101
|
Iwamoto M, Fukuda Y, Osakada H, Mori C, Hiraoka Y, Haraguchi T. Identification of the evolutionarily conserved nuclear envelope proteins Lem2 and MicLem2 in Tetrahymena thermophila. Gene 2019; 721S:100006. [PMID: 32550543 PMCID: PMC7285967 DOI: 10.1016/j.gene.2019.100006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
Lem2 family proteins, i.e. the LAP2-Emerin-MAN1 (LEM) domain-containing nuclear envelope proteins, are well-conserved from yeasts to humans, both of which belong to the Opisthokonta supergroup. However, whether their homologs are present in other eukaryotic phylogenies remains unclear. In this study, we identified two Lem2 homolog proteins, which we named as Lem2 and MicLem2, in a ciliate Tetrahymena thermophila belonging to the SAR supergroup. Lem2 was localized to the nuclear envelope of the macronucleus (MAC) and micronucleus (MIC), while MicLem2 was exclusively localized to the nuclear envelope of the MIC. Immunoelectron microscopy revealed that Lem2 in T. thermophila was localized to both the inner and outer nuclear envelopes of the MAC and MIC, while MicLem2 was mostly localized to the nuclear pores of the MIC. Molecular domain analysis using GFP-fused protein showed that the N-terminal and luminal domains, including the transmembrane segments, are responsible for nuclear envelope localization. During sexual reproduction, enrichment of Lem2 occurred in the nuclear envelopes of the MAC and MIC to be degraded, while MicLem2 was enriched in the nuclear envelope of the MIC that escaped degradation. These findings suggest the unique characteristics of Tetrahymena Lem2 proteins. Our findings provide insight into the evolutionary divergence of nuclear envelope proteins. Conserved nuclear envelope proteins Lem2 and MicLem2 are identified in Tetrahymena. Lem2 is localized to the nuclear envelope of the macronucleus and the micronucleus. MicLem2 is localized to the nuclear pore complex of the micronucleus. In sexual reproduction, Lem2 is enriched to the nuclei assigned to degradation. MicLem2 is enriched to the micronuclei that are escaped from degradation.
Collapse
Key Words
- BAF, barrier-to-autointegration factor
- DAPI, 4′,6‑diamidino‑2‑phenylindole
- DDW, double distilled water
- EDTA, ethylenediaminetetraacetic acid
- ER, endoplasmic reticulum
- GA, glutaraldehyde
- HeH domain
- HeH, helix-extension-helix
- LAP2, lamina associated polypeptide 2
- LEM domain
- LEM, LAP2-Emerin-MAN1
- MAC, macronucleus
- MIC, micronucleus
- MSC domain
- MSC, Man1-Src1p-C-terminal
- Man1
- Man1-Src1p-C-terminal domain
- NE, nuclear envelope
- NLS, nuclear localization signal
- NPC, nuclear pore complex
- Nuclear dimorphism
- Nuclear envelope
- ONM and INM, outer and inner nuclear membranes
- PB, phosphate buffer
- PBS, phosphate buffered saline
- Protist
- RRM, RNA recognition motif
- TM, transmembrane
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasuhiro Fukuda
- Graduate School of Agricultural Science, Tohoku University, Osaki, 989-6711, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
102
|
Geladaki A, Kočevar Britovšek N, Breckels LM, Smith TS, Vennard OL, Mulvey CM, Crook OM, Gatto L, Lilley KS. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat Commun 2019; 10:331. [PMID: 30659192 PMCID: PMC6338729 DOI: 10.1038/s41467-018-08191-w] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023] Open
Abstract
The study of protein localisation has greatly benefited from high-throughput methods utilising cellular fractionation and proteomic profiling. Hyperplexed Localisation of Organelle Proteins by Isotope Tagging (hyperLOPIT) is a well-established method in this area. It achieves high-resolution separation of organelles and subcellular compartments but is relatively time- and resource-intensive. As a simpler alternative, we here develop Localisation of Organelle Proteins by Isotope Tagging after Differential ultraCentrifugation (LOPIT-DC) and compare this method to the density gradient-based hyperLOPIT approach. We confirm that high-resolution maps can be obtained using differential centrifugation down to the suborganellar and protein complex level. HyperLOPIT and LOPIT-DC yield highly similar results, facilitating the identification of isoform-specific localisations and high-confidence localisation assignment for proteins in suborganellar structures, protein complexes and signalling pathways. By combining both approaches, we present a comprehensive high-resolution dataset of human protein localisations and deliver a flexible set of protocols for subcellular proteomics.
Collapse
Affiliation(s)
- Aikaterini Geladaki
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, 20 Downing Place, Cambridge, CB2 3EJ, UK
| | - Nina Kočevar Britovšek
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Tom S Smith
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Owen L Vennard
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Claire M Mulvey
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Oliver M Crook
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- MRC Biostatistics Unit, Cambridge Institute for Public Health, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK
| | - Laurent Gatto
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- de Duve Institute, UC Louvain, Avenue Hippocrate 75, Brussels, 1200, Belgium
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
103
|
Targeting of LRRC59 to the Endoplasmic Reticulum and the Inner Nuclear Membrane. Int J Mol Sci 2019; 20:ijms20020334. [PMID: 30650545 PMCID: PMC6359192 DOI: 10.3390/ijms20020334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/12/2023] Open
Abstract
LRRC59 (leucine-rich repeat-containing protein 59) is a tail-anchored protein with a single transmembrane domain close to its C-terminal end that localizes to the endoplasmic reticulum (ER) and the nuclear envelope. Here, we investigate the mechanisms of membrane integration of LRRC59 and its targeting to the inner nuclear membrane (INM). Using purified microsomes, we show that LRRC59 can be post-translationally inserted into ER-derived membranes. The TRC-pathway, a major route for post-translational membrane insertion, is not required for LRRC59. Like emerin, another tail-anchored protein, LRRC59 reaches the INM, as demonstrated by rapamycin-dependent dimerization assays. Using different approaches to inhibit importin α/β-dependent nuclear import of soluble proteins, we show that the classic nuclear transport machinery does not play a major role in INM-targeting of LRRC59. Instead, the size of the cytoplasmic domain of LRRC59 is an important feature, suggesting that targeting is governed by passive diffusion.
Collapse
|
104
|
Abstract
Structural links from the nucleus to the cytoskeleton and to the extracellular environment play a role in direct mechanosensing by nuclear factors. Here, we highlight recent studies that illustrate nuclear mechanosensation processes ranging from DNA repair and nuclear protein phospho-modulation to chromatin reorganization, lipase activation by dilation, and reversible rupture with the release of nuclear factors. Recent progresses demonstrate that these mechanosensing processes lead to modulation of gene expression such as those involved in the regulation of cytoskeletal programs and introduce copy number variations. The nuclear lamina protein lamin A has a recurring role, and various biophysical analyses prove helpful in clarifying mechanisms. The various recent observations provide further motivation to understand the regulation of nuclear mechanosensing pathways in both physiological and pathological contexts.
Collapse
|
105
|
Garapati HS, Mishra K. Comparative genomics of nuclear envelope proteins. BMC Genomics 2018; 19:823. [PMID: 30445911 PMCID: PMC6240307 DOI: 10.1186/s12864-018-5218-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear envelope (NE) that encapsulates the nuclear genome is a double lipid bilayer with several integral and peripherally associated proteins. It is a characteristic feature of the eukaryotes and acts as a hub for a number of important nuclear events including transcription, repair, and regulated gene expression. The proteins associated with the nuclear envelope mediate the NE functions and maintain its structural integrity, which is crucial for survival. In spite of the importance of this structure, knowledge of the protein composition of the nuclear envelope and their function, are limited to very few organisms belonging to Opisthokonta and Archaeplastida supergroups. The NE composition is largely unknown in organisms outside these two supergroups. RESULTS In this study, we have taken a comparative sequence analysis approach to identify the NE proteome that is present across all five eukaryotic supergroups. We identified 22 proteins involved in various nuclear functions to be part of the core NE proteome. The presence of these proteins across eukaryotes, suggests that they are traceable to the Last Eukaryotic Common Ancestor (LECA). Additionally, we also identified the NE proteins that have evolved in a lineage specific manner and those that have been preserved only in a subset of organisms. CONCLUSIONS Our study identifies the conserved features of the nuclear envelope across eukaryotes and provides insights into the potential composition and the functionalities that were constituents of the LECA NE.
Collapse
Affiliation(s)
- Hita Sony Garapati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
106
|
Arkadir D, Lossos A, Rahat D, Abu Snineh M, Schueler-Furman O, Nitschke S, Minassian BA, Sadaka Y, Lerer I, Tabach Y, Meiner V. MYORG is associated with recessive primary familial brain calcification. Ann Clin Transl Neurol 2018; 6:106-113. [PMID: 30656188 PMCID: PMC6331209 DOI: 10.1002/acn3.684] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/23/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the genetic basis of the recessive form of primary familial brain calcification and study pathways linking a novel gene with known dominant genes that cause the disease. Methods Whole exome sequencing and Sanger‐based segregation analysis were used to identify possible disease causing mutations. Mutation pathogenicity was validated by structural protein modeling. Functional associations between the candidate gene, MYORG, and genes previously implicated in the disease were examined through phylogenetic profiling. Results We studied nine affected individuals from two unrelated families of Middle Eastern origin. The median age of symptom onset was 29.5 years (range 21–57 years) and dysarthria was the most common presenting symptom. We identified in the MYORG gene, a homozygous c.1233delC mutation in one family and c.1060_1062delGAC mutation in another. The first mutation results in protein truncation and the second in deletion of a highly conserved aspartic acid that is likely to disrupt binding of the protein with its substrate. Phylogenetic profiling analysis of the MYORG protein sequence suggests co‐evolution with a number of calcium channels as well as other proteins related to regulation of anion transmembrane transport (False Discovery Rate, FDR < 10−8) and with PDCD6IP, a protein interacting with PDGFRβ which is known to be involved in the disease. Interpretation MYORG mutations are linked to a recessive form of primary familial brain calcification. This association was recently described in patients of Chinese ancestry. We suggest the possibility that MYORG mutations lead to calcification in a PDGFRβ‐related pathway.
Collapse
Affiliation(s)
- David Arkadir
- Department of Neurology Agnes Ginges Center for Human Neurogenetics Hadassah Medical Center Jerusalem Israel
| | - Alexander Lossos
- Department of Neurology Agnes Ginges Center for Human Neurogenetics Hadassah Medical Center Jerusalem Israel
| | - Dolev Rahat
- The Institute for Medical Research Israel-Canada (IMRIC) the Hebrew University Jerusalem Israel
| | - Muneer Abu Snineh
- Department of Neurology Agnes Ginges Center for Human Neurogenetics Hadassah Medical Center Jerusalem Israel
| | - Ora Schueler-Furman
- The Institute for Medical Research Israel-Canada (IMRIC) the Hebrew University Jerusalem Israel
| | - Silvia Nitschke
- Program in Genetics and Genome Biology The Hospital for Sick Children Research Institute Toronto Ontario Canada
| | - Berge A Minassian
- Program in Genetics and Genome Biology The Hospital for Sick Children Research Institute Toronto Ontario Canada.,Division of Neurology Department of Pediatrics University of Texas Southwestern Dallas Texas
| | - Yair Sadaka
- Neuro-Developmental Research Centre Beer Sheba Mental Health Centre Ministry of Health BeerSheba Israel
| | - Israela Lerer
- Department of Genetics and Metabolic Diseases Center for Clinical Genetics Hadassah Medical Center Jerusalem Israel
| | - Yuval Tabach
- The Institute for Medical Research Israel-Canada (IMRIC) the Hebrew University Jerusalem Israel
| | - Vardiella Meiner
- Department of Genetics and Metabolic Diseases Center for Clinical Genetics Hadassah Medical Center Jerusalem Israel
| |
Collapse
|
107
|
Pankow S, Martínez-Bartolomé S, Bamberger C, Yates JR. Understanding molecular mechanisms of disease through spatial proteomics. Curr Opin Chem Biol 2018; 48:19-25. [PMID: 30308467 DOI: 10.1016/j.cbpa.2018.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023]
Abstract
Mammalian cells are organized into different compartments that separate and facilitate physiological processes by providing specialized local environments and allowing different, otherwise incompatible biological processes to be carried out simultaneously. Proteins are targeted to these subcellular locations where they fulfill specialized, compartment-specific functions. Spatial proteomics aims to localize and quantify proteins within subcellular structures.
Collapse
Affiliation(s)
- Sandra Pankow
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, United States
| | | | - Casimir Bamberger
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, United States.
| |
Collapse
|
108
|
TMEM43-S358L mutation enhances NF-κB-TGFβ signal cascade in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Protein Cell 2018; 10:104-119. [PMID: 29980933 PMCID: PMC6340891 DOI: 10.1007/s13238-018-0563-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/12/2018] [Indexed: 01/29/2023] Open
Abstract
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is a genetic cardiac muscle disease that accounts for approximately 30% sudden cardiac death in young adults. The Ser358Leu mutation of transmembrane protein 43 (TMEM43) was commonly identified in the patients of highly lethal and fully penetrant ARVD subtype, ARVD5. Here, we generated TMEM43 S358L mouse to explore the underlying mechanism. This mouse strain showed the classic pathologies of ARVD patients, including structural abnormalities and cardiac fibrofatty. TMEM43 S358L mutation led to hyper-activated nuclear factor κB (NF-κB) activation in heart tissues and primary cardiomyocyte cells. Importantly, this hyper activation of NF-κB directly drove the expression of pro-fibrotic gene, transforming growth factor beta (TGFβ1), and enhanced downstream signal, indicating that TMEM43 S358L mutation up-regulates NF-κB-TGFβ signal cascade during ARVD cardiac fibrosis. Our study partially reveals the regulatory mechanism of ARVD development.
Collapse
|
109
|
Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophys Rev 2018; 10:1033-1051. [PMID: 29869195 PMCID: PMC6082319 DOI: 10.1007/s12551-018-0431-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex couples the nuclear lamina to the cytoskeleton. The LINC complex and its associated proteins play diverse roles in cells, ranging from genome organization, nuclear morphology, gene expression, to mechanical stability. The importance of a functional LINC complex is highlighted by the large number of mutations in genes encoding LINC complex proteins that lead to skeletal and cardiac myopathies. In this review, the structure, function, and interactions between components of the LINC complex will be described. Mutations that are known to cause cardiomyopathy in patients will be discussed alongside their respective mouse models. Furthermore, future challenges for the field and emerging technologies to investigate LINC complex function will be discussed.
Collapse
|
110
|
Autophagic Removal of Farnesylated Carboxy-Terminal Lamin Peptides. Cells 2018; 7:cells7040033. [PMID: 29690642 PMCID: PMC5946110 DOI: 10.3390/cells7040033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/11/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
The mammalian nuclear lamina proteins—prelamin A- and B-type lamins—are post-translationally modified by farnesylation, endoproteolysis, and carboxymethylation at a carboxy-terminal CAAX (C, cysteine; a, aliphatic amino acid; X, any amino acid) motif. However, prelamin A processing into mature lamin A is a unique process because it results in the production of farnesylated and carboxymethylated peptides. In cells from patients with Hutchinson–Gilford progeria syndrome, the mutant prelamin A protein, progerin, cannot release its prenylated carboxyl-terminal moiety and therefore remains permanently associated with the nuclear envelope (NE), causing severe nuclear alterations and a dysmorphic morphology. To obtain a better understanding of the abnormal interaction and retention of progerin in the NE, we analyzed the spatiotemporal distribution of the EGFP fusion proteins with or without a nuclear localization signal (NLS) and a functional CAAX motif in HeLa cells transfected with a series of plasmids that encode the carboxy-terminal ends of progerin and prelamin A. The farnesylated carboxy-terminal fusion peptides bind to the NE and induce the formation of abnormally shaped nuclei. In contrast, the unfarnesylated counterparts exhibit a diffuse localization in the nucleoplasm, without obvious NE deformation. High levels of farnesylated prelamin A and progerin carboxy-terminal peptides induce nucleophagic degradation of the toxic protein, including several nuclear components and chromatin. However, SUN1, a constituent of the linker of nucleoskeleton and cytoskeleton (LINC) complex, is excluded from these autophagic NE protrusions. Thus, nucleophagy requires NE flexibility, as indicated by SUN1 delocalization from the elongated NE–autophagosome complex.
Collapse
|
111
|
Fan Y, Dong D, Li Q, Si H, Pei H, Li L, Tang B. Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips. LAB ON A CHIP 2018; 18:1151-1173. [PMID: 29541737 DOI: 10.1039/c7lc01333g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Single-cell analysis of bioactive molecules is an essential strategy for a better understanding of cell biology, exploring cell heterogeneity, and improvement of the ability to detect early diseases. In single-cell analysis, highly efficient single-cell manipulation techniques and high-sensitive detection schemes are in urgent need. The rapid development of fluorescent analysis techniques combined with microfluidic chips have offered a widely applicable solution. Thus, in this review, we mainly focus on the application of fluorescence methods in components analysis on microchips at a single-cell level. By targeting different types of biological molecules in cells such as nucleic acids, proteins, and active small molecules, we specially introduce and comment on their corresponding fluorescent probes, fluorescence labelling and sensing strategies, and different fluorescence detection instruments used in single-cell analysis on a microfluidic chip. We hope that through this review, readers will have a better understanding of single-cell fluorescence analysis, especially for single-cell component fluorescence analysis based on microfluidic chips.
Collapse
Affiliation(s)
- Yuanyuan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
112
|
Larsson VJ, Jafferali MH, Vijayaraghavan B, Figueroa RA, Hallberg E. Mitotic spindle assembly and γ-tubulin localisation depend on the integral nuclear membrane protein Samp1. J Cell Sci 2018. [PMID: 29514856 PMCID: PMC5963844 DOI: 10.1242/jcs.211664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have investigated a possible role for the inner nuclear membrane protein Samp1 (also known as TMEM201) in the mitotic machinery. Live-cell imaging showed that Samp1a–YFP (Samp1a is the short isoform of Samp1) distributed as filamentous structures in the mitotic spindle, partially colocalising with β-tubulin. Samp1 depletion resulted in an increased frequency of cells with signs of chromosomal mis-segregation and prolonged metaphase, indicating problems with spindle assembly and/or chromosomal alignment. Consistent with this, mitotic spindles in Samp1-depleted cells contained significantly lower levels of β-tubulin and γ-tubulin, phenotypes that were rescued by overexpression of Samp1a–YFP. We found that Samp1 can bind directly to γ-tubulin and that Samp1 co-precipitated with γ-tubulin and the HAUS6 subunit of the Augmin complex in live cells. The levels of HAUS6, in the mitotic spindle also decreased after Samp1 depletion. We show that Samp1 is involved in the recruitment of HAUS6 and γ-tubulin to the mitotic spindle. Samp1 is the first inner nuclear membrane protein shown to have a function in mitotic spindle assembly. Highlighted Article: The transmembrane inner nuclear membrane protein Samp1 has a functional role in recruitment of γ-tubulin to the mitotic spindle and correct spindle assembly.
Collapse
Affiliation(s)
- Veronica J Larsson
- Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | - Ricardo A Figueroa
- Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Einar Hallberg
- Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
113
|
RanGTPase regulates the interaction between the inner nuclear membrane proteins, Samp1 and Emerin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1326-1334. [PMID: 29510091 DOI: 10.1016/j.bbamem.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/07/2018] [Accepted: 03/01/2018] [Indexed: 02/02/2023]
Abstract
Samp1, spindle associated membrane protein 1, is a type II integral membrane protein localized in the inner nuclear membrane. Recent studies have shown that the inner nuclear membrane protein, Emerin and the small monomeric GTPase, Ran are direct binding partners of Samp1. Here we addressed the question whether Ran could regulate the interaction between Samp1 and Emerin in the inner nuclear membrane. To investigate the interaction between Samp1 and Emerin in live cells, we performed FRAP experiments in cells overexpressing YFP-Emerin. We compared the mobility of YFP-Emerin in Samp1 knock out cells and cells overexpressing Samp1. The results showed that the mobility of YFP-Emerin was higher in Samp1 knock out cells and lower in cells overexpressing Samp1, suggesting that Samp1 significantly attenuates the mobility of Emerin in the nuclear envelope. FRAP experiments using tsBN2 cells showed that the mobility of Emerin depends on RanGTP. Consistently, in vitro binding experiments showed that the affinity between Samp1 and Emerin is decreased in the presence of Ran, suggesting that Ran attenuates the interaction between Samp1 and Emerin. This is the first demonstration that Ran can regulate the interaction between two proteins in the nuclear envelope.
Collapse
|
114
|
Stroud MJ, Fang X, Zhang J, Guimarães-Camboa N, Veevers J, Dalton ND, Gu Y, Bradford WH, Peterson KL, Evans SM, Gerace L, Chen J. Luma is not essential for murine cardiac development and function. Cardiovasc Res 2018; 114:378-388. [PMID: 29040414 PMCID: PMC6019056 DOI: 10.1093/cvr/cvx205] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022] Open
Abstract
AIMS Luma is a recently discovered, evolutionarily conserved protein expressed in mammalian heart, which is associated with the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex. The LINC complex structurally integrates the nucleus and the cytoplasm and plays a critical role in mechanotransduction across the nuclear envelope. Mutations in several LINC components in both humans and mice result in various cardiomyopathies, implying they play essential, non-redundant roles. A single amino acid substitution of serine 358 to leucine (S358L) in Luma is the unequivocal cause of a distinct form of arrhythmogenic cardiomyopathy. However, the role of Luma in heart has remained obscure. In addition, it also remains to be determined how the S358L mutation in Luma leads to cardiomyopathy. METHODS AND RESULTS To determine the role of Luma in the heart, we first determined the expression pattern of Luma in mouse heart. Luma was sporadically expressed in cardiomyocytes throughout the heart, but was highly and uniformly expressed in cardiac fibroblasts and vascular smooth muscle cells. We also generated germline null Luma mice and discovered that germline null mutants were viable and exhibited normal cardiac function. Luma null mice also responded normally to pressure overload induced by transverse aortic constriction. In addition, localization and expression of other LINC complex components in both cardiac myocytes and fibroblasts was unaffected by global loss of Luma. Furthermore, we also generated and characterized Luma S358L knock-in mice, which displayed normal cardiac function and morphology. CONCLUSION Our data suggest that Luma is dispensable for murine cardiac development and function and that the Luma S358L mutation alone may not cause cardiomyopathy in mice.
Collapse
MESH Headings
- Animals
- Arrhythmogenic Right Ventricular Dysplasia/genetics
- Arrhythmogenic Right Ventricular Dysplasia/metabolism
- Cells, Cultured
- Cytoskeleton/metabolism
- Female
- Fibroblasts/metabolism
- Gene Expression Regulation, Developmental
- Genetic Predisposition to Disease
- Heart/embryology
- Heart/physiopathology
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mechanotransduction, Cellular
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Morphogenesis
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/metabolism
- Nuclear Matrix/metabolism
Collapse
Affiliation(s)
- Matthew J Stroud
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jianlin Zhang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nuno Guimarães-Camboa
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Veevers
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nancy D Dalton
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yusu Gu
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - William H Bradford
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kirk L Peterson
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sylvia M Evans
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Larry Gerace
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Corresponding author. Tel: 858 822 4276; fax: 858 822 3027, E-mail:
| |
Collapse
|
115
|
Gerace L, Tapia O. Messages from the voices within: regulation of signaling by proteins of the nuclear lamina. Curr Opin Cell Biol 2018; 52:14-21. [PMID: 29306725 DOI: 10.1016/j.ceb.2017.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
The nuclear lamina (NL) is a protein scaffold lining the nuclear envelope that consists of nuclear lamins and associated transmembrane proteins. It helps to organize the nuclear envelope, chromosomes, and the cytoplasmic cytoskeleton. The NL also has an important role in regulation of signaling, as highlighted by the wide range of human diseases caused by mutations in the genes for NL proteins with associated signaling defects. This review will consider diverse mechanisms for signaling regulation by the NL that have been uncovered recently, including interaction with signaling effectors, modulation of actin assembly and compositional alteration of the NL. Cells with discrete NL mutations often show disruption of multiple signaling pathways, however, and for the most part the mechanistic basis for these complex phenotypes remains to be elucidated.
Collapse
Affiliation(s)
- Larry Gerace
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States.
| | - Olga Tapia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States; Department of Anatomy and Cell Biology and CIBERNED, University of Cantabria-IDIVAL, Cardenal H Oria s/n, 39011 Santander, Spain
| |
Collapse
|
116
|
Hirano Y, Kinugasa Y, Asakawa H, Chikashige Y, Obuse C, Haraguchi T, Hiraoka Y. Lem2 is retained at the nuclear envelope through its interaction with Bqt4 in fission yeast. Genes Cells 2018; 23:122-135. [PMID: 29292846 DOI: 10.1111/gtc.12557] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
Inner nuclear membrane (INM) proteins are thought to play important roles in modulating nuclear organization and function through their interactions with chromatin. However, these INM proteins share redundant functions in metazoans that pose difficulties for functional studies. The fission yeast Schizosaccharomyces pombe exhibits a relatively small number of INM proteins, and molecular genetic tools are available to separate their redundant functions. In S. pombe, it has been reported that among potentially redundant INM proteins, Lem2 displays a unique genetic interaction with another INM protein, Bqt4, which is involved in anchoring telomeres to the nuclear envelope. Double mutations in the lem2 and bqt4 genes confer synthetic lethality during vegetative growth. Here, we show that Lem2 is retained at the nuclear envelope through its interaction with Bqt4, as the loss of Bqt4 results in the exclusive accumulation of Lem2 to the spindle pole body (SPB). An N-terminal nucleoplasmic region of Lem2 bears affinity to both Bqt4 and the SPB in a competitive manner. In contrast, the synthetic lethality of the lem2 bqt4 double mutant is suppressed by the C-terminal region of Lem2. These results indicate that the N-terminal and C-terminal domains of Lem2 show independent functions with respect to Bqt4.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasuha Kinugasa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
117
|
Houthaeve G, Robijns J, Braeckmans K, De Vos WH. Bypassing Border Control: Nuclear Envelope Rupture in Disease. Physiology (Bethesda) 2018; 33:39-49. [DOI: 10.1152/physiol.00029.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 11/22/2022] Open
Abstract
Recent observations in laminopathy patient cells and cancer cells have revealed that the nuclear envelope (NE) can transiently rupture during interphase. NE rupture leads to an uncoordinated exchange of nuclear and cytoplasmic material, thereby deregulating cellular homeostasis. Moreover, concurrently inflicted DNA damage could prime rupture-prone cells for genome instability. Thus, NE rupture may represent a novel pathogenic mechanism that has far-reaching consequences for cell and organism physiology.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Joke Robijns
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Department of Molecular Biotechnology, Cell Systems and Imaging Research Group (CSI), Ghent University, Ghent, Belgium
| |
Collapse
|
118
|
Chizhik AM, Ruhlandt D, Pfaff J, Karedla N, Chizhik AI, Gregor I, Kehlenbach RH, Enderlein J. Three-Dimensional Reconstruction of Nuclear Envelope Architecture Using Dual-Color Metal-Induced Energy Transfer Imaging. ACS NANO 2017; 11:11839-11846. [PMID: 28921961 DOI: 10.1021/acsnano.7b04671] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2β and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively. Using MIET imaging, we reconstruct the 3D profile of the nuclear envelope over the whole basal area, with an axial resolution of a few nanometers. This result demonstrates that optical microscopy can achieve nanometer axial resolution in biological samples and without recourse to complex interferometric approaches.
Collapse
Affiliation(s)
- Anna M Chizhik
- Third Institute of Physics, University of Göttingen , 37077 Göttingen, Germany
| | - Daja Ruhlandt
- Third Institute of Physics, University of Göttingen , 37077 Göttingen, Germany
| | - Janine Pfaff
- Universitätsmedizin Göttingen, University of Göttingen, Department of Molecular Biology, GZMB , 37073 Göttingen, Germany
| | - Narain Karedla
- Third Institute of Physics, University of Göttingen , 37077 Göttingen, Germany
| | - Alexey I Chizhik
- Third Institute of Physics, University of Göttingen , 37077 Göttingen, Germany
| | - Ingo Gregor
- Third Institute of Physics, University of Göttingen , 37077 Göttingen, Germany
| | - Ralph H Kehlenbach
- Universitätsmedizin Göttingen, University of Göttingen, Department of Molecular Biology, GZMB , 37073 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics, University of Göttingen , 37077 Göttingen, Germany
| |
Collapse
|
119
|
Jafferali MH, Figueroa RA, Hasan M, Hallberg E. Spindle associated membrane protein 1 (Samp1) is required for the differentiation of muscle cells. Sci Rep 2017; 7:16655. [PMID: 29192166 PMCID: PMC5709512 DOI: 10.1038/s41598-017-16746-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/20/2017] [Indexed: 01/15/2023] Open
Abstract
Muscles are developed and regenerated in a differentiation process called myogenesis, which involves components of the nuclear envelope. We have investigated Samp1 (Spindle Associated Membrane Protein 1), a transmembrane nuclear envelope protein, which interacts with emerin and lamin A, both of which are linked to Emery-Dreifuss muscular dystrophy (EDMD). We found that the levels of Samp1 increased seven-fold during differentiation of mouse C2C12 muscle progenitor cells. To test if Samp1 could have a role in myogenesis we developed stable C2C12 knockdown cell lines expressing short hairpin RNA targeting Samp1 expression. The Samp1 depleted C2C12 cells displayed normal mobility and normal distribution of emerin and lamin A. However, Samp1 depletion increased ERK signaling and completely blocked differentiation of C2C12 cells, which failed to express myogenic marker proteins and failed to form myotubes. The block in myogenesis in Samp1 depleted cells was completely rescued by ectopic expression of RNAi resistant human Samp1, showing that Samp1 is required for muscle differentiation.
Collapse
Affiliation(s)
- Mohammed Hakim Jafferali
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, SE-106 91, Stockholm, Sweden
| | - Ricardo A Figueroa
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, SE-106 91, Stockholm, Sweden
| | - Mehedi Hasan
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, SE-106 91, Stockholm, Sweden
| | - Einar Hallberg
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
120
|
Breaking the scale: how disrupting the karyoplasmic ratio gives cancer cells an advantage for metastatic invasion. Biochem Soc Trans 2017; 45:1333-1344. [PMID: 29150524 DOI: 10.1042/bst20170153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/28/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
Abstract
Nuclear size normally scales with the size of the cell, but in cancer this 'karyoplasmic ratio' is disrupted. This is particularly so in more metastatic tumors where changes in the karyoplasmic ratio are used in both diagnosis and prognosis for several tumor types. However, the direction of nuclear size changes differs for particular tumor types: for example in breast cancer, larger nuclear size correlates with increased metastasis, while for lung cancer smaller nuclear size correlates with increased metastasis. Thus, there must be tissue-specific drivers of the nuclear size changes, but proteins thus far linked to nuclear size regulation are widely expressed. Notably, for these tumor types, ploidy changes have been excluded as the basis for nuclear size changes, and so, the increased metastasis is more likely to have a basis in the nuclear morphology change itself. We review what is known about nuclear size regulation and postulate how such nuclear size changes can increase metastasis and why the directionality can differ for particular tumor types.
Collapse
|
121
|
Wasik AA, Schiller HB. Functional proteomics of cellular mechanosensing mechanisms. Semin Cell Dev Biol 2017; 71:118-128. [DOI: 10.1016/j.semcdb.2017.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
|
122
|
Serebryannyy L, Misteli T. Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging. J Cell Biol 2017; 217:21-37. [PMID: 29051264 PMCID: PMC5748986 DOI: 10.1083/jcb.201706061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Serebryannyy and Misteli provide a perspective on how protein sequestration at the inner nuclear membrane and nuclear lamina might influence aging. Despite the extensive description of numerous molecular changes associated with aging, insights into the driver mechanisms of this fundamental biological process are limited. Based on observations in the premature aging syndrome Hutchinson–Gilford progeria, we explore the possibility that protein regulation at the inner nuclear membrane and the nuclear lamina contributes to the aging process. In support, sequestration of nucleoplasmic proteins to the periphery impacts cell stemness, the response to cytotoxicity, proliferation, changes in chromatin state, and telomere stability. These observations point to the nuclear periphery as a central regulator of the aging phenotype.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
123
|
Effects of Inner Nuclear Membrane Proteins SUN1/UNC-84A and SUN2/UNC-84B on the Early Steps of HIV-1 Infection. J Virol 2017; 91:JVI.00463-17. [PMID: 28747499 PMCID: PMC5599759 DOI: 10.1128/jvi.00463-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/18/2017] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1NL4.3 and HIV-1IIIB) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro-assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1−/− and SUN2−/− cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection. IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes leads to a mild reduction or no effect on infectivity, respectively. We speculate that SUN1/SUN2 may function redundantly in early HIV-1 infection steps and therefore influence HIV-1 replication and pathogenesis.
Collapse
|
124
|
Nikolakaki E, Mylonis I, Giannakouros T. Lamin B Receptor: Interplay between Structure, Function and Localization. Cells 2017; 6:cells6030028. [PMID: 28858257 PMCID: PMC5617974 DOI: 10.3390/cells6030028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Lamin B receptor (LBR) is an integral protein of the inner nuclear membrane, containing a hydrophilic N-terminal end protruding into the nucleoplasm, eight hydrophobic segments that span the membrane and a short, nucleoplasmic C-terminal tail. Two seemingly unrelated functions have been attributed to LBR. Its N-terminal domain tethers heterochromatin to the nuclear periphery, thus contributing to the shape of interphase nuclear architecture, while its transmembrane domains exhibit sterol reductase activity. Mutations within the transmembrane segments result in defects in cholesterol synthesis and are associated with diseases such as the Pelger–Huët anomaly and Greenberg skeletal dysplasia, whereas no such harmful mutations related to the anchoring properties of LBR have been reported so far. Recent evidence suggests a dynamic regulation of LBR expression levels, structural organization, localization and function, in response to various signals. The molecular mechanisms underlying this dynamic behavior have not yet been fully unraveled. Here, we provide an overview of the current knowledge of the interplay between the structure, function and localization of LBR, and hint at the interconnection of the two distinct functions of LBR.
Collapse
Affiliation(s)
- Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, Thessaloniki 54124, Greece.
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Panepistimiou 3 BIOPOLIS, Larissa 41500, Greece.
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, Thessaloniki 54124, Greece.
| |
Collapse
|
125
|
Buchwalter A, Hetzer MW. Nucleolar expansion and elevated protein translation in premature aging. Nat Commun 2017; 8:328. [PMID: 28855503 PMCID: PMC5577202 DOI: 10.1038/s41467-017-00322-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
Premature aging disorders provide an opportunity to study the mechanisms that drive aging. In Hutchinson-Gilford progeria syndrome (HGPS), a mutant form of the nuclear scaffold protein lamin A distorts nuclei and sequesters nuclear proteins. We sought to investigate protein homeostasis in this disease. Here, we report a widespread increase in protein turnover in HGPS-derived cells compared to normal cells. We determine that global protein synthesis is elevated as a consequence of activated nucleoli and enhanced ribosome biogenesis in HGPS-derived fibroblasts. Depleting normal lamin A or inducing mutant lamin A expression are each sufficient to drive nucleolar expansion. We further show that nucleolar size correlates with donor age in primary fibroblasts derived from healthy individuals and that ribosomal RNA production increases with age, indicating that nucleolar size and activity can serve as aging biomarkers. While limiting ribosome biogenesis extends lifespan in several systems, we show that increased ribosome biogenesis and activity are a hallmark of premature aging. HGPS is a premature aging disease caused by mutations in the nuclear protein lamin A. Here, the authors show that cells from patients with HGPS have expanded nucleoli and increased protein synthesis, and report that nucleoli also expand as aging progresses in cells derived from healthy individuals.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
126
|
An inner nuclear membrane protein induces rapid differentiation of human induced pluripotent stem cells. Stem Cell Res 2017; 23:33-38. [DOI: 10.1016/j.scr.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/11/2017] [Accepted: 06/13/2017] [Indexed: 11/16/2022] Open
|
127
|
Fal K, Asnacios A, Chabouté ME, Hamant O. Nuclear envelope: a new frontier in plant mechanosensing? Biophys Rev 2017; 9:389-403. [PMID: 28801801 PMCID: PMC5578935 DOI: 10.1007/s12551-017-0302-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
In animals, it is now well established that forces applied at the cell surface are propagated through the cytoskeleton to the nucleus, leading to deformations of the nuclear structure and, potentially, to modification of gene expression. Consistently, altered nuclear mechanics has been related to many genetic disorders, such as muscular dystrophy, cardiomyopathy and progeria. In plants, the integration of mechanical signals in cell and developmental biology has also made great progress. Yet, while the link between cell wall stresses and cytoskeleton is consolidated, such cortical mechanical cues have not been integrated with the nucleoskeleton. Here, we propose to take inspiration from studies on animal nuclei to identify relevant methods amenable to probing nucleus mechanics and deformation in plant cells, with a focus on microrheology. To identify potential molecular targets, we also compare the players at the nuclear envelope, namely lamina and LINC complex, in both plant and animal nuclei. Understanding how mechanical signals are transduced to the nucleus across kingdoms will likely have essential implications in development (e.g. how mechanical cues add robustness to gene expression patterns), in the nucleoskeleton-cytoskeleton nexus (e.g. how stress is propagated in turgid/walled cells), as well as in transcriptional control, chromatin biology and epigenetics.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Atef Asnacios
- Laboratoire Matières et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
128
|
Abstract
Salmonella typhimurium is an important biofilm-forming bacteria. It is known to be resistant to a wide range of antimicrobials. The present study was carried out to evaluate the effects of dimethyl sulfoxide (DMSO) against S. typhimurium biofilm and investigate whole-cell protein expression by biofilm cells following treatment with DMSO. Antibiofilm activities were assessed using pellicle assay, crystal violet assay, colony-forming unit counting and extracellular polymeric substance (EPS) matrix assay whilst differential protein expression was investigated using a combination of one dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis, tandem mass spectrometry and bioinformatics. Treatment with 32% DMSO inhibited pellicle formation, biofilm viability, biofilm biomass and several important components of EPS matrix. Subtractive protein profiling identified two unique protein bands (25.4 and 51.2 kDa) which were present only in control biofilm and not in 32% DMSO-treated biofilm. In turn, 29 and 46 proteins were successfully identified from the protein bands of 25.4 and 51.2 kDa respectively. Protein interaction network analysis identified several biological pathways to be affected, including glycolysis, PhoP-PhoQ phosphorelay signalling and flagellar biosynthesis. The present study suggests that DMSO may inhibit multiple biological pathways to control biofilm formation.
Collapse
|
129
|
Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression. Cell 2017; 169:780-791. [PMID: 28525751 DOI: 10.1016/j.cell.2017.04.022] [Citation(s) in RCA: 716] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 01/06/2023]
Abstract
In metazoan cell nuclei, hundreds of large chromatin domains are in close contact with the nuclear lamina. Such lamina-associated domains (LADs) are thought to help organize chromosomes inside the nucleus and have been associated with gene repression. Here, we discuss the properties of LADs, the molecular mechanisms that determine their association with the nuclear lamina, their dynamic links with other nuclear compartments, and their proposed roles in gene regulation.
Collapse
|
130
|
Vijayaraghavan B, Jafferali MH, Figueroa RA, Hallberg E. Samp1, a RanGTP binding transmembrane protein in the inner nuclear membrane. Nucleus 2017; 7:415-23. [PMID: 27541860 PMCID: PMC5039005 DOI: 10.1080/19491034.2016.1220465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Samp1 is a transmembrane protein of the inner nuclear membrane (INM), which interacts with the nuclear lamina and the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex in interphase and during mitosis, it localizes to the mitotic spindle. Samp1 was recently found to coprecipitate a protein complex containing Ran, a GTPase with fundamental regulatory functions both in interphase and in mitosis. To investigate the interaction between Samp1 and Ran in further detail, we have designed and expressed recombinant fusion proteins of the Chaetomium thermophilum homolog of Samp1 (Ct.Samp1) and human Ran. Pulldown experiments show that Samp1 binds directly to Ran and that Samp1 binds better to RanGTP compared to RanGDP. Samp1 also preferred RanGTP over RanGDP in living tsBN2 cells. We also show that the Ran binding domain is located between amino acids 75–135 in the nucleoplasmically exposed N-terminal tail of Samp1. This domain is unique for Samp1, without homology in any other proteins in fungi or metazoa. Samp1 is the first known transmembrane protein that binds to Ran and could provide a unique local binding site for RanGTP in the INM. Samp1 overexpression resulted in increased Ran concentrations in the nuclear periphery supporting this idea.
Collapse
Affiliation(s)
| | | | | | - Einar Hallberg
- a Department of Neurochemistry , Stockholm University , Stockholm , Sweden
| |
Collapse
|
131
|
Thanisch K, Song C, Engelkamp D, Koch J, Wang A, Hallberg E, Foisner R, Leonhardt H, Stewart CL, Joffe B, Solovei I. Nuclear envelope localization of LEMD2 is developmentally dynamic and lamin A/C dependent yet insufficient for heterochromatin tethering. Differentiation 2017; 94:58-70. [PMID: 28056360 DOI: 10.1016/j.diff.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/28/2022]
Abstract
Peripheral heterochromatin in mammalian nuclei is tethered to the nuclear envelope by at least two mechanisms here referred to as the A- and B-tethers. The A-tether includes lamins A/C and additional unknown components presumably INM protein(s) interacting with both lamins A/C and chromatin. The B-tether includes the inner nuclear membrane (INM) protein Lamin B-receptor, which binds B-type lamins and chromatin. Generally, at least one of the tethers is always present in the nuclear envelope of mammalian cells. Deletion of both causes the loss of peripheral heterochromatin and consequently inversion of the entire nuclear architecture, with this occurring naturally in rod photoreceptors of nocturnal mammals. The tethers are differentially utilized during development, regulate gene expression in opposite manners, and play an important role during cell differentiation. Here we aimed to identify the unknown chromatin binding component(s) of the A-tether. We analyzed 10 mouse tissues by immunostaining with antibodies against 7 INM proteins and found that every cell type has specific, although differentially and developmentally regulated, sets of these proteins. In particular, we found that INM protein LEMD2 is concomitantly expressed with A-type lamins in various cell types but is lacking in inverted nuclei of rod cells. Truncation or deletion of Lmna resulted in the downregulation and mislocalization of LEMD2, suggesting that the two proteins interact and pointing at LEMD2 as a potential chromatin binding mediator of the A-tether. Using nuclei of mouse rods as an experimental model lacking peripheral heterochromatin, we expressed a LEMD2 transgene alone or in combination with lamin C in these cells and observed no restoration of peripheral heterochromatin in either case. We conclude that in contrary to the B-tether, the A-tether has a more intricate composition and consists of multiple components that presumably vary, at differing degrees of redundancy, between cell types and differentiation stages.
Collapse
Affiliation(s)
- Katharina Thanisch
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Congdi Song
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Dieter Engelkamp
- Transgenic Service Facility, BTE, Franz-Penzoldt-Centre, Friedrich-Alexander-University of Erlangen-Nürnberg, Erwin-Rommel-Str.3, D-91058 Erlangen, Germany
| | - Jeannette Koch
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Audrey Wang
- Institute of Medical Biology, 8A Biomedical Grove and Dept of Biological Sciences, NUS, 138648, Singapore
| | - Einar Hallberg
- Department of Neurochemistry, Stockholm University, Se-106 91 Stockholm, Sweden
| | - Roland Foisner
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Colin L Stewart
- Institute of Medical Biology, 8A Biomedical Grove and Dept of Biological Sciences, NUS, 138648, Singapore.
| | - Boris Joffe
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Irina Solovei
- Department of Biology II, Ludwig-Maximilians-University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
132
|
Collins CM, Ellis JA, Holaska JM. MAPK signaling pathways and HDAC3 activity are disrupted during differentiation of emerin-null myogenic progenitor cells. Dis Model Mech 2017; 10:385-397. [PMID: 28188262 PMCID: PMC5399572 DOI: 10.1242/dmm.028787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/01/2017] [Indexed: 01/28/2023] Open
Abstract
Mutations in the gene encoding emerin cause Emery–Dreifuss muscular dystrophy (EDMD). Emerin is an integral inner nuclear membrane protein and a component of the nuclear lamina. EDMD is characterized by skeletal muscle wasting, cardiac conduction defects and tendon contractures. The failure to regenerate skeletal muscle is predicted to contribute to the skeletal muscle pathology of EDMD. We hypothesize that muscle regeneration defects are caused by impaired muscle stem cell differentiation. Myogenic progenitors derived from emerin-null mice were used to confirm their impaired differentiation and analyze selected myogenic molecular pathways. Emerin-null progenitors were delayed in their cell cycle exit, had decreased myosin heavy chain (MyHC) expression and formed fewer myotubes. Emerin binds to and activates histone deacetylase 3 (HDAC3). Here, we show that theophylline, an HDAC3-specific activator, improved myotube formation in emerin-null cells. Addition of the HDAC3-specific inhibitor RGFP966 blocked myotube formation and MyHC expression in wild-type and emerin-null myogenic progenitors, but did not affect cell cycle exit. Downregulation of emerin was previously shown to affect the p38 MAPK and ERK/MAPK pathways in C2C12 myoblast differentiation. Using a pure population of myogenic progenitors completely lacking emerin expression, we show that these pathways are also disrupted. ERK inhibition improved MyHC expression in emerin-null cells, but failed to rescue myotube formation or cell cycle exit. Inhibition of p38 MAPK prevented differentiation in both wild-type and emerin-null progenitors. These results show that each of these molecular pathways specifically regulates a particular stage of myogenic differentiation in an emerin-dependent manner. Thus, pharmacological targeting of multiple pathways acting at specific differentiation stages may be a better therapeutic approach in the future to rescue muscle regeneration in vivo. Editors' choice: HDAC3, p38 MAPK and ERK signaling are altered during differentiation of myogenic progenitors lacking emerin; pharmacological activation or inhibition of these signaling proteins rescues specific stages of myogenic differentiation.
Collapse
Affiliation(s)
- Carol M Collins
- University of the Sciences, Department of Pharmaceutical Sciences, 600 S. 43rd St, Philadelphia, PA 19104, USA
| | - Joseph A Ellis
- University of the Sciences, Department of Pharmaceutical Sciences, 600 S. 43rd St, Philadelphia, PA 19104, USA
| | - James M Holaska
- University of the Sciences, Department of Pharmaceutical Sciences, 600 S. 43rd St, Philadelphia, PA 19104, USA
| |
Collapse
|
133
|
Cho S, Irianto J, Discher DE. Mechanosensing by the nucleus: From pathways to scaling relationships. J Cell Biol 2017; 216:305-315. [PMID: 28043971 PMCID: PMC5294790 DOI: 10.1083/jcb.201610042] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 01/01/2023] Open
Abstract
The nucleus is linked mechanically to the extracellular matrix via multiple polymers that transmit forces to the nuclear envelope and into the nuclear interior. Here, we review some of the emerging mechanisms of nuclear mechanosensing, which range from changes in protein conformation and transcription factor localization to chromosome reorganization and membrane dilation up to rupture. Nuclear mechanosensing encompasses biophysically complex pathways that often converge on the main structural proteins of the nucleus, the lamins. We also perform meta-analyses of public transcriptomics and proteomics data, which indicate that some of the mechanosensing pathways relaying signals from the collagen matrix to the nucleus apply to a broad range of species, tissues, and diseases.
Collapse
Affiliation(s)
- Sangkyun Cho
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Jerome Irianto
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| | - Dennis E Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
134
|
Mechanotransduction via the nuclear envelope: a distant reflection of the cell surface. Curr Opin Cell Biol 2017; 44:59-67. [DOI: 10.1016/j.ceb.2016.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
|
135
|
Hieda M. Implications for Diverse Functions of the LINC Complexes Based on the Structure. Cells 2017; 6:cells6010003. [PMID: 28134781 PMCID: PMC5371868 DOI: 10.3390/cells6010003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is composed of the outer and inner nuclear membrane protein families Klarsicht, Anc-1, and Syne homology (KASH), and Sad1 and UNC-84 (SUN) homology domain proteins. Increasing evidence has pointed to diverse functions of the LINC complex, such as in nuclear migration, nuclear integrity, chromosome movement and pairing during meiosis, and mechanotransduction to the genome. In metazoan cells, the nuclear envelope possesses the nuclear lamina, which is a thin meshwork of intermediate filaments known as A-type and B-type lamins and lamin binding proteins. Both of lamins physically interact with the inner nuclear membrane spanning SUN proteins. The nuclear lamina has also been implicated in various functions, including maintenance of nuclear integrity, mechanotransduction, cellular signalling, and heterochromatin dynamics. Thus, it is clear that the LINC complex and nuclear lamins perform diverse but related functions. However, it is unknown whether the LINC complex-lamins interactions are involved in these diverse functions, and their regulation mechanism has thus far been elusive. Recent structural analysis suggested a dynamic nature of the LINC complex component, thus providing an explanation for LINC complex organization. This review, elaborating on the integration of crystallographic and biochemical data, helps to integrate this research to gain a better understanding of the diverse functions of the LINC complex.
Collapse
Affiliation(s)
- Miki Hieda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Ehime 791-2101, Japan.
| |
Collapse
|
136
|
Wang J, Mauvoisin D, Martin E, Atger F, Galindo AN, Dayon L, Sizzano F, Palini A, Kussmann M, Waridel P, Quadroni M, Dulić V, Naef F, Gachon F. Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver. Cell Metab 2017; 25:102-117. [PMID: 27818260 PMCID: PMC5241201 DOI: 10.1016/j.cmet.2016.10.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/25/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022]
Abstract
Diurnal oscillations of gene expression controlled by the circadian clock and its connected feeding rhythm enable organisms to coordinate their physiologies with daily environmental cycles. While available techniques yielded crucial insights into regulation at the transcriptional level, much less is known about temporally controlled functions within the nucleus and their regulation at the protein level. Here, we quantified the temporal nuclear accumulation of proteins and phosphoproteins from mouse liver by SILAC proteomics. We identified around 5,000 nuclear proteins, over 500 of which showed a diurnal accumulation. Parallel analysis of the nuclear phosphoproteome enabled the inference of the temporal activity of kinases accounting for rhythmic phosphorylation. Many identified rhythmic proteins were parts of nuclear complexes involved in transcriptional regulation, ribosome biogenesis, DNA repair, and the cell cycle and its potentially associated diurnal rhythm of hepatocyte polyploidy. Taken together, these findings provide unprecedented insights into the diurnal regulatory landscape of the mouse liver nucleus.
Collapse
Affiliation(s)
- Jingkui Wang
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Daniel Mauvoisin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; Department of Pharmacology and Toxicology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Antonio Núñez Galindo
- Systems Nutrition, Metabonomics, and Proteomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Loïc Dayon
- Systems Nutrition, Metabonomics, and Proteomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Federico Sizzano
- Department of Cell Biology, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Alessio Palini
- Department of Cell Biology, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Martin Kussmann
- Systems Nutrition, Metabonomics, and Proteomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Vjekoslav Dulić
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, 34090 Montpellier, France
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
137
|
Cini M, Bradshaw TD, Woodward S. Using titanium complexes to defeat cancer: the view from the shoulders of titans. Chem Soc Rev 2017; 46:1040-1051. [DOI: 10.1039/c6cs00860g] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Seeking ‘unifying mechanisms of action’ in titanium anti-cancer agents: a 40 year odyssey.
Collapse
Affiliation(s)
- Melchior Cini
- Institute of Applied Sciences
- MCAST Main Campus
- Paola
- Malta
| | - Tracey D. Bradshaw
- School of Pharmacy
- Centre for Biomolecular Science
- University of Nottingham
- Nottingham
- UK
| | - Simon Woodward
- GSK Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Nottingham NG7 2TU
- UK
| |
Collapse
|
138
|
Smoyer CJ, Katta SS, Gardner JM, Stoltz L, McCroskey S, Bradford WD, McClain M, Smith SE, Slaughter BD, Unruh JR, Jaspersen SL. Analysis of membrane proteins localizing to the inner nuclear envelope in living cells. J Cell Biol 2016; 215:575-590. [PMID: 27831485 PMCID: PMC5119940 DOI: 10.1083/jcb.201607043] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
Understanding the protein composition of the inner nuclear membrane (INM) is fundamental to elucidating its role in normal nuclear function and in disease; however, few tools exist to examine the INM in living cells, and the INM-specific proteome remains poorly characterized. Here, we adapted split green fluorescent protein (split-GFP) to systematically localize known and predicted integral membrane proteins in Saccharomyces cerevisiae to the INM as opposed to the outer nuclear membrane. Our data suggest that components of the endoplasmic reticulum (ER) as well as other organelles are able to access the INM, particularly if they contain a small extraluminal domain. By pairing split-GFP with fluorescence correlation spectroscopy, we compared the composition of complexes at the INM and ER, finding that at least one is unique: Sbh2, but not Sbh1, has access to the INM. Collectively, our work provides a comprehensive analysis of transmembrane protein localization to the INM and paves the way for further research into INM composition and function.
Collapse
Affiliation(s)
| | | | | | - Lynn Stoltz
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Scott McCroskey
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | | | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110 .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
139
|
Abstract
Proteins of the intermediate filament (IF) supergene family are ubiquitous structural components that comprise, in a cell type-specific manner, the cytoskeleton proper in animal tissues. All IF proteins show a distinctly organized, extended α-helical conformation prone to form two-stranded coiled coils, which are the basic building blocks of these highly flexible, stress-resistant cytoskeletal filaments. IF proteins are highly charged, thus representing versatile polyampholytes with multiple functions. Taking vimentin, keratins, and the nuclear lamins as our prime examples, we present an overview of their molecular and structural parameters. These, in turn, document the ability of IF proteins to form distinct, highly diverse supramolecular assemblies and biomaterials found, for example, at the inner nuclear membrane, throughout the cytoplasm, and in highly complex extracellular appendages, such as hair and nails, of vertebrate organisms. Ultimately, our aim is to set the stage for a more rational understanding of the immediate effects that missense mutations in IF genes have on cellular functions and for their far-reaching impact on the development of the numerous IF diseases caused by them.
Collapse
Affiliation(s)
- Harald Herrmann
- Functional Architecture of the Cell (B065), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany, and Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
140
|
Braun S, Barrales RR. Beyond Tethering and the LEM domain: MSCellaneous functions of the inner nuclear membrane Lem2. Nucleus 2016; 7:523-531. [PMID: 27797637 DOI: 10.1080/19491034.2016.1252892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The nuclear envelope plays a pivotal role in the functional organization of chromatin. Various inner nuclear membrane (INM) proteins associate with transcriptionally repressed chromatin, which is often found at the nuclear periphery. A prominent example is the conserved family of LEM (LAP2-Emerin-MAN1) domain proteins that interact with DNA-binding proteins and have been proposed to mediate tethering of chromatin to the nuclear membrane. We recently reported that the fission yeast protein Lem2, a homolog of metazoan LEM proteins, contributes to perinuclear localization and silencing of heterochromatin. 1 We demonstrate that binding and tethering of centromeric chromatin depends on the LEM domain of Lem2. Unexpectedly, this domain is dispensable for heterochromatin silencing, which is instead mediated by a different structural domain of Lem2, the MSC (MAN1-Src1 C-terminal) domain. Hence, silencing and tethering by Lem2 can be mechanistically separated. Notably, the MSC domain has multiple functions beyond heterochromatic silencing. Here we discuss the implications of these novel findings for the understanding of this conserved INM protein.
Collapse
Affiliation(s)
- Sigurd Braun
- a Department of Physiological Chemistry , Biomedical Center (BMC), Ludwig-Maximilians-University of Munich , Martinsried , Germany
| | - Ramón Ramos Barrales
- a Department of Physiological Chemistry , Biomedical Center (BMC), Ludwig-Maximilians-University of Munich , Martinsried , Germany.,b Present address: Centro Andaluz de Biología del Desarrollo. Universidad Pablo de Olavide, Sevilla-CSIC-Junta de Andalucía , Sevilla , Spain
| |
Collapse
|
141
|
Cuppoletti J. Nuclear V-type ATPase. Focus on “Vacuolar H+-ATPase in the nuclear membranes regulates nucleo-cytosolic proton gradients”. Am J Physiol Cell Physiol 2016; 311:C544-C546. [DOI: 10.1152/ajpcell.00214.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- John Cuppoletti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
142
|
Abstract
The nucleus is separated from the cytosol by the nuclear envelope, which is a double lipid bilayer composed of the outer nuclear membrane and the inner nuclear membrane. The intermediate filament proteins lamin A, lamin B, and lamin C form a network underlying the inner nuclear membrane. This proteinaceous network provides the nucleus with its strength, rigidity, and elasticity. Positioned within the inner nuclear membrane are more than 150 inner nuclear membrane proteins, many of which interact directly with lamins and require lamins for their inner nuclear membrane localization. Inner nuclear membrane proteins and the nuclear lamins define the nuclear lamina. These inner nuclear membrane proteins have tissue-specific expression and diverse functions including regulating cytoskeletal organization, nuclear architecture, cell cycle dynamics, and genomic organization. Loss or mutations in lamins and inner nuclear membrane proteins cause a wide spectrum of diseases. Here, I will review the functions of the well-studied nuclear lamina proteins and the diseases associated with loss or mutations in these proteins. © 2016 American Physiological Society. Compr Physiol 6:1655-1674, 2016.
Collapse
Affiliation(s)
- James M. Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
143
|
Zhdanov R, Schirmer E, Venkatasubramani AV, Kerr A, Mandrou E, Rodriguez Blanco G, Kagansky A. Lipids contribute to epigenetic control via chromatin structure and functions. SCIENCEOPEN RESEARCH 2016. [DOI: 10.14293/s2199-1006.1.sor-life.auxytr.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Isolated cases of experimental evidence over the last few decades have shown that, where specifically tested, both prokaryotes and eukaryotes have specific lipid species bound to nucleoproteins of the genome. In vitro, some of these lipid species exhibit stoichiometric association with DNA polynucleotides with differential affinities toward certain secondary and tertiary structures. Hydrophobic interactions with inner nuclear membrane could provide attractive anchor points for lipid-modified nucleoproteins in organizing the dynamic genome and accordingly there are precedents for covalent bonds between lipids and core histones and, under certain conditions, even DNA. Advances in biophysics, functional genomics, and proteomics in recent years brought about the first sparks of light that promises to uncover some coherent new level of the epigenetic code governed by certain types of lipid–lipid, DNA–lipid, and DNA-protein–lipid interactions among other biochemical lipid transactions in the nucleus. Here, we review some of the older and more recent findings and speculate on how critical nuclear lipid transactions are for individual cells, tissues, and organisms.
Collapse
|
144
|
Wetmore BA, Merrick BA. Invited Review: Toxicoproteomics: Proteomics Applied to Toxicology and Pathology. Toxicol Pathol 2016; 32:619-42. [PMID: 15580702 DOI: 10.1080/01926230490518244] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Global measurement of proteins and their many attributes in tissues and biofluids defines the field of proteomics. Toxicoproteomics, as part of the larger field of toxicogenomics, seeks to identify critical proteins and pathways in biological systems that are affected by and respond to adverse chemical and environmental exposures using global protein expression technologies. Toxicoproteomics integrates 3 disciplinary areas: traditional toxicology and pathology, differential protein and gene expression analysis, and systems biology. Key topics to be reviewed are the evolution of proteomics, proteomic technology platforms and their capabilities with exemplary studies from biology and medicine, a review of over 50 recent studies applying proteomic analysis to toxicological research, and the recent development of databases designed to integrate -Omics technologies with toxicology and pathology. Proteomics is examined for its potential in discovery of new biomarkers and toxicity signatures, in mapping serum, plasma, and other biofluid proteomes, and in parallel proteomic and transcriptomic studies. The new field of toxicoproteomics is uniquely positioned toward an expanded understanding of protein expression during toxicity and environmental disease for the advancement of public health.
Collapse
Affiliation(s)
- Barbara A Wetmore
- National Center for Toxicogenomics, National Institute of Environmental Health Sciences, Research Triangle Park, North Caroline 27709, USA
| | | |
Collapse
|
145
|
Tange Y, Chikashige Y, Takahata S, Kawakami K, Higashi M, Mori C, Kojidani T, Hirano Y, Asakawa H, Murakami Y, Haraguchi T, Hiraoka Y. Inner nuclear membrane protein Lem2 augments heterochromatin formation in response to nutritional conditions. Genes Cells 2016; 21:812-32. [PMID: 27334362 DOI: 10.1111/gtc.12385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/08/2016] [Indexed: 12/29/2022]
Abstract
Inner nuclear membrane proteins interact with chromosomes in the nucleus and are important for chromosome activity. Lem2 and Man1 are conserved members of the LEM-domain nuclear membrane protein family. Mutations of LEM-domain proteins are associated with laminopathy, but their cellular functions remain unclear. Here, we report that Lem2 maintains genome stability in the fission yeast Schizosaccharomyces pombe. S. pombe cells disrupted for the lem2(+) gene (lem2∆) showed slow growth and increased rate of the minichromosome loss. These phenotypes were prominent in the rich culture medium, but not in the minimum medium. Centromeric heterochromatin formation was augmented upon transfer to the rich medium in wild-type cells. This augmentation of heterochromatin formation was impaired in lem2∆ cells. Notably, lem2∆ cells occasionally exhibited spontaneous duplication of genome sequences flanked by the long-terminal repeats of retrotransposons. The resulting duplication of the lnp1(+) gene, which encodes an endoplasmic reticulum membrane protein, suppressed lem2∆ phenotypes, whereas the lem2∆ lnp1∆ double mutant showed a severe growth defect. A combination of mutations in Lem2 and Bqt4, which encodes a nuclear membrane protein that anchors telomeres to the nuclear membrane, caused synthetic lethality. These genetic interactions imply that Lem2 cooperates with the nuclear membrane protein network to regulate genome stability.
Collapse
Affiliation(s)
- Yoshie Tange
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kei Kawakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masato Higashi
- Graduate school of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Tomoko Kojidani
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan.,Laboratory of Electron Microscopy, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, 651-2492, Japan
| |
Collapse
|
146
|
Baghirova S, Hughes BG, Poirier M, Kondo MY, Schulz R. Nuclear matrix metalloproteinase-2 in the cardiomyocyte and the ischemic-reperfused heart. J Mol Cell Cardiol 2016; 94:153-161. [PMID: 27079252 DOI: 10.1016/j.yjmcc.2016.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteases involved in intra- and extra-cellular matrix remodeling resulting from oxidative stress injury to the heart. MMP-2 was the first MMP to be localized to the nucleus; however, its biological functions there are unclear. We hypothesized that MMP-2 is present in the nucleus under normal physiological conditions but increases during myocardial ischemia-reperfusion (I/R) injury-induced oxidative stress, proteolyzing nuclear structural proteins. Lamins are intermediate filament proteins that provide structural support to the nucleus and are putative targets of MMP-2. To identify lamin susceptibility to MMP-2 proteolysis, purified lamin A or B was incubated with MMP-2 in vitro. Lamin A, but not lamin B, was proteolysed by MMP-2 into an approximately 50kDa fragment, which was also predicted by in silico cleavage site analysis. Immunofluorescent confocal microscopy and subcellular fractionation showed MMP-2 both in the cytosol and nuclei of neonatal rat ventricular myocytes. Rat hearts were isolated and perfused by the Langendorff method aerobically, or subjected to I/R injury in the presence or absence of o-phenanthroline, an MMP inhibitor. Nuclear fractions extracted from I/R hearts showed increased MMP-2 activity, but not protein level. The level of troponin I, a known sarcomeric target of MMP-2, was rescued in I/R hearts treated with o-phenanthroline, demonstrating the efficacy of MMP inhibition. However, lamin A or B levels remained unchanged in I/R hearts. MMP-2 has a widespread subcellular distribution in cardiomyocytes, including a significant presence in the nucleus. The increase in nuclear MMP-2 activity seen during stunning injury here, indicates yet unknown biological actions, other than lamin proteolysis, which may require more severe ischemia to effect.
Collapse
Affiliation(s)
- Sabina Baghirova
- Department of Pharmacology, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Bryan G Hughes
- Department of Pharmacology, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Mathieu Poirier
- Department of Pharmacology, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Marcia Y Kondo
- Department of Pharmacology, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Richard Schulz
- Department of Pharmacology, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
147
|
Tran JR, Chen H, Zheng X, Zheng Y. Lamin in inflammation and aging. Curr Opin Cell Biol 2016; 40:124-130. [PMID: 27023494 DOI: 10.1016/j.ceb.2016.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 12/16/2022]
Abstract
Aging is characterized by a progressive loss of tissue function and an increased susceptibility to injury and disease. Many age-associated pathologies manifest an inflammatory component, and this has led to the speculation that aging is at least in part caused by some form of inflammation. However, whether or not inflammation is truly a cause of aging, or is a consequence of the aging process is unknown. Recent work using Drosophila has uncovered a mechanism where the progressive loss of lamin-B in the fat body upon aging triggers systemic inflammation. This inflammatory response perturbs the local immune response of the neighboring gut tissue and leads to hyperplasia. Here, we will discuss the literature connecting lamins to aging and inflammation.
Collapse
Affiliation(s)
- Joseph R Tran
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Haiyang Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, United States.
| |
Collapse
|
148
|
Iwamoto M, Hiraoka Y, Haraguchi T. Uniquely designed nuclear structures of lower eukaryotes. Curr Opin Cell Biol 2016; 40:66-73. [PMID: 26963276 DOI: 10.1016/j.ceb.2016.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
The nuclear structures of lower eukaryotes, specifically protists, often vary from those of yeasts and metazoans. Several studies have demonstrated the unique and fascinating features of these nuclear structures, such as a histone-independent condensed chromatin in dinoflagellates and two structurally distinct nuclear pore complexes in ciliates. Despite their unique molecular/structural features, functions required for formation of their cognate molecules/structures are highly conserved. This provides important information about the structure-function relationship of the nuclear structures. In this review, we highlight characteristic nuclear structures found in lower eukaryotes, and discuss their attractiveness as potential biological systems for studying nuclear structures.
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
149
|
Matefin/SUN-1 Phosphorylation on Serine 43 Is Mediated by CDK-1 and Required for Its Localization to Centrosomes and Normal Mitosis in C. elegans Embryos. Cells 2016; 5:cells5010008. [PMID: 26927181 PMCID: PMC4810093 DOI: 10.3390/cells5010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/13/2022] Open
Abstract
Matefin/SUN-1 is an evolutionary conserved C. elegans inner nuclear membrane SUN-domain protein. By creating a bridge with the KASH-domain protein ZYG-12, it connects the nucleus to cytoplasmic filaments and organelles. Matefin/SUN-1 is expressed in the germline where it undergoes specific phosphorylation at its N-terminal domain, which is required for germline development and homologous chromosome pairing. The maternally deposited matefin/SUN-1 is then essential for embryonic development. Here, we show that in embryos, serine 43 of matefin/SUN-1 (S43) is phosphorylated in a CDK-1 dependent manner and is localized throughout the cell cycle mostly to centrosomes. By generating animals expressing phosphodead S43A and phosphomimetic S43E mutations, we show that phosphorylation of S43 is required to maintain centrosome integrity and function, as well as for the localization of ZYG-12 and lamin. Expression of S43E in early embryos also leads to an increase in chromatin structural changes, decreased progeny and to almost complete embryonic lethality. Down regulation of emerin further increases the occurrence of chromatin organization abnormalities, indicating possible collaborative roles for these proteins that is regulated by S43 phosphorylation. Taken together, these results support a role for phosphorylation of serine 43 in matefin/SUN-1 in mitosis.
Collapse
|
150
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|