101
|
Kalesh KA, Shi H, Ge J, Yao SQ. The use of click chemistry in the emerging field of catalomics. Org Biomol Chem 2010; 8:1749-62. [DOI: 10.1039/b923331h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
102
|
Liu K, Shi H, Xiao H, Chong A, Bi X, Chang YT, Tan K, Yada R, Yao S. Functional Profiling, Identification, and Inhibition of Plasmepsins in Intraerythrocytic Malaria Parasites. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
103
|
Liu K, Shi H, Xiao H, Chong A, Bi X, Chang YT, Tan K, Yada R, Yao S. Functional Profiling, Identification, and Inhibition of Plasmepsins in Intraerythrocytic Malaria Parasites. Angew Chem Int Ed Engl 2009; 48:8293-7. [DOI: 10.1002/anie.200903747] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
104
|
Abstract
Understanding the ways in which pathogens invade and neutralize their hosts is of great interest from both an academic and a clinical perspective. However, in many cases genetic tools are unavailable or insufficient to fully characterize the detailed mechanisms of pathogenesis. Small molecule approaches are particularly powerful due to their ability to modulate specific biological functions in a highly controlled manner and their potential to broadly target conserved processes across species. Recently, two approaches that make use of small molecules, activity-based protein profiling and high-throughput phenotypic screening, have begun to find applications in the study of pathways involved in pathogenesis. In this Review we highlight ways in which these techniques have been applied to examine bacterial and parasitic pathogenesis and discuss possible ways in which these efforts can be expanded in the near future.
Collapse
Affiliation(s)
- Aaron W. Puri
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Dr. Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Dr. Stanford, CA 94305, USA
- Department of Patholgy, Stanford University School of Medicine, 300 Pasteur Dr. Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Dr. Stanford, CA 94305, USA
| |
Collapse
|
105
|
Chung DWD, Ponts N, Cervantes S, Le Roch KG. Post-translational modifications in Plasmodium: more than you think! Mol Biochem Parasitol 2009; 168:123-34. [PMID: 19666057 DOI: 10.1016/j.molbiopara.2009.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/10/2009] [Accepted: 08/03/2009] [Indexed: 12/21/2022]
Abstract
Recent evidences indicate that transcription in Plasmodium may be hard-wired and rigid, deviating from the classical model of transcriptional gene regulation. Thus, it is important that other regulatory pathways be investigated as a comprehensive effort to curb the deadly malarial parasite. Research in post-translational modifications in Plasmodium is an emerging field that may provide new venues for drug discovery and potential new insights into how parasitic protozoans regulate their life cycle. Here, we discuss the recent findings of post-translational modifications in Plasmodium.
Collapse
Affiliation(s)
- Duk-Won Doug Chung
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
106
|
Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers. Proc Natl Acad Sci U S A 2009; 106:13266-71. [PMID: 19633187 DOI: 10.1073/pnas.0906370106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human parasite Plasmodium falciparum enzymatically digests hemoglobin during its intra-erythrocytic developmental stages in acidic food vacuole compartments. The released heme is rapidly detoxified by polymerization into the chemically inert pigment, hemozoin. Several heme-binding anti-malarial compounds, such as chloroquine, efficiently inhibit this process, and this is believed to be the predominant mechanism by which these drugs induce parasite toxicity. In an effort to expand the biochemical tools available for exploration of this pathogen's basic biology, we chose this heme-detoxification pathway as a model system for exploring the suitability of DNA aptamers for modulating this essential parasite biochemical pathway. In this report, we demonstrate that heme-binding DNA aptamers efficiently inhibit in vitro hemozoin formation catalyzed by either a model lipid system or parasite-derived extracts just as or more potently than chloroquine. Furthermore, when parasites are grown in red cells loaded with heme-binding aptamers, their growth is significantly inhibited relative to parasites exposed to non-heme-binding DNA oligonucleotides. Both the timing of parasite-induced toxicity and the concentration of heme-binding aptamer required for inducing toxicity correlate well with the uptake of red cell cytosolic components by the parasite, and the requirement for compounds with similar in vitro hemozoin inhibitory potency to preconcentrate within the parasite before observing toxicity. Thus, these heme-binding aptamers recapitulate the in vitro hemozoin inhibition activity and induce parasite toxicity in a manner consistent with inhibition of this pathway. Altogether, these data demonstrate that aptamers can be versatile tools with applicability in functionally dissecting important P. falciparum-specific pathways both in vitro and in vivo.
Collapse
|
107
|
Best MD. Click Chemistry and Bioorthogonal Reactions: Unprecedented Selectivity in the Labeling of Biological Molecules. Biochemistry 2009; 48:6571-84. [DOI: 10.1021/bi9007726] [Citation(s) in RCA: 511] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michael D. Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
108
|
Chandramohanadas R, Davis PH, Beiting DP, Harbut MB, Darling C, Velmourougane G, Lee MY, Greer PA, Roos DS, Greenbaum DC. Apicomplexan parasites co-opt host calpains to facilitate their escape from infected cells. Science 2009; 324:794-7. [PMID: 19342550 PMCID: PMC3391539 DOI: 10.1126/science.1171085] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii (the causative agents of malaria and toxoplasmosis, respectively), are responsible for considerable morbidity and mortality worldwide. These pathogenic protozoa replicate within an intracellular vacuole inside of infected host cells, from which they must escape to initiate a new lytic cycle. By integrating cell biological, pharmacological, and genetic approaches, we provide evidence that both Plasmodium and Toxoplasma hijack host cell calpain proteases to facilitate parasite egress. Immunodepletion or inhibition of calpain-1 in hypotonically lysed and resealed erythrocytes prevented the escape of P. falciparum parasites, which was restored by adding purified calpain-1. Similarly, efficient egress of T. gondii from mammalian fibroblasts was blocked by either small interfering RNA-mediated suppression or genetic deletion of calpain activity and could be restored by genetic complementation.
Collapse
Affiliation(s)
| | - Paul H. Davis
- Department of Biology and the Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P. Beiting
- Department of Biology and the Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B. Harbut
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claire Darling
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geetha Velmourougane
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ming Yeh Lee
- Department of Biology and the Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Queen’s Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - David S. Roos
- Department of Biology and the Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doron C. Greenbaum
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
109
|
Bachovchin DA, Brown SJ, Rosen H, Cravatt BF. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat Biotechnol 2009; 27:387-94. [PMID: 19329999 PMCID: PMC2709489 DOI: 10.1038/nbt.1531] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/03/2009] [Indexed: 12/26/2022]
Abstract
High-throughput screening to discover small-molecule modulators of enzymes typically relies on highly tailored substrate assays, which are not available for poorly characterized enzymes. Here we report a general, substrate-free method for identifying inhibitors of uncharacterized enzymes. The assay measures changes in the kinetics of covalent active-site labeling with broad-spectrum, fluorescent probes in the presence of inhibitors by monitoring the fluorescence polarization signal. We show that this technology is applicable to enzymes from at least two mechanistic classes, regardless of their degree of functional annotation, and can be coupled with secondary proteomic assays that use competitive activity-based profiling to rapidly determine the specificity of screening hits. Using this method, we identify the bioactive alkaloid emetine as a selective inhibitor of the uncharacterized cancer-associated hydrolase RBBP9. Furthermore, we show that the detoxification enzyme GSTO1, also implicated in cancer, is inhibited by several electrophilic compounds found in public libraries, some of which display high selectivity for this protein.
Collapse
Affiliation(s)
- Daniel A. Bachovchin
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven J. Brown
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Scripps Research Institute Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hugh Rosen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Scripps Research Institute Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
110
|
Plasmodium chabaudi: expression of active recombinant chabaupain-1 and localization studies in Anopheles sp. Exp Parasitol 2009; 122:97-105. [PMID: 19292986 DOI: 10.1016/j.exppara.2009.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 02/17/2009] [Accepted: 03/02/2009] [Indexed: 11/20/2022]
Abstract
Plasmodium cysteine proteases have been shown to be immunogenic and are being used as malaria potential serodiagnostic markers and vaccine targets. Genes encoding two Plasmodium chabaudi cysteine proteases chabaupain-1 (CP-1) and chabaupain-2 (CP-2) were identified and further expressed in Escherichia coli. Solubilisation of recombinant CP-1 and CP-2 was achieved by decreasing the temperature of induction. Anopheles gambiae tissues infected with Plasmodium were analyzed by Western blotting using the anti-CP-1 antibody showing that CP-1 is only present in the A. gambiae midguts being absent from other infected mosquito biological material. Anti-CP-1 anti-serum recognized a 30 kDa band in P. chabaudi, Plasmodium berghei and Plasmodium yoelii lysates but does not recognize the recombinant CP-2 extracts suggesting high antibody specificity.
Collapse
|
111
|
Kerr ID, Lee JH, Pandey KC, Harrison A, Sajid M, Rosenthal PJ, Brinen LS. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. J Med Chem 2009; 52:852-7. [PMID: 19128015 PMCID: PMC2651692 DOI: 10.1021/jm8013663] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Falcipain-2 and falcipain-3 are critical hemoglobinases of Plasmodium falciparum, the most virulent human malaria parasite. We have determined the 2.9 Å crystal structure of falcipain-2 in complex with the epoxysuccinate E64 and the 2.5 Å crystal structure of falcipain-3 in complex with the aldehyde leupeptin. These complexes represent the first crystal structures of plasmodial cysteine proteases with small molecule inhibitors and the first reported crystal structure of falcipain-3. Our structural analyses indicate that the relative shape and flexibility of the S2 pocket are affected by a number of discrete amino acid substitutions. The cumulative effect of subtle differences, including those at “gatekeeper” positions, may explain the observed kinetic differences between these two closely related enzymes.
Collapse
Affiliation(s)
- Iain D Kerr
- Department of Cellular and Molecular Pharmacology and Department of Pathology, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Lim MD, Craik CS. Using specificity to strategically target proteases. Bioorg Med Chem 2009; 17:1094-100. [PMID: 18434168 PMCID: PMC2663002 DOI: 10.1016/j.bmc.2008.03.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 03/18/2008] [Accepted: 03/24/2008] [Indexed: 01/05/2023]
Abstract
Proteases are a family of naturally occurring enzymes in the body whose dysregulation has been implicated in numerous diseases and cancers. Their ability to selectively and catalytically turnover substrate adds both signal amplification and functionality as parameters for the detection of disease. This review will focus on the development of activity-based methodologies to characterize proteases, and in particular, the use of positional scanning, synthetic combinatorial libraries (PS-SCL's), and substrate activity screening (SAS) assays. The use of these approaches to better understand a protease's natural substrate will be discussed as well as the technologies that emerged.
Collapse
Affiliation(s)
- Mark D Lim
- Department of Pharmaceutical Chemistry, University of California, School of Pharmacy, 513 Parnassus Avenue Room S-926, San Francisco, CA 94158, USA
| | | |
Collapse
|
113
|
Haraldsen JD, Liu G, Botting CH, Walton JGA, Storm J, Phalen TJ, Kwok LY, Soldati-Favre D, Heintz NH, Müller S, Westwood NJ, Ward GE. IDENTIFICATION OF CONOIDIN A AS A COVALENT INHIBITOR OF PEROXIREDOXIN II. Org Biomol Chem 2009; 7:3040-3048. [PMID: 21359112 PMCID: PMC3043594 DOI: 10.1039/b901735f] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Conoidin A (1) is an inhibitor of host cell invasion by the protozoan parasite Toxoplasma gondii. In the course of studies aimed at identifying potential targets of this compound, we determined that it binds to the T. gondii enzyme peroxiredoxin II (TgPrxII). Peroxiredoxins are a widely conserved family of enzymes that function in antioxidant defense and signal transduction, and changes in PrxII expression are associated with a variety of human diseases, including cancer. Disruption of the TgPrxII gene by homologous recombination had no effect on the sensitivity of the parasites to 1, suggesting that TgPrxII is not the invasion-relevant target of 1. However, we showed that 1 binds covalently to the peroxidatic cysteine of TgPrxII, inhibiting its enzymatic activity in vitro. Studies with human epithelial cells showed that 1 also inhibits hyperoxidation of human PrxII. These data identify Conoidin A as a novel inhibitor of this important class of antioxidant and redox signaling enzymes.
Collapse
Affiliation(s)
- Jeralyn D Haraldsen
- Department of Microbiology and Molecular Genetics, 316 Stafford Hall, University of Vermont, 95 Carrigan Drive, Burlington VT 05405, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Bugert J. Hightech im Dienste der Infektiologie. LEXIKON DER INFEKTIONSKRANKHEITEN DES MENSCHEN 2009. [PMCID: PMC7121986 DOI: 10.1007/978-3-540-39026-8_471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
115
|
Speers AE, Cravatt BF. Activity-Based Protein Profiling (ABPP) and Click Chemistry (CC)-ABPP by MudPIT Mass Spectrometry. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2009; 1:29-41. [PMID: 21701697 PMCID: PMC3119539 DOI: 10.1002/9780470559277.ch090138] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activity-based protein profiling (ABPP) is a chemical proteomic method for functional interrogation of enzymes within complex proteomes. This Unit presents a protocol for in vitro and in vivo labeling using ABPP and Click Chemistry (CC)-ABPP probes for in-depth profiling using the Multi-dimensional Protein Identification Technology (MudPIT) analysis platform.
Collapse
Affiliation(s)
- Anna E. Speers
- The Skaggs Institute for Chemical Biology and Department of Physiological Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Physiological Chemistry, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
116
|
Abstract
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.
Collapse
Affiliation(s)
- Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, JoZef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
117
|
Bogyo M, Baruch A, Jeffery DA, Greenbaum D, Borodovsky A, Ovaa H, Kessler B. Applications for chemical probes of proteolytic activity. ACTA ACUST UNITED AC 2008; Chapter 21:21.17.1-21.17.35. [PMID: 18429259 DOI: 10.1002/0471140864.ps2117s36] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent genome sequencing projects have identified new peptidases in multiple organisms, many with unknown functions, suggesting the need for new tools to study these enzymes. This unit outlines selection and use of small-molecule and protein-based probes to covalently modify peptidases in complex cellular environments. These activity-based probes (ABPs) have been designed based on well characterized peptidase inhibitor scaffolds, but make use of new techniques to greatly enhance their utility for studying families of related peptidases. In particular, ABPs can be used to track activity of peptidases in crude cell extracts, intact cells, and in vivo, allowing rapid purification and identification of labeled targets. They can be used with libraries of small molecules to rapidly assess potency and selectivity of compounds in complex, physiologically relevant samples. Probe selection, probe tagging using reporters, labeling of recombinant targets, crude protein extracts, and peptidase targets in cell culture systems, affinity purification of targets, and inhibitor screening using affinity probes are outlined.
Collapse
|
118
|
Gillet LC, Namoto K, Ruchti A, Hoving S, Boesch D, Inverardi B, Mueller D, Coulot M, Schindler P, Schweigler P, Bernardi A, Gil-Parrado S. In-cell Selectivity Profiling of Serine Protease Inhibitors by Activity-based Proteomics. Mol Cell Proteomics 2008; 7:1241-53. [DOI: 10.1074/mcp.m700505-mcp200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
119
|
Sunil S, Chauhan VS, Malhotra P. Distinct and stage specific nuclear factors regulate the expression of falcipains, Plasmodium falciparum cysteine proteases. BMC Mol Biol 2008; 9:47. [PMID: 18477411 PMCID: PMC2409366 DOI: 10.1186/1471-2199-9-47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 05/14/2008] [Indexed: 11/15/2022] Open
Abstract
Background Plasmodium falciparum cysteine proteases (falcipains) play indispensable roles in parasite infection and development, especially in the process of host erythrocyte rupture/invasion and hemoglobin degradation. No detailed molecular analysis of transcriptional regulation of parasite proteases especially cysteine proteases has yet been reported. In this study, using a combination of transient transfection assays and electrophoretic mobility shift assays (EMSA), we demonstrate the presence of stage specific nuclear factors that bind to unique sequence elements in the 5'upstream regions of the falcipains and probably modulate the expression of cysteine proteases. Results Falcipains differ in their timing of expression and exhibit ability to compensate each other's functions at asexual blood stages of the parasite. Present study was undertaken to study the transcriptional regulation of falcipains. Transient transfection assay employing firefly luciferase as a reporter revealed that a ~1 kb sequence upstream of translational start site is sufficient for the functional transcriptional activity of falcipain-1 gene, while falcipain-2, -2' and -3 genes that exist within 12 kb stretch on chromosome 11 require ~2 kb upstream sequences for the expression of reporter luciferase activity. EMSA analysis elucidated binding of distinct nuclear factors to specific sequences within the 5'upstream regions of falcipain genes. Analysis of falcipains' 5'upstream regulatory regions did not reveal the presence of sequences known to bind general eukaryotic factors. However, we did find parasite specific sequence elements such as poly(dA) poly(dT) tracts, CCAAT boxes and a single 7 bp-G rich sequence, (A/G)NGGGG(C/A) in the 5' upstream regulatory regions of these genes, thereby suggesting the role(s) of Plasmodium specific transcriptional factors in the regulation of falcipain genes. Conclusion Taken together, these results suggest that expression of Plasmodium cysteine proteases is regulated at the transcriptional level and parasite specific factors regulate the expression of falcipain genes. These findings open new venues for further studies in identification of parasite specific transcription factors.
Collapse
Affiliation(s)
- Sujatha Sunil
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, PO Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | |
Collapse
|
120
|
Korde R, Bhardwaj A, Singh R, Srivastava A, Chauhan VS, Bhatnagar RK, Malhotra P. A prodomain peptide of Plasmodium falciparum cysteine protease (falcipain-2) inhibits malaria parasite development. J Med Chem 2008; 51:3116-23. [PMID: 18461922 DOI: 10.1021/jm070735f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Falcipain-2 (FP-2), a papain family cysteine protease of Plasmodium falciparum, is a promising target for antimalarial chemotherapy. Designing inhibitors that are highly selective for falcipain-2 has been difficult because of broad specificity of different cysteine proteinases. Because propeptide regions of cysteine proteases have been shown to inhibit their cognate enzymes specifically and selectively, in the present study, we evaluated the inhibitory potential of few falcipain-2 proregion peptides. A 15 residue peptide (PP1) inhibited falcipain-2 enzyme activity in vitro. Studies on the uptake of PP1 into the parasitized erythrocytes showed access of peptide into the infected RBCs. PP1 fused with Antennapedia homeoprotein internalization domain blocked hemoglobin hydrolysis, merozoite release and markedly inhibited Plasmodium falciparum growth and maturation. Together, our results identify a peptide derived from the proregion of falcipain-2 that blocks late-stage malaria parasite development in RBCs, suggesting the development of peptide and peptidometric drugs against the human malaria parasite.
Collapse
Affiliation(s)
- Reshma Korde
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
121
|
Sahu NK, Sahu S, Kohli DV. Novel Molecular Targets for Antimalarial Drug Development. Chem Biol Drug Des 2008; 71:287-97. [DOI: 10.1111/j.1747-0285.2008.00640.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
122
|
Arastu-Kapur S, Ponder EL, Fonović UP, Yeoh S, Yuan F, Fonović M, Grainger M, Phillips CI, Powers JC, Bogyo M. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol 2008; 4:203-13. [PMID: 18246061 DOI: 10.1038/nchembio.70] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/08/2008] [Indexed: 11/09/2022]
Abstract
Newly replicated Plasmodium falciparum parasites escape from host erythrocytes through a tightly regulated process that is mediated by multiple classes of proteolytic enzymes. However, the identification of specific proteases has been challenging. We describe here a forward chemical genetic screen using a highly focused library of more than 1,200 covalent serine and cysteine protease inhibitors to identify compounds that block host cell rupture by P. falciparum. Using hits from the library screen, we identified the subtilisin-family serine protease PfSU B1 and the cysteine protease dipeptidyl peptidase 3 (DPAP3) as primary regulators of this process. Inhibition of both DPAP3 and PfSUB1 caused a block in proteolytic processing of the serine repeat antigen (SERA) protein SERA5 that correlated with the observed block in rupture. Furthermore, DPAP3 inhibition reduced the levels of mature PfSUB1. These results suggest that two mechanistically distinct proteases function to regulate processing of downstream substrates required for efficient release of parasites from host red blood cells.
Collapse
Affiliation(s)
- Shirin Arastu-Kapur
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Drew ME, Banerjee R, Uffman EW, Gilbertson S, Rosenthal PJ, Goldberg DE. Plasmodium food vacuole plasmepsins are activated by falcipains. J Biol Chem 2008; 283:12870-6. [PMID: 18308731 DOI: 10.1074/jbc.m708949200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intraerythrocytic malaria parasites use host hemoglobin as a major nutrient source. Aspartic proteases (plasmepsins) and cysteine proteases (falcipains) function in the early steps of the hemoglobin degradation pathway. There is extensive functional redundancy within and between these protease families. Plasmepsins are synthesized as integral membrane proenzymes that are activated by cleavage from the membrane. This cleavage is mediated by a maturase activity whose identity has been elusive. We have used a combination of cell biology, chemical biology, and enzymology approaches to analyze this processing event. These studies reveal that plasmepsin processing occurs primarily via the falcipains; however, if falcipain activity is blocked, autoprocessing can take place, serving as an alternate activation system. These results establish a further level of redundancy between the protease families involved in Plasmodium hemoglobin degradation.
Collapse
Affiliation(s)
- Mark E Drew
- Department of Medicine and Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
124
|
Kumari S, Kumar A, Samant M, Sundar S, Singh N, Dube A. Proteomic approaches for discovery of new targets for vaccine and therapeutics against visceral leishmaniasis. Proteomics Clin Appl 2008; 2:372-86. [PMID: 21136840 DOI: 10.1002/prca.200780017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Indexed: 11/06/2022]
Abstract
Visceral leishmaniasis (VL) is the most devastating type caused by Leishmania donovani, Leishmania infantum, and Leishmania chagasi. The therapeutic mainstay is still based on the antiquated pentavalent antimonial against which resistance is now increasing. Unfortunately, due to the digenetic life cycle of parasite, there is significant antigenic diversity. There is an urgent need to develop novel drug/vaccine targets against VL for which the primary goal should be to identify and characterize the structural and functional proteins. Proteomics, being widely employed in the study of Leishmania seems to be a suitable strategy as the availability of annotated sequenced genome of Leishmania major has opened the door for dissection of both protein expression/regulation and function. Advances in clinical proteomic technologies have enable to enhance our mechanistic understanding of virulence/pathogenicity/host-pathogen interactions, drug resistance thereby defining novel therapeutic/vaccine targets. Expression proteomics exploits the differential expression of leishmanial proteins as biomarkers for application towards early diagnosis. Further using immunoproteomics efforts were also focused on evaluating responses to define parasite T-cell epitopes as vaccine/diagnostic targets. This review has highlighted some of the relevant developments in the rapidly emerging field of leishmanial proteomics and focus on its future applications in drug and vaccine discovery against VL.
Collapse
Affiliation(s)
- Shraddha Kumari
- Division of Parasitology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
125
|
auf dem Keller U, Doucet A, Overall CM. Protease research in the era of systems biology. Biol Chem 2008; 388:1159-62. [PMID: 17976008 DOI: 10.1515/bc.2007.146] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Proteases are specific modulators of signaling molecules and their underlying pathways in addition to their degradative roles. However, proteases do not act alone, but form cascades, circuits and networks that all dynamically interconnect to form the protease web, which defines the proteolytic potential of a cell or tissue in a defined condition. To describe the protease web and its net activity several novel high-throughput proteomic techniques, in the field termed degradomics, have been developed. Emerging systems biology methods to evaluate the expression, activity and substrate discovery of proteases are presented. Understanding the protease web and its perturbations in pathology will help to develop new therapeutics for the treatment of diseases, such as cancer, arthritis and chronic obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Ulrich auf dem Keller
- The UBC Centre for Blood Research, Department of Oral Biological and Medical Sciences, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
126
|
Dowse TJ, Koussis K, Blackman MJ, Soldati-Favre D. Roles of proteases during invasion and egress by Plasmodium and Toxoplasma. Subcell Biochem 2008; 47:121-39. [PMID: 18512347 DOI: 10.1007/978-0-387-78267-6_10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Apicomplexan pathogens replicate exclusively within the confines of a host cell. Entry into (invasion) and exit from (egress) these cells requires an array of specialized parasite molecules, many of which have long been considered to have potential as targets of drug or vaccine-based therapies. In this chapter the authors discuss the current state of knowledge regarding the role of parasite proteolytic enzymes in these critical steps in the life cycle of two clinically important apicomplexan genera, Plasmodium and Toxoplasma. At least three distinct proteases of the cysteine mechanistic class have been implicated in egress of the malaria parasite from cells of its vertebrate and insect host. In contrast, the bulk of the evidence indicates a prime role for serine proteases of the subtilisin and rhomboid families in invasion by both parasites. Whereas proteases involved in egress may function predominantly to degrade host cell structures, proteases involved in invasion probably act primarily as maturases and 'sheddases', required to activate and ultimately remove ligands involved in interactions with the host cell.
Collapse
Affiliation(s)
- Timothy J Dowse
- Department of Biological Sciences, Imperial College, London, UK
| | | | | | | |
Collapse
|
127
|
Cravatt BF, Wright AT, Kozarich JW. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 2008; 77:383-414. [PMID: 18366325 DOI: 10.1146/annurev.biochem.75.101304.124125] [Citation(s) in RCA: 989] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome sequencing projects have provided researchers with a complete inventory of the predicted proteins produced by eukaryotic and prokaryotic organisms. Assignment of functions to these proteins represents one of the principal challenges for the field of proteomics. Activity-based protein profiling (ABPP) has emerged as a powerful chemical proteomic strategy to characterize enzyme function directly in native biological systems on a global scale. Here, we review the basic technology of ABPP, the enzyme classes addressable by this method, and the biological discoveries attributable to its application.
Collapse
Affiliation(s)
- Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
128
|
Salisbury C, Cravatt B. Click Chemistry-Led Advances in High Content Functional Proteomics. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/qsar.200740090] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
129
|
Sakata T, Winzeler EA. Genomics, systems biology and drug development for infectious diseases. MOLECULAR BIOSYSTEMS 2007; 3:841-8. [PMID: 18000561 DOI: 10.1039/b703924g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although a variety of drugs are available for many infectious diseases that predominantly affect the developing world reasons remain for continuing to search for new chemotherapeutics. First, the development of microbial resistance has made some of the most effective and inexpensive drug regimes unreliable and dangerous to use on severely ill patients. Second, many existing antimicrobial drugs show toxicity or are too expensive for countries where the per capita income is in the order of hundreds of dollars per year. In recognition of this, new publicly and privately financed drug discovery efforts have been established to identify and develop new therapies for diseases such as tuberculosis, malaria and AIDS. This in turn, has intensified the need for tools to facilitate drug identification for those microbes whose molecular biology is poorly understood, or which are difficult to grow in the laboratory. While much has been written about how functional genomics can be used to find novel protein targets for chemotherapeutics this review will concentrate on how genome-wide, systems biology approaches may be used following whole organism, cell-based screening to understand the mechanism of drug action or to identify biological targets of small molecules. Here we focus on protozoan parasites, however, many of the approaches can be applied to pathogenic bacteria or parasitic helminths, insects or disease-causing fungi.
Collapse
Affiliation(s)
- Tomoyo Sakata
- The Genomics Institute of the Novartis Research Foundation, 10660 John Jay Hopkins Dr., San Diego, CA 92121, USA
| | | |
Collapse
|
130
|
Barglow KT, Cravatt BF. Activity-based protein profiling for the functional annotation of enzymes. Nat Methods 2007; 4:822-7. [PMID: 17901872 DOI: 10.1038/nmeth1092] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activity-based protein profiling (ABPP), the use of active site-directed chemical probes to monitor enzyme function in complex biological systems, is emerging as a powerful post-genomic technology. ABPP probes have been developed for several enzyme classes and have been used to inventory enzyme activities en masse for a range of (patho) physiological processes. By presenting specific examples, we show here that ABPP provides researchers with a distinctive set of chemical tools to embark on the assignment of functions to many of the uncharacterized enzymes that populate eukaryotic and prokaryotic proteomes.
Collapse
Affiliation(s)
- Katherine T Barglow
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
131
|
Li X, Chen H, Jeong JJ, Chishti AH. BDA-410: a novel synthetic calpain inhibitor active against blood stage malaria. Mol Biochem Parasitol 2007; 155:26-32. [PMID: 17583361 PMCID: PMC1993804 DOI: 10.1016/j.molbiopara.2007.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/24/2007] [Accepted: 05/10/2007] [Indexed: 11/21/2022]
Abstract
Falcipains, the papain-family cysteine proteases of the Plasmodium falciparum, are potential drug targets for malaria parasite. Pharmacological inhibition of falcipains can block the hydrolysis of hemoglobin, parasite development, and egress, suggesting that falcipains play a key role at the blood stage of parasite life cycle. In the present study, we evaluated the anti-malarial effects of BDA-410, a novel cysteine protease inhibitor as a potential anti-malarial drug. Recombinant falcipain (MBP-FP-2B) and P. falciparum trophozoite extract containing native falcipains were used for enzyme inhibition studies in vitro. The effect of BDA-410 on the malaria parasite development in vitro as well as its anti-malarial activity in vivo was evaluated using the Plasmodium chabaudi infection rodent model. The 50% inhibitory concentrations of BDA-410 were determined to be 628 and 534nM for recombinant falcipain-2B and parasite extract, respectively. BDA-410 inhibited the malaria parasite growth in vitro with an IC(50) value of 173nM causing irreversible damage to the intracellular parasite. In vivo, the BDA-410 delayed the progression of malaria infection significantly using a mouse model of malaria pathogenesis. The characterization of BDA-410 as a potent inhibitor of P. falciparum cysteine proteases, and the demonstration of its efficacy in blocking parasite growth both in vitro and in vivo assays identifies BDA-410 is an important lead compound for the development of novel anti-malarial drugs.
Collapse
Affiliation(s)
- Xuerong Li
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Huiqing Chen
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jong-Jin Jeong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Athar H. Chishti
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
132
|
Affiliation(s)
- Daniel P Walsh
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|
133
|
Debnath A, Tashker JS, Sajid M, McKerrow JH. Transcriptional and secretory responses of Entamoeba histolytica to mucins, epithelial cells and bacteria. Int J Parasitol 2007; 37:897-906. [PMID: 17362964 DOI: 10.1016/j.ijpara.2007.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/17/2006] [Accepted: 01/09/2007] [Indexed: 11/29/2022]
Abstract
Invasive intestinal amebiasis, caused by Entamoeba histolytica, is initiated with attachment of trophozoites to the colonic mucous layer, mucous disruption and/or depletion, and adherence to and cytolysis of host epithelial and inflammatory cells. A current working model of intestinal amebiasis suggests that the microenvironment of the host intestine, particularly intestinal mucins and the bacterial biofilm, may influence the behavior of pathogenic amebae. The invasive phenotype is dependent on expression of a number of virulence factors of which cysteine proteases provide the most convenient experimental probe because their activity is readily monitored. In the present study, we examined the interaction of E. histolytica with GalNAc, mucin, different epithelial cell lines and bacteria both by biochemical assays of protease release and transcriptional profiling using a previously validated genomic microarray. A significant down-regulation of released cysteine protease activity was observed when amebic trophozoites were grown with GalNAc, specific colonic cell lines and bacteria. Transcriptional profiling during GalNAc interaction revealed enhanced expression of the 170-kDa Gal/GalNAc lectin. Decreased protease activity during GalNAc interaction and enhanced expression of the Gal/GalNAc lectin gene are consistent with a program of commensal infection and mucus coat colonization mediated by the lectin. The down-regulation of cysteine protease activity following interaction with a colonic epithelial cell line parallels the presence of secretory mucin having a complex carbohydrate structure rich in Gal and GalNAc. In contrast, interaction of E. histolytica trophozoites with stomach porcine mucin enhanced cysteine protease (EhCP1 and EhCP2) secretion 3-fold. This suggests the specific composition of mucins may affect the Entamoeba phenotype. Transcriptional profiling revealed interaction of Entamoeba with intestinal bacteria induced protein kinase, ABC transporter, Rab family GTPase and hsp 90 gene expression. The enhanced expression of this gene cluster is consistent with enhanced phagocytosis of E. histolytica during interaction with bacteria.
Collapse
Affiliation(s)
- Anjan Debnath
- Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
134
|
Huang SH, Wang X, Jong A. The evolving role of infectomics in drug discovery. Expert Opin Drug Discov 2007; 2:961-975. [PMID: 23484816 DOI: 10.1517/17460441.2.7.961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Signatures of infectomes, which are encoded by both host and microbial genomes, and mirror the interplay between pathogens and their hosts, provide invaluable knowledge in the search for novel antimicrobial drugs. Infectomics is the study of infectomes by using systems biology and high-throughput omic approaches. There are three types of infectomic approaches that can be used for drug discovery: ecological infectomics, immunoinfectomics and chemical infectomics. Ecological infectomics, which is the ecological study of infectomes, explores symbiotic solutions to microbial infections. Research on drug discovery using infectomic signatures and immunomic approaches falls within the field of immunoinfectomics. Advances in chemical infectomics will lead to the development of a new generation of chemical drugs for therapeutics for microbial infections.
Collapse
Affiliation(s)
- Sheng-He Huang
- University of Southern California, Division of Infectious Diseases, Childrens Hospital Los Angeles, Department of Pediatrics, School of Medicine, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA 90027, USA +1 323 669 4160 ; +1 323 660 2661 ;
| | | | | |
Collapse
|
135
|
Okubo K, Yokoyama N, Govind Y, Alhassan A, Igarashi I. Babesia bovis: effects of cysteine protease inhibitors on in vitro growth. Exp Parasitol 2007; 117:214-7. [PMID: 17543303 DOI: 10.1016/j.exppara.2007.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/22/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
In the present study, we examined the effects of four kinds of cysteine protease inhibitors (E64, E64d, leupeptin, and ALLN) on the in vitro asexual growth of Babesia bovis. Of these, only the lipophilic inhibitors, E64d and ALLN, were found to effectively inhibit the growth of B. bovis. In further experiments, E64d, but not ALLN, significantly suppressed the parasite's invasion of host erythrocytes, while both chemicals, especially ALLN, inhibited the parasite's replication within the infected erythrocytes. These data suggested the presence of cysteine protease(s) derived from B. bovis, in which the protease(s) would play important roles in the erythrocyte invasion and/or replication processes of the parasite.
Collapse
Affiliation(s)
- Kazuhiro Okubo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | |
Collapse
|
136
|
Sadaghiani AM, Verhelst SHL, Gocheva V, Hill K, Majerova E, Stinson S, Joyce JA, Bogyo M. Design, Synthesis, and Evaluation of In Vivo Potency and Selectivity of Epoxysuccinyl-Based Inhibitors of Papain-Family Cysteine Proteases. ACTA ACUST UNITED AC 2007; 14:499-511. [PMID: 17524981 DOI: 10.1016/j.chembiol.2007.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/16/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
The papain-family cathepsins are cysteine proteases that are emerging as promising therapeutic targets for a number of human disease conditions ranging from osteoporosis to cancer. Relatively few selective inhibitors for this family exist, and the in vivo selectivity of most existing compounds is unclear. We present here the synthesis of focused libraries of epoxysuccinyl-based inhibitors and their screening in crude tissue extracts. We identified a number of potent inhibitors that display selectivity for endogenous cathepsin targets both in vitro and in vivo. Importantly, the selectivity patterns observed in crude extracts were generally retained in vivo, as assessed by active-site labeling of tissues from treated animals. Overall, this study identifies several important compound classes and highlights the use of activity-based probes to assess pharmacodynamic properties of small-molecule inhibitors in vivo.
Collapse
|
137
|
Kumar A, Kumar K, Korde R, Puri SK, Malhotra P, Singh Chauhan V. Falcipain-1, a Plasmodium falciparum cysteine protease with vaccine potential. Infect Immun 2007; 75:2026-34. [PMID: 17242063 PMCID: PMC1865716 DOI: 10.1128/iai.01533-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 10/24/2006] [Accepted: 12/21/2006] [Indexed: 11/20/2022] Open
Abstract
Cysteine proteases (falcipains) of Plasmodium falciparum are potential targets for antimalarial chemotherapy, since they have been shown to be involved in important cellular functions such as hemoglobin degradation and invasion/rupture of red blood cells during parasite life cycle. The role of falcipain-1 at the asexual blood stages of the parasite still remains uncertain. This is mainly due to a lack of methods to prepare this protein in an active form. In order to obtain biologically active falcipain-1, a number of falcipain-1 constructs were designed and a systematic assessment of the refolding conditions was done. We describe here the expression, purification, and characterization of a falcipain-1 construct encoding mature falcipain-1 and 35 amino acids from the C-terminal of the pro domain. Recombinant falcipain-1 was overexpressed in the form of inclusion bodies, solubilized, and purified by Ni(2+)-nitrilotriacetic acid affinity chromatography under denaturing conditions. A systemic approach was then followed to optimize refolding parameters. An optimum refolding condition was obtained, and the yield of the purified refolded falcipain-1 was approximately 1 mg/liter. Activity of the protein was analyzed by fluorometric and gelatin degradation assays. Immunolocalization studies using anti-falcipain-1 sera revealed a distinct staining at the apical end of the P. falciparum merozoites. Previous studies using falcipain-1-specific inhibitors have suggested a role of falcipain-1 in merozoite invasion. Based on its localization and its role in invasion, we analyzed the immunogenicity of falcipain-1 in mice, followed by heterologous challenge with Plasmodium yoelii sporozoites. Our results suggest a possible role of falcipain-1 in merozoite invasion.
Collapse
Affiliation(s)
- Amit Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
138
|
Winssinger N, Harris JL. Microarray-based functional protein profiling using peptide nucleic acid-encoded libraries. Expert Rev Proteomics 2007; 2:937-47. [PMID: 16307522 DOI: 10.1586/14789450.2.6.937] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The availability of complete genome sequences from numerous organisms has provided investigators with the challenge of assigning physiologic functions to the encoded gene products. To facilitate this process, multiple technologies have been developed to profile the transcriptome and the proteome, including methods to monitor the function of enzymes in complex biologic systems. These methods typically target specific classes of enzymes and attempt to correlate the enzymatic activity with the specific phenotype of interest. Here, technologies to measure enzymatic activity on a subproteomic scale are reviewed, including the authors' own efforts, which are based on self-assembled microarrays utilizing peptide nucleic acid-encoded small-molecule libraries.
Collapse
Affiliation(s)
- Nicolas Winssinger
- Institut de Science et Ingénierie Supramoléculaires, Organic & Bioorganic Chemistry Laboratory, Université Louis Pasteur, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | | |
Collapse
|
139
|
Cuerrier D, Moldoveanu T, Campbell RL, Kelly J, Yoruk B, Verhelst SHL, Greenbaum D, Bogyo M, Davies PL. Development of Calpain-specific Inactivators by Screening of Positional Scanning Epoxide Libraries. J Biol Chem 2007; 282:9600-9611. [PMID: 17218315 DOI: 10.1074/jbc.m610372200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Calpains are calcium-dependent proteases that are required for numerous intracellular processes but also play an important role in the development of pathologies such as ischemic injury and neurodegeneration. Many current small molecule calpain inhibitors also inhibit other cysteine proteases, including cathepsins, and need improved selectivity. The specificity of inhibition of several calpains and papain was profiled using synthetic positional scanning libraries of epoxide-based compounds that target the active-site cysteine. These peptidomimetic libraries probe the P4, P3, and P2 positions, display (S,S)- or (R,R)-epoxide stereochemistries, and incorporate both natural and non-natural amino acids. To facilitate library screening, an SDS-PAGE assay that measures the extent of hydrolysis of an inactive recombinant m-calpain was developed. Individual epoxide inhibitors were synthesized guided by calpain-specific preferences observed from the profiles and tested for inhibition against calpain. The most potent compounds were assayed for specificity against cathepsins B, L, and K. Several compounds demonstrated high inhibition specificity for calpains over cathepsins. The best of these inhibitors, WRH(R,R), irreversibly inactivates m- and mu-calpain rapidly (k(2)/K(i) = 131,000 and 16,500 m(-1) s(-1), respectively) but behaves exclusively as a reversible and less potent inhibitor toward the cathepsins. X-ray crystallography of the proteolytic core of rat mu-calpain inactivated by the epoxide compounds WR gamma-cyano-alpha-aminobutyric acid (S,S) and WR allylglycine (R,R) reveals that the stereochemistry of the epoxide influences positioning and orientation of the P2 residue, facilitating alternate interactions within the S2 pocket. Moreover, the WR gamma-cyano-alpha-aminobutyric acid (S,S)-complexed structure defines a novel hydrogen-bonding site within the S2 pocket of calpains.
Collapse
Affiliation(s)
- Dominic Cuerrier
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tudor Moldoveanu
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Robert L Campbell
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jacqueline Kelly
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Bilge Yoruk
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Steven H L Verhelst
- Department of Pathology, Stanford University School of Medicine, Stanford, Califorina 94305
| | - Doron Greenbaum
- Department of Pathology, Stanford University School of Medicine, Stanford, Califorina 94305
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, Califorina 94305
| | - Peter L Davies
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada; Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
140
|
Eksi S, Czesny B, van Gemert GJ, Sauerwein RW, Eling W, Williamson KC. Inhibition of Plasmodium falciparum oocyst production by membrane-permeant cysteine protease inhibitor E64d. Antimicrob Agents Chemother 2007; 51:1064-70. [PMID: 17178799 PMCID: PMC1803139 DOI: 10.1128/aac.01012-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 09/24/2006] [Accepted: 12/06/2006] [Indexed: 11/20/2022] Open
Abstract
During asexual intraerythrocytic growth, Plasmodium falciparum utilizes hemoglobin obtained from the host red blood cell (RBC) as a nutrient source. Papain-like cysteine proteases, falcipains 2 and 3, have been reported to be involved in hemoglobin digestion and are targets of current antimalarial drug development efforts. However, their expression during gametocytogenesis, which is required for malaria parasite transmission, has not been studied. Many of the available antimalarials do not inhibit development of sexual stage parasites, and therefore, the persistence of gametocytes after drug treatment allows continued transmission of the disease. In the work reported here, incubation of stage V gametocytes with membrane-permeant cysteine protease inhibitor E64d significantly inhibited oocyst production (80 to 100%). The same conditions inhibited processing of gametocyte-surface antigen Pfs230 during gametogenesis but did not alter the morphology of the food vacuole in gametocytes, inhibit emergence, or block male exflagellation. E64d reduced the level of oocyst production more effectively than that reported previously for falcipain 1-knockout parasites, suggesting that falcipains 2 and 3 may also be involved in malaria parasite transmission. However, in this study only falcipain 3 and not falcipain 2 was found to be expressed in stage V gametocytes. Interestingly, during gametocytogenesis falcipain 3 was transported into the red blood cell and by stage V was localized in vesicles along the RBC surface, consistent with a role during gamete emergence. The ability of a membrane-permeant cysteine protease inhibitor to significantly reduce malaria parasite transmission suggests that future drug design should include evaluation of gametogenesis and sporogonic development.
Collapse
Affiliation(s)
- S Eksi
- Department of Biology, Loyola University Chicago, 6525 N. Sheridan Rd., Chicago, IL 60626, USA
| | | | | | | | | | | |
Collapse
|
141
|
Wu C, Xu Q, Liu F, Nevalainen KMH. Activity-based identification of secreted serine proteases of the filamentous fungus, Ophiostoma. Biotechnol Lett 2007; 29:937-43. [PMID: 17450325 DOI: 10.1007/s10529-007-9333-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/22/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
A general activity probe was synthesized and applied to the supernatant of a filamentous fungus, Ophiostoma, culture to identify directly the secreted serine proteases by covalent enzyme labeling. The activity probe contained a chemically reactive group that reacted with, and thus covalently labeled, the serine residues of only active proteases and not heat-inactivated proteases. The activity probe also contained a fluorescent group that allowed for the subsequent visualization of the captured proteases in 1-D gels and their identification by N-terminal sequencing. This use of a chemical probe led to the rapid discovery of subtilisin-like serine protease of Ophiostoma. Two hypothetical proteins were also captured, with one being a probable endopeptidase K type of protease.
Collapse
Affiliation(s)
- Caiyan Wu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
142
|
Anantharaman V, Iyer LM, Balaji S, Aravind L. Adhesion molecules and other secreted host-interaction determinants in Apicomplexa: insights from comparative genomics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:1-74. [PMID: 17631186 DOI: 10.1016/s0074-7696(07)62001-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apicomplexa have developed distinctive adaptations for invading and surviving within animal cells. Here a synthetic overview of the diversity and evolutionary history of cell membrane-associated, -secreted, and -exported proteins related to apicomplexan parasitism is presented. A notable feature in this regard was the early acquisition of adhesion protein domains and glycosylation systems through lateral transfer from animals. These were utilized in multiple contexts, including invasion of host cells and parasite-specific developmental processes. Apicomplexans possess a specialized version of the ancestral alveolate extrusion machinery, the rhoptries and micronemes, which are deployed in invasion and delivery of proteins into host cells. Each apicomplexan lineage has evolved a unique spectrum of extruded proteins that modify host molecules in diverse ways. Hematozoans, in particular, appear to have evolved novel systems for export of proteins into the host organelles and cell membrane during intracellular development. These exported proteins are an important aspect of the pathogenesis of Plasmodium and Theileria, being involved in response to fever and in leukocyte proliferation respectively. The complement of apicomplexan surface proteins has primarily diversified via massive lineage-specific expansions of certain protein families, which are often coded by subtelomeric gene arrays. Many of these families have been found to be central to immune evasion. Domain shuffling and accretion have resulted in adhesins with new domain architectures. In terms of individual genes, constant selective pressures from the host immune response has resulted in extensive protein polymorphisms and gene losses. Apicomplexans have also evolved complex regulatory mechanisms controlling expression and maturation of surface proteins at the chromatin, transcriptional, posttranscriptional, and posttranslational levels. Evolutionary reconstruction suggests that the ancestral apicomplexan had thrombospondin and EGF domain adhesins, which were linked to the parasite cytoskeleton, and played a central role in invasion through formation of the moving junction. It also suggests that the ancestral parasite had O-linked glycosylation of surface proteins which was partially or entirely lost in hematozoan lineages.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | | | | | |
Collapse
|
143
|
Hang HC, Loureiro J, Spooner E, van der Velden AWM, Kim YM, Pollington AM, Maehr R, Starnbach MN, Ploegh HL. Mechanism-based probe for the analysis of cathepsin cysteine proteases in living cells. ACS Chem Biol 2006; 1:713-23. [PMID: 17184136 DOI: 10.1021/cb600431a] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mechanism-based probes are providing new tools to evaluate the enzymatic activities of protein families in complex mixtures and to assign protein function. The application of these chemical probes for the visualization of protein labeling in cells and proteomic analysis is still challenging. As a consequence, imaging and proteomic analysis often require different sets of chemical probes. Here we describe a mechanism-based probe, azido-E-64, that can be used for both imaging and proteomics. Azido-E-64 covalently modifies active Cathepsin (Cat) B in living cells, an abundant cysteine protease involved in microbial infections, apoptosis, and cancer. Furthermore, azido-E-64 contains an azide chemical handle that can be selectively derivatized with phosphine reagents via the Staudinger ligation, which enables the imaging and proteomic analysis of Cat B. We have utilized azido-E-64 to visualize active Cat B during infection of primary macrophages with Salmonella typhimurium , an facultative intracellular bacterial pathogen. These studies demonstrated that active Cat B is specifically excluded from Salmonella -containing vacuoles, which suggests that inhibition of protease activity within bacteria-containing vacuoles may contribute to bacterial virulence.
Collapse
Affiliation(s)
- Howard C Hang
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Que X, Engel JC, Ferguson D, Wunderlich A, Tomavo S, Reed SL. Cathepsin Cs are key for the intracellular survival of the protozoan parasite, Toxoplasma gondii. J Biol Chem 2006; 282:4994-5003. [PMID: 17164247 DOI: 10.1074/jbc.m606764200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine proteases play key roles in apicomplexan invasion, organellar biogenesis, and intracellular survival. We have now characterized five genes encoding papain family cathepsins from Toxoplasma gondii, including three cathepsin Cs, one cathepsin B, and one cathepsin L. Unlike endopeptidases cathepsin B and L, T. gondii cathepsin Cs are exopeptidases and remove dipeptides from unblocked N-terminal substrates of proteins or peptides. TgCPC1 was the most highly expressed cathepsin mRNA in tachyzoites (by real-time PCR), but three cathepsins, TgCPC1, TgCPC2, and TgCPB, were undetectable in in vivo bradyzoites. The specific cathepsin C inhibitor, Gly-Phe-dimethylketone, selectively inhibited the TgCPCs activity, reducing parasite intracellular growth and proliferation. The targeted disruption of TgCPC1 does not affect the invasion and growth of tachyzoites as TgCPC2 is then up-regulated and may substitute for TgCPC1. TgCPC1 and TgCPC2 localize to constitutive secretory vesicles of tachyzoites, the dense granules. T. gondii cathepsin Cs are required for peptide degradation in the parasitophorous vacuole as the degradation of the marker protein, Escherichia coli beta-lactamase, secreted into the parasitophorous vacuole of transgenic tachyzoites was completely inhibited by the cathepsin C inhibitor. Cathepsin C inhibitors also limited the in vivo infection of T. gondii in the chick embryo model of toxoplasmosis. Thus, cathepsin Cs are critical to T. gondii growth and differentiation, and their unique specificities could be exploited to develop novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Xuchu Que
- Departments of Pathology and Medicine, University of California, San Diego, California 92103-8416
| | - Juan C Engel
- Department of Pathology, University of California, San Francisco, Veterans Administration Medical Center, San Francisco, California 94121
| | - David Ferguson
- Nuffield Department of Pathology, Oxford University, Oxford OX3 9DU, United Kingdom, and the
| | - Annette Wunderlich
- Departments of Pathology and Medicine, University of California, San Diego, California 92103-8416
| | - Stanislas Tomavo
- Equipe de Parasitologie Moleculaire, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), CNRS UMR 8576, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cédex, France
| | - Sharon L Reed
- Departments of Pathology and Medicine, University of California, San Diego, California 92103-8416.
| |
Collapse
|
145
|
Barglow KT, Cravatt BF. Substrate mimicry in an activity-based probe that targets the nitrilase family of enzymes. Angew Chem Int Ed Engl 2006; 45:7408-11. [PMID: 17036295 DOI: 10.1002/anie.200603187] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katherine T Barglow
- The Skaggs Institute for Chemical Biology and Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
146
|
Barglow KT, Cravatt BF. Substrate Mimicry in an Activity-Based Probe That Targets the Nitrilase Family of Enzymes. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200603187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
147
|
Verhelst SHL, Witte MD, Arastu-Kapur S, Fonovic M, Bogyo M. Novel aza peptide inhibitors and active-site probes of papain-family cysteine proteases. Chembiochem 2006; 7:943-50. [PMID: 16607671 DOI: 10.1002/cbic.200600001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent characterization of multiple classes of functionalized azapeptides as effective covalent inhibitors of cysteine proteases prompted us to investigate O-acyl hydroxamates and their azapeptide analogues for use as activity-based probes (ABPs). We report here a new class of azaglycine-containing O-acylhydroxamates that form stable covalent adducts with target proteases. This allows them to be used as ABPs for papain family cysteine proteases. A second class of related analogues containing a novel O-acyl hydroxyurea warhead was found to function as covalent inhibitors of papain-like proteases. These inhibitors can be easily synthesized on solid support, which allows rapid optimization of compounds with improved selectivity and potency for a given target enzyme. We present here one such optimized inhibitor that showed selective inhibition of falcipain 1, a protease of the malaria-causing parasite, Plasmodium falciparum.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
148
|
Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ. Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog 2006; 2:e117. [PMID: 17083274 PMCID: PMC1630708 DOI: 10.1371/journal.ppat.0020117] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 09/21/2006] [Indexed: 01/09/2023] Open
Abstract
Erythrocytic malaria parasites utilize proteases for a number of cellular processes, including hydrolysis of hemoglobin, rupture of erythrocytes by mature schizonts, and subsequent invasion of erythrocytes by free merozoites. However, mechanisms used by malaria parasites to control protease activity have not been established. We report here the identification of an endogenous cysteine protease inhibitor of Plasmodium falciparum, falstatin, based on modest homology with the Trypanosoma cruzi cysteine protease inhibitor chagasin. Falstatin, expressed in Escherichia coli, was a potent reversible inhibitor of the P. falciparum cysteine proteases falcipain-2 and falcipain-3, as well as other parasite- and nonparasite-derived cysteine proteases, but it was a relatively weak inhibitor of the P. falciparum cysteine proteases falcipain-1 and dipeptidyl aminopeptidase 1. Falstatin is present in schizonts, merozoites, and rings, but not in trophozoites, the stage at which the cysteine protease activity of P. falciparum is maximal. Falstatin localizes to the periphery of rings and early schizonts, is diffusely expressed in late schizonts and merozoites, and is released upon the rupture of mature schizonts. Treatment of late schizionts with antibodies that blocked the inhibitory activity of falstatin against native and recombinant falcipain-2 and falcipain-3 dose-dependently decreased the subsequent invasion of erythrocytes by merozoites. These results suggest that P. falciparum requires expression of falstatin to limit proteolysis by certain host or parasite cysteine proteases during erythrocyte invasion. This mechanism of regulation of proteolysis suggests new strategies for the development of antimalarial agents that specifically disrupt erythrocyte invasion.
Collapse
Affiliation(s)
- Kailash C Pandey
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Naresh Singh
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Shirin Arastu-Kapur
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
149
|
Ramjee MK, Flinn NS, Pemberton TP, Quibell M, Wang Y, Watts JP. Substrate mapping and inhibitor profiling of falcipain-2, falcipain-3 and berghepain-2: implications for peptidase anti-malarial drug discovery. Biochem J 2006; 399:47-57. [PMID: 16776649 PMCID: PMC1570174 DOI: 10.1042/bj20060422] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/07/2006] [Accepted: 06/15/2006] [Indexed: 11/17/2022]
Abstract
The Plasmodium falciparum cysteine peptidases FP-2 (falcipain-2) and FP-3 (falcipain-3), members of the papain-like CAC1 family, are essential haemoglobinases and are therefore potential anti-malarial drug targets. To facilitate a rational drug discovery programme, in the current study we analysed the synthetic substrate and model inhibitor profiles of FP-2 and FP-3 as well as BP-2 (berghepain-2), an orthologue from the rodent parasite Plasmodium berghei. With respect to substrate catalysis, FP-2 exhibited a promiscuous substrate profile based around a consensus non-primeside motif, FP-3 was somewhat more restricted and BP-2 was comparatively specific. Substrate turnover for FP-2 was driven by a basic or acidic P1 residue, whereas for FP-3 turnover occurred predominately through a basic P1 residue only, and for BP-2, turnover was again mainly through a basic P1 residue for some motifs and surprisingly a glycine in the P1 position for other motifs. Within these P1 binding elements, additional recognition motifs were observed with subtle nuances that switched substrate turnover on or off through specific synergistic combinations. The peptidases were also profiled against reversible and irreversible cysteine peptidase inhibitors. The results re-iterated the contrasting kinetic behaviour of each peptidase as observed through the substrate screens. The results showed that the substrate and inhibitor preferences of BP-2 were markedly different from those of FP-2 and FP-3. When FP-2 and FP-3 were compared to each other they also displayed similarities and some significant differences. In conclusion, the in vitro data highlights the current difficulties faced by a peptidase directed anti-malarial medicinal chemistry programme where compounds need to be identified with potent activity against at least three peptidases, each of which displays distinct biochemical traits.
Collapse
Key Words
- cysteine protease
- inhibitor
- malaria
- mapping
- substrate
- abz, 2-amino benzoic acid
- amc, 7-amino-4-methyl coumarin
- bp, berghepain
- dtt, dithiothreitol
- fmoc/tbu, fluoren-9-ylmethoxycarbonyl/t-butyl
- fp, falcipain
- fret, fluorescence resonance energy transfer
- hbtu, 2-(1h-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
- hobt, 1-hydroxybenzotriazole
- nle, norleucine
- nmm, n-methylmorpholine
Collapse
Affiliation(s)
- Manoj K Ramjee
- Amura Therapeutics Limited, Horizon Park, Barton Road, Comberton, CB3 7AJ, UK.
| | | | | | | | | | | |
Collapse
|
150
|
Abstract
Researchers in the post-genome era are confronted with the daunting task of assigning structure and function to tens of thousands of encoded proteins. To realize this goal, new technologies are emerging for the analysis of protein function on a global scale, such as activity-based protein profiling (ABPP), which aims to develop active site-directed chemical probes for enzyme analysis in whole proteomes. For the pursuit of such chemical proteomic technologies, it is helpful to derive inspiration from protein-reactive natural products. Natural products use a remarkably diverse set of mechanisms to covalently modify enzymes from distinct mechanistic classes, thus providing a wellspring of chemical concepts that can be exploited for the design of active-site-directed proteomic probes. Herein, we highlight several examples of protein-reactive natural products and illustrate how their mechanisms of action have influenced and continue to shape the progression of chemical proteomic technologies like ABPP.
Collapse
Affiliation(s)
- Carmen Drahl
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|