101
|
Petter M, Selvarajah SA, Lee CC, Chin WH, Gupta AP, Bozdech Z, Brown GV, Duffy MF. H2A.Z and H2B.Z double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite Plasmodium falciparum. Mol Microbiol 2013; 87:1167-82. [PMID: 23373537 DOI: 10.1111/mmi.12154] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Histone variants are important components of eukaryotic chromatin and can alter chromatin structure to confer specialized functions. H2B variant histones are rare in nature but have evolved independently in the phyla Apicomplexa and Trypanasomatida. Here, we investigate the apicomplexan-specific Plasmodium falciparum histone variant Pf H2B.Z and show that within nucleosomes Pf H2B.Z dimerizes with the H2A variant Pf H2A.Z and that Pf H2B.Z and Pf H2A.Z occupancy correlates in the subset of genes examined. These double-variant nucleosomes also carry common markers of euchromatin like H3K4me3 and histone acetylation. Pf H2B.Z levels are elevated in intergenic regions across the genome, except in the var multigene family, where Pf H2A.Z/Pf H2B.Z double-variant nucleosomes are only enriched in the promoter of the single active var copy and this enrichment is developmentally regulated. Importantly, this pattern seems to be specific for var genes and does not apply to other heterochromatic gene families involved in red blood cell invasion which are also subject to clonal expression. Thus, Pf H2A.Z/Pf H2B.Z double-variant nucleosomes appear to have a highly specific function in the regulation of P. falciparum virulence.
Collapse
Affiliation(s)
- Michaela Petter
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Zimmerman PA, Ferreira MU, Howes RE, Mercereau-Puijalon O. Red blood cell polymorphism and susceptibility to Plasmodium vivax. ADVANCES IN PARASITOLOGY 2013; 81:27-76. [PMID: 23384621 PMCID: PMC3728992 DOI: 10.1016/b978-0-12-407826-0.00002-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Resistance to Plasmodium vivax blood-stage infection has been widely recognised to result from absence of the Duffy (Fy) blood group from the surface of red blood cells (RBCs) in individuals of African descent. Interestingly, recent studies from different malaria-endemic regions have begun to reveal new perspectives on the association between Duffy gene polymorphism and P. vivax malaria. In Papua New Guinea and the Americas, heterozygous carriers of a Duffy-negative allele are less susceptible to P. vivax infection than Duffy-positive homozygotes. In Brazil, studies show that the Fy(a) antigen, compared to Fy(b), is associated with lower binding to the P. vivax Duffy-binding protein and reduced susceptibility to vivax malaria. Additionally, it is interesting that numerous studies have now shown that P. vivax can infect RBCs and cause clinical disease in Duffy-negative people. This suggests that the relationship between P. vivax and the Duffy antigen is more complex than customarily described. Evidence of P. vivax Duffy-independent red cell invasion indicates that the parasite must be evolving alternative red cell invasion pathways. In this chapter, we review the evidence for P. vivax Duffy-dependent and Duffy-independent red cell invasion. We also consider the influence of further host gene polymorphism associated with malaria endemicity on susceptibility to vivax malaria. The interaction between the parasite and the RBC has significant potential to influence the effectiveness of P. vivax-specific vaccines and drug treatments. Ultimately, the relationships between red cell polymorphisms and P. vivax blood-stage infection will influence our estimates on the population at risk and efforts to eliminate vivax malaria.
Collapse
Affiliation(s)
- Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | | | |
Collapse
|
103
|
Kemp LE, Yamamoto M, Soldati-Favre D. Subversion of host cellular functions by the apicomplexan parasites. FEMS Microbiol Rev 2012. [PMID: 23186105 DOI: 10.1111/1574-6976.12013] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rhoptries are club-shaped secretory organelles located at the anterior pole of species belonging to the phylum of Apicomplexa. Parasites of this phylum are responsible for a huge burden of disease in humans and animals and a loss of economic productivity. Members of this elite group of obligate intracellular parasites include Plasmodium spp. that cause malaria and Cryptosporidium spp. that cause diarrhoeal disease. Although rhoptries are almost ubiquitous throughout the phylum, the relevance and role of the proteins contained within the rhoptries varies. Rhoptry contents separate into two intra-organellar compartments, the neck and the bulb. A number of rhoptry neck proteins are conserved between species and are involved in functions such as host cell invasion. The bulb proteins are less well-conserved and probably evolved for a particular lifestyle. In the majority of species studied to date, rhoptry content is involved in formation and maintenance of the parasitophorous vacuole; however some species live free within the host cytoplasm. In this review, we will summarise the knowledge available regarding rhoptry proteins. Specifically, we will discuss the role of the rhoptry kinases that are used by Toxoplasma gondii and other coccidian parasites to subvert the host cellular functions and prevent parasite death.
Collapse
Affiliation(s)
- Louise E Kemp
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | |
Collapse
|
104
|
Identification of a potent combination of key Plasmodium falciparum merozoite antigens that elicit strain-transcending parasite-neutralizing antibodies. Infect Immun 2012. [PMID: 23184525 DOI: 10.1128/iai.01107-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blood-stage malaria vaccines that target single Plasmodium falciparum antigens involved in erythrocyte invasion have not induced optimal protection in field trials. Blood-stage malaria vaccine development has faced two major hurdles, antigenic polymorphisms and molecular redundancy, which have led to an inability to demonstrate potent, strain-transcending, invasion-inhibitory antibodies. Vaccines that target multiple invasion-related parasite proteins may inhibit erythrocyte invasion more efficiently. Our approach is to develop a receptor-blocking blood-stage vaccine against P. falciparum that targets the erythrocyte binding domains of multiple parasite adhesins, blocking their interaction with their receptors and thus inhibiting erythrocyte invasion. However, with numerous invasion ligands, the challenge is to identify combinations that elicit potent strain-transcending invasion inhibition. We evaluated the invasion-inhibitory activities of 20 different triple combinations of antibodies mixed in vitro against a diverse set of six key merozoite ligands, including the novel ligands P. falciparum apical asparagine-rich protein (PfAARP), EBA-175 (PfF2), P. falciparum reticulocyte binding-like homologous protein 1 (PfRH1), PfRH2, PfRH4, and Plasmodium thrombospondin apical merozoite protein (PTRAMP), which are localized in different apical organelles and are translocated to the merozoite surface at different time points during invasion. They bind erythrocytes with different specificities and are thus involved in distinct invasion pathways. The antibody combination of EBA-175 (PfF2), PfRH2, and PfAARP produced the most efficacious strain-transcending inhibition of erythrocyte invasion against diverse P. falciparum clones. This potent antigen combination was selected for coimmunization as a mixture that induced balanced antibody responses against each antigen and inhibited erythrocyte invasion efficiently. We have thus demonstrated a novel two-step screening approach to identify a potent antigen combination that elicits strong strain-transcending invasion inhibition, supporting its development as a receptor-blocking malaria vaccine.
Collapse
|
105
|
Williams AR, Douglas AD, Miura K, Illingworth JJ, Choudhary P, Murungi LM, Furze JM, Diouf A, Miotto O, Crosnier C, Wright GJ, Kwiatkowski DP, Fairhurst RM, Long CA, Draper SJ. Enhancing blockade of Plasmodium falciparum erythrocyte invasion: assessing combinations of antibodies against PfRH5 and other merozoite antigens. PLoS Pathog 2012; 8:e1002991. [PMID: 23144611 PMCID: PMC3493472 DOI: 10.1371/journal.ppat.1002991] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/11/2012] [Indexed: 02/01/2023] Open
Abstract
No vaccine has yet proven effective against the blood-stages of Plasmodium falciparum, which cause the symptoms and severe manifestations of malaria. We recently found that PfRH5, a P. falciparum-specific protein expressed in merozoites, is efficiently targeted by broadly-neutralizing, vaccine-induced antibodies. Here we show that antibodies against PfRH5 efficiently inhibit the in vitro growth of short-term-adapted parasite isolates from Cambodia, and that the EC50 values of antigen-specific antibodies against PfRH5 are lower than those against PfAMA1. Since antibody responses elicited by multiple antigens are speculated to improve the efficacy of blood-stage vaccines, we conducted detailed assessments of parasite growth inhibition by antibodies against PfRH5 in combination with antibodies against seven other merozoite antigens. We found that antibodies against PfRH5 act synergistically with antibodies against certain other merozoite antigens, most notably with antibodies against other erythrocyte-binding antigens such as PfRH4, to inhibit the growth of a homologous P. falciparum clone. A combination of antibodies against PfRH4 and basigin, the erythrocyte receptor for PfRH5, also potently inhibited parasite growth. This methodology provides the first quantitative evidence that polyclonal vaccine-induced antibodies can act synergistically against P. falciparum antigens and should help to guide the rational development of future multi-antigen vaccines. Malaria is the most devastating parasitic disease of humans, resulting in an estimated 0.6–1 million deaths per year. The symptoms of malaria are caused when merozoites invade and replicate within red blood cells, and therefore a vaccine which induced antibodies that effectively prevent this invasion process would be a major step towards the control of the disease. However, development of such a vaccine has proved extremely challenging. A major roadblock has been the probable need for extremely high levels of antibodies to achieve vaccine efficacy. We have now shown that antibodies against the merozoite protein PfRH5 are able to neutralize the invasion of red blood cells by malaria parasites at concentrations that are significantly lower than for antibodies against PfAMA1 – the previous leading blood-stage malaria vaccine target. This neutralization was observed in both laboratory-adapted parasite lines and in five different parasite isolates from Cambodian patients with malaria. Furthermore, we found that by combining antibodies against PfRH5 with antibodies against certain other merozoite antigens we could achieve synergistic neutralization of parasites, further lowering the amount of antibody needed to be induced by a vaccine. The development of vaccines encoding the PfRH5 antigen in combination with a second target may thus be the best way to achieve the long-sought after goal of an efficacious blood-stage malaria vaccine. Moreover, the methodology described here to assess the ability of antibodies against different targets to synergize should greatly aid the future rational design of improved vaccine candidates.
Collapse
|
106
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria. PLoS One 2012; 7:e45253. [PMID: 23028883 PMCID: PMC3447948 DOI: 10.1371/journal.pone.0045253] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
Background Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4) is important for invasion of human erythrocytes and may therefore be a target of protective immunity. Methods IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG). Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. Results Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. Conclusions Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.
Collapse
|
108
|
Binding of aldolase and glyceraldehyde-3-phosphate dehydrogenase to the cytoplasmic tails of Plasmodium falciparum merozoite duffy binding-like and reticulocyte homology ligands. mBio 2012; 3:mBio.00292-12. [PMID: 22991428 PMCID: PMC3448169 DOI: 10.1128/mbio.00292-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Invasion of erythrocytes by Plasmodium falciparum requires a connection between the cytoplasmic tail of the parasite’s ligands for its erythrocyte receptors and the actin-myosin motor of the parasite. For the thromobospondin-related anonymous protein (TRAP) ligand on Plasmodium sporozoites, aldolase forms this connection and requires tryptophan and negatively charged amino acids in the ligand’s cytoplasmic tail. Because of the importance of the Duffy binding-like (DBL) and the reticulocyte homology (RH) ligand families in erythrocyte binding and merozoite invasion, we characterized the ability of their cytoplasmic tails to bind aldolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), both of which bind actin. We tested the binding of the cytoplasmic peptides of the two ligand families to aldolase and GAPDH. Only the cytoplasmic peptides of some RH ligands showed strong binding to aldolase, and the binding depended on the presence of an aromatic amino acid (phenylalanine or tyrosine), rather than tryptophan, in the context of negatively charged amino acids. The binding was confirmed by surface plasmon resonance analysis and was found to represent affinity similar to that seen with TRAP. An X-ray crystal structure of aldolase at 2.5 Å in the presence of RH2b peptide suggested that the binding site location was near the TRAP-binding site. GAPDH bound to some of the cytoplasmic tails of certain RH and DBL ligands in an aromatic amino acid-dependent manner. Thus, the connection between Plasmodium merozoite ligands and erythrocyte receptors and the actin motor can be achieved through the activity of either aldolase or GAPDH by mechanisms that do not require tryptophan but, rather, other aromatic amino acids. The invasion of the Plasmodium merozoite into erythrocytes is a critical element in malaria pathogenesis. It is important to understand the molecular details of this process, as this machinery can be a target for both vaccine and drug development. In Plasmodium sporozoites and Toxoplasma tachyzoites, invasion involves a glycolytic enzyme aldolase, linking the cytoplasmic tail domains of the parasite ligands to the actin-myosin motor that drives invasion. This binding requires a tryptophan that cannot be replaced by other aromatic residues. Here we show that aldolase binds the cytoplasmic tails of some P. falciparum merozoite erythrocyte-binding ligands but that the binding involves aromatic residues other than tryptophan. The biological relevance of aldolase binding to cytoplasmic tails of parasite ligands in invasion is demonstrated by our observation that RH2b but not RH2a binds to aldolase and, as previously shown, that RH2b but not RH2a is required for P. falciparum invasion of erythrocytes.
Collapse
|
109
|
Taechalertpaisarn T, Crosnier C, Bartholdson SJ, Hodder AN, Thompson J, Bustamante LY, Wilson DW, Sanders PR, Wright GJ, Rayner JC, Cowman AF, Gilson PR, Crabb BS. Biochemical and functional analysis of two Plasmodium falciparum blood-stage 6-cys proteins: P12 and P41. PLoS One 2012; 7:e41937. [PMID: 22848665 PMCID: PMC3407074 DOI: 10.1371/journal.pone.0041937] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/26/2012] [Indexed: 11/19/2022] Open
Abstract
The genomes of Plasmodium parasites that cause malaria in humans, other primates, birds, and rodents all encode multiple 6-cys proteins. Distinct 6-cys protein family members reside on the surface at each extracellular life cycle stage and those on the surface of liver infective and sexual stages have been shown to play important roles in hepatocyte growth and fertilization respectively. However, 6-cys proteins associated with the blood-stage forms of the parasite have no known function. Here we investigate the biochemical nature and function of two blood-stage 6-cys proteins in Plasmodium falciparum, the most pathogenic species to afflict humans. We show that native P12 and P41 form a stable heterodimer on the infective merozoite surface and are secreted following invasion, but could find no evidence that this complex mediates erythrocyte-receptor binding. That P12 and P41 do not appear to have a major role as adhesins to erythrocyte receptors was supported by the observation that antisera to these proteins did not substantially inhibit erythrocyte invasion. To investigate other functional roles for these proteins their genes were successfully disrupted in P. falciparum, however P12 and P41 knockout parasites grew at normal rates in vitro and displayed no other obvious phenotypic changes. It now appears likely that these blood-stage 6-cys proteins operate as a pair and play redundant roles either in erythrocyte invasion or in host-immune interactions.
Collapse
Affiliation(s)
- Tana Taechalertpaisarn
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Cecile Crosnier
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - S. Josefin Bartholdson
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Anthony N. Hodder
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jenny Thompson
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Leyla Y. Bustamante
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Danny W. Wilson
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Alan F. Cowman
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Victoria, Australia
- Departments of Immunology and Medicine, Monash University, Victoria, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Victoria, Australia
- Departments of Immunology and Medicine, Monash University, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
110
|
Tetteh-Quarcoo PB, Schmidt CQ, Tham WH, Hauhart R, Mertens HDT, Rowe A, Atkinson JP, Cowman AF, Rowe JA, Barlow PN. Lack of evidence from studies of soluble protein fragments that Knops blood group polymorphisms in complement receptor-type 1 are driven by malaria. PLoS One 2012; 7:e34820. [PMID: 22506052 PMCID: PMC3323580 DOI: 10.1371/journal.pone.0034820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
Complement receptor-type 1 (CR1, CD35) is the immune-adherence receptor, a complement regulator, and an erythroid receptor for Plasmodium falciparum during merozoite invasion and subsequent rosette formation involving parasitized and non-infected erythrocytes. The non-uniform geographical distribution of Knops blood group CR1 alleles Sl1/2 and McCa/b may result from selective pressures exerted by differential exposure to infectious hazards. Here, four variant short recombinant versions of CR1 were produced and analyzed, focusing on complement control protein modules (CCPs) 15–25 of its ectodomain. These eleven modules encompass a region (CCPs 15–17) key to rosetting, opsonin recognition and complement regulation, as well as the Knops blood group polymorphisms in CCPs 24–25. All four CR1 15–25 variants were monomeric and had similar axial ratios. Modules 21 and 22, despite their double-length inter-modular linker, did not lie side-by-side so as to stabilize a bent-back architecture that would facilitate cooperation between key functional modules and Knops blood group antigens. Indeed, the four CR1 15–25 variants had virtually indistinguishable affinities for immobilized complement fragments C3b (KD = 0.8–1.1 µM) and C4b (KD = 5.0–5.3 µM). They were all equally good co-factors for factor I-catalysed cleavage of C3b and C4b, and they bound equally within a narrow affinity range, to immobilized C1q. No differences between the variants were observed in assays for inhibition of erythrocyte invasion by P. falciparum or for rosette disruption. Neither differences in complement-regulatory functionality, nor interactions with P. falciparum proteins tested here, appear to have driven the non-uniform geographic distribution of these alleles.
Collapse
Affiliation(s)
| | - Christoph Q. Schmidt
- The Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Richard Hauhart
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - Arthur Rowe
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicester, United Kingdom
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alan F. Cowman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul N. Barlow
- The Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
111
|
Harvey KL, Gilson PR, Crabb BS. A model for the progression of receptor-ligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol 2012; 42:567-73. [PMID: 22710063 DOI: 10.1016/j.ijpara.2012.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 11/17/2022]
Abstract
Multiple and seemingly sequential interactions between parasite ligands and their receptors on host erythrocytes are an essential precursor to invasion by the obligate intracellular pathogen, Plasmodium falciparum. Consequently, identification and characterisation of the specific effectors that facilitate these recognition events are of special interest for the development of novel therapeutic and prophylactic solutions to malaria. There have been many recent advances regarding the identification of host-parasite receptor-ligand pairs, however the precise function and temporal aspects of these interactions are far from resolved. This review provides an update on the current details of these interactions to place them in sequence and super impose them upon the known kinetic events of invasion.
Collapse
|
112
|
Plasmodium falciparum line-dependent association of in vitro growth-inhibitory activity and risk of malaria. Infect Immun 2012; 80:1900-8. [PMID: 22392930 DOI: 10.1128/iai.06190-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum's ability to invade erythrocytes is essential for its survival within the human host. Immune mechanisms that impair this ability are therefore expected to contribute to immunity against the parasite. Plasma of humans who are naturally exposed to malaria has been shown to have growth-inhibitory activity (GIA) in vitro. However, the importance of GIA in relation to protection from malaria has been unclear. In a case-control study nested within a longitudinally followed population in Tanzania, plasma samples collected at baseline from 171 individuals (55 cases and 116 age-matched controls) were assayed for GIA using three P. falciparum lines (3D7, K1, and W2mef) chosen based on their erythrocyte invasion phenotypes. Distribution of GIA differed between the lines, with most samples inhibiting the growth of 3D7 and K1 and enhancing the growth of W2mef. GIA to 3D7 was associated with a reduced risk of malaria within 40 weeks of follow-up (odds ratio, 0.45; 95% confidence interval [CI], 0.21 to 0.96; P = 0.04), whereas GIA to K1 and W2mef was not. These results show that GIA, as well as its association with protection from malaria, is dependent on the P. falciparum line and can be explained by differences in erythrocyte invasion phenotypes between parasite lines. Our study contributes knowledge on the biological importance of growth inhibition and the potential influence of P. falciparum erythrocyte invasion phenotypic differences on its relationship to protective immunity against malaria.
Collapse
|
113
|
Identification of a specific region of Plasmodium falciparum EBL-1 that binds to host receptor glycophorin B and inhibits merozoite invasion in human red blood cells. Mol Biochem Parasitol 2012; 183:23-31. [PMID: 22273481 DOI: 10.1016/j.molbiopara.2012.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 11/22/2022]
Abstract
The malaria parasite Plasmodium falciparum invades human erythrocytes through multiple pathways utilizing several ligand-receptor interactions. These interactions are broadly classified in two groups according to their dependency on sialic acid residues. Here, we focus on the sialic acid-dependent pathway by using purified glycophorins and red blood cells (RBCs) to screen a cDNA phage display library derived from P. falciparum FCR3 strain, a sialic acid-dependent strain. This screen identified several parasite proteins including the erythrocyte-binding ligand-1, EBL-1. The phage cDNA insert encoded the 69-amino acid peptide, termed F2i, which is located within the F2 region of the DBL domain, designated here as D2, of EBL-1. Recombinant D2 and F2i polypeptides bound to purified glycophorins and RBCs, and the F2i peptide was found to interfere with binding of D2 domain to its receptor. Both D2 and F2i polypeptides bound to trypsin-treated but not neuraminidase or chymotrypsin-treated erythrocytes, consistent with known glycophorin B resistance to trypsin, and neither the D2 nor F2i polypeptide bound to glycophorin B-deficient erythrocytes. Importantly, purified D2 and F2i polypeptides partially inhibited merozoite reinvasion in human erythrocytes. Our results show that the host erythrocyte receptor glycophorin B directly interacts with the DBL domain of parasite EBL-1, and the core binding site is contained within the 69 amino acid F2i region (residues 601-669) of the DBL domain. Together, these findings suggest that a recombinant F2i peptide with stabilized structure could provide a protective function at blood stage infection and represents a valuable addition to a multi-subunit vaccine against malaria.
Collapse
|
114
|
Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA. Targeting sialic acid dependent and independent pathways of invasion in Plasmodium falciparum. PLoS One 2012; 7:e30251. [PMID: 22253925 PMCID: PMC3257272 DOI: 10.1371/journal.pone.0030251] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/16/2011] [Indexed: 02/04/2023] Open
Abstract
The pathology of malaria is a consequence of the parasitaemia which develops through the cyclical asexual replication of parasites in a patient's red blood cells. Multiple parasite ligand-erythrocyte receptor interactions must occur for successful Plasmodium invasion of the human red cell. Two major malaria ligand families have been implicated in these variable ligand-receptor interactions used by Plasmodium falciparum to invade human red cells: the micronemal proteins from the Erythrocyte Binding Ligands (EBL) family and the rhoptry proteins from the Reticulocyte binding Homolog (PfRH) family. Ligands from the EBL family largely govern the sialic acid (SA) dependent pathways of invasion and the RH family ligands (except for RH1) mediate SA independent invasion. In an attempt to dissect out the invasion inhibitory effects of antibodies against ligands from both pathways, we have used EBA-175 and RH5 as model members of each pathway. Mice were immunized with either region II of EBA-175 produced in Pichia pastoris or full-length RH5 produced by the wheat germ cell-free system, or a combination of the two antigens to look for synergistic inhibitory effects of the induced antibodies. Sera obtained from these immunizations were tested for native antigen recognition and for efficacy in invasion inhibition assays. Results obtained show promise for the potential use of such hybrid vaccines to induce antibodies that can block multiple parasite ligand-red cell receptor interactions and thus inhibit parasite invasion.
Collapse
Affiliation(s)
- Rosalynn Louise Ord
- Department of Blood-Borne Parasites, New York Blood Center, New York, New York, United States of America
| | - Marilis Rodriguez
- Department of Blood-Borne Parasites, New York Blood Center, New York, New York, United States of America
| | - Tsutomu Yamasaki
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Satoru Takeo
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | - Takafumi Tsuboi
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
- Venture Business Laboratory, Ehime University, Matsuyama, Ehime, Japan
- Ehime Proteo-Medicine Research Center, Ehime University, Toon, Ehime, Japan
| | - Cheryl A. Lobo
- Department of Blood-Borne Parasites, New York Blood Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
115
|
A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine 2012; 30:637-46. [DOI: 10.1016/j.vaccine.2011.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/27/2011] [Accepted: 11/03/2011] [Indexed: 11/23/2022]
|
116
|
Tham WH, Healer J, Cowman AF. Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends Parasitol 2011; 28:23-30. [PMID: 22178537 DOI: 10.1016/j.pt.2011.10.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022]
Abstract
The global agenda for malaria eradication would benefit from development of a highly efficacious vaccine that protects against disease and interrupts transmission of Plasmodium falciparum. It is likely that such a vaccine will be multi-component, with antigens from different stages of the parasite life cycle. In this review, inclusion of blood stage antigens in such a vaccine is discussed. Erythrocyte binding-like (EBL) and P. falciparum reticulocyte binding-like (PfRh) proteins are reviewed with respect to their function in erythrocyte invasion, their role in eliciting antibodies contributing to protective immunity and reduction of invasion, leading subsequently to inhibition of parasite multiplication.
Collapse
Affiliation(s)
- Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|
117
|
Kuss C, Gan CS, Gunalan K, Bozdech Z, Sze SK, Preiser PR. Quantitative proteomics reveals new insights into erythrocyte invasion by Plasmodium falciparum. Mol Cell Proteomics 2011; 11:M111.010645. [PMID: 22023809 DOI: 10.1074/mcp.m111.010645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Differential expression of ligands in the human malaria parasite Plasmodium falciparum enables it to recognize different receptors on the erythrocyte surface, thereby providing alternative invasion pathways. Switching of invasion from using sialated to nonsialated erythrocyte receptors has been linked to the transcriptional activation of a single parasite ligand. We have used quantitative proteomics to show that in addition to this single known change, there are a significant number of changes in the expression of merozoite proteins that are regulated independent of transcription during invasion pathway switching. These results demonstrate a so far unrecognized mechanism by which the malaria parasite is able to adapt to variations in the host cell environment by post-transcriptional regulation.
Collapse
Affiliation(s)
- Claudia Kuss
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | | | |
Collapse
|
118
|
Discovery of GAMA, a Plasmodium falciparum merozoite micronemal protein, as a novel blood-stage vaccine candidate antigen. Infect Immun 2011; 79:4523-32. [PMID: 21896773 DOI: 10.1128/iai.05412-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the solutions for reducing the global mortality and morbidity due to malaria is multivalent vaccines comprising antigens of several life cycle stages of the malarial parasite. Hence, there is a need for supplementing the current set of malaria vaccine candidate antigens. Here, we aimed to characterize glycosylphosphatidylinositol (GPI)-anchored micronemal antigen (GAMA) encoded by the PF08_0008 gene in Plasmodium falciparum. Antibodies were raised against recombinant GAMA synthesized by using a wheat germ cell-free system. Immunoelectron microscopy demonstrated for the first time that GAMA is a microneme protein of the merozoite. Erythrocyte binding assays revealed that GAMA possesses an erythrocyte binding epitope in the C-terminal region and it binds a nonsialylated protein receptor on human erythrocytes. Growth inhibition assays revealed that anti-GAMA antibodies can inhibit P. falciparum invasion in a dose-dependent manner and GAMA plays a role in the sialic acid (SA)-independent invasion pathway. Anti-GAMA antibodies in combination with anti-erythrocyte binding antigen 175 exhibited a significantly higher level of invasion inhibition, supporting the rationale that targeting of both SA-dependent and SA-independent ligands/pathways is better than targeting either of them alone. Human sera collected from areas of malaria endemicity in Mali and Thailand recognized GAMA. Since GAMA in P. falciparum is refractory to gene knockout attempts, it is essential to parasite invasion. Overall, our study indicates that GAMA is a novel blood-stage vaccine candidate antigen.
Collapse
|
119
|
Chen L, Lopaticki S, Riglar DT, Dekiwadia C, Uboldi AD, Tham WH, O'Neill MT, Richard D, Baum J, Ralph SA, Cowman AF. An EGF-like protein forms a complex with PfRh5 and is required for invasion of human erythrocytes by Plasmodium falciparum. PLoS Pathog 2011; 7:e1002199. [PMID: 21909261 PMCID: PMC3164636 DOI: 10.1371/journal.ppat.1002199] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/24/2011] [Indexed: 11/28/2022] Open
Abstract
Invasion of erythrocytes by Plasmodium falciparum involves a complex cascade of protein-protein interactions between parasite ligands and host receptors. The reticulocyte binding-like homologue (PfRh) protein family is involved in binding to and initiating entry of the invasive merozoite into erythrocytes. An important member of this family is PfRh5. Using ion-exchange chromatography, immunoprecipitation and mass spectroscopy, we have identified a novel cysteine-rich protein we have called P. falciparumRh5 interacting protein (PfRipr) (PFC1045c), which forms a complex with PfRh5 in merozoites. Mature PfRipr has a molecular weight of 123 kDa with 10 epidermal growth factor-like domains and 87 cysteine residues distributed along the protein. In mature schizont stages this protein is processed into two polypeptides that associate and form a complex with PfRh5. The PfRipr protein localises to the apical end of the merozoites in micronemes whilst PfRh5 is contained within rhoptries and both are released during invasion when they form a complex that is shed into the culture supernatant. Antibodies to PfRipr1 potently inhibit merozoite attachment and invasion into human red blood cells consistent with this complex playing an essential role in this process. The malaria parasite invades red blood cells by binding to proteins on the surface of this host cell. A family of proteins called P. falciparum reticulocyte binding-like homologue (PfRh) proteins are important for recognition of the red blood cell and activation of the invasion process. An important member of the PfRh family is PfRh5. We have identified a novel cysteine-rich protein we have called P. falciparumRh5 interacting protein (PfRipr), which forms a complex with PfRh5 in merozoites. PfRipr has 10 epidermal growth factor-like domains and is expressed in mature schizont stages where it is processed into two polypeptides that associate and form a complex with PfRh5. The PfRipr protein localises to the apical end of the merozoites in micronemes whilst PfRh5 is contained within rhoptries and both are released during invasion when they form a complex that is released into the culture supernatant. Antibodies to PfRipr1 can potently inhibit merozoite attachment and invasion into human red blood cells consistent with this complex playing an essential role in this process.
Collapse
Affiliation(s)
- Lin Chen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - David T. Riglar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Chaitali Dekiwadia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Alex D. Uboldi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Matthew T. O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Dave Richard
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jake Baum
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
120
|
|
121
|
Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 2011; 108:13275-80. [PMID: 21788485 DOI: 10.1073/pnas.1110303108] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The commitment of Plasmodium merozoites to invade red blood cells (RBCs) is marked by the formation of a junction between the merozoite and the RBC and the coordinated induction of the parasitophorous vacuole. Despite its importance, the molecular events underlying the parasite's commitment to invasion are not well understood. Here we show that the interaction of two parasite proteins, RON2 and AMA1, known to be critical for invasion, is essential to trigger junction formation. Using antibodies (Abs) that bind near the hydrophobic pocket of AMA1 and AMA1 mutated in the pocket, we identified RON2's binding site on AMA1. Abs specific for the AMA1 pocket blocked junction formation and the induction of the parasitophorous vacuole. We also identified the critical residues in the RON2 peptide (previously shown to bind AMA1) that are required for binding to the AMA1 pocket, namely, two conserved, disulfide-linked cysteines. The RON2 peptide blocked junction formation but, unlike the AMA1-specific Ab, did not block formation of the parasitophorous vacuole, indicating that formation of the junction and parasitophorous vacuole are molecularly distinct steps in the invasion process. Collectively, these results identify the binding of RON2 to the hydrophobic pocket of AMA1 as the step that commits Plasmodium merozoites to RBC invasion and point to RON2 as a potential vaccine candidate.
Collapse
|
122
|
Mu J, Seydel KB, Bates A, Su XZ. Recent Progress in Functional Genomic Research in Plasmodium falciparum. Curr Genomics 2011; 11:279-86. [PMID: 21119892 PMCID: PMC2930667 DOI: 10.2174/138920210791233081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/22/2010] [Accepted: 03/09/2010] [Indexed: 02/02/2023] Open
Abstract
With the completion and near completion of many malaria parasite genome-sequencing projects, efforts are now being directed to a better understanding of gene functions and to the discovery of vaccine and drug targets. Inter- and intraspecies comparisons of the parasite genomes will provide invaluable insights into parasite evolution, virulence, drug resistance, and immune invasion. Genome-wide searches for loci under various selection pressures may lead to discovery of genes conferring drug resistance or encoding for protective antigens. In addition, the Plasmodium falciparum genome sequence provides the basis for the development of various microarrays to monitor gene expression and to detect nucleotide substitution and deletion/amplification. Genome-wide profiling of the parasite proteome, chromatin modification, and nucleosome position also depend on availability of the parasite genome. In this brief review, we will highlight some recent advances and studies in characterizing gene function and related phenotype in P. falciparum that were made possible by the genome sequence, particularly the development of a genome-wide diversity map and various high-throughput genotyping methods for genome-wide association studies (GWAS).
Collapse
Affiliation(s)
- Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
123
|
Grüber A, Gunalan K, Ramalingam JK, Manimekalai MSS, Grüber G, Preiser PR. Structural characterization of the erythrocyte binding domain of the reticulocyte binding protein homologue family of Plasmodium yoelii. Infect Immun 2011; 79:2880-8. [PMID: 21482683 PMCID: PMC3191949 DOI: 10.1128/iai.01326-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/28/2011] [Indexed: 11/20/2022] Open
Abstract
Invasion of the host cell by the malaria parasite is a key step for parasite survival and the only stage of its life cycle where the parasite is extracellular, and it is therefore a target for an antimalaria intervention strategy. Multiple members of the reticulocyte binding protein homologues (RH) family are found in all plasmodia and have been shown to bind to host red blood cells directly. In the study described here, we delineated the erythrocyte binding domain (EBD) of one member of the RH family, termed Py235, from Plasmodium yoelii. Moreover, we have obtained the low-resolution structure of the EBD using small-angle X-ray scattering. Comparison of the EDB structure to other characterized Plasmodium receptor binding domains suggests that there may be an overall structural conservation. These findings may help in developing new approaches to target receptor ligand interactions mediated by parasite proteins.
Collapse
Affiliation(s)
- Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Karthigayan Gunalan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jeya Kumar Ramalingam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
124
|
Plasmodium falciparum uses a key functional site in complement receptor type-1 for invasion of human erythrocytes. Blood 2011; 118:1923-33. [PMID: 21685372 DOI: 10.1182/blood-2011-03-341305] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum adhesin PfRh4 binds to complement receptor type-1 (CR1) on human erythrocytes and mediates a glycophorin-independent invasion pathway. CR1 is a complement regulator and immune-adherence receptor on erythrocytes required for shuttling of C3b/C4b-opsonized particles to liver and spleen for phagocytosis. Using recombinant CR1 constructs, we mapped the recognition site for PfRh4 to complement control protein modules 1 to 3 (CCP1-3) at the membrane-distal amino terminus of CR1. This region of CR1 binds to C4b and C3b and accelerates decay of both classic pathway and alternative pathway C3 and C5 convertases. CCP1-3 competed for PfRh4 binding to erythroid CR1 and inhibited the PfRh4-CR1 invasion pathways across a wide range of P falciparum strains. PfRh4 did not bind significantly to other CR1 constructs, including CCP15-17, which is 85% identical to CCP1-3. PfRh4 binding to CR1 did not affect its C3b/C4b binding capability, and we show evidence for a ternary complex between CCP1-3, C4b, and PfRh4. PfRh4 binding specifically inhibited CR1's convertase decay-accelerating activity, whereas there was no effect on factor H-mediated decay-accelerating activity. These results increase our understanding of the functional implications of CR1 engagement with PfRh4 and highlight the interplay between complement regulation and infection.
Collapse
|
125
|
Plasmodium falciparum merozoite invasion is inhibited by antibodies that target the PfRh2a and b binding domains. PLoS Pathog 2011; 7:e1002075. [PMID: 21698217 PMCID: PMC3116812 DOI: 10.1371/journal.ppat.1002075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 04/09/2011] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum, the causative agent of the most severe form of malaria in humans invades erythrocytes using multiple ligand-receptor interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are important for entry of the invasive merozoite form of the parasite into red blood cells. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show they undergo a complex series of proteolytic cleavage events before and during merozoite invasion. We show that PfRh2a undergoes a cleavage event in the transmembrane region during invasion consistent with activity of the membrane associated PfROM4 protease that would result in release of the ectodomain into the supernatant. We also show that PfRh2a and PfRh2b bind to red blood cells and have defined the erythrocyte-binding domain to a 15 kDa region at the N-terminus of each protein. Antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain. This region of PfRh2a and PfRh2b has potential in a combination vaccine with other erythrocyte binding ligands for induction of antibodies that would block a broad range of invasion pathways for P. falciparum into human erythrocytes. The causative agent of the most severe form of malaria in humans is the protozoan parasite Plasmodium falciparum. These parasites are carried by a mosquito that infects humans during feeding resulting in injection of sporozoite forms that infect and develop in the liver into the merozoite stage. The merozoites are released into the blood stream where they invade erythrocytes in which they can grow and divide. Invasion of the red blood cell by P. falciparum merozoites involves a cascade of protein-protein interactions. The P. falciparum reticulocyte binding-like homologue proteins (PfRh or PfRBL) are an important protein family involved in binding to specific receptors on the red blood cell. We have analysed two members of this protein family, PfRh2a and PfRh2b, and show that they undergo a complex series of cleavage events before and during merozoite invasion. We have defined the region of these ligands that bind red blood cells and show that antibodies to this receptor-binding region block merozoite invasion demonstrating the important function of this domain.
Collapse
|
126
|
Differences in erythrocyte receptor specificity of different parts of the Plasmodium falciparum reticulocyte binding protein homologue 2a. Infect Immun 2011; 79:3421-30. [PMID: 21628513 DOI: 10.1128/iai.00201-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum reticulocyte-binding-like protein homologue (RH) and erythrocyte binding-like (EBL) protein families play important roles during invasion, though their exact roles are not clear. Both EBL and RH proteins are thought to directly bind different receptors on the surface of the erythrocyte, and the binding properties for a number of EBLs and RHs have been described. While P. falciparum RH1 (PfRH1) and PfRH4 have been shown to act directly in two alternative invasion pathways used by merozoites, the functions of PfRH2a and PfRH2b during invasion are less defined. Here, using monoclonal antibodies raised against a unique region of PfRH2a, we show that PfRH2a moves from the rhoptry neck to the moving junction during merozoite invasion. The movement of PfRH2a to the junction is independent of the invasion pathway used by the merozoite, suggesting an additional function of the protein that is independent of receptor binding. We further show that PfRH2a is processed both in the schizont and during invasion, resulting in proteins with different erythrocyte binding properties. Our findings suggest that PfRH2a and, most likely, the other members of the RH family, depending on their processing stage, can engage different receptors at different stages of the invasion process.
Collapse
|
127
|
Bapat D, Huang X, Gunalan K, Preiser PR. Changes in parasite virulence induced by the disruption of a single member of the 235 kDa rhoptry protein multigene family of Plasmodium yoelii. PLoS One 2011; 6:e20170. [PMID: 21625465 PMCID: PMC3098881 DOI: 10.1371/journal.pone.0020170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 04/26/2011] [Indexed: 11/18/2022] Open
Abstract
Invasion of the erythrocyte by the merozoites of the malaria parasite is a
complex process involving a range of receptor-ligand interactions. Two protein
families termed Erythrocyte Binding Like (EBL) proteins and Reticulocyte Binding
Protein Homologues (RH) play an important role in host cell recognition by the
merozoite. In the rodent malaria parasite, Plasmodium yoelii,
the 235 kDa rhoptry proteins (Py235) are coded for by a multigene family and are
members of the RH. In P. yoelii Py235 as well as a single
member of EBL have been shown to be key mediators of virulence enabling the
parasite to invade a wider range of host erythrocytes. One member of Py235,
PY01365 is most abundantly transcribed in parasite
populations and the protein specifically binds to erythrocytes and is recognized
by the protective monoclonal antibody 25.77, suggesting a key role of this
particular member in virulence. Recent studies have indicated that overall
levels of Py235 expression are essential for parasite virulence. Here we show
that disruption of PY01365 in the virulent YM line directly
impacts parasite virulence. Furthermore the disruption of
PY01365 leads to a reduction in the number of schizonts
that express members of Py235 that react specifically with the mcAb 25.77.
Erythrocyte binding assays show reduced binding of Py235 to red blood cells in
the PY01365 knockout parasite as compared to YM. While our
results identify PY01365 as a mediator of parasite virulence,
they also confirm that other members of Py235 are able to substitute for
PY01365.
Collapse
Affiliation(s)
- Devaki Bapat
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
| | - Ximei Huang
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
| | - Karthigayan Gunalan
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University,
Singapore, Singapore
- * E-mail:
| |
Collapse
|
128
|
Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe 2011; 9:9-20. [PMID: 21238943 DOI: 10.1016/j.chom.2010.12.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/01/2010] [Accepted: 12/10/2010] [Indexed: 11/21/2022]
Abstract
Erythrocyte invasion by the merozoite is an obligatory stage in Plasmodium parasite infection and essential to malaria disease progression. Attempts to study this process have been hindered by the poor invasion synchrony of merozoites from the only in vitro culture-adapted human malaria parasite, Plasmodium falciparum. Using fluorescence, three-dimensional structured illumination, and immunoelectron microscopy of filtered merozoites, we analyze cellular and molecular events underlying each discrete step of invasion. Monitoring the dynamics of these events revealed that commitment to the process is mediated through merozoite attachment to the erythrocyte, triggering all subsequent invasion events, which then proceed without obvious checkpoints. Instead, coordination of the invasion process involves formation of the merozoite-erythrocyte tight junction, which acts as a nexus for rhoptry secretion, surface-protein shedding, and actomyosin motor activation. The ability to break down each molecular step allows us to propose a comprehensive model for the molecular basis of parasite invasion.
Collapse
|
129
|
Evidence for erythrocyte-binding antigen 175 as a component of a ligand-blocking blood-stage malaria vaccine. Proc Natl Acad Sci U S A 2011; 108:7553-8. [PMID: 21502513 DOI: 10.1073/pnas.1104050108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ligands that pathogens use to invade their target cells have often proven to be good targets for vaccine development. However, Plasmodium falciparum has redundant ligands that mediate invasion of erythrocytes. The first requirement for the development of a successful ligand-blocking malaria vaccine is the demonstration that antibodies induced to each ligand can block the erythrocyte invasion of parasites with polymorphic sequences. Because of P. falciparum's redundancy in erythrocyte invasion, each ligand needs to be studied under artificial conditions in which parasite invasion is restricted in its use of alternative pathways. Here we investigate the role of erythrocyte-binding antigen 175 (EBA-175), a parasite ligand that binds to sialic acid on glycophorin A, in the invasion of erythrocytes by 10 P. falciparum clones under conditions in which invasion is partially limited to the EBA-175-glycophorin A pathway, using chymotrypsin-treated erythrocytes. We show that the ability to invade erythrocytes for both sialic acid-independent and sialic acid-dependent pathways requires the EBA-175-glycophorin A pathway for erythrocyte invasion. Importantly, antibodies against region II of EBA-175 from the 3D7 clone blocked invasion of chymotrypsin-treated erythrocytes by >50% by all parasite clones studied, including those with multiple different mutations described in the literature. The one exception was FCR3, which had a similar sequence to 3D7 but only 30% inhibition of invasion of chymotrypsin-treated erythrocytes, indicating alternative pathways for invasion of chymotrypsin-treated erythrocytes. Our findings suggest that antibodies to region II of EBA-175, as one component of a ligand-blocking malaria vaccine, are largely unaffected by polymorphism in EBA-175.
Collapse
|
130
|
Comeaux CA, Coleman BI, Bei AK, Whitehurst N, Duraisingh MT. Functional analysis of epigenetic regulation of tandem RhopH1/clag genes reveals a role in Plasmodium falciparum growth. Mol Microbiol 2011; 80:378-90. [PMID: 21320181 DOI: 10.1111/j.1365-2958.2011.07572.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Plasmodium RhopH complex is a high molecular weight antigenic complex consisting of three subunits - RhopH1/clag, RhopH2 and RhopH3 - located in the rhoptry secretory organelles of the invasive merozoite. In Plasmodium falciparum RhopH1/clag is encoded by one of five clag genes. Two highly similar paralogous genes, clag 3.1 and clag 3.2, are mutually exclusively expressed. Here we show clonal switching from the clag 3.2 to the clag 3.1 paralogue in vitro. Chromatin immunoprecitation studies suggest that silencing of either clag 3 paralogue is associated with the enrichment of specific histone modifications associated with heterochromatin. We were able to disrupt the clag 3.2 gene, with a drug cassette inserted into the clag 3.2 locus being readily silenced in a position-dependent and sequence-independent manner. Activation of this drug cassette by drug selection results in parasites with the clag 3.1 locus silenced and lack full-length clag 3.1 or 3.2 transcripts. These clag 3-null parasites demonstrate a significant growth inhibition compared with wild-type parasites, providing the first genetic evidence for a role for these proteins in efficient parasite proliferation. Epigenetic regulation of these chromosomally proximal members of a multigene family provides a mechanism for both immune evasion and functional diversification.
Collapse
Affiliation(s)
- Christy A Comeaux
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
131
|
Crowley VM, Rovira-Graells N, Ribas de Pouplana L, Cortés A. Heterochromatin formation in bistable chromatin domains controls the epigenetic repression of clonally variant Plasmodium falciparum genes linked to erythrocyte invasion. Mol Microbiol 2011; 80:391-406. [PMID: 21306446 DOI: 10.1111/j.1365-2958.2011.07574.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clonally variant gene expression is a common survival strategy used by many pathogens, including the malaria parasite Plasmodium falciparum. Among the genes that show variant expression in this parasite are several members of small gene families linked to erythrocyte invasion, including the clag and eba families. The active or repressed state of these genes is clonally transmitted by epigenetic mechanisms. Here we characterized the promoters of clag3.1, clag3.2 and eba-140, and compared nuclease accessibility and post-translational histone modifications between their active and repressed states. Activity of these promoters in an episomal context is similar between parasite subclones characterized by different patterns of expression of the endogenous genes. Variant expression is controlled by the euchromatic or heterochromatic state of bistable chromatin domains. Repression is mediated by H3K9me3-based heterochromatin, whereas the active state is characterized by H3K9ac. These marks are maintained throughout the asexual blood cycle to transmit the epigenetic memory. Furthermore, eba-140 is organized in two distinct chromatin domains, probably separated by a barrier insulator located within its ORF. The 5' chromatin domain controls expression of the gene, whereas the 3' domain shares the chromatin conformation with the upstream region of the neighbouring phista family gene, which also shows variant expression.
Collapse
Affiliation(s)
- Valerie M Crowley
- Institute for Research in Biomedicine (IRB), 08028 Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
132
|
Plasmodium falciparum reticulocyte binding-like homologue protein 2 (PfRH2) is a key adhesive molecule involved in erythrocyte invasion. PLoS One 2011; 6:e17102. [PMID: 21386888 PMCID: PMC3046117 DOI: 10.1371/journal.pone.0017102] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/20/2011] [Indexed: 11/19/2022] Open
Abstract
Erythrocyte invasion by Plasmodium merozoites is a complex, multistep process that is mediated by a number of parasite ligand-erythrocyte receptor interactions. One such family of parasite ligands includes the P. falciparum reticulocyte binding homologue (PfRH) proteins that are homologous with the P. vivax reticulocyte binding proteins and have been shown to play a role in erythrocyte invasion. There are five functional PfRH proteins of which only PfRH2a/2b have not yet been demonstrated to bind erythrocytes. In this study, we demonstrated that native PfRH2a/2b is processed near the N-terminus yielding fragments of 220 kDa and 80 kDa that exhibit differential erythrocyte binding specificities. The erythrocyte binding specificity of the 220 kDa processed fragment of native PfRH2a/2b was sialic acid-independent, trypsin resistant and chymotrypsin sensitive. This specific binding phenotype is consistent with previous studies that disrupted the PfRH2a/2b genes and demonstrated that PfRH2b is involved in a sialic acid independent, trypsin resistant, chymotrypsin sensitive invasion pathway. Interestingly, we found that the smaller 80 kDa PfRH2a/2b fragment is processed from the larger 220 kDa fragment and binds erythrocytes in a sialic acid dependent, trypsin resistant and chymotrypsin sensitive manner. Thus, the two processed fragments of PfRH2a/2b differed with respect to their dependence on sialic acids for erythrocyte binding. Further, we mapped the erythrocyte binding domain of PfRH2a/2b to a conserved 40 kDa N-terminal region (rPfRH240) in the ectodomain that is common to both PfRH2a and PfRH2b. We demonstrated that recombinant rPfRH240 bound human erythrocytes with the same specificity as the native 220 kDa processed protein. Moreover, antibodies generated against rPfRH240 blocked erythrocyte invasion by P. falciparum through a sialic acid independent pathway. PfRH2a/2b thus plays a key role in erythrocyte invasion and its conserved receptor-binding domain deserves attention as a promising candidate for inclusion in a blood-stage malaria vaccine.
Collapse
|
133
|
Targeted disruption of py235ebp-1: invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein. PLoS Pathog 2011; 7:e1001288. [PMID: 21379566 PMCID: PMC3040676 DOI: 10.1371/journal.ppat.1001288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/10/2011] [Indexed: 11/19/2022] Open
Abstract
Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional redundancy at the protein level gives the parasite phenotypic plasticity in the absence of differences in gene expression.
Collapse
|
134
|
DeSimone TM, Jennings CV, Bei AK, Comeaux C, Coleman BI, Refour P, Triglia T, Stubbs J, Cowman AF, Duraisingh MT. Cooperativity between Plasmodium falciparum adhesive proteins for invasion into erythrocytes. Mol Microbiol 2010; 72:578-89. [PMID: 19400777 DOI: 10.1111/j.1365-2958.2009.06667.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum is the most virulent of the Plasmodium species infective to humans. Different P. falciparum strains vary in their dependence on erythrocyte receptors for invasion and their ability to switch in their utilization of different receptor repertoires. Members of the reticulocyte-binding protein-like (RBL) family of invasion ligands are postulated to play a central role in defining ligand-receptor interactions, known as invasion pathways. Here we report the targeted gene disruption of PfRh2b and PfRh2a in W2mef, a parasite strain that is heavily dependent on sialic-acid receptors for invasion, and show that the PfRh2b ligand is functional in this parasite background. Like the parental line, parasites lacking either PfRh2a or PfR2b can switch to a sialic acid-independent invasion pathway. However, both of the switched lines exhibit a reduced efficiency for invasion into sialic acid-depleted cells, suggesting a role for both PfRh2b and PfRh2a in invasion via sialic acid-independent receptors. We also find a strong selective pressure for the reconstitution of PfRh2b expression at the expense of PfRh2a. Our results reveal the importance of genetic background in ligand-receptor usage by P. falciparum parasites, and suggest that the co-ordinate expression of PfRh2a, PfRh2b together mediate efficient sialic acid-independent erythrocyte invasion.
Collapse
|
135
|
Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun 2010; 79:1107-17. [PMID: 21149582 DOI: 10.1128/iai.01021-10] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plasmodium falciparum causes the most severe form of malaria in humans and invades erythrocytes using multiple ligand-receptor interactions. Two important protein families involved in erythrocyte binding are the erythrocyte binding-like (EBL) and the reticulocyte binding-like (RBL or P. falciparum Rh [PfRh]) proteins. We constructed P. falciparum lines lacking expression of EBL proteins by creating single and double knockouts of the corresponding genes for eba-175, eba-181, and eba-140 and show that the EBL and PfRh proteins function cooperatively, consistent with them playing a similar role in merozoite invasion. We provide evidence that PfRh and EBL proteins functionally interact, as loss of function of EBA-181 ablates the ability of PfRh2a/b protein antibodies to inhibit merozoite invasion. Additionally, loss of function of some ebl genes results in selection for increased transcription of the PfRh family. This provides a rational basis for considering PfRh and EBL proteins for use as a combination vaccine against P. falciparum. We immunized rabbits with combinations of PfRh and EBL proteins to test the ability of antibodies to block merozoite invasion in growth inhibition assays. A combination of EBA-175, PfRh2a/b, and PfRh4 recombinant proteins induced antibodies that potently blocked merozoite invasion. This validates the use of a combination of these ligands as a potential vaccine that would have broad activity against P. falciparum.
Collapse
|
136
|
Arévalo-Pinzón G, Curtidor H, Vanegas M, Vizcaíno C, Patarroyo MA, Patarroyo ME. Conserved high activity binding peptides from the Plasmodium falciparum Pf34 rhoptry protein inhibit merozoites in vitro invasion of red blood cells. Peptides 2010; 31:1987-94. [PMID: 20654670 DOI: 10.1016/j.peptides.2010.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/10/2010] [Accepted: 07/12/2010] [Indexed: 11/18/2022]
Abstract
Rhoptries are specialized secretory organelles found in all members of the genus Plasmodium whose proteins have been considered as promising vaccine candidates due to their involvement in cell invasion and the formation of the parasitophorous vacuole (PV). The Plasmodium falciparum Pf34 protein was recently identified as a rhoptry-neck protein located in detergent-resistant microdomains (DRMs) that is expressed in mature intraerythrocytic parasite stages, but its biological function is still unknown. Receptor-ligand assays carried out in this study found that peptides 36,051 ((101)DKKFSESLKAHMDHLKILNN(120)Y), 36,053 ((141)KKYIIKEIQNNKYLNKEKKS(160)), 36,055 ((181)WLESVNNIEEKSNILKNIKS(200)Y) and 36,056 ((201)QLLNNIASLNHTLSEEIKNI(220)Y), located in the central portion of Pf34, were found to establish protease-sensitive interactions of high affinity and specificity with receptors on the surface of red blood cell (RBCs). In vitro assays showed that Pf34 high activity binding peptides (HABPs) inhibit invasion of RBCs by P. falciparum merozoites, therefore suggesting that Pf34 could act as an adhesin during invasion and supporting the inclusion of Pf34 HABPs in further studies to develop antimalarial control methods.
Collapse
|
137
|
Reiling L, Richards JS, Fowkes FJI, Barry AE, Triglia T, Chokejindachai W, Michon P, Tavul L, Siba PM, Cowman AF, Mueller I, Beeson JG. Evidence that the erythrocyte invasion ligand PfRh2 is a target of protective immunity against Plasmodium falciparum malaria. THE JOURNAL OF IMMUNOLOGY 2010; 185:6157-67. [PMID: 20962255 DOI: 10.4049/jimmunol.1001555] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abs targeting blood-stage Ags of Plasmodium falciparum are important in acquired immunity to malaria, but major targets remain unclear. The P. falciparum reticulocyte-binding homologs (PfRh) are key ligands used by merozoites during invasion of erythrocytes. PfRh2a and PfRh2b are functionally important members of this family and may be targets of protective immunity, but their potential role in human immunity has not been examined. We expressed eight recombinant proteins covering the entire PfRh2 common region, as well as PfRh2a- and PfRh2b-specific regions. Abs were measured among a cohort of 206 Papua New Guinean children who were followed prospectively for 6 mo for reinfection and malaria. At baseline, Abs were associated with increasing age and active infection. High levels of IgG to all PfRh2 protein constructs were strongly associated with protection from symptomatic malaria and high-density parasitemia. The predominant IgG subclasses were IgG1 and IgG3, with little IgG2 and IgG4 detected. To further understand the significance of PfRh2 as an immune target, we analyzed PfRh2 sequences and found that polymorphisms are concentrated in an N-terminal region of the protein and seem to be under diversifying selection, suggesting immune pressure. Cluster analysis arranged the sequences into two main groups, suggesting that many of the haplotypes identified may be antigenically similar. These findings provide evidence suggesting that PfRh2 is an important target of protective immunity in humans and that Abs act by controlling blood-stage parasitemia and support its potential for vaccine development.
Collapse
Affiliation(s)
- Linda Reiling
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci U S A 2010; 107:17327-32. [PMID: 20855594 DOI: 10.1073/pnas.1008151107] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmodium falciparum is responsible for the most severe form of malaria disease in humans, causing more than 1 million deaths each year. As an obligate intracellular parasite, P. falciparum's ability to invade erythrocytes is essential for its survival within the human host. P. falciparum invades erythrocytes using multiple host receptor-parasite ligand interactions known as invasion pathways. Here we show that CR1 is the host erythrocyte receptor for PfRh4, a major P. falciparum ligand essential for sialic acid-independent invasion. PfRh4 and CR1 interact directly, with a K(d) of 2.9 μM. PfRh4 binding is strongly correlated with the CR1 level on the erythrocyte surface. Parasite invasion via sialic acid-independent pathways is reduced in low-CR1 erythrocytes due to limited availability of this receptor on the surface. Furthermore, soluble CR1 can competitively block binding of PfRh4 to the erythrocyte surface and specifically inhibit sialic acid-independent parasite invasion. These results demonstrate that CR1 is an erythrocyte receptor used by the parasite ligand PfRh4 for P. falciparum invasion.
Collapse
|
139
|
Spadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK, Finberg RW, Tsokos GC, Stoute JA. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. PLoS Pathog 2010; 6:e1000968. [PMID: 20585558 PMCID: PMC2887475 DOI: 10.1371/journal.ppat.1000968] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 05/26/2010] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of erythrocyte invasion are incompletely understood. P. falciparum depends heavily on sialic acid present on glycophorins to invade erythrocytes. However, a significant proportion of laboratory and field isolates are also able to invade erythrocytes in a sialic acid-independent manner. The identity of the erythrocyte sialic acid-independent receptor has been a mystery for decades. We report here that the complement receptor 1 (CR1) is a sialic acid-independent receptor for the invasion of erythrocytes by P. falciparum. We show that soluble CR1 (sCR1) as well as polyclonal and monoclonal antibodies against CR1 inhibit sialic acid-independent invasion in a variety of laboratory strains and wild isolates, and that merozoites interact directly with CR1 on the erythrocyte surface and with sCR1-coated microspheres. Also, the invasion of neuraminidase-treated erythrocytes correlates with the level of CR1 expression. Finally, both sialic acid-independent and dependent strains invade CR1 transgenic mouse erythrocytes preferentially over wild-type erythrocytes but invasion by the latter is more sensitive to neuraminidase. These results suggest that both sialic acid-dependent and independent strains interact with CR1 in the normal red cell during the invasion process. However, only sialic acid-independent strains can do so without the presence of glycophorin sialic acid. Our results close a longstanding and important gap in the understanding of the mechanism of erythrocyte invasion by P. falciparum that will eventually make possible the development of an effective blood stage vaccine. Plasmodium falciparum malaria is a blood parasite that lives for the most part inside red cells. It is responsible for the death of 1-2 million people every year. The mechanisms by which the parasite invades red cells are complex and not completely understood. For many years it has been known that proteins called glycophorins are used by the parasite to gain entry into the red cell. However, the existence of another protein that allows entry independent of glycophorins has been suspected for nearly as long. The identity of the alternative protein has been a mystery difficult to solve. In this article we present strong evidence that the alternative protein is the complement receptor 1. The complement receptor 1 is a well-studied protein that is known to be important in protecting red cells from attack by the host immune system as well as suspected of having other roles in the development of malaria complications. The recognition of the additional role of complement receptor 1 in red cell invasion will allow the definitive identification of malaria proteins that interact with it and that could be used in a future vaccine cocktail to block red cell invasion.
Collapse
Affiliation(s)
- Carmenza Spadafora
- Department of Medicine, the Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Cellular Injury, Division of Military Casualty Research, the Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología-AIP (INDICASAT-AIP), Ciudad del Saber, Clayton, Panamá
| | - Gordon A. Awandare
- Division of Malaria Vaccine Development, the Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Karen M. Kopydlowski
- Department of Parasitology, Division of Experimental Therapeutics, the Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jozsef Czege
- Biomedical Instrumentation Center, the Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - J. Kathleen Moch
- Department of Parasitology, Division of Experimental Therapeutics, the Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Robert W. Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - George C. Tsokos
- Department of Medicine, the Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Cellular Injury, Division of Military Casualty Research, the Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - José A. Stoute
- Department of Medicine, the Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Cellular Injury, Division of Military Casualty Research, the Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Department of Medicine, Division of Infectious Diseases and Epidemiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
140
|
Ogbunugafor CB, Pease JB, Turner PE. On the possible role of robustness in the evolution of infectious diseases. CHAOS (WOODBURY, N.Y.) 2010; 20:026108. [PMID: 20590337 PMCID: PMC2909313 DOI: 10.1063/1.3455189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/27/2010] [Indexed: 05/29/2023]
Abstract
Robustness describes the capacity for a biological system to remain canalized despite perturbation. Genetic robustness affords maintenance of phenotype despite mutational input, necessarily involving the role of epistasis. Environmental robustness is phenotypic constancy in the face of environmental variation, where epistasis may be uninvolved. Here we discuss genetic and environmental robustness, from the standpoint of infectious disease evolution, and suggest that robustness may be a unifying principle for understanding how different disease agents evolve. We focus especially on viruses with RNA genomes due to their importance in the evolution of emerging diseases and as model systems to test robustness theory. We present new data on adaptive constraints for a model RNA virus challenged to evolve in response to UV radiation. We also draw attention to other infectious disease systems where robustness theory may prove useful for bridging evolutionary biology and biomedicine, especially the evolution of antibiotic resistance in bacteria, immune evasion by influenza, and malaria parasite infections.
Collapse
Affiliation(s)
- C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
141
|
Culleton R, Kaneko O. Erythrocyte binding ligands in malaria parasites: intracellular trafficking and parasite virulence. Acta Trop 2010; 114:131-7. [PMID: 19913491 DOI: 10.1016/j.actatropica.2009.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/19/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
Abstract
The intracellular trafficking of an Erythrocyte Binding Like (EBL) ligand has recently been shown to dramatically affect the multiplication rate and virulence of the rodent malaria parasite Plasmodium yoelii yoelii. In this review, we describe the current understanding of the role of EBL and other erythrocyte binding ligands in erythrocyte invasion, and discuss the mechanisms by which they may control multiplication rates and virulence in malaria parasites.
Collapse
|
142
|
Persson KE. Erythrocyte invasion and functionally inhibitory antibodies in Plasmodium falciparum malaria. Acta Trop 2010; 114:138-43. [PMID: 19481996 DOI: 10.1016/j.actatropica.2009.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 05/19/2009] [Accepted: 05/22/2009] [Indexed: 11/26/2022]
Abstract
Malaria is a disease that kills several million people every year. P. falciparum merozoites invade new erythrocytes every 48 h, causing fever, anemia and cerebral malaria. Effective immunity against malaria develops slowly and only after repeated exposure. Antibodies are an important part of this immunity. However, the antigens that mediate immunity by inducing functionally imperative antibodies have not yet been identified. This review gives an overview of the erythrocyte invasion process, which has been described to include several different antigens. Invasion inhibitory antibodies can inhibit merozoite penetration of new erythrocytes, and different methods for measurement of the presence of functionally important antibodies have been employed. ELISA, Invasion inhibition assays and ADCI are some of the methods discussed.
Collapse
|
143
|
Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum. EUKARYOTIC CELL 2010; 9:1138-49. [PMID: 20453074 DOI: 10.1128/ec.00036-10] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malaria is a major public health problem in many developing countries, with the malignant tertian parasite Plasmodium falciparum causing the most malaria-associated mortality. Extensive research, especially with the advancement of genomics and transfection tools, has highlighted the fundamental importance of chromatin-mediated gene regulation in the developmental program of this early-branching eukaryote. The Plasmodium parasite genomes reveal the existence of both canonical and variant histones that make up the nucleosomes, as well as a full collection of conserved enzymes for chromatin remodeling and histone posttranslational modifications (PTMs). Recent studies have identified a wide array of both conserved and novel histone PTMs in P. falciparum, indicating the presence of a complex and divergent "histone code." Genome-wide analysis has begun to decipher the nucleosome landscape and histone modifications associated with the dynamic organization of chromatin structures during the parasite's life cycle. Focused studies on malaria-specific phenomena such as antigenic variation and red cell invasion pathways shed further light on the involvement of epigenetic mechanisms in these processes. Here we review our current understanding of chromatin-mediated gene regulation in malaria parasites, with specific reference to exemplar studies on antigenic variation and host cell invasion.
Collapse
|
144
|
Sialic acids: key determinants for invasion by the Apicomplexa. Int J Parasitol 2010; 40:1145-54. [PMID: 20430033 DOI: 10.1016/j.ijpara.2010.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/17/2010] [Accepted: 04/19/2010] [Indexed: 11/20/2022]
Abstract
Sialic acids are ubiquitously found on the surface of all vertebrate cells at the extremities of glycan chains and widely exploited by viruses and bacteria to enter host cells. Carbohydrate-bearing receptors are equally important for host cell invasion by the obligate intracellular protozoan parasites of the phylum Apicomplexa. Host cell entry is an active process relying crucially on proteins that engage with receptors on the host cell surface and promote adhesion and internalisation. Assembly into complexes, proteolytic processing and oligomerization are important requirements for the functionality of these adhesins. The combination of adhesive proteins with varying stringency in specificity confers some flexibility to the parasite in face of receptor heterogeneity and immune pressure. Sialic acids are now recognised to critically contribute to selective host cell recognition by various species of the phylum.
Collapse
|
145
|
Proellocks NI, Coppel RL, Waller KL. Dissecting the apicomplexan rhoptry neck proteins. Trends Parasitol 2010; 26:297-304. [PMID: 20347614 DOI: 10.1016/j.pt.2010.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 11/13/2009] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
Abstract
Apicomplexan parasites possess specialized secretory organelles (rhoptries and micronemes) that release their contents during host cell invasion. Although the rhoptries were once thought to be merely a bulbous 'protein reservoir' connected to an anterior neck region, the localization of a protein specifically to the neck suggested that this region was more than just a duct. Recent studies have shown that the rhoptry neck sub-compartment possesses a distinct protein repertoire. Some of these proteins share common features, including conservation across the phylum and involvement in tight-junction formation. A sub-group of rhoptry neck proteins, the RONs, their association with the microneme protein apical membrane antigen AMA1, and their involvement in invasion are discussed.
Collapse
|
146
|
Grüber A, Manimekalai MSS, Balakrishna AM, Hunke C, Jeyakanthan J, Preiser PR, Grüber G. Structural determination of functional units of the nucleotide binding domain (NBD94) of the reticulocyte binding protein Py235 of Plasmodium yoelii. PLoS One 2010; 5:e9146. [PMID: 20161776 PMCID: PMC2818847 DOI: 10.1371/journal.pone.0009146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Invasion of the red blood cells (RBC) by the merozoite of malaria parasites involves a large number of receptor ligand interactions. The reticulocyte binding protein homologue family (RH) plays an important role in erythrocyte recognition as well as virulence. Recently, it has been shown that members of RH in addition to receptor binding may also have a role as ATP/ADP sensor. A 94 kDa region named Nucleotide-Binding Domain 94 (NBD94) of Plasmodium yoelii YM, representative of the putative nucleotide binding region of RH, has been demonstrated to bind ATP and ADP selectively. Binding of ATP or ADP induced nucleotide-dependent structural changes in the C-terminal hinge-region of NBD94, and directly impacted on the RBC binding ability of RH. METHODOLOGY/PRINCIPAL FINDINGS In order to find the smallest structural unit, able to bind nucleotides, and its coupling module, the hinge region, three truncated domains of NBD94 have been generated, termed NBD94(444-547), NBD94(566-663) and NBD94(674-793), respectively. Using fluorescence correlation spectroscopy NBD94(444-547) has been identified to form the smallest nucleotide binding segment, sensitive for ATP and ADP, which became inhibited by 4-Chloro-7-nitrobenzofurazan. The shape of NBD94(444-547) in solution was calculated from small-angle X-ray scattering data, revealing an elongated molecule, comprised of two globular domains, connected by a spiral segment of about 73.1 A in length. The high quality of the constructs, forming the hinge-region, NBD94(566-663) and NBD94(674-793) enabled to determine the first crystallographic and solution structure, respectively. The crystal structure of NBD94(566-663) consists of two helices with 97.8 A and 48.6 A in length, linked by a loop. By comparison, the low resolution structure of NBD94(674-793) in solution represents a chair-like shape with three architectural segments. CONCLUSIONS These structures give the first insight into how nucleotide binding impacts on the overall structure of RH and demonstrates the potential use of this region as a novel drug target.
Collapse
Affiliation(s)
- Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore.
| | | | | | | | | | | | | |
Collapse
|
147
|
Epigenetic control of the variable expression of a Plasmodium falciparum receptor protein for erythrocyte invasion. Proc Natl Acad Sci U S A 2010; 107:2224-9. [PMID: 20080673 DOI: 10.1073/pnas.0913396107] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum can invade erythrocytes by redundant receptors, some of which have variable expression. A P. falciparum clone Dd2 requiring erythrocyte sialic acid for invasion can be switched to a sialic acid-independent progeny clone Dd2NM by growing the Dd2 clone with neuraminidase-treated erythrocytes. The RH4 gene is transcriptionally up-regulated in Dd2NM compared to Dd2, despite the absence of DNA changes in and around the gene. We determined the epigenetic modifications around the transcription start site (TSS) at the time of expression of RH4 in Dd2NM (44 h) and at an earlier time when RH4 is not expressed (24 h). At 44 h, the occupancy of the +1 nucleosome site downstream of the TSS of the active RH4 gene in Dd2NM was markedly reduced compared to Dd2; no difference was observed at 24 h. At 44 h, histone modifications associated with up-regulation were positively correlated to the active RH4 gene of Dd2NM compared to Dd2; no differences were observed at 24 h. Histone H3K9 trimethylation (a marker for silencing) was higher in Dd2 than Dd2NM along the 5'-UTRs of the RH4 gene at both 44 and 24 h. Our data indicate that the failure of Dd2 to express the sialic acid-independent invasion receptor gene RH4 is associated with the epigenetic silencing mark H3K9 trimethylation present throughout the cycle.
Collapse
|
148
|
Rodríguez J, Bernal P, Prieto S, Correa C. Teoría de péptidos de alta unión de malaria al glóbulo rojo. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s0213-9626(10)70007-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
149
|
García J, Curtidor H, Pinzón CG, Patarroyo MA, Vanegas M, Forero M, Patarroyo ME. Well-Defined Regions of the Plasmodium falciparum Reticulocyte Binding Protein Homologue 4 Mediate Interaction with Red Blood Cell Membrane. J Med Chem 2009; 53:811-21. [DOI: 10.1021/jm901540n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeison García
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Carlos G. Pinzón
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Manuel A. Patarroyo
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Martha Forero
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad del Rosario, Calle 14 No. 6-25, Bogotá, Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia FIDIC, Carrera 50 No. 26-20, Bogotá, Colombia
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia
| |
Collapse
|
150
|
Githui EK, Peterson DS, Aman RA, Abdi AI. Prevalence of 5' insertion mutants and analysis of single nucleotide polymorphism in the erythrocyte binding-like 1 (ebl-1) gene in Kenyan Plasmodium falciparum field isolates. INFECTION GENETICS AND EVOLUTION 2009; 10:834-9. [PMID: 19879379 DOI: 10.1016/j.meegid.2009.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 10/14/2009] [Accepted: 10/20/2009] [Indexed: 11/19/2022]
Abstract
Plasmodium merozoites attach to and invade red blood cells (RBCs) during the erythrocytic cycle. The invasion process requires recognition of RBC surface receptors by proteins of the Plasmodium Duffy binding like erythrocyte binding like (DBL-EBP) family. Clones and isolates of Plasmodium falciparum have varying abilities to utilize different RBC receptors, and multiple distinct pathways so far identified depend on glycophorins A, B, C, and as yet unidentified receptors. At present, five members of the DBL-EBP family have been identified in the P. falciparum genome, based on gene structure and amino acid sequence homology. The cardinal features of this family consist of conserved 5' and 3' cysteine-rich regions (regions II and VI, respectively) whose cysteine residues are highly conserved along with the majority of aromatic amino acids. In contrast to the single DBL-EBP family member in Plasmodium vivax, in P. falciparum all DBL-EBP family members have a duplication of the conserved 5' cysteine-rich region denoted as the F1 and F2 domains. These cysteine-rich regions are considered crucial in recognition of erythrocyte receptors and it has been shown that several bind to glycophorins on the erythrocyte surface. Several studies, on both field isolates and laboratory strains have uncovered a relatively high degree of sequence polymorphism in the DBP-EBL genes. This study is now extended to include field isolates collected from sites within Kenya. DNA isolated from blood samples of infected patients was utilized to amplify the region I sequence of ebl-1 gene in order to investigate polymorphism in the region immediately adjacent to the 5' cysteine-rich domains, and to determine the prevalence of an insertion mutant that effectively knocks out the gene.
Collapse
Affiliation(s)
- Elijah K Githui
- Molecular Genetics Laboratory, National Museums of Kenya, PO Box 40658, Nairobi, Kenya.
| | | | | | | |
Collapse
|