|
149
|
Ghosh SK, Cherstvy AG, Metzler R. Deformation propagation in responsive polymer network films. J Chem Phys 2014; 141:074903. [DOI: 10.1063/1.4893056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Surya K. Ghosh
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G. Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Department of Physics, Tampere University of Technology, 33101 Tampere, Finland
| |
Collapse
|
150
|
Cherstvy AG, Metzler R. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012134. [PMID: 25122278 DOI: 10.1103/physreve.90.012134] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Indexed: 06/03/2023]
Abstract
We study the stochastic behavior of heterogeneous diffusion processes with the power-law dependence D(x) ∼ |x|(α) of the generalized diffusion coefficient encompassing sub- and superdiffusive anomalous diffusion. Based on statistical measures such as the amplitude scatter of the time-averaged mean-squared displacement of individual realizations, the ergodicity breaking and non-Gaussianity parameters, as well as the probability density function P(x,t), we analyze the weakly nonergodic character of the heterogeneous diffusion process and, particularly, the degree of irreproducibility of individual realizations. As we show, the fluctuations between individual realizations increase with growing modulus |α| of the scaling exponent. The fluctuations appear to diverge when the critical value α = 2 is approached, while for even larger α the fluctuations decrease, again. At criticality, the power-law behavior of the mean-squared displacement changes to an exponentially fast growth, and the fluctuations of the time-averaged mean-squared displacement do not converge for increasing number of realizations. From a systematic comparison we observe some striking similarities of the heterogeneous diffusion process with the familiar subdiffusive continuous time random walk process with power-law waiting time distribution and diverging characteristic waiting time.
Collapse
Affiliation(s)
- A G Cherstvy
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - R Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany and Department of Physics, Tampere University of Technology, 33101 Tampere, Finland
| |
Collapse
|