101
|
Deplazes A, Möckli N, Luke B, Auerbach D, Peter M. Yeast Uri1p promotes translation initiation and may provide a link to cotranslational quality control. EMBO J 2009; 28:1429-41. [PMID: 19387492 DOI: 10.1038/emboj.2009.98] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 03/20/2009] [Indexed: 11/09/2022] Open
Abstract
Translation initiation in eukaryotes is accomplished by a large set of translation initiation factors, some of which are regulated by signals monitoring intracellular and environmental conditions. Here, we show that Uri1p is required for efficient translation initiation in budding yeast. Indeed, uri1Delta cells are slow growing, sensitive to translation inhibitors and they exhibit an increased 80S peak in polysome profiles. Moreover, GCN4 translation is derepressed in uri1Delta cells, strongly supporting an initiation defect. Genetic and biochemical experiments indicate that Uri1p interacts with the translation initiation factor eIF1A and promotes ternary complex (TC) recruitment to the 40S subunit. Interestingly, we found that Uri1p is also part of a chaperone-network, including the prefoldin Pfd6p and several other proteins involved in cotranslational quality control such as the ribosome-associated Hsp70 chaperone Ssb1p, the Hsp40 Sis1p and the translation elongation factor eEF1A. Together with genetic data, these interactions indicate that Uri1p may coordinate translation initiation and cotranslational quality control.
Collapse
Affiliation(s)
- Anna Deplazes
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland. or
| | | | | | | | | |
Collapse
|
102
|
Nwachukwu JC, Mita P, Ruoff R, Ha S, Wang Q, Huang SJ, Taneja SS, Brown M, Gerald WL, Garabedian MJ, Logan SK. Genome-wide impact of androgen receptor trapped clone-27 loss on androgen-regulated transcription in prostate cancer cells. Cancer Res 2009; 69:3140-7. [PMID: 19318562 DOI: 10.1158/0008-5472.can-08-3738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) directs diverse biological processes through interaction with coregulators such as AR trapped clone-27 (ART-27). Our results show that ART-27 is recruited to AR-binding sites by chromatin immunoprecipitation analysis. In addition, the effect of ART-27 on genome-wide transcription was examined. The studies indicate that loss of ART-27 enhances expression of many androgen-regulated genes, suggesting that ART-27 inhibits gene expression. Surprisingly, classes of genes that are up-regulated upon ART-27 depletion include regulators of DNA damage checkpoint and cell cycle progression, suggesting that ART-27 functions to keep expression levels of these genes low. Consistent with this idea, stable reduction of ART-27 by short-hairpin RNA enhances LNCaP cell proliferation compared with control cells. The effect of ART-27 loss was also examined in response to the antiandrogen bicalutamide. Unexpectedly, cells treated with ART-27 siRNA no longer exhibited gene repression in response to bicalutamide. To examine ART-27 loss in prostate cancer progression, immunohistochemistry was conducted on a tissue array containing samples from primary tumors of individuals who were clinically followed and later shown to have either recurrent or nonrecurrent disease. Comparison of ART-27 and AR staining indicated that nuclear ART-27 expression was lost in the majority of AR-positive recurrent prostate cancers. Our studies show that reduction of ART-27 protein levels in prostate cancer may facilitate antiandrogen-resistant disease.
Collapse
Affiliation(s)
- Jerome C Nwachukwu
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
de Planell-Saguer M, Schroeder DG, Rodicio MC, Cox GA, Mourelatos Z. Biochemical and genetic evidence for a role of IGHMBP2 in the translational machinery. Hum Mol Genet 2009; 18:2115-26. [PMID: 19299493 DOI: 10.1093/hmg/ddp134] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human motor neuron degenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) is caused by loss of function mutations of immunoglobulin mu-binding protein 2 (IGHMBP2), a protein of unknown function that contains DNA/RNA helicase and nucleic acid-binding domains. Reduced IGHMBP2 protein levels in neuromuscular degeneration (nmd) mice, the mouse model of SMARD1, lead to motor neuron degeneration. We report the biochemical characterization of IGHMBP2 and the isolation of a modifier locus that rescues the phenotype and motor neuron degeneration of nmd mice. We find that a 166 kb BAC transgene derived from CAST/EiJ mice and containing tRNA genes and activator of basal transcription 1 (Abt1), a protein-coding gene that is required for ribosome biogenesis, contains the genetic modifier responsible for motor neuron rescue. Our biochemical investigations show that IGHMBP2 associates physically with tRNAs and in particular with tRNA(Tyr), which are present in the modifier and with the ABT1 protein. We find that transcription factor IIIC-220 kDa (TFIIIC220), an essential factor required for tRNA transcription, and the helicases Reptin and Pontin, which function in transcription and in ribosome biogenesis, are also part of IGHMBP2-containing complexes. Our findings strongly suggest that IGHMBP2 is a component of the translational machinery and that these components can be manipulated genetically to suppress motor neuron degeneration.
Collapse
Affiliation(s)
- Mariàngels de Planell-Saguer
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA
| | | | | | | | | |
Collapse
|
104
|
Glatter T, Wepf A, Aebersold R, Gstaiger M. An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol 2009; 5:237. [PMID: 19156129 PMCID: PMC2644174 DOI: 10.1038/msb.2008.75] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/04/2008] [Indexed: 11/15/2022] Open
Abstract
Protein complexes represent major functional units for the execution of biological processes. Systematic affinity purification coupled with mass spectrometry (AP-MS) yielded a wealth of information on the compendium of protein complexes expressed in Saccharomyces cerevisiae. However, global AP-MS analysis of human protein complexes is hampered by the low throughput, sensitivity and data robustness of existing procedures, which limit its application for systems biology research. Here, we address these limitations by a novel integrated method, which we applied and benchmarked for the human protein phosphatase 2A system. We identified a total of 197 protein interactions with high reproducibility, showing the coexistence of distinct classes of phosphatase complexes that are linked to proteins implicated in mitosis, cell signalling, DNA damage control and more. These results show that the presented analytical process will substantially advance throughput and reproducibility in future systematic AP-MS studies on human protein complexes.
Collapse
Affiliation(s)
- Timo Glatter
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
| | - Alexander Wepf
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
- Institute for Systems Biology, Seattle, WA, USA
| | - Matthias Gstaiger
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
105
|
Hanke S, Mann M. The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol Cell Proteomics 2008; 8:519-34. [PMID: 19001411 DOI: 10.1074/mcp.m800407-mcp200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The insulin signaling pathway is critical in regulating glucose levels and is associated with diabetes, obesity, and longevity. A tyrosine phosphorylation cascade creates docking sites for protein interactions, initiating subsequent propagation of the signal throughout the cell. The phosphotyrosine interactome of this medically important pathway has not yet been studied comprehensively. We therefore applied quantitative interaction proteomics to exhaustively profile all potential phosphotyrosine-dependent interaction sites in its key players. We targeted and compared insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) as central distributors of the insulin signal, the insulin receptor, the insulin-like growth factor 1 receptor, and the insulin receptor-related receptor. Using the stable isotope labeling by amino acids in cell culture (SILAC) approach with phosphorylated versus non-phosphorylated bait peptides, we found phosphorylation-specific interaction partners for 52 out of 109 investigated sites. In addition, doubly and triply phosphorylated motifs provided insight into the combinatorial effects of phosphorylation events in close proximity to each other. Our results retrieve known interactions and substantially broaden the spectrum of potential interaction partners of IRS-1 and IRS-2. A large number of common interactors rationalize their extensive functional redundancy. However, several proteins involved in signaling and metabolism interact differentially with IRS-1 and IRS-2 and thus provide leads into their different physiological roles. Differences in interactions at the receptor level are reflected in multisite recruitment of SHP2 by the insulin-like growth factor 1 receptor and limited but exclusive interactions with the IRR. In common with other recent reports, our data furthermore hint at non-SH2 or phosphotyrosine-binding domain-mediated phosphotyrosine binding.
Collapse
Affiliation(s)
- Stefan Hanke
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Munich, Germany
| | | |
Collapse
|
106
|
Kirchner J, Vissi E, Gross S, Szoor B, Rudenko A, Alphey L, White-Cooper H. Drosophila Uri, a PP1alpha binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity. BMC Mol Biol 2008; 9:36. [PMID: 18412953 PMCID: PMC2346476 DOI: 10.1186/1471-2199-9-36] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 04/15/2008] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Protein phosphatase 1 (PP1) is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c) fall into PP1alpha and PP1beta subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1alpha and PP1beta. RESULTS URI (unconventional prefoldin RPB5 interactor) is a conserved molecular chaperone implicated in a variety of cellular processes, including the transcriptional response to nutrient signalling and maintenance of DNA integrity. We show that Drosophila Uri binds PP1alpha with much higher affinity than PP1beta, and that this ability to discriminate between PP1c forms is conserved to humans. Most Uri is cytoplasmic, however we found some protein associated with active RNAPII on chromatin. We generated a uri loss of function allele, and show that uri is essential for viability in Drosophila. uri mutants have transcriptional defects, reduced cell viability and differentiation in the germline, and accumulate DNA damage in their nuclei. CONCLUSION Uri is the first PP1alpha specific binding protein to be described in Drosophila. Uri protein plays a role in transcriptional regulation. Activity of uri is required to maintain DNA integrity and cell survival in normal development.
Collapse
Affiliation(s)
- Jasmin Kirchner
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Emese Vissi
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Sascha Gross
- Abbott Laboratories, Global Pharmaceutical Regulatory Affairs, Abbott Park, IL 60064-6157, USA
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Balazs Szoor
- Institute of Immunology and Infection Research, University of Edinburgh, EH9 3JT, UK
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Andrey Rudenko
- Harvard University, FAS Molecular & Cell Biology, Sherman Fairchild Biochemistry Bldg, 7 Divinity Ave, Cambridge MA, 02138, USA
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Luke Alphey
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| | - Helen White-Cooper
- Department of Zoology, University of Oxford, South Parks Rd, Oxford, OX1 3PS. UK
| |
Collapse
|
107
|
Abstract
Chromosomal genes modulate Ty retrotransposon movement in the genome of Saccharomyces cerevisiae. We have screened a collection of 4739 deletion mutants to identify those that increase Ty1 mobility (Ty1 restriction genes). Among the 91 identified mutants, 80% encode products involved in nuclear processes such as chromatin structure and function, DNA repair and recombination, and transcription. However, bioinformatic analyses encompassing additional Ty1 and Ty3 screens indicate that 264 unique genes involved in a variety of biological processes affect Ty mobility in yeast. Further characterization of 33 of the mutants identified here show that Ty1 RNA levels increase in 5 mutants and the rest affect mobility post-transcriptionally. RNA and cDNA levels remain unchanged in mutants defective in transcription elongation, including ckb2Delta and elf1Delta, suggesting that Ty1 integration may be more efficient in these strains. Insertion-site preference at the CAN1 locus requires Ty1 restriction genes involved in histone H2B ubiquitination by Paf complex subunit genes, as well as BRE1 and RAD6, histone H3 acetylation by RTT109 and ASF1, and transcription elongation by SPT5. Our results indicate that multiple pathways restrict Ty1 mobility and histone modifications may protect coding regions from insertional mutagenesis.
Collapse
|
108
|
Djouder N, Metzler SC, Schmidt A, Wirbelauer C, Gstaiger M, Aebersold R, Hess D, Krek W. S6K1-mediated disassembly of mitochondrial URI/PP1gamma complexes activates a negative feedback program that counters S6K1 survival signaling. Mol Cell 2008; 28:28-40. [PMID: 17936702 DOI: 10.1016/j.molcel.2007.08.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 04/27/2007] [Accepted: 08/13/2007] [Indexed: 12/29/2022]
Abstract
S6 kinase 1 (S6K1) acts to integrate nutrient and growth factor signals to promote cell growth but also cell survival as a mitochondria-tethered protein kinase that phosphorylates and inactivates the proapoptotic molecule BAD. Here we report that the prefoldin chaperone URI represents a mitochondrial substrate of S6K1. In growth factor-deprived or rapamycin-treated cells, URI forms stable complexes with protein phosphatase (PP)1gamma at mitochondria, thereby inhibiting the activity of the bound enzyme. Growth factor stimulation induces disassembly of URI/PP1gamma complexes through S6K1-mediated phosphorylation of URI at serine 371. This activates a PP1gamma-dependent negative feedback program that decreases S6K1 activity and BAD phosphorylation, thereby altering the threshold for apoptosis. These findings establish URI and PP1gamma as integral components of an S6K1-regulated mitochondrial pathway dedicated, in part, to oppose sustained S6K1 survival signaling and to ensure that the mitochondrial threshold for apoptosis is set in accord with nutrient and growth factor availability.
Collapse
Affiliation(s)
- Nabil Djouder
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Sekiguchi T, Hayashi N, Wang Y, Kobayashi H. Genetic evidence that Ras-like GTPases, Gtr1p, and Gtr2p, are involved in epigenetic control of gene expression in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2008; 368:748-54. [PMID: 18258182 DOI: 10.1016/j.bbrc.2008.01.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 12/23/2022]
Abstract
Gtr1p and Gtr2p of Saccharomyces cerevisiae are members of the Ras-like GTP binding family and interact genetically with Prp20p (yeast RCC1), which is a guanine nucleotide exchange factor for Gsp1p (yeast homolog of Ran, involved in nuclear export). Recently, Gtr1p and Gtr2p were suggested to be molecular switches in the rapamycin-sensitive TOR signaling pathway. Here, we show that Gtr1p and Gtr2p genetically interact with the chromatin remodeling factor Ino80p. Gtr2p interacted physically with both Rvb1p and Rvb2p. Consistent with these results, Gtr2p localized to chromatin and could activate transcription. Gtr1p and Gtr2p were found to be involved in chromatin silencing in the vicinity of telomeres. Gtr1p and Gtr2p were required to repress nitrogen catabolite-repressed genes, which are repressed by the TOR signaling pathway. We propose that Gtr1p and Gtr2p are involved in epigenetic control of gene expression in the TOR signaling pathway.
Collapse
Affiliation(s)
- Takeshi Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
110
|
Möckli N, Deplazes A, Auerbach D. Finding new protein interactions using the DUALhunter system. Nat Methods 2008. [DOI: 10.1038/nmeth.f.204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
111
|
Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci U S A 2008; 105:1454-9. [PMID: 18218781 DOI: 10.1073/pnas.0706983105] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Large-scale affinity purification and mass spectrometry studies have played important roles in the assembly and analysis of comprehensive protein interaction networks for lower eukaryotes. However, the development of such networks for human proteins has been slowed by the high cost and significant technical challenges associated with systematic studies of protein interactions. To address this challenge, we have developed a method for building local and focused networks. This approach couples vector algebra and statistical methods with normalized spectral counting (NSAF) derived from the analysis of affinity purifications via chromatography-based proteomics. After mathematical removal of contaminant proteins, the core components of multiprotein complexes are determined by singular value decomposition analysis and clustering. The probability of interactions within and between complexes is computed solely based upon NSAFs using Bayes' approach. To demonstrate the application of this method to small-scale datasets, we analyzed an expanded human TIP49a and TIP49b dataset. This dataset contained proteins affinity-purified with 27 different epitope-tagged components of the chromatin remodeling SRCAP, hINO80, and TRRAP/TIP60 complexes, and the nutrient sensing complex Uri/Prefoldin. Within a core network of 65 unique proteins, we captured all known components of these complexes and novel protein associations, especially in the Uri/Prefoldin complex. Finally, we constructed a probabilistic human interaction network composed of 557 protein pairs.
Collapse
|
112
|
Lundin VF, Srayko M, Hyman AA, Leroux MR. Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans. Dev Biol 2007; 313:320-34. [PMID: 18062952 DOI: 10.1016/j.ydbio.2007.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/29/2022]
Abstract
The efficient folding of actin and tubulin in vitro and in Saccharomyces cerevisiae is known to require the molecular chaperones prefoldin and CCT, yet little is known about the functions of these chaperones in multicellular organisms. Whereas none of the six prefoldin genes are essential in yeast, where prefoldin-independent folding of actin and tubulin is sufficient for viability, we demonstrate that reducing prefoldin function by RNAi in Caenorhabditis elegans causes defects in cell division that result in embryonic lethality. Our analyses suggest that these defects result mainly from a decrease in alpha-tubulin levels and a subsequent reduction in the microtubule growth rate. Prefoldin subunit 1 (pfd-1) mutant animals with maternally contributed PFD-1 develop to the L4 larval stage with gonadogenesis defects that include aberrant distal tip cell migration. Importantly, RNAi knockdown of prefoldin, CCT or tubulin in developing animals phenocopy the pfd-1 cell migration phenotype. Furthermore, reducing CCT function causes more severe phenotypes (compared with prefoldin knockdown) in the embryo and developing gonad, consistent with a broader role for CCT in protein folding. Overall, our results suggest that efficient chaperone-mediated tubulin biogenesis is essential in C. elegans, owing to the critical role of the microtubule cytoskeleton in metazoan development.
Collapse
Affiliation(s)
- Victor F Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | | | | | | |
Collapse
|
113
|
Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Thérien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH, Coulombe B. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 2007; 27:262-274. [PMID: 17643375 PMCID: PMC4498903 DOI: 10.1016/j.molcel.2007.06.027] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 05/16/2007] [Accepted: 06/22/2007] [Indexed: 01/20/2023]
Abstract
We have performed a survey of soluble human protein complexes containing components of the transcription and RNA processing machineries using protein affinity purification coupled to mass spectrometry. Thirty-two tagged polypeptides yielded a network of 805 high-confidence interactions. Remarkably, the network is significantly enriched in proteins that regulate the formation of protein complexes, including a number of previously uncharacterized proteins for which we have inferred functions. The RNA polymerase II (RNAP II)-associated proteins (RPAPs) are physically and functionally associated with RNAP II, forming an interface between the enzyme and chaperone/scaffolding proteins. BCDIN3 is the 7SK snRNA methylphosphate capping enzyme (MePCE) present in an snRNP complex containing both RNA processing and transcription factors, including the elongation factor P-TEFb. Our results define a high-density protein interaction network for the mammalian transcription machinery and uncover multiple regulatory factors that target the transcription machinery.
Collapse
Affiliation(s)
- Célia Jeronimo
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Diane Forget
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Annie Bouchard
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Qintong Li
- Biochemistry Department, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Gordon Chua
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Christian Poitras
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Cynthia Thérien
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Dominique Bergeron
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Sylvie Bourassa
- Centre hospitalier universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Benoit Chabot
- Département de microbiologie et infectiologie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Guy G Poirier
- Centre hospitalier universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Timothy R Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics, McGill University, Montréal, QC H3A 2B4, Canada
| | - David H Price
- Biochemistry Department, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Benoit Coulombe
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada.
| |
Collapse
|
114
|
Möckli N, Deplazes A, Hassa PO, Zhang Z, Peter M, Hottiger MO, Stagljar I, Auerbach D. Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. Biotechniques 2007; 42:725-30. [PMID: 17612295 DOI: 10.2144/000112455] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Interactions between proteins are central to most biological processes; consequently, understanding the latter requires identification of all possible protein interactions within a cell. To extend the range of existing assays for the detection of protein interactions, we present a novel genetic screening assay, the cytosolic yeast two-hybrid system (cytoY2H), which is based on the split-ubiquitin technique and detects protein-protein interactions in the cytoplasm. We show that the assay can be applied to a wide range of proteins that are difficult to study in the classical yeast two-hybrid (Y2H) system, including transcription factors such as p53 and members of the NF-kappaB complex. Furthermore, we applied the cytoY2H system to cDNA library screening and identified several new interaction partners of Uri1p, an uncharacterized yeast protein. The cytoY2H system extends existing methods for the detection of protein interactions by providing a convenient solution for screening a wide range of transcriptionally active proteins.
Collapse
|
115
|
Podgorska M, Kocbuch K, Grden M, Szulc A, Szutowicz A, Pawelczyk T. Different signaling pathways utilized by insulin to regulate the expression of ENT2, CNT1, CNT2 nucleoside transporters in rat cardiac fibroblasts. Arch Biochem Biophys 2007; 464:344-9. [PMID: 17537394 DOI: 10.1016/j.abb.2007.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 04/20/2007] [Accepted: 04/26/2007] [Indexed: 12/19/2022]
Abstract
In cardiac fibroblasts (CFs), insulin was shown to affect the expression of ENT2, CNT1, and CNT2 transporter. In the present study, we determined the signaling pathways utilized by insulin to regulate the expression of these nucleoside transporters. In the primary culture of rat CFs, insulin increased the mRNA level of ENT2 and suppressed the CNT1 and CNT2 mRNA levels. The insulin-induced increase of the ENT2 mRNA level was blocked by rapamycin (an inhibitor of mTOR) and by cycloheximide (an inhibitor of protein synthesis), whereas neither wortmannin (an inhibitor of PI3K) nor PD98059 (an inhibitor of MEK) affected the insulin action on the ENT2 transcript level. PD98059 completely blocked the insulin-induced decrease of the CNT1 and CNT2 mRNAs levels. Wortmannin prevented the insulin-induced change of the CNT1 mRNA level, but had no effect on the CNT2 mRNA. Rapamycin abolished the insulin effect on the CNT1 mRNA level, but not on the CNT2 mRNA. Cycloheximide prevented the insulin-induced decrease of CNT2 mRNA, but had no effect on the CNT1 mRNA level. Overall, our results demonstrate that the expression level of ENT2, CNT1, and CNT2 transporters in CFs is differentially regulated by insulin. Moreover, in this cell type insulin employs a distinct signaling pathway to regulate the expression of each transporter.
Collapse
Affiliation(s)
- Marzena Podgorska
- Department of Molecular Medicine, Medical University of Gdansk, ul. Debinki 7, paw. 29, 80-211 Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
116
|
McGilvray R, Walker M, Bartholomew C. UXT interacts with the transcriptional repressor protein EVI1 and suppresses cell transformation. FEBS J 2007; 274:3960-71. [PMID: 17635584 DOI: 10.1111/j.1742-4658.2007.05928.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The EVI1 transcriptional repressor is critical to the normal development of a variety of tissues and participates in the progression of acute myeloid leukaemias. The repressor domain (Rp) was used to screen an adult human kidney yeast two-hybrid library and a novel binding partner designated ubiquitously expressed transcript (UXT) was isolated. Enforced expression of UXT in Evi1-expressing Rat1 fibroblasts suppresses cell transformation and UXT may therefore be a negative regulator of Evi1 biological activity. The Rp-binding site for UXT was determined and non-UXT-binding Evi1 mutants (Evi1Delta706-707) were developed which retain the ability to bind the corepressor mCtBP2. Evi1Delta706-707 transforms Rat1 fibroblasts, showing that the interaction is not essential for Evi1-mediated cell transformation. However, Evi1Delta706-707 produces an increased proportion of large colonies relative to wild-type, showing that endogenous UXT has an inhibitory effect on Evi1 biological activity. Exogenous UXT still suppresses Evi1Delta706-707-mediated cell transformation, indicating that it inhibits cell proliferation and/or survival by both Evi1-dependent and Evi1-independent mechanisms. These observations are consistent with the growth-suppressive function attributed to UXT in human prostate cancer. Our results show that UXT suppresses cell transformation and might mediate this function by interaction and inhibition of the biological activity of cell proliferation and survival stimulatory factors like Evi1.
Collapse
Affiliation(s)
- Roger McGilvray
- Department of Biological & Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | | |
Collapse
|
117
|
Sun S, Tang Y, Lou X, Zhu L, Yang K, Zhang B, Shi H, Wang C. UXT is a novel and essential cofactor in the NF-kappaB transcriptional enhanceosome. ACTA ACUST UNITED AC 2007; 178:231-44. [PMID: 17620405 PMCID: PMC2064443 DOI: 10.1083/jcb.200611081] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As a latent transcription factor, nuclear factor κB (NF-κB) translocates from the cytoplasm into the nucleus upon stimulation and mediates the expression of genes that are important in immunity, inflammation, and development. However, little is known about how it is regulated inside the nucleus. By a two-hybrid approach, we identify a prefoldin-like protein, ubiquitously expressed transcript (UXT), that is expressed predominantly and interacts specifically with NF-κB inside the nucleus. RNA interference knockdown of UXT leads to impaired NF-κB activity and dramatically attenuates the expression of NF-κB–dependent genes. This interference also sensitizes cells to apoptosis by tumor necrosis factor-α. Furthermore, UXT forms a dynamic complex with NF-κB and is recruited to the NF-κB enhanceosome upon stimulation. Interestingly, the UXT protein level correlates with constitutive NF-κB activity in human prostate cancer cell lines. The presence of NF-κB within the nucleus of stimulated or constitutively active cells is considerably diminished with decreased endogenous UXT levels. Our results reveal that UXT is an integral component of the NF-κB enhanceosome and is essential for its nuclear function, which uncovers a new mechanism of NF-κB regulation.
Collapse
Affiliation(s)
- Shaogang Sun
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Gallant P. Control of transcription by Pontin and Reptin. Trends Cell Biol 2007; 17:187-92. [PMID: 17320397 DOI: 10.1016/j.tcb.2007.02.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/24/2007] [Accepted: 02/09/2007] [Indexed: 11/26/2022]
Abstract
Pontin and Reptin are two closely related members of the AAA+ family of DNA helicases. They have roles in diverse cellular processes, including the response to DNA double-strand breaks and the control of gene expression. The two proteins share residence in different multiprotein complexes, such as the Tip60, Ino80, SRCAP and Uri1 complexes in animals, which are involved (directly or indirectly) in transcriptional regulation, but they also function independently from each other. Both Reptin and Pontin repress certain transcriptional targets of Myc, but only Reptin is required for the repression of specific beta-catenin and nuclear factor-kappaB targets. Here, I review recent studies that have addressed the mechanisms of transcriptional control by Pontin and Reptin.
Collapse
Affiliation(s)
- Peter Gallant
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
119
|
Zhao J, Yart A, Frigerio S, Perren A, Schraml P, Weisstanner C, Stallmach T, Krek W, Moch H. Sporadic human renal tumors display frequent allelic imbalances and novel mutations of the HRPT2 gene. Oncogene 2006; 26:3440-9. [PMID: 17130827 DOI: 10.1038/sj.onc.1210131] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inactivation of the HRPT2 gene encoding parafibromin was recently linked to the familial hyperparathyroidism-jaw tumor syndrome. Patients with this syndrome carry an increased risk of parathyroid and renal tumors. To determine the relevance of HRPT2 for sporadic renal tumors, clear cell, papillary and chromophobe renal cell carcinomas as well as oncocytomas and Wilms tumors were analysed for HRPT2 gene alterations. Loss of heterozygosity (LOH) of HRPT2 was found in seven of 56 (12.5%) clear cell, three of 14 (21%) papillary, six of 10 (60%) chromophobe renal cell carcinomas, three of eight (38%) oncocytomas and four of 10 (40%) Wilms tumors. In addition, two novel HRPT2 point mutations, causing K34Q and R292K changes in parafibromin, were detected in one clear cell carcinoma and one Wilms tumor, respectively. These tumors displayed LOH of the remaining wild-type allele, but interestingly no von Hippel-Lindau (VHL) mutation. Functional analysis revealed that the K34Q mutant species of parafibromin is, unlike wild-type protein, defective in suppressing cyclin D1 expression in vivo. Taken together, these results suggest that renal cancer-associated mutations in parafibromin occur in the absence of VHL mutation, which in turn may contribute to constitutively elevated cyclin D1 expression and abnormal cell proliferation.
Collapse
Affiliation(s)
- J Zhao
- Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
Organisms adapt to changes in environmental conditions by altering gene expression. Such homeostatic control is apparent in metabolism, where biosynthetic metabolites play a role in regulatory feedback loops. Increasing evidence shows that small-molecule metabolites also shape the structure of chromatin and directly regulate the transcription and translation processes. These endogenous metabolites bind specialized histones, are used as substrates by chromatin-modifying enzymes, regulate the activity of transcriptional corepressors, and even modulate the structure of RNA itself. In doing so, they act as dynamic rheostats that fine-tune the activity of hard-wired gene circuits. Metabolites emerge as key effectors in tweaking gene expression.
Collapse
Affiliation(s)
- Andreas G Ladurner
- Gene Expression Unit and Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
121
|
Abstract
The story of rapamycin is a pharmaceutical fairytale. Discovered as an antifungal activity in a soil sample collected on Easter Island, this macrocyclic lactone and its derivatives are now billion dollar drugs, used in, and being evaluated for, a number of clinical applications. Taking advantage of its antifungal property, the molecular Target Of Rapamycin, TOR, was first described in the budding yeast Saccharomyces cerevisiae. TORs encode large, Ser/Thr protein kinases that reside in two distinct, structurally and functionally conserved, multi-protein complexes. In yeast, these complexes coordinate many different aspects of cell growth. TOR complex 1, TORC1, promotes protein synthesis and other anabolic processes, while inhibiting macroautophagy and other catabolic and stress-response processes. TORC2 primarily regulates cell polarity, although additional readouts of this complex are beginning to be characterized. TORC1 appears to be activated by nutrient cues and inhibited by stresses and rapamycin; however, detailed mechanisms are not known. In contrast, TORC2 is insensitive to rapamycin and physiological regulators of this complex have yet to be defined. Given the unsurpassed resources available to yeast researchers, this simple eukaryote continues to contribute to our understanding of eukaryotic cell growth in general and TOR function in particular.
Collapse
Affiliation(s)
- C De Virgilio
- Département de Microbiologie et Médecine Moléculaire, Université de Genève, CMU, Geneva, Switzerland.
| | | |
Collapse
|
122
|
Mayer C, Grummt I. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 2006; 25:6384-91. [PMID: 17041624 DOI: 10.1038/sj.onc.1209883] [Citation(s) in RCA: 419] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The target of rapamycin (TOR) signal-transduction pathway is an important mechanism by which eucaryotic cells adjust their protein biosynthetic capacity to nutrient availability. Both in yeast and in mammals, the TOR pathway regulates the synthesis of ribosomal components, including transcription and processing of pre-rRNA, expression of ribosomal proteins and the synthesis of 5S rRNA. Expression of the genes encoding the numerous constituents of ribosomes requires transcription by all three classes of nuclear RNA polymerases. In this review, we summarize recent advances in understanding the interplay among nutrient availability, transcriptional control and ribosome biogenesis. We focus on transcription in response to nutrients, detailing the relevant downstream targets of TOR in yeast and mammals. The critical role of TOR in linking environmental queues to ribosome biogenesis provides an efficient means by which cells alter their overall protein biosynthetic capacity.
Collapse
Affiliation(s)
- C Mayer
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
123
|
Tronnersjö S, Hanefalk C, Balciunas D, Hu GZ, Nordberg N, Murén E, Ronne H. The jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact with 19 proteins involved in transcription, sumoylation and DNA repair. Mol Genet Genomics 2006; 277:57-70. [PMID: 17043893 DOI: 10.1007/s00438-006-0171-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 09/14/2006] [Indexed: 11/25/2022]
Abstract
The jumonji domain is a highly conserved bipartite domain made up of two subdomains, jmjN and jmjC, which is found in many eukaryotic transcription factors. The jmjC domain was recently shown to possess the histone demethylase activity. Here we show that the jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact in a two-hybrid system with 19 yeast proteins that include the RecQ helicase Sgs1, the silencing factors Esc1 and Sir4, the URI-type prefoldin Bud27 and the PIAS type SUMO ligase Nfi1/Siz2. Extensive interaction cross dependencies further suggest that the proteins form a larger complex. Consistent with this, 16 of the proteins also interact with a Bud27 two-hybrid bait, and three of them co-precipitate with TAP-tagged Gis1. The Gis1 jumonji domain can repress transcription when recruited to a promoter as a lexA fusion. This effect is dependent on both the jmjN and jmjC subdomains, as were all 19 two-hybrid interactions, indicating that the two subdomains form a single functional unit. The human Sgs1 homolog WRN also interacts with the Gis1 jumonji domain. Finally, we note that several jumonji domain interactors are related to proteins that are found in mammalian PML nuclear bodies.
Collapse
Affiliation(s)
- Susanna Tronnersjö
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
124
|
Sabile A, Meyer AM, Wirbelauer C, Hess D, Kogel U, Scheffner M, Krek W. Regulation of p27 degradation and S-phase progression by Ro52 RING finger protein. Mol Cell Biol 2006; 26:5994-6004. [PMID: 16880511 PMCID: PMC1592794 DOI: 10.1128/mcb.01630-05] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27 provides a powerful route for enforcing normal progression through the mammalian cell cycle. According to a current model, the ubiquitination of p27 during S-phase progression is mediated by SCF(Skp2) E3 ligase that captures Thr187-phosphorylated p27 by means of the F-box protein Skp2, which in turn couples the bound substrate via Skp1 to a catalytic core complex composed of Cul1 and the Rbx/Roc RING finger protein. Here we identify Skp2 as a component of an Skp1-cullin-F-box complex that is based on a Cul1-Ro52 RING finger B-box coiled-coil motif family protein catalytic core. Ro52-containing complexes display E3 ligase activity and promote the ubiquitination of Thr187-phosphorylated p27 in a RING-dependent manner in vitro. The knockdown of Ro52 expression in human cells with small interfering RNAs causes the accumulation of p27 and the failure of cells to enter S phase. Importantly, these effects are abrogated by the simultaneous removal of p27. Taken together, these data suggest a key role for Ro52 RING finger protein in the regulation of p27 degradation and S-phase progression in mammalian cells and provide evidence for the existence of a Cul1-based catalytic core that utilizes Ro52 RING protein to promote ubiquitination.
Collapse
Affiliation(s)
- Abdelmajid Sabile
- Institute of Cell Biology, ETH-Hönggerberg, 8093 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
125
|
Parusel CT, Kritikou EA, Hengartner MO, Krek W, Gotta M. URI-1 is required for DNA stability in C. elegans. Development 2006; 133:621-9. [PMID: 16436622 DOI: 10.1242/dev.02235] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Unconventional prefoldin RPB5 interactor (URI), an evolutionary conserved member of the prefoldin family of molecular chaperones, plays a central role in the regulation of nutrient-sensitive, TOR (target-of-rapamycin)-dependent gene expression programs in yeast. Mammalian URI has been shown to associate with key components of the transcriptional machinery, including RPB5, a shared subunit of all three RNA polymerases, the ATPases TIP48 and TIP49, which are present in various chromatin remodeling complexes, and human PAF1 and parafibromin, which are components of a transcription elongation complex. Here, we provide the first functional characterization of a URI-1 homolog in a multicellular organism and show that the C. elegans gene uri-1 is essential for germ cell proliferation. URI-1-deficient cells exhibit cell cycle arrest and display DNA breaks as evidenced by TUNEL staining and the appearance of HUS-1::GFP foci formation. In addition, uri-1(lf) mutants and uri-1(RNAi) worms show a p53-dependent increase in germline apoptosis. Our findings indicate that URI-1 has an important function in the mitotic and meiotic cell cycles. Furthermore, they imply that URI-1 participates in a pathway(s) that is associated with the suppression of endogenous genotoxic DNA damage and highlight a role for URI-1 in the control of genome integrity.
Collapse
Affiliation(s)
- Christine T Parusel
- Eidgenoessische Technische Hochschule Zuerich, Institute of Cell Biology, CH-8093 Zuerich, Switzerland
| | | | | | | | | |
Collapse
|
126
|
Larraya LM, Boyce KJ, So A, Steen BR, Jones S, Marra M, Kronstad JW. Serial analysis of gene expression reveals conserved links between protein kinase A, ribosome biogenesis, and phosphate metabolism in Ustilago maydis. EUKARYOTIC CELL 2006; 4:2029-43. [PMID: 16339721 PMCID: PMC1317500 DOI: 10.1128/ec.4.12.2029-2043.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The switch from budding to filamentous growth is a key aspect of invasive growth and virulence for the fungal phytopathogen Ustilago maydis. The cyclic AMP (cAMP) signaling pathway regulates dimorphism in U. maydis, as demonstrated by the phenotypes of mutants with defects in protein kinase A (PKA). Specifically, a mutant lacking the regulatory subunit of PKA encoded by the ubc1 gene displays a multiple-budded phenotype and fails to incite disease symptoms, although proliferation does occur in the plant host. A mutant with a defect in a catalytic subunit of PKA, encoded by adr1, has a constitutively filamentous phenotype and is nonpathogenic. We employed serial analysis of gene expression to examine the transcriptomes of a wild-type strain and the ubc1 and adr1 mutants to further define the role of PKA in U. maydis. The mutants displayed changes in the transcript levels for genes encoding ribosomal proteins, genes regulated by the b mating-type proteins, and genes for metabolic functions. Importantly, the ubc1 mutant displayed elevated transcript levels for genes involved in phosphate acquisition and storage, thus revealing a connection between cAMP and phosphate metabolism. Further experimentation indicated a phosphate storage defect and elevated acid phosphatase activity for the ubc1 mutant. Elevated phosphate levels in culture media also enhanced the filamentous growth of wild-type cells in response to lipids, a finding consistent with PKA regulation of morphogenesis in U. maydis. Overall, these findings extend our understanding of cAMP signaling in U. maydis and reveal a link between phosphate metabolism and morphogenesis.
Collapse
Affiliation(s)
- Luis M Larraya
- Michael Smith Laboratories, 2185 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
The target of rapamycin (TOR) is a conserved Ser/Thr kinase that regulates cell growth and metabolism in response to environmental cues. Here, highlighting contributions from studies in model organisms, we review mammalian TOR complexes and the signaling branches they mediate. TOR is part of two distinct multiprotein complexes, TOR complex 1 (TORC1), which is sensitive to rapamycin, and TORC2, which is not. The physiological consequences of mammalian TORC1 dysregulation suggest that inhibitors of mammalian TOR may be useful in the treatment of cancer, cardiovascular disease, autoimmunity, and metabolic disorders.
Collapse
Affiliation(s)
- Stephan Wullschleger
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
128
|
Abstract
Cells reprogram gene expression in response to environmental changes by mobilizing transcriptional activators. The activator protein Gcn4 of the yeast Saccharomyces cerevisiae is regulated by an intricate translational control mechanism, which is the primary focus of this review, and also by the modulation of its stability in response to nutrient availability. Translation of GCN4 mRNA is derepressed in amino acid-deprived cells, leading to transcriptional induction of nearly all genes encoding amino acid biosynthetic enzymes. The trans-acting proteins that control GCN4 translation have general functions in the initiation of protein synthesis, or regulate the activities of initiation factors, so that the molecular events that induce GCN4 translation also reduce the rate of general protein synthesis. This dual regulatory response enables cells to limit their consumption of amino acids while diverting resources into amino acid biosynthesis in nutrient-poor environments. Remarkably, mammalian cells use the same strategy to downregulate protein synthesis while inducing transcriptional activators of stress-response genes under various stressful conditions, including amino acid starvation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| |
Collapse
|
129
|
Proszynski TJ, Klemm RW, Gravert M, Hsu PP, Gloor Y, Wagner J, Kozak K, Grabner H, Walzer K, Bagnat M, Simons K, Walch-Solimena C. A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc Natl Acad Sci U S A 2005; 102:17981-6. [PMID: 16330752 PMCID: PMC1312417 DOI: 10.1073/pnas.0509107102] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recently synthesized proteins are sorted at the trans-Golgi network into specialized routes for exocytosis. Surprisingly little is known about the underlying molecular machinery. Here, we present a visual screen to search for proteins involved in cargo sorting and vesicle formation. We expressed a GFP-tagged plasma membrane protein in the yeast deletion library and identified mutants with altered marker localization. This screen revealed a requirement of several enzymes regulating the synthesis of sphingolipids and ergosterol in the correct and efficient delivery of the marker protein to the cell surface. Additionally, we identified mutants regulating the actin cytoskeleton (Rvs161p and Vrp1p), known membrane traffic regulators (Kes1p and Chs5p), and several unknown genes. This visual screening method can now be used for different cargo proteins to search in a genome-wide fashion for machinery involved in post-Golgi sorting.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Zhao H, Wang Q, Zhang H, Liu Q, Du X, Richter M, Greene MI. UXT is a novel centrosomal protein essential for cell viability. Mol Biol Cell 2005; 16:5857-65. [PMID: 16221885 PMCID: PMC1289427 DOI: 10.1091/mbc.e05-08-0705] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ubiquitously expressed transcript (UXT) is a prefoldinlike protein that has been suggested to be involved in human tumorigenesis. Here, we have found that UXT is overexpressed in a number of human tumor tissues but not in the matching normal tissues. We demonstrate that UXT is located in human centrosomes and is associated with gamma-tubulin. In addition, overexpression of UXT disrupts centrosome structure. Furthermore, abrogation of UXT protein expression by small interfering RNA knockdown leads to cell death. Together, our findings suggest that UXT is a component of centrosome and is essential for cell viability. We propose that UXT may facilitate transformation by corrupting regulated centrosome functions.
Collapse
Affiliation(s)
- Huiwu Zhao
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Lisik W, Kahan BD. Proliferation signal inhibitors: chemical, biologic, and clinical properties. Transplant Rev (Orlando) 2005. [DOI: 10.1016/j.trre.2005.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
132
|
Li W, Cavasotto CN, Cardozo T, Ha S, Dang T, Taneja SS, Logan SK, Garabedian MJ. Androgen Receptor Mutations Identified in Prostate Cancer and Androgen Insensitivity Syndrome Display Aberrant ART-27 Coactivator Function. Mol Endocrinol 2005; 19:2273-82. [PMID: 15919721 DOI: 10.1210/me.2005-0134] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The transcriptional activity of the androgen receptor (AR) is modulated by interactions with coregulatory molecules. It has been proposed that aberrant interactions between AR and its coregulators may contribute to diseases related to AR activity, such as prostate cancer and androgen insensitivity syndrome (AIS); however, evidence linking abnormal receptor-cofactor interactions to disease is scant. ART-27 is a recently identified AR N-terminal coactivator that is associated with AR-mediated growth inhibition. Here we analyze a number of naturally occurring AR mutations identified in prostate cancer and AIS for their ability to affect AR response to ART-27. Although the vast majority of AR mutations appeared capable of increased activation in response to ART-27, an AR mutation identified in prostate cancer (AR P340L) and AIS (AR E2K) show reduced transcriptional responses to ART-27, whereas their response to the p160 class of coactivators was not diminished. Relative to the wild-type receptor, less ART-27 protein associated with the AR E2K substitution, consistent with reduced transcriptional response. Surprisingly, more ART-27 associated with AR P340L, despite the fact that the mutation decreased transcriptional activation in response to ART-27. Our findings suggest that aberrant AR-coactivator association interferes with normal ART-27 coactivator function, resulting in suppression of AR activity, and may contribute to the pathogenesis of diseases related to alterations in AR activity, such as prostate cancer and AIS.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Microbiology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Bellosta P, Hulf T, Balla Diop S, Usseglio F, Pradel J, Aragnol D, Gallant P. Myc interacts genetically with Tip48/Reptin and Tip49/Pontin to control growth and proliferation during Drosophila development. Proc Natl Acad Sci U S A 2005; 102:11799-804. [PMID: 16087886 PMCID: PMC1187951 DOI: 10.1073/pnas.0408945102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcription factor dMyc is the sole Drosophila ortholog of the vertebrate c-myc protooncogenes and a central regulator of growth and cell-cycle progression during normal development. We have investigated the molecular basis of dMyc function by analyzing its interaction with the putative transcriptional cofactors Tip48/Reptin (Rept) and Tip49/Pontin (Pont). We demonstrate that Rept and Pont have conserved their ability to bind to Myc during evolution. All three proteins are required for tissue growth in vivo, because mitotic clones mutant for either dmyc, pont,or rept suffer from cell competition. Most importantly, pont shows a strong dominant genetic interaction with dmyc that is manifested in the duration of development, rates of survival and size of the adult animal and, in particular, of the eye. The molecular basis for these effects may be found in the repression of certain target genes, such as mfas, by dMyc:Pont complexes. These findings indicate that dMyc:Pont complexes play an essential role in the control of cellular growth and proliferation during normal development.
Collapse
Affiliation(s)
- Paola Bellosta
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
134
|
Palmer LK, Shoemaker JL, Baptiste BA, Wolfe D, Keil RL. Inhibition of translation initiation by volatile anesthetics involves nutrient-sensitive GCN-independent and -dependent processes in yeast. Mol Biol Cell 2005; 16:3727-39. [PMID: 15930127 PMCID: PMC1182311 DOI: 10.1091/mbc.e05-02-0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/11/2022] Open
Abstract
Volatile anesthetics including isoflurane affect all cells examined, but their mechanisms of action remain unknown. To investigate the cellular basis of anesthetic action, we are studying Saccharomyces cerevisiae mutants altered in their response to anesthetics. The zzz3-1 mutation renders yeast isoflurane resistant and is an allele of GCN3. Gcn3p functions in the evolutionarily conserved general amino acid control (GCN) pathway that regulates protein synthesis and gene expression in response to nutrient availability through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). Hyperphosphorylation of eIF2alpha inhibits translation initiation during amino acid starvation. Isoflurane rapidly (in <15 min) inhibits yeast cell division and amino acid uptake. Unexpectedly, phosphorylation of eIF2alpha decreased dramatically upon initial exposure although hyperphosphorylation occurred later. Translation initiation was inhibited by isoflurane even when eIF2alpha phosphorylation decreased and this inhibition was GCN-independent. Maintenance of inhibition required GCN-dependent hyperphosphorylation of eIF2alpha. Thus, two nutrient-sensitive stages displaying unique features promote isoflurane-induced inhibition of translation initiation. The rapid phase is GCN-independent and apparently has not been recognized previously. The maintenance phase is GCN-dependent and requires inhibition of general translation imparted by enhanced eIF2alpha phosphorylation. Surprisingly, as shown here, the transcription activator Gcn4p does not affect anesthetic response.
Collapse
Affiliation(s)
- Laura K Palmer
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033-2390, USA
| | | | | | | | | |
Collapse
|
135
|
Yart A, Gstaiger M, Wirbelauer C, Pecnik M, Anastasiou D, Hess D, Krek W. The HRPT2 tumor suppressor gene product parafibromin associates with human PAF1 and RNA polymerase II. Mol Cell Biol 2005; 25:5052-60. [PMID: 15923622 PMCID: PMC1140601 DOI: 10.1128/mcb.25.12.5052-5060.2005] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the HRPT2 tumor suppressor gene is associated with the pathogenesis of the hereditary hyperparathyroidism-jaw tumor syndrome and malignancy in sporadic parathyroid tumors. The cellular function of the HPRT2 gene product, parafibromin, has not been defined yet. Here we show that parafibromin physically interacts with human orthologs of yeast Paf1 complex components, including PAF1, LEO1, and CTR9, that are involved in transcription elongation and 3' end processing. It also associates with modified forms of the large subunit of RNA polymerase II, in particular those phosphorylated on serine 5 or 2 within the carboxy-terminal domain, that are important for the coordinate recruitment of transcription elongation and RNA processing machineries during the transcription cycle. These interactions depend on a C-terminal domain of parafibromin, which is deleted in ca. 80% of clinically relevant mutations. Finally, RNAi-induced downregulation of parafibromin promotes entry into S phase, implying a role for parafibromin as an inhibitor of cell cycle progression. Taken together, these findings link the tumor suppressor parafibromin to the transcription elongation and RNA processing pathway as a PAF1 complex- and RNA polymerase II-bound protein. Dysfunction of this pathway may be a general phenomenon in the majority of cases of hereditary parathyroid cancer.
Collapse
Affiliation(s)
- Armelle Yart
- Institute of Cell Biology, ETH Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
136
|
Inoki K, Ouyang H, Li Y, Guan KL. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005; 69:79-100. [PMID: 15755954 PMCID: PMC1082789 DOI: 10.1128/mmbr.69.1.79-100.2005] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Target of rapamycin (TOR) proteins are members of the phosphatidylinositol kinase-related kinase (PIKK) family and are highly conserved from yeast to mammals. TOR proteins integrate signals from growth factors, nutrients, stress, and cellular energy levels to control cell growth. The ribosomal S6 kinase 1 (S6K) and eukaryotic initiation factor 4E binding protein 1(4EBP1) are two cellular targets of TOR kinase activity and are known to mediate TOR function in translational control in mammalian cells. However, the precise molecular mechanism of TOR regulation is not completely understood. One of the recent breakthrough studies in TOR signaling resulted in the identification of the tuberous sclerosis complex gene products, TSC1 and TSC2, as negative regulators for TOR signaling. Furthermore, the discovery that the small GTPase Rheb is a direct downstream target of TSC1-TSC2 and a positive regulator of the TOR function has significantly advanced our understanding of the molecular mechanism of TOR activation. Here we review the current understanding of the regulation of TOR signaling and discuss its function as a signaling nexus to control cell growth during normal development and tumorigenesis.
Collapse
Affiliation(s)
- Ken Inoki
- Life Science Institute, University of Michigan Medical School, 5450 Medical Science I Bldg., Ann Arbor, MI 48109-0606, USA
| | | | | | | |
Collapse
|
137
|
Schneper L, Düvel K, Broach JR. Sense and sensibility: nutritional response and signal integration in yeast. Curr Opin Microbiol 2005; 7:624-30. [PMID: 15556035 DOI: 10.1016/j.mib.2004.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Yeast cells respond to the quantity and quality of carbon and nitrogen sources in the environment both by adjusting their transcriptional and metabolic profiles to make optimum use of the available nutrients and by selecting a developmental program--budding, pseudohyphal differentiation, quiescence or sporulation--that maximizes their potential for survival under the existing nutrient conditions. Recent studies fueled by genomic tools have refined our knowledge of the components and connections within individual pathways and the interconnections between pathways. More significantly, these studies begin to paint an as yet inchoate portrait of the yeast cells' means of processing its environmental information, in which specific transcription factors and chromatin modifying activities coordinate input from several signaling pathways to yield an appropriate and coherent response of genes involved in mass accumulation and metabolism.
Collapse
Affiliation(s)
- Lisa Schneper
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
138
|
Kral JG. The pathogenesis of obesity: Stress and the brain-gut axis. Surg Obes Relat Dis 2005; 1:25-34. [PMID: 16925198 DOI: 10.1016/j.soard.2004.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 12/17/2004] [Accepted: 12/17/2004] [Indexed: 02/02/2023]
Affiliation(s)
- John G Kral
- Department of Surgery, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA.
| |
Collapse
|
139
|
Lisik W, Kahan BD. Inhibitors of mammalian target of rapamycin: mechanism of action explains efficacy and toxicity. Curr Opin Organ Transplant 2004. [DOI: 10.1097/01.mot.0000146725.34815.ea] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
140
|
Delgermaa L, Hayashi N, Dorjsuren D, Nomura T, Thuy LTT, Murakami S. Subcellular localization of RPB5-mediating protein and its putative functional partner. Mol Cell Biol 2004; 24:8556-66. [PMID: 15367675 PMCID: PMC516735 DOI: 10.1128/mcb.24.19.8556-8566.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified a novel cellular protein, RPB5-mediating protein (RMP), that retains corepressor activity and functionally antagonizes transcriptional modulation via hepatitis B virus X protein. The subcellular localization of RMP was examined using green fluorescent protein-fused protein forms. We found that a nuclear localization signal (NLS) and a coiled-coil (CC) domain functioning as a cytoplasmic localization signal (CLS) are important for the subcellular localization of RMP. The CLS apparently acts dominantly, since RMP was mostly localized in the cytoplasm with weak and diffuse signals in the nucleus, and the NLS was indispensable for the nuclear localization of RMP only in the absence of the CLS. Using a yeast two-hybrid method, we isolated a putative corepressor, DNA methyltransferase 1-associating protein (DMAP1), which was found to bind to the CC domain of RMP. DMAP1 facilitated the nuclear localization of RMP and the corepressor activity of RMP in a dose-dependent manner by interacting with the CC domain of RMP. These results are discussed in light of a recent paper showing a novel evolutionarily conserved role of URI in the TOR signaling pathway.
Collapse
Affiliation(s)
- Luvsanjav Delgermaa
- Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, Takara-machi 13-1, Kanazawa 920-0934, Japan
| | | | | | | | | | | |
Collapse
|
141
|
Abstract
Regulation of growth and proliferation in higher eukaryotic cells results from an integration of nutritional, energy, and mitogenic signals. Biochemical processes underlying cell growth and proliferation are governed by the phosphatidylinositol 3-kinase (PI3K) and target of rapamycin (TOR) signaling pathways. The importance of the interplay between these two pathways is underscored by the discovery that the TOR inhibitor rapamycin is effective against tumors caused by misregulation of the PI3K pathway. We review here recent data concerning the convergence of the PI3K and TOR pathways, the role of these pathways in cell growth and proliferation, and the regulation of growth by downstream TOR targets.
Collapse
|
142
|
Taubert S, Gorrini C, Frank SR, Parisi T, Fuchs M, Chan HM, Livingston DM, Amati B. E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1. Mol Cell Biol 2004; 24:4546-56. [PMID: 15121871 PMCID: PMC400446 DOI: 10.1128/mcb.24.10.4546-4556.2004] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
E2F proteins can either activate or repress transcription. Following mitogenic stimulation, repressive E2F4-p130-histone deacetylase complexes dissociate from, while activating species (E2F1, -2, and -3) associate with, target promoters. Histones H3 and H4 simultaneously become hyperacetylated, but it remains unclear whether this is a prerequisite or a consequence of E2F binding. Here, we show that activating E2F species are required for hyperacetylation of target chromatin in human cells. Overexpression of a dominant-negative (DN) E2F1 mutant in serum-stimulated T98G cells blocked all E2F binding, H4 acetylation, and, albeit partially, H3 acetylation. Target gene activation and S-phase entry were also blocked by DN E2F1. Conversely, ectopic activation of E2F1 rapidly induced H3 and H4 acetylation, demonstrating a direct role for E2F in these events. E2F1 was previously shown to bind the histone acetyltransferases (HATs) p300/CBP and PCAF/GCN5. In our hands, ectopically expressed E2F1 also bound the unrelated HAT Tip60 and induced recruitment of five subunits of the Tip60 complex (Tip60, TRRAP, p400, Tip48, and Tip49) to target promoters in vivo. Moreover, E2F-dependent recruitment of Tip60 to chromatin occurred in late G(1) following serum stimulation. We speculate that the activities of multiple HAT complexes account for E2F-dependent acetylation, transcription, and S-phase entry.
Collapse
Affiliation(s)
- Stefan Taubert
- DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004; 23:3151-71. [PMID: 15094765 DOI: 10.1038/sj.onc.1207542] [Citation(s) in RCA: 962] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell growth (an increase in cell mass and size through macromolecular biosynthesis) and cell cycle progression are generally tightly coupled, allowing cells to proliferate continuously while maintaining their size. The target of rapamycin (TOR) is an evolutionarily conserved kinase that integrates signals from nutrients (amino acids and energy) and growth factors (in higher eukaryotes) to regulate cell growth and cell cycle progression coordinately. In mammals, TOR is best known to regulate translation through the ribosomal protein S6 kinases (S6Ks) and the eukaryotic translation initiation factor 4E-binding proteins. Consistent with the contribution of translation to growth, TOR regulates cell, organ, and organismal size. The identification of the tumor suppressor proteins tuberous sclerosis1 and 2 (TSC1 and 2) and Ras-homolog enriched in brain (Rheb) has biochemically linked the TOR and phosphatidylinositol 3-kinase (PI3K) pathways, providing a mechanism for the crosstalk that occurs between these pathways. TOR is emerging as a novel antitumor target, since the TOR inhibitor rapamycin appears to be effective against tumors resulting from aberrantly high PI3K signaling. Not only may inhibition of TOR be effective in cancer treatment, but rapamycin is an FDA-approved immunosuppressive and cardiology drug. We review here what is known (and not known) about the function of TOR in cellular and animal physiology.
Collapse
Affiliation(s)
- Diane C Fingar
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|