101
|
Cohan FM, Zandi M, Turner PE. Broadscale phage therapy is unlikely to select for widespread evolution of bacterial resistance to virus infection. Virus Evol 2020; 6:veaa060. [PMID: 33365149 PMCID: PMC7744382 DOI: 10.1093/ve/veaa060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-drug resistant bacterial pathogens are alarmingly on the rise, signaling that the golden age of antibiotics may be over. Phage therapy is a classic approach that often employs strictly lytic bacteriophages (bacteria-specific viruses that kill cells) to combat infections. Recent success in using phages in patient treatment stimulates greater interest in phage therapy among Western physicians. But there is concern that widespread use of phage therapy would eventually lead to global spread of phage-resistant bacteria and widespread failure of the approach. Here, we argue that various mechanisms of horizontal genetic transfer (HGT) have largely contributed to broad acquisition of antibiotic resistance in bacterial populations and species, whereas similar evolution of broad resistance to therapeutic phages is unlikely. The tendency for phages to infect only particular bacterial genotypes limits their broad use in therapy, in turn reducing the likelihood that bacteria could acquire beneficial resistance genes from distant relatives via HGT. We additionally consider whether HGT of clustered regularly interspaced short palindromic repeats (CRISPR) immunity would thwart generalized use of phages in therapy, and argue that phage-specific CRISPR spacer regions from one taxon are unlikely to provide adaptive value if horizontally-transferred to other taxa. For these reasons, we conclude that broadscale phage therapy efforts are unlikely to produce widespread selection for evolution of bacterial resistance.
Collapse
Affiliation(s)
- Frederick M Cohan
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Matthew Zandi
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
102
|
Karimi H, Oudghiri A, En-Nanei L, Mzibri ME, Laglaoui A, Chaoui I, Abid M. Frequency of genomic mutations mediating resistance of Mycobacterium tuberculosis isolates to rifampicin in Northern Morocco. Rev Inst Med Trop Sao Paulo 2020; 62:e37. [PMID: 32520212 PMCID: PMC7274765 DOI: 10.1590/s1678-9946202062037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/22/2020] [Indexed: 11/22/2022] Open
Abstract
Drug resistant tuberculosis (DR-TB) is challenging particularly in developing countries. As such, a previous investigation gave the first insight into the mutational status of the Rifampicin Resistance Determining Region (RRDR) of rpoB gene among a restricted number of MTB patients’ residents in the Northern Morocco. The purpose of this study was to investigate rpoB mutation types and frequencies associated with resistance to Rifampicin in a larger panel of MTB patients and to evaluate the usefulness of these mutations to improve the diagnosis of resistance to Rifampicin. A panel of 301 consecutive sputum samples belonging to patients suscpected of having TB from Northern Morocco was collected at the Pasteur Institute of Tangier between 2014-2017. Samples were subjected to conventionel microbiological tests. Evaluation of rpoB muational status was assessed by PCR amplification and sequencing of the RRDR of the rpoB gene. DST results showed that 26.4% of strains were MDR. Sequencing results reported single point mutations in 36 of 65 RIFR isolates of which two had two mutations. Aminoacid substitutions in the codon Ser531Leu occurred at the highest frequency (34.46%). Overall, 10 aminoacid substitutions have been registered, and the H526S substitution was reported for the first time. The present study highlighted that resistance to RIF is a reliable marker of MDR-TB, the common mutations successfully detected in the rpoB 531, rpoB526 and rpoB516 codons provide a foundation for the implementation of molecular approaches such as Hain and GeneXpert as a routine tests to detect DR-TB. However, considerable work is still necessary to identify extensive mutations associated with DR-TB.
Collapse
Affiliation(s)
- Hind Karimi
- FST de Tanger, Equipe de Recherche Biotechnologie et Génie des Biomolécules, Tanger, Morocco.,Institut Pasteur du Maroc, Laboratoire de Biologie Moléculaire, Service de Recherche, Tanger, Morocco
| | - Amal Oudghiri
- FST de Tanger, Equipe de Recherche Biotechnologie et Génie des Biomolécules, Tanger, Morocco.,Centre National de l'Energie, des Sciences et Techniques Nucléaires, Unité de Recherches Médicales et Biologiques, Rabat, Morocco
| | - Latifa En-Nanei
- Institut Pasteur du Maroc, Laboratoire de Biologie Moléculaire, Service de Recherche, Tanger, Morocco
| | - Mohammed El Mzibri
- Centre National de l'Energie, des Sciences et Techniques Nucléaires, Unité de Recherches Médicales et Biologiques, Rabat, Morocco
| | - Amin Laglaoui
- FST de Tanger, Equipe de Recherche Biotechnologie et Génie des Biomolécules, Tanger, Morocco
| | - Imane Chaoui
- Centre National de l'Energie, des Sciences et Techniques Nucléaires, Unité de Recherches Médicales et Biologiques, Rabat, Morocco
| | - Mohammed Abid
- Institut Pasteur du Maroc, Laboratoire de Biologie Moléculaire, Service de Recherche, Tanger, Morocco
| |
Collapse
|
103
|
Van Deun A, Decroo T, Kya Jai Maug A, Hossain MA, Gumusboga M, Mulders W, Ortuño-Gutiérrez N, Lynen L, de Jong BC, Rieder HL. The perceived impact of isoniazid resistance on outcome of first-line rifampicin-throughout regimens is largely due to missed rifampicin resistance. PLoS One 2020; 15:e0233500. [PMID: 32421749 PMCID: PMC7233532 DOI: 10.1371/journal.pone.0233500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/06/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Meta-analyses on impact of isoniazid-resistant tuberculosis informed the World Health Organization recommendation of a levofloxacin-strengthened rifampicin-based regimen. We estimated the effect of initial rifampicin resistance (Rr) and/or isoniazid resistance (Hr) on treatment failure or relapse. We also determined the frequency of missed initial and acquired Rr to estimate the impact of true Hr. METHODS Retrospective analysis of 7291 treatment episodes with known initial isoniazid and rifampicin status obtained from individual patient databases maintained by the Damien Foundation Bangladesh over 20 years. Drug susceptibility test results were confirmed by the programme's designated supra-national tuberculosis laboratory. To detect missed Rr among isolates routinely classified as Hr, rpoB gene sequencing was done randomly and on a sample selected for suspected missed Rr. RESULTS Initial Hr caused a large recurrence excess after the 8-month regimen for new cases (rifampicin for two months), but had little impact on rifampicin-throughout regimens: (6 months, new cases; 3.8%; OR 0.8, 95%CI:0.3,2.8; 8 months, retreatment cases: 7.3%, OR 1.8; 95%CI:1.3,2.6). Rr was missed in 7.6% of randomly selected "Hr" strains. Acquired Rr was frequent among recurrences on rifampicin-throughout regimens, particularly after the retreatment regimen (31.9%). It was higher in mono-Hr (29.3%; aOR 3.5, 95%CI:1.5,8.5) and poly-Hr (53.3%; aOR 10.2, 95%CI 4.4,23.7) than in susceptible tuberculosis, but virtually absent after the 8-month new case regimen. Comparing Bangladesh (low Rr prevalence) with a high Rr prevalence setting,true Hr corrected for missed Rr caused only 2-3 treatment failures per 1000 TB cases (of whom 27% were retreatments) in both. CONCLUSIONS Our analysis reveals a non-negligible extent of misclassifying as isoniazid resistance of what is actually missed multidrug-resistant tuberculosis. Recommending for such cases a "strengthened" regimen containing a fluoroquinolone provokes a direct route to extensive resistance while offering little benefit against the minor role of true Hr tuberculosis in rifampicin-throughout first-line regimen.
Collapse
Affiliation(s)
- Armand Van Deun
- Biomedical Department, Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tom Decroo
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Research Foundation Flanders, Brussels, Belgium
| | | | | | - Murid Gumusboga
- Biomedical Department, Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Wim Mulders
- Biomedical Department, Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Lutgarde Lynen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bouke C. de Jong
- Biomedical Department, Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hans L. Rieder
- Tuberculosis Consultant Services, Kirchlindach, Switzerland
| |
Collapse
|
104
|
Head and neck surgical antibiotic prophylaxis in resource-constrained settings. Curr Opin Otolaryngol Head Neck Surg 2020; 28:188-193. [PMID: 32332205 DOI: 10.1097/moo.0000000000000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Antimicrobial resistance represents a global threat and causes almost 700 000 deaths per year. The rapid dissemination of resistant bacteria is occurring globally, turning this into the primary threat to public health in the 21st century and forcing organizations around the globe to take urgent action. RECENT FINDINGS About risks related to surgical site infection (SSI) in head and neck surgery, surgical limitations in resource-constrained settings, comorbidities and the risk of SSI, evidence about surgical prophylaxis from low and middle-income countries, SSI gap between the developed and developing worlds and how to reduce resistance. SUMMARY Antibiotic protocols can be adjusted to local and regional bacterial resistance profiles, taking into account the availability of antibiotics and cost limitations on each country in order to decrease the SSI risk.
Collapse
|
105
|
Rodríguez-Verdugo A, Lozano-Huntelman N, Cruz-Loya M, Savage V, Yeh P. Compounding Effects of Climate Warming and Antibiotic Resistance. iScience 2020; 23:101024. [PMID: 32299057 PMCID: PMC7160571 DOI: 10.1016/j.isci.2020.101024] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria have evolved diverse mechanisms to survive environments with antibiotics. Temperature is both a key factor that affects the survival of bacteria in the presence of antibiotics and an environmental trait that is drastically increasing due to climate change. Therefore, it is timely and important to understand links between temperature changes and selection of antibiotic resistance. This review examines these links by synthesizing results from laboratories, hospitals, and environmental studies. First, we describe the transient physiological responses to temperature that alter cellular behavior and lead to antibiotic tolerance and persistence. Second, we focus on the link between thermal stress and the evolution and maintenance of antibiotic resistance mutations. Finally, we explore how local and global changes in temperature are associated with increases in antibiotic resistance and its spread. We suggest that a multidisciplinary, multiscale approach is critical to fully understand how temperature changes are contributing to the antibiotic crisis.
Collapse
Affiliation(s)
| | - Natalie Lozano-Huntelman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mauricio Cruz-Loya
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Van Savage
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Pamela Yeh
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Santa Fe Institute, Santa Fe, NM 87501, USA.
| |
Collapse
|
106
|
Mosaei H, Zenkin N. Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0017-2019. [PMID: 32342856 PMCID: PMC11168578 DOI: 10.1128/ecosalplus.esp-0017-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022]
Abstract
RNA polymerases (RNAPs) accomplish the first step of gene expression in all living organisms. However, the sequence divergence between bacterial and human RNAPs makes the bacterial RNAP a promising target for antibiotic development. The most clinically important and extensively studied class of antibiotics known to inhibit bacterial RNAP are the rifamycins. For example, rifamycins are a vital element of the current combination therapy for treatment of tuberculosis. Here, we provide an overview of the history of the discovery of rifamycins, their mechanisms of action, the mechanisms of bacterial resistance against them, and progress in their further development.
Collapse
Affiliation(s)
- Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| |
Collapse
|
107
|
Zhan L, Wang J, Wang L, Qin C. The correlation of drug resistance and virulence in Mycobacterium tuberculosis. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
108
|
Perdigão J, Gomes P, Miranda A, Maltez F, Machado D, Silva C, Phelan JE, Brum L, Campino S, Couto I, Viveiros M, Clark TG, Portugal I. Using genomics to understand the origin and dispersion of multidrug and extensively drug resistant tuberculosis in Portugal. Sci Rep 2020; 10:2600. [PMID: 32054988 PMCID: PMC7018963 DOI: 10.1038/s41598-020-59558-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/13/2019] [Indexed: 01/12/2023] Open
Abstract
Portugal is a low incidence country for tuberculosis (TB) disease. Now figuring among TB low incidence countries, it has since the 1990s reported multidrug resistant and extensively drug resistant (XDR) TB cases, driven predominantly by two strain-types: Lisboa3 and Q1. This study describes the largest characterization of the evolutionary trajectory of M/XDR-TB strains in Portugal, spanning a time-period of two decades. By combining whole-genome sequencing and phenotypic susceptibility data for 207 isolates, we report the geospatial patterns of drug resistant TB, particularly the dispersion of Lisboa3 and Q1 clades, which underly 64.2% and 94.0% of all MDR-TB and XDR-TB isolates, respectively. Genomic-based similarity and a phylogenetic analysis revealed multiple clusters (n = 16) reflecting ongoing and uncontrolled recent transmission of M/XDR-TB, predominantly associated with the Lisboa3 and Q1 clades. These clades are now thought to be evolving in a polycentric mode across multiple geographical districts. The inferred evolutionary history is compatible with MDR- and XDR-TB originating in Portugal in the 70's and 80's, respectively, but with subsequent multiple emergence events of MDR and XDR-TB particularly involving the Lisboa3 clade. A SNP barcode was defined for Lisboa3 and Q1 and comparison with a phylogeny of global strain-types (n = 28 385) revealed the presence of Lisboa3 and Q1 strains in Europe, South America and Africa. In summary, Portugal displays an unusual and unique epidemiological setting shaped by >40 years of uncontrolled circulation of two main phylogenetic clades, leading to a sympatric evolutionary trajectory towards XDR-TB with the potential for global reach.
Collapse
Affiliation(s)
- João Perdigão
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| | - Pedro Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Anabela Miranda
- Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Fernando Maltez
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Serviço de Doenças Infecciosas, Hospital de Curry Cabral, Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Carla Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Jody E Phelan
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | | | - Susana Campino
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Isabel Couto
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Taane G Clark
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Isabel Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
109
|
Nathavitharana RR, Lederer P, Tierney DB, Nardell E. Treatment as prevention and other interventions to reduce transmission of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 2020; 23:396-404. [PMID: 31064617 DOI: 10.5588/ijtld.18.0276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug-resistant tuberculosis (DR-TB) represents a major programmatic challenge at the national and global levels. Only ∼30% of patients with multidrug-resistant TB (MDR-TB) were diagnosed, and ∼25% were initiated on treatment for MDR-TB in 2016. Increasing evidence now points towards primary transmission of DR-TB, rather than inadequate treatment, as the main driver of the DR-TB epidemic. The cornerstone of DR-TB transmission prevention should be earlier diagnosis and prompt initiation of effective treatment for all patients with DR-TB. Despite the extensive scale-up of Xpert® MTB/RIF testing, major implementation barriers continue to limit its impact. Although there is longstanding evidence in support of the rapid impact of treatment on patient infectiousness, delays in the initiation of effective DR-TB treatment persist, resulting in ongoing transmission. However, it is also imperative to address the burden of latent drug-resistant tuberculous infection because it is estimated that many DR-TB patients will become infectious before seeking care and encounter various diagnostic delays before treatment. Addressing latent DR-TB primarily consists of identifying, treating and following the contacts of patients with MDR-TB, typically through household contact evaluation. Adjunctive measures, such as improved ventilation and use of germicidal ultraviolet technology can further reduce TB transmission in high-risk congregate settings. Although many gaps remain in our biological understanding of TB transmission, implementation barriers to early diagnosis and rapid initiation of effective DR-TB treatment can and must be overcome if we are to impact DR-TB incidence in the short and long term.
Collapse
Affiliation(s)
- R R Nathavitharana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - P Lederer
- Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts
| | - D B Tierney
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - E Nardell
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
110
|
Klopper M, Heupink TH, Hill-Cawthorne G, Streicher EM, Dippenaar A, de Vos M, Abdallah AM, Limberis J, Merker M, Burns S, Niemann S, Dheda K, Posey J, Pain A, Warren RM. A landscape of genomic alterations at the root of a near-untreatable tuberculosis epidemic. BMC Med 2020; 18:24. [PMID: 32014024 PMCID: PMC6998097 DOI: 10.1186/s12916-019-1487-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atypical Beijing genotype Mycobacterium tuberculosis strains are widespread in South Africa and have acquired resistance to up to 13 drugs on multiple occasions. It is puzzling that these strains have retained fitness and transmissibility despite the potential fitness cost associated with drug resistance mutations. METHODS We conducted Illumina sequencing of 211 Beijing genotype M. tuberculosis isolates to facilitate the detection of genomic features that may promote acquisition of drug resistance and restore fitness in highly resistant atypical Beijing forms. Phylogenetic and comparative genomic analysis was done to determine changes that are unique to the resistant strains that also transmit well. Minimum inhibitory concentration (MIC) determination for streptomycin and bedaquiline was done for a limited number of isolates to demonstrate a difference in MIC between isolates with and without certain variants. RESULTS Phylogenetic analysis confirmed that two clades of atypical Beijing strains have independently developed resistance to virtually all the potent drugs included in standard (pre-bedaquiline) drug-resistant TB treatment regimens. We show that undetected drug resistance in a progenitor strain was likely instrumental in this resistance acquisition. In this cohort, ethionamide (ethA A381P) resistance would be missed in first-line drug-susceptible isolates, and streptomycin (gidB L79S) resistance may be missed due to an MIC close to the critical concentration. Subsequent inadequate treatment historically led to amplification of resistance and facilitated spread of the strains. Bedaquiline resistance was found in a small number of isolates, despite lack of exposure to the drug. The highly resistant clades also carry inhA promoter mutations, which arose after ethA and katG mutations. In these isolates, inhA promoter mutations do not alter drug resistance, suggesting a possible alternative role. CONCLUSION The presence of the ethA mutation in otherwise susceptible isolates from ethionamide-naïve patients demonstrates that known exposure is not an adequate indicator of drug susceptibility. Similarly, it is demonstrated that bedaquiline resistance can occur without exposure to the drug. Inappropriate treatment regimens, due to missed resistance, leads to amplification of resistance, and transmission. We put these results into the context of current WHO treatment regimens, underscoring the risks of treatment without knowledge of the full drug resistance profile.
Collapse
Affiliation(s)
- Marisa Klopper
- South African Medical Research Council Centre for Tuberculosis Research, DST NRF Centre of Excellence for Biomedical Tuberculosis research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Tim Hermanus Heupink
- Global Health Institute, Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Grant Hill-Cawthorne
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elizabeth Maria Streicher
- South African Medical Research Council Centre for Tuberculosis Research, DST NRF Centre of Excellence for Biomedical Tuberculosis research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- South African Medical Research Council Centre for Tuberculosis Research, DST NRF Centre of Excellence for Biomedical Tuberculosis research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Margaretha de Vos
- South African Medical Research Council Centre for Tuberculosis Research, DST NRF Centre of Excellence for Biomedical Tuberculosis research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Abdallah Musa Abdallah
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Jason Limberis
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Scott Burns
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa.,Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - James Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Robin Mark Warren
- South African Medical Research Council Centre for Tuberculosis Research, DST NRF Centre of Excellence for Biomedical Tuberculosis research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
111
|
Castro RAD, Ross A, Kamwela L, Reinhard M, Loiseau C, Feldmann J, Borrell S, Trauner A, Gagneux S. The Genetic Background Modulates the Evolution of Fluoroquinolone-Resistance in Mycobacterium tuberculosis. Mol Biol Evol 2020; 37:195-207. [PMID: 31532481 PMCID: PMC6984360 DOI: 10.1093/molbev/msz214] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fluoroquinolones (FQ) form the backbone in experimental treatment regimens against drug-susceptible tuberculosis. However, little is known on whether the genetic variation present in natural populations of Mycobacterium tuberculosis (Mtb) affects the evolution of FQ-resistance (FQ-R). To investigate this question, we used nine genetically distinct drug-susceptible clinical isolates of Mtb and measured their frequency of resistance to the FQ ofloxacin (OFX) in vitro. We found that the Mtb genetic background led to differences in the frequency of OFX-resistance (OFX-R) that spanned two orders of magnitude and substantially modulated the observed mutational profiles for OFX-R. Further, in vitro assays showed that the genetic background also influenced the minimum inhibitory concentration and the fitness effect conferred by a given OFX-R mutation. To test the clinical relevance of our in vitro work, we surveyed the mutational profile for FQ-R in publicly available genomic sequences from clinical Mtb isolates, and found substantial Mtb lineage-dependent variability. Comparison of the clinical and the in vitro mutational profiles for FQ-R showed that 51% and 39% of the variability in the clinical frequency of FQ-R gyrA mutation events in Lineage 2 and Lineage 4 strains, respectively, can be attributed to how Mtb evolves FQ-R in vitro. As the Mtb genetic background strongly influenced the evolution of FQ-R in vitro, we conclude that the genetic background of Mtb also impacts the evolution of FQ-R in the clinic.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lujeko Kamwela
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Chloé Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Julia Feldmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
112
|
Zhou Y, Anthony R, Wang S, Ou X, Liu D, Zhao Y, Soolingen DV. The epidemic of multidrug resistant tuberculosis in China in historical and phylogenetic perspectives. J Infect 2020; 80:444-453. [PMID: 31972213 DOI: 10.1016/j.jinf.2019.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES For the past decade, the epidemic of multidrug resistance tuberculosis (MDR-TB) stays high in China. We investigated the possible driving forces behind the epidemics from phylogenetic and historical perspectives. METHODS 420 representative strains were selected from the first national drug resistance survey based on their genotypes, drug susceptibility patterns and geographic information. We reconstructed the phylogeny by whole genome sequencing and compared it to the global phylogeny including MDR outbreaks reported in other settings. We estimated the historical trajectory of population dynamics by Bayesian Skygrid plot for all strains and MDR-TB alone. Integrating geographic information and mutations in drug resistance related genes, we investigated the spatial scale of transmission, recent selection of drug resistant mutant, and mechanism for fitness restoration. RESULTS Three new subgroups within Beijing clade are described for the first time, but none of the MDR-TB outbreak strains reported in other high MDR-TB burden settings is identified. The overall epidemics experienced two successive phases of expansion at different rates between 1660s and 1950s, followed by a sharp decline till today. Four fifths of the clustered MDR-TB strains suggest transmission of DR strains and nearly half suggest recent selection of (additional) mutations in rpoB. Among all identified transmission events, about one fifth occurred between far distant locations. Possible intergenic and intragenic compensatory mutations both presented in our dataset at comparable frequencies. CONCLUSIONS MDR-TB epidemic in China is not yet driven by the spread of a few highly successful clonal expansions but by repeated emergence of smaller and currently less successful clusters. However, internal migration and undertreatment could escalate MDR-TB epidemic. To prevent generating of drug resistance and restoration of fitness as well as to stop transmission of MDR-TB at early stage, national TB control program needs to strengthen management of floating populations and promote universal drug susceptibility testing in China.
Collapse
Affiliation(s)
- Yang Zhou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai road, Changping District, Beijing, China; Radboud University Medical Center, Houtlaan 4, 6525 XZ Nijmegen, The Netherlands.
| | - Richard Anthony
- National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Shengfen Wang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai road, Changping District, Beijing, China
| | - Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai road, Changping District, Beijing, China
| | - Dongxin Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai road, Changping District, Beijing, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai road, Changping District, Beijing, China.
| | - Dick van Soolingen
- National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands.
| |
Collapse
|
113
|
Wang S, Zhou Y, Zhao B, Ou X, Xia H, Zheng Y, Song Y, Cheng Q, Wang X, Zhao Y. Characteristics of compensatory mutations in the rpoC gene and their association with compensated transmission of Mycobacterium tuberculosis. Front Med 2020; 14:51-59. [PMID: 31938981 DOI: 10.1007/s11684-019-0720-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/07/2019] [Indexed: 11/26/2022]
Abstract
The aim of this study was to characterize rpoC gene mutations in Mycobacterium tuberculosis (MTB) and investigate the factors associated with rpoC mutations and the relation between rpoC mutations and tuberculosis (TB) transmission. A total of 245 MTB clinical isolates from patients with TB in six provinces and two municipalities in China were characterized based on gene mutations through DNA sequencing of rpoC and rpoB genes, phenotyping via standard drug susceptibility testing, and genotypic profiling by mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing. Approximately 36.4% of the rifampin-resistant isolates harbored nonsynonymous mutations in the rpoC gene. Twenty-nine nonsynonymous single mutations and three double mutations were identified. The rpoC mutations at locus 483 (11.3%) were predominant, and the mutations at V483G, W484G, I491V, L516P, L566R, N698K, and A788E accounted for 54.5% of the total detected mutations. Fifteen new mutations in the rpoC gene were identified. Rifampin resistance and rpoB mutations at locus 531 were significantly associated with rpoC mutations. MIRU-VNTR genotype results indicated that 18.4% of the studied isolates were clustered, and the rpoC mutations were not significantly associated with MIRU-VNTR clusters. A large proportion of rpoC mutation was observed in the rifampicin-resistant MTB isolates. However, the findings of this study do not support the association of rpoC mutation with compensated transmissibility.
Collapse
Affiliation(s)
- Shengfen Wang
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yang Zhou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xichao Ou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yang Zheng
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuanyuan Song
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qian Cheng
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinyang Wang
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Department of Microbiology, Basic Medicine College, Harbin Medical University, Harbin, 150081, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
114
|
Al-Mutairi NM, Ahmad S, Mokaddas EM. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates identifies local transmission of infection in Kuwait, a country with a low incidence of TB and MDR-TB. Eur J Med Res 2019; 24:38. [PMID: 31806020 PMCID: PMC6894303 DOI: 10.1186/s40001-019-0397-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Increasing incidence of multidrug-resistant Mycobacterium tuberculosis infections is hampering global tuberculosis control efforts. Kuwait is a low-tuberculosis-incidence country, and ~ 1% of M. tuberculosis strains are resistant to rifampicin and isoniazid (MDR-TB). This study detected mutations in seven genes predicting resistance to rifampicin, isoniazid, pyrazinamide, ethambutol and streptomycin in MDR-TB strains. Sequence data were combined with spoligotypes for detecting local transmission of MDR-TB in Kuwait. Methods Ninety-three MDR-TB strains isolated from 12 Kuwaiti and 81 expatriate patients and 50 pansusceptible strains were used. Phenotypic drug susceptibility was determined by MGIT 460 TB/960 system. Mutations conferring resistance to rifampicin, isoniazid, pyrazinamide, ethambutol and streptomycin were detected by genotype MTBDRplus assay and/or PCR sequencing of three rpoB regions, katG codon 315 (katG315) + inhA regulatory region, pncA, three embB regions and rpsL + rrs-500–900 regions. Spoligotyping kit was used, spoligotypes were identified by SITVIT2, and phylogenetic tree was constructed by using MIRU-VNTRplus software. Phylogenetic tree was also constructed from concatenated sequences by MEGA7 software. Additional PCR sequencing of gidB and rpsA was performed for cluster isolates. Results Pansusceptible isolates contained wild-type sequences. Mutations in rpoB and katG and/or inhA were detected in 93/93 and 92/93 MDR-TB strains, respectively. Mutations were also detected for pyrazinamide resistance, ethambutol resistance and streptomycin resistance in MDR-TB isolates in pncA, embB and rpsL + rrs, respectively. Spoligotyping identified 35 patterns with 18 isolates exhibiting unique patterns while 75 isolates grouped in 17 patterns. Beijing genotype was most common (32/93), and 11 isolates showed nine orphan patterns. Phylogenetic analysis of concatenated sequences showed unique patterns for 51 isolates while 42 isolates grouped in 16 clusters. Interestingly, 22 isolates in eight clusters by both methods were isolated from TB patients typically within a span of 2 years. Five of eight clusters were confirmed by additional gidB and rpsA sequence data. Conclusions Our study provides the first insight into molecular epidemiology of MDR-TB in Kuwait and identified several potential clusters of local transmission of MDR-TB involving 2–6 subjects which had escaped detection by routine surveillance studies. Prospective detection of resistance-conferring mutations can identify possible cases of local transmission of MDR-TB in low MDR-TB settings.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman M Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| |
Collapse
|
115
|
Projecting the impact of variable MDR-TB transmission efficiency on long-term epidemic trends in South Africa and Vietnam. Sci Rep 2019; 9:18099. [PMID: 31792289 PMCID: PMC6889300 DOI: 10.1038/s41598-019-54561-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022] Open
Abstract
Whether multidrug-resistant tuberculosis (MDR-TB) is less transmissible than drug-susceptible (DS-)TB on a population level is uncertain. Even in the absence of a genetic fitness cost, the transmission potential of individuals with MDR-TB may vary by infectiousness, frequency of contact, or duration of disease. We used a compartmental model to project the progression of MDR-TB epidemics in South Africa and Vietnam under alternative assumptions about the relative transmission efficiency of MDR-TB. Specifically, we considered three scenarios: consistently lower transmission efficiency for MDR-TB than for DS-TB; equal transmission efficiency; and an initial deficit in the transmission efficiency of MDR-TB that closes over time. We calibrated these scenarios with data from drug resistance surveys and projected epidemic trends to 2040. The incidence of MDR-TB was projected to expand in most scenarios, but the degree of expansion depended greatly on the future transmission efficiency of MDR-TB. For example, by 2040, we projected absolute MDR-TB incidence to account for 5% (IQR: 4–9%) of incident TB in South Africa and 14% (IQR: 9–26%) in Vietnam assuming consistently lower MDR-TB transmission efficiency, versus 15% (IQR: 8–27%)and 41% (IQR: 23–62%), respectively, assuming shrinking transmission efficiency deficits. Given future uncertainty, specific responses to halt MDR-TB transmission should be prioritized.
Collapse
|
116
|
The mutational landscape of quinolone resistance in Escherichia coli. PLoS One 2019; 14:e0224650. [PMID: 31689338 PMCID: PMC6830822 DOI: 10.1371/journal.pone.0224650] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/19/2019] [Indexed: 11/19/2022] Open
Abstract
The evolution of antibiotic resistance is influenced by a variety of factors, including the availability of resistance mutations, and the pleiotropic effects of such mutations. Here, we isolate and characterize chromosomal quinolone resistance mutations in E. coli, in order to gain a systematic understanding of the rate and consequences of resistance to this important class of drugs. We isolated over fifty spontaneous resistance mutants on nalidixic acid, ciprofloxacin, and levofloxacin. This set of mutants includes known resistance mutations in gyrA, gyrB, and marR, as well as two novel gyrB mutations. We find that, for most mutations, resistance tends to be higher to nalidixic acid than relative to the other two drugs. Resistance mutations had deleterious impacts on one or more growth parameters, suggesting that quinolone resistance mutations are generally costly. Our findings suggest that the prevalence of specific gyrA alleles amongst clinical isolates are driven by high levels of resistance, at no more cost than other resistance alleles.
Collapse
|
117
|
Becerra MC, Huang CC, Lecca L, Bayona J, Contreras C, Calderon R, Yataco R, Galea J, Zhang Z, Atwood S, Cohen T, Mitnick CD, Farmer P, Murray M. Transmissibility and potential for disease progression of drug resistant Mycobacterium tuberculosis: prospective cohort study. BMJ 2019; 367:l5894. [PMID: 31649017 PMCID: PMC6812583 DOI: 10.1136/bmj.l5894] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To measure the association between phenotypic drug resistance and the risk of tuberculosis infection and disease among household contacts of patients with pulmonary tuberculosis. SETTING 106 district health centers in Lima, Peru between September 2009 and September 2012. DESIGN Prospective cohort study. PARTICIPANTS 10 160 household contacts of 3339 index patients with tuberculosis were classified on the basis of the drug resistance profile of the patient: 6189 were exposed to drug susceptible strains of Mycobacterium tuberculosis, 1659 to strains resistant to isoniazid or rifampicin, and 1541 to strains that were multidrug resistant (resistant to isoniazid and rifampicin). MAIN OUTCOME MEASURES Tuberculosis infection (positive tuberculin skin test) and the incidence of active disease (diagnosed by positive sputum smear or chest radiograph) after 12 months of follow-up. RESULTS Household contacts exposed to patients with multidrug resistant tuberculosis had an 8% (95% confidence interval 4% to 13%) higher risk of infection by the end of follow-up compared with household contacts of patients with drug sensitive tuberculosis. The relative hazard of incident tuberculosis disease did not differ among household contacts exposed to multidrug resistant tuberculosis and those exposed to drug sensitive tuberculosis (adjusted hazard ratio 1.28, 95% confidence interval 0.9 to 1.83). CONCLUSION Household contacts of patients with multidrug resistant tuberculosis were at higher risk of tuberculosis infection than contacts exposed to drug sensitive tuberculosis. The risk of developing tuberculosis disease did not differ among contacts in both groups. The evidence invites guideline producers to take action by targeting drug resistant and drug sensitive tuberculosis, such as early detection and effective treatment of infection and disease. TRIAL REGISTRATION ClinicalTrials.gov NCT00676754.
Collapse
Affiliation(s)
- Mercedes C Becerra
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Avenue, Boston, MA 02115, USA
| | - Chuan-Chin Huang
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | - Jerome Galea
- School of Social Work, College of Behavioral and Community Sciences, University of South Florida, Tampa, FL, USA
| | - Zibiao Zhang
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sidney Atwood
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Carole D Mitnick
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Avenue, Boston, MA 02115, USA
| | - Paul Farmer
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Avenue, Boston, MA 02115, USA
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, 641 Huntington Avenue, Boston, MA 02115, USA
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
118
|
Evangelopoulos D, Prosser GA, Rodgers A, Dagg BM, Khatri B, Ho MM, Gutierrez MG, Cortes T, de Carvalho LPS. Comparative fitness analysis of D-cycloserine resistant mutants reveals both fitness-neutral and high-fitness cost genotypes. Nat Commun 2019; 10:4177. [PMID: 31519879 PMCID: PMC6744398 DOI: 10.1038/s41467-019-12074-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
Drug resistant infections represent one of the most challenging medical problems of our time. D-cycloserine is an antibiotic used for six decades without significant appearance and dissemination of antibiotic resistant strains, making it an ideal model compound to understand what drives resistance evasion. We therefore investigated why Mycobacterium tuberculosis fails to become resistant to D-cycloserine. To address this question, we employed a combination of bacterial genetics, genomics, biochemistry and fitness analysis in vitro, in macrophages and in mice. Altogether, our results suggest that the ultra-low rate of emergence of D-cycloserine resistance mutations is the dominant biological factor delaying the appearance of clinical resistance to this antibiotic. Furthermore, we also identified potential compensatory mechanisms able to minimize the severe fitness costs of primary D-cycloserine resistance conferring mutations.
Collapse
Affiliation(s)
- Dimitrios Evangelopoulos
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gareth A Prosser
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - Angela Rodgers
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Belinda M Dagg
- Bacteriology Division, National Institute for Biological Standards and Control (MHRA-NIBSC), Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK
| | - Bhagwati Khatri
- Bacteriology Division, National Institute for Biological Standards and Control (MHRA-NIBSC), Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK
| | - Mei Mei Ho
- Bacteriology Division, National Institute for Biological Standards and Control (MHRA-NIBSC), Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Teresa Cortes
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Luiz Pedro S de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
119
|
Yang LN, He MH, Ouyang HB, Zhu W, Pan ZC, Sui QJ, Shang LP, Zhan J. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. BMC Microbiol 2019; 19:205. [PMID: 31477005 PMCID: PMC6720428 DOI: 10.1186/s12866-019-1574-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/22/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Cross-resistance, a phenomenon that a pathogen resists to one antimicrobial compound also resists to one or several other compounds, is one of major threats to human health and sustainable food production. It usually occurs among antimicrobial compounds sharing the mode of action. In this study, we determined the sensitivity profiles of Alternaria alternata, a fungal pathogen which can cause diseases in many crops to two fungicides (mancozeb and difenoconazole) with different mode of action using a large number of isolates (234) collected from seven potato fields across China. RESULTS We found that pathogens could also develop cross resistance to fungicides with different modes of action as indicated by a strong positive correlation between mancozeb and difenoconazole tolerances to A. alternata. We also found a positive association between mancozeb tolerance and aggressiveness of A. alternata, suggesting no fitness penalty of developing mancozeb resistance in the pathogen and hypothesize that mechanisms such as antimicrobial compound efflux and detoxification that limit intercellular accumulation of natural/synthetic chemicals in pathogens might account for the cross-resistance and the positive association between pathogen aggressiveness and mancozeb tolerance. CONCLUSIONS The detection of cross-resistance among different classes of fungicides suggests that the mode of action alone may not be an adequate sole criterion to determine what components to use in the mixture and/or rotation of fungicides in agricultural and medical sects. Similarly, the observation of a positive association between the pathogen's aggressiveness and tolerance to mancozeb suggests that intensive application of site non-specific fungicides might simultaneously lead to reduced fungicide resistance and enhanced ability to cause diseases in pathogen populations, thereby posing a greater threat to agricultural production and human health. In this case, the use of evolutionary principles in closely monitoring populations and the use of appropriate fungicide applications are important for effective use of the fungicides and durable infectious disease management.
Collapse
Affiliation(s)
- Li-Na Yang
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, 350002, Fujian, China
| | - Meng-Han He
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hai-Bing Ouyang
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wen Zhu
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhe-Chao Pan
- Yunnan Academy of Agricultural Sciences, Industrial Crops Research Institute, Kunming, Yunnan, China
| | - Qi-Jun Sui
- Yunnan Academy of Agricultural Sciences, Industrial Crops Research Institute, Kunming, Yunnan, China
| | - Li-Ping Shang
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiasui Zhan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
120
|
Cohen KA, Manson AL, Desjardins CA, Abeel T, Earl AM. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med 2019; 11:45. [PMID: 31345251 PMCID: PMC6657377 DOI: 10.1186/s13073-019-0660-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tuberculosis (TB) is a global infectious threat that is intensified by an increasing incidence of highly drug-resistant disease. Whole-genome sequencing (WGS) studies of Mycobacterium tuberculosis, the causative agent of TB, have greatly increased our understanding of this pathogen. Since the first M. tuberculosis genome was published in 1998, WGS has provided a more complete account of the genomic features that cause resistance in populations of M. tuberculosis, has helped to fill gaps in our knowledge of how both classical and new antitubercular drugs work, and has identified specific mutations that allow M. tuberculosis to escape the effects of these drugs. WGS studies have also revealed how resistance evolves both within an individual patient and within patient populations, including the important roles of de novo acquisition of resistance and clonal spread. These findings have informed decisions about which drug-resistance mutations should be included on extended diagnostic panels. From its origins as a basic science technique, WGS of M. tuberculosis is becoming part of the modern clinical microbiology laboratory, promising rapid and improved detection of drug resistance, and detailed and real-time epidemiology of TB outbreaks. We review the successes and highlight the challenges that remain in applying WGS to improve the control of drug-resistant TB through monitoring its evolution and spread, and to inform more rapid and effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Keira A Cohen
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, 21205, USA.
| | - Abigail L Manson
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
| | - Christopher A Desjardins
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
| | - Thomas Abeel
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA
- Delft Bioinformatics Lab, Delft University of Technology, 2628, XE, Delft, The Netherlands
| | - Ashlee M Earl
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
121
|
Munir A, Kumar N, Ramalingam SB, Tamilzhalagan S, Shanmugam SK, Palaniappan AN, Nair D, Priyadarshini P, Natarajan M, Tripathy S, Ranganathan UD, Peacock SJ, Parkhill J, Blundell TL, Malhotra S. Identification and Characterization of Genetic Determinants of Isoniazid and Rifampicin Resistance in Mycobacterium tuberculosis in Southern India. Sci Rep 2019; 9:10283. [PMID: 31311987 PMCID: PMC6635374 DOI: 10.1038/s41598-019-46756-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023] Open
Abstract
Drug-resistant tuberculosis (TB), one of the leading causes of death worldwide, arises mainly from spontaneous mutations in the genome of Mycobacterium tuberculosis. There is an urgent need to understand the mechanisms by which the mutations confer resistance in order to identify new drug targets and to design new drugs. Previous studies have reported numerous mutations that confer resistance to anti-TB drugs, but there has been little systematic analysis to understand their genetic background and the potential impacts on the drug target stability and/or interactions. Here, we report the analysis of whole-genome sequence data for 98 clinical M. tuberculosis isolates from a city in southern India. The collection was screened for phenotypic resistance and sequenced to mine the genetic mutations conferring resistance to isoniazid and rifampicin. The most frequent mutation among isoniazid and rifampicin isolates was S315T in katG and S450L in rpoB respectively. The impacts of mutations on protein stability, protein-protein interactions and protein-ligand interactions were analysed using both statistical and machine-learning approaches. Drug-resistant mutations were predicted not only to target active sites in an orthosteric manner, but also to act through allosteric mechanisms arising from distant sites, sometimes at the protein-protein interface.
Collapse
Affiliation(s)
- Asma Munir
- 0000000121885934grid.5335.0Department of Biochemistry, University of Cambridge, Tennis Court. Rd., Cambridge, CB2 1GA UK
| | - Narender Kumar
- 0000000121885934grid.5335.0Department of Medicine, University of Cambridge, Hills Rd., Cambridge, CB2 0QQ UK
| | - Suresh Babu Ramalingam
- 0000 0004 1767 6138grid.417330.2ICMR-National Institute for Research in Tuberculosis, Chennai, 600031 India
| | - Sembulingam Tamilzhalagan
- 0000 0004 1767 6138grid.417330.2ICMR-National Institute for Research in Tuberculosis, Chennai, 600031 India
| | - Siva Kumar Shanmugam
- 0000 0004 1767 6138grid.417330.2ICMR-National Institute for Research in Tuberculosis, Chennai, 600031 India
| | | | - Dina Nair
- 0000 0004 1767 6138grid.417330.2ICMR-National Institute for Research in Tuberculosis, Chennai, 600031 India
| | - Padma Priyadarshini
- 0000 0004 1767 6138grid.417330.2ICMR-National Institute for Research in Tuberculosis, Chennai, 600031 India
| | - Mohan Natarajan
- 0000 0004 1767 6138grid.417330.2ICMR-National Institute for Research in Tuberculosis, Chennai, 600031 India
| | - Srikanth Tripathy
- 0000 0004 1767 6138grid.417330.2ICMR-National Institute for Research in Tuberculosis, Chennai, 600031 India
| | - Uma Devi Ranganathan
- 0000 0004 1767 6138grid.417330.2ICMR-National Institute for Research in Tuberculosis, Chennai, 600031 India
| | - Sharon J. Peacock
- 0000000121885934grid.5335.0Department of Medicine, University of Cambridge, Hills Rd., Cambridge, CB2 0QQ UK ,0000 0004 0425 469Xgrid.8991.9London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Julian Parkhill
- 0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA UK
| | - Tom L. Blundell
- 0000000121885934grid.5335.0Department of Biochemistry, University of Cambridge, Tennis Court. Rd., Cambridge, CB2 1GA UK
| | - Sony Malhotra
- 0000000121885934grid.5335.0Department of Biochemistry, University of Cambridge, Tennis Court. Rd., Cambridge, CB2 1GA UK ,0000 0001 2161 2573grid.4464.2Present Address: Birkbeck College, University of London, Malet Street, WC1E7HX London, UK
| |
Collapse
|
122
|
Malik B, Bhattacharyya S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci Rep 2019; 9:9788. [PMID: 31278344 PMCID: PMC6611849 DOI: 10.1038/s41598-019-46078-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/17/2019] [Indexed: 01/21/2023] Open
Abstract
Overwhelming antibiotic use poses a serious challenge today to the public-health policymakers worldwide. Many empirical studies pointed out this ever-increasing antibiotic consumption as primary driver of the community-acquired antibiotic drug-resistance, especially in the middle- and lower-income countries. The association is well documented across spatio-temporal gradients in many parts of the world, but there is rarely any study that emphasizes the mechanism of the association, which is important for combating drug-resistance. Formulating a mathematical model of emergence and transmission of drug-resistance, we in this paper, present how amalgamating three components: socio-economic growth, population ecology of infectious disease, and antibiotic misuse can instinctively incite proliferation of resistance in the society. We show that combined impact of economy, infections, and self-medication yield synergistic interactions through feedbacks on each other, presenting the emergence of drug-resistance as a self-reinforcing cycle in the population. Analysis of our model not only determines the threshold of antibiotic use beyond which the emergence of resistance may occur, but also characterizes how fast it develops depending on economic growth, and lack of education and awareness of the population. Our model illustrates that proper and timely government aid in population health can break the self-reinforcing process and reduce the burden of drug-resistance in the community.
Collapse
Affiliation(s)
- Bhawna Malik
- Disease Modelling Lab, Department of Mathematics, School of Natural Sciences, Shiv Nadar University, Gautan Buddha Nagar, India.
| | - Samit Bhattacharyya
- Disease Modelling Lab, Department of Mathematics, School of Natural Sciences, Shiv Nadar University, Gautan Buddha Nagar, India.
| |
Collapse
|
123
|
Remigi P, Masson-Boivin C, Rocha EP. Experimental Evolution as a Tool to Investigate Natural Processes and Molecular Functions. Trends Microbiol 2019; 27:623-634. [DOI: 10.1016/j.tim.2019.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
|
124
|
Sun J, Zhu D, Xu J, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, You Y, Wang M, Cheng A. Rifampin resistance and its fitness cost in Riemerella anatipestifer. BMC Microbiol 2019; 19:107. [PMID: 31122209 PMCID: PMC6533769 DOI: 10.1186/s12866-019-1478-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/07/2019] [Indexed: 11/25/2022] Open
Abstract
Background Riemerella anatipestifer (R. anatipestifer) is one of the most important poultry pathogens worldwide, with associated infections causing significant economic losses. Rifampin Resistance is an important mechanism of drug resistance. However, there is no information about rpoB mutations conferring rifampin resistance and its fitness cost in Riemerella anatipestifer. Results Comparative analysis of 18 R.anatipestifer rpoB sequences and the determination of rifampin minimum inhibitory concentrations showed that five point mutations, V382I, H491N, G502K, R494K and S539Y, were related to rifampin resistance. Five overexpression strains were constructed using site-directed mutagenesis to validate these sites. To investigate the origin and fitness costs of the rpoB mutations, 15 types of rpoB mutations were isolated from R. anatipestifer ATCC 11845 by using spontaneous mutation in which R494K was identical to the type of mutation detected in the isolates. The mutation frequency of the rpoB gene was calculated to be 10− 8. A total of 98.8% (247/250) of the obtained mutants were located in cluster I of the rifampin resistance-determining region of the rpoB gene. With the exception of D481Y, I537N and S539F, the rifampin minimum inhibitory concentrations of the remaining mutants were at least 64 μg/mL. The growth performance and competitive experiments of the mutant strains in vitro showed that H491D and 485::TAA exhibit growth delay and severely impaired fitness. Finally, the colonization abilities and sensitivities of the R494K and H491D mutants were investigated. The sensitivity of the two mutants to hydrogen peroxide (H2O2) and sodium nitroprusside (SNP) increased compared to the parental strain. The number of live colonies colonized by the two mutants in the duckling brain and trachea were lower than that of the parental strain within 24 h. Conclusions Mutations of rpoB gene in R. anatipestifer mediate rifampin resistance and result in fitness costs. And different single mutations confer different levels of fitness costs. Our study provides, to our knowledge, the first estimates of the fitness cost associated with the R. anatipestifer rifampin resistance in vitro and in vivo. Electronic supplementary material The online version of this article (10.1186/s12866-019-1478-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiakai Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Jinge Xu
- Guizhou Animal Husbandry and Veterinary Research Institute, Guiyang, 550005, Guizhou, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Yunya Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu You
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan, Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
125
|
Bespyatykh JA, Vinogradova ТI, Manicheva OA, Zabolotnykh NV, Dogonadze MZ, Vitovskaya ML, Guliaev AS, Zhuravlev VY, Shitikov EA, Ilina EN. In vivo virulence of Beijing genotype Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2019. [DOI: 10.15789/2220-7619-2019-1-173-182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- J. A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| | | | | | | | | | | | - A. S. Guliaev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| | | | - E. A. Shitikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| | - E. N. Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency
| |
Collapse
|
126
|
Payne JL, Menardo F, Trauner A, Borrell S, Gygli SM, Loiseau C, Gagneux S, Hall AR. Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis. PLoS Biol 2019; 17:e3000265. [PMID: 31083647 PMCID: PMC6532934 DOI: 10.1371/journal.pbio.3000265] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/23/2019] [Accepted: 04/26/2019] [Indexed: 11/21/2022] Open
Abstract
Transition bias, an overabundance of transitions relative to transversions, has been widely reported among studies of the rates and spectra of spontaneous mutations. However, demonstrating the role of transition bias in adaptive evolution remains challenging. In particular, it is unclear whether such biases direct the evolution of bacterial pathogens adapting to treatment. We addressed this challenge by analyzing adaptive antibiotic-resistance mutations in the major human pathogen Mycobacterium tuberculosis (MTB). We found strong evidence for transition bias in two independently curated data sets comprising 152 and 208 antibiotic-resistance mutations. This was true at the level of mutational paths (distinct adaptive DNA sequence changes) and events (individual instances of the adaptive DNA sequence changes) and across different genes and gene promoters conferring resistance to a diversity of antibiotics. It was also true for mutations that do not code for amino acid changes (in gene promoters and the 16S ribosomal RNA gene rrs) and for mutations that are synonymous to each other and are therefore likely to have similar fitness effects, suggesting that transition bias can be caused by a bias in mutation supply. These results point to a central role for transition bias in determining which mutations drive adaptive antibiotic resistance evolution in a key pathogen. Some types of mutations occur more frequently than expected. This study shows that such bias —an excess of transitions over transversions—influences the evolution of antibiotic resistance in a key global pathogen, Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Joshua L. Payne
- Institute of Integrative Biology, ETH Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail:
| | - Fabrizio Menardo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastian M. Gygli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Chloe Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alex R. Hall
- Institute of Integrative Biology, ETH Zurich, Switzerland
| |
Collapse
|
127
|
Nontuberculous Mycobacteria Persistence in a Cell Model Mimicking Alveolar Macrophages. Microorganisms 2019; 7:microorganisms7050113. [PMID: 31035520 PMCID: PMC6560506 DOI: 10.3390/microorganisms7050113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Nontuberculous Mycobacteria (NTM) respiratory infections have been gradually increasing. Here, THP-1 cells were used as a model to evaluate intracellular persistence of three NTM species (reference and clinical strains) in human alveolar macrophages. The contribution of phagosome acidification, nitric oxide (NO) production and cell dead on NTM intracellular fate was assessed. In addition, strains were characterized regarding their repertoire of virulence factors by whole-genome sequencing. NTM experienced different intracellular fates: M. smegmatis and M. fortuitum ATCC 6841 were cleared within 24h. In contrast, M. avium strains (reference/clinical) and M. fortuitum clinical strain were able to replicate. Despite this fact, unexpectedly high percentages of acidified phagosomes were found harbouring rab7, but not CD63. All NTM were able to survive in vitro at acidic pHs, with the exception of M. smegmatis. Our data further suggested a minor role for NO in intracellular persistence and that apoptosis mediated by caspase 8 and 3/7, but not necrosis, is triggered during NTM infection. Insights regarding the bacteria genomic backbone corroborated the virulence potential of M. avium and M. fortuitum. In conclusion, the phenotypic traits detected contrast with those described for M. tuberculosis, pointing out that NTM adopt distinct strategies to manipulate the host immune defense and persist intracellularly.
Collapse
|
128
|
Borrell S, Trauner A, Brites D, Rigouts L, Loiseau C, Coscolla M, Niemann S, De Jong B, Yeboah-Manu D, Kato-Maeda M, Feldmann J, Reinhard M, Beisel C, Gagneux S. Reference set of Mycobacterium tuberculosis clinical strains: A tool for research and product development. PLoS One 2019; 14:e0214088. [PMID: 30908506 PMCID: PMC6433267 DOI: 10.1371/journal.pone.0214088] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/06/2019] [Indexed: 11/19/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) causes tuberculosis (TB) in humans and various other mammals. The human-adapted members of the MTBC comprise seven phylogenetic lineages that differ in their geographical distribution. There is growing evidence that this phylogeographic diversity modulates the outcome of TB infection and disease. For decades, TB research and development has focused on the two canonical MTBC laboratory strains H37Rv and Erdman, both of which belong to Lineage 4. Relying on only a few laboratory-adapted strains can be misleading as study results might not be directly transferrable to clinical settings where patients are infected with a diverse array of strains, including drug-resistant variants. Here, we argue for the need to expand TB research and development by incorporating the phylogenetic diversity of the MTBC. To facilitate such work, we have assembled a group of 20 genetically well-characterized clinical strains representing the seven known human-adapted MTBC lineages. With the "MTBC clinical strains reference set" we aim to provide a standardized resource for the TB community. We hope it will enable more direct comparisons between studies that explore the physiology of MTBC beyond the laboratory strains used thus far. We anticipate that detailed phenotypic analyses of this reference strain set will increase our understanding of TB biology and assist in the development of new control tools that are broadly effective.
Collapse
Affiliation(s)
- Sònia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Collection of Mycobacterial Cultures (BCCM/ITM), Institute of Tropical Medicine, Antwerp, Belgium
| | - Chloe Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mireia Coscolla
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefan Niemann
- Division of Molecular and Experimental Mycobacteriology Group, Research Center Borstel, Borstel, Germany
| | - Bouke De Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Midori Kato-Maeda
- School of Medicine, University of California at San Francisco, San Francisco, California, United States of America
| | - Julia Feldmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Beisel
- Genomics Facility, Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
129
|
Monserrat-Martinez A, Gambin Y, Sierecki E. Thinking Outside the Bug: Molecular Targets and Strategies to Overcome Antibiotic Resistance. Int J Mol Sci 2019; 20:E1255. [PMID: 30871132 PMCID: PMC6470534 DOI: 10.3390/ijms20061255] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Since their discovery in the early 20th century, antibiotics have been used as the primary weapon against bacterial infections. Due to their prophylactic effect, they are also used as part of the cocktail of drugs given to treat complex diseases such as cancer or during surgery, in order to prevent infection. This has resulted in a decrease of mortality from infectious diseases and an increase in life expectancy in the last 100 years. However, as a consequence of administering antibiotics broadly to the population and sometimes misusing them, antibiotic-resistant bacteria have appeared. The emergence of resistant strains is a global health threat to humanity. Highly-resistant bacteria like Staphylococcus aureus (methicillin-resistant) or Enterococcus faecium (vancomycin-resistant) have led to complications in intensive care units, increasing medical costs and putting patient lives at risk. The appearance of these resistant strains together with the difficulty in finding new antimicrobials has alarmed the scientific community. Most of the strategies currently employed to develop new antibiotics point towards novel approaches for drug design based on prodrugs or rational design of new molecules. However, targeting crucial bacterial processes by these means will keep creating evolutionary pressure towards drug resistance. In this review, we discuss antibiotic resistance and new options for antibiotic discovery, focusing in particular on new alternatives aiming to disarm the bacteria or empower the host to avoid disease onset.
Collapse
Affiliation(s)
- Ana Monserrat-Martinez
- European Molecular Biology Laboratory Australia (EMBL Australia) Node in Single Molecule Science, Sydney, NSW 2031, Australia.
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia.
| | - Yann Gambin
- European Molecular Biology Laboratory Australia (EMBL Australia) Node in Single Molecule Science, Sydney, NSW 2031, Australia.
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia.
| | - Emma Sierecki
- European Molecular Biology Laboratory Australia (EMBL Australia) Node in Single Molecule Science, Sydney, NSW 2031, Australia.
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2031, Australia.
| |
Collapse
|
130
|
Vats S, Shanker A. Groups of coevolving positions provide drug resistance to Mycobacterium tuberculosis: A study using targets of first-line antituberculosis drugs. Int J Antimicrob Agents 2019; 53:197-202. [DOI: 10.1016/j.ijantimicag.2018.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/13/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023]
|
131
|
Khan PY, Yates TA, Osman M, Warren RM, van der Heijden Y, Padayatchi N, Nardell EA, Moore D, Mathema B, Gandhi N, Eldholm V, Dheda K, Hesseling AC, Mizrahi V, Rustomjee R, Pym A. Transmission of drug-resistant tuberculosis in HIV-endemic settings. THE LANCET. INFECTIOUS DISEASES 2019; 19:e77-e88. [PMID: 30554996 PMCID: PMC6474238 DOI: 10.1016/s1473-3099(18)30537-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
Abstract
The emergence and expansion of the multidrug-resistant tuberculosis epidemic is a threat to the global control of tuberculosis. Multidrug-resistant tuberculosis is the result of the selection of resistance-conferring mutations during inadequate antituberculosis treatment. However, HIV has a profound effect on the natural history of tuberculosis, manifesting in an increased rate of disease progression, leading to increased transmission and amplification of multidrug-resistant tuberculosis. Interventions specific to HIV-endemic areas are urgently needed to block tuberculosis transmission. These interventions should include a combination of rapid molecular diagnostics and improved chemotherapy to shorten the duration of infectiousness, implementation of infection control measures, and active screening of multidrug-resistant tuberculosis contacts, with prophylactic regimens for individuals without evidence of disease. Development and improvement of the efficacy of interventions will require a greater understanding of the factors affecting the transmission of multidrug-resistant tuberculosis in HIV-endemic settings, including population-based molecular epidemiology studies. In this Series article, we review what we know about the transmission of multidrug-resistant tuberculosis in settings with high burdens of HIV and define the research priorities required to develop more effective interventions, to diminish ongoing transmission and the amplification of drug resistance.
Collapse
Affiliation(s)
- Palwasha Y Khan
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; TB Centre, London School of Hygiene & Tropical Medicine, London, UK; Interactive Research and Development, Karachi, Pakistan
| | - Tom A Yates
- Institute for Global Health, University College London, London, UK; Institute of Child Health, University College London, London, UK
| | - Muhammad Osman
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Robin M Warren
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Yuri van der Heijden
- Vanderbilt Tuberculosis Center and Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nesri Padayatchi
- South African Medical Research Council HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Edward A Nardell
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA
| | - David Moore
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; TB Centre, London School of Hygiene & Tropical Medicine, London, UK
| | - Barun Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Neel Gandhi
- Rollins School of Public Health and Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Vegard Eldholm
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Valerie Mizrahi
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Roxana Rustomjee
- Division of AIDS, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Pym
- Department of Infection and Immunity, University College London, London, UK; Africa Health Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa.
| |
Collapse
|
132
|
Briffotaux J, Liu S, Gicquel B. Genome-Wide Transcriptional Responses of Mycobacterium to Antibiotics. Front Microbiol 2019; 10:249. [PMID: 30842759 PMCID: PMC6391361 DOI: 10.3389/fmicb.2019.00249] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Antibiotics can stimulate or depress gene expression in bacteria. The analysis of transcriptional responses of Mycobacterium to antimycobacterial compounds has improved our understanding of the mode of action of various drug classes and the efficacy and effect of such compounds on the global metabolism of Mycobacterium. This approach can provide new insights for known antibiotics, for example those currently used for tuberculosis treatment, as well as help to identify the mode of action and predict the targets of new compounds identified by whole-cell screening assays. In addition, changes in gene expression profiles after antimycobacterial treatment can provide information about the adaptive ability of bacteria to escape the effects of antibiotics and allow monitoring of the physiology of the bacteria during treatment. Genome-wide expression profiling also makes it possible to pinpoint genes differentially expressed between drug sensitive Mycobacterium and multidrug-resistant clinical isolates. Finally, genes involved in adaptive responses and drug tolerance could become new targets for improving the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Julien Briffotaux
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.,Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Shengyuan Liu
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Brigitte Gicquel
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.,Emerging Bacterial Pathogens Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Mycobacterial Genetics Unit, Institut Pasteur, Paris, France
| |
Collapse
|
133
|
Allen RC, Angst DC, Hall AR. Resistance Gene Carriage Predicts Growth of Natural and Clinical Escherichia coli Isolates in the Absence of Antibiotics. Appl Environ Microbiol 2019; 85:e02111-18. [PMID: 30530714 PMCID: PMC6365833 DOI: 10.1128/aem.02111-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens that carry antibiotic resistance alleles sometimes pay a cost in the form of impaired growth in antibiotic-free conditions. This cost of resistance is expected to be a key parameter for understanding how resistance spreads and persists in pathogen populations. Analysis of individual resistance alleles from laboratory evolution and natural isolates has shown they are typically costly, but these costs are highly variable and influenced by genetic variation at other loci. It therefore remains unclear how strongly resistance is linked to impaired antibiotic-free growth in bacteria from natural and clinical scenarios, where resistance alleles are likely to coincide with other types of genetic variation. To investigate this, we measured the growth of 92 natural and clinical Escherichia coli isolates across three antibiotic-free environments. We then tested whether variation of antibiotic-free growth among isolates was predicted by their resistance to 10 antibiotics, while accounting for the phylogenetic structure of the data. We found that isolates with similar resistance profiles had similar antibiotic-free growth profiles, but it was not simply that higher average resistance was associated with impaired growth. Next, we used whole-genome sequences to identify antibiotic resistance genes and found that isolates carrying a greater number of resistance gene types grew relatively poorly in antibiotic-free conditions, even when the resistance genes they carried were different. This suggests that the resistance of bacterial pathogens is linked to growth costs in nature, but it is the total genetic burden and multivariate resistance phenotype that predict these costs, rather than individual alleles or mean resistance across antibiotics.IMPORTANCE Managing the spread of antibiotic resistance in bacterial pathogens is a major challenge for global public health. Central to this challenge is understanding whether resistance is linked to impaired bacterial growth in the absence of antibiotics, because this determines whether resistance declines when bacteria are no longer exposed to antibiotics. We studied 92 isolates of the key bacterial pathogen Escherichia coli; these isolates varied in both their antibiotic resistance genes and other parts of the genome. Taking this approach, rather than focusing on individual genetic changes associated with resistance as in much previous work, revealed that growth without antibiotics was linked to the number of specialized resistance genes carried and the combination of antibiotics to which isolates were resistant but was not linked to average antibiotic resistance. This approach provides new insights into the genetic factors driving the long-term persistence of antibiotic-resistant bacteria, which is important for future efforts to predict and manage resistance.
Collapse
Affiliation(s)
| | - Daniel C Angst
- Institute for Integrative Biology, ETH Zürich, Switzerland
| | - Alex R Hall
- Institute for Integrative Biology, ETH Zürich, Switzerland
| |
Collapse
|
134
|
Faucher M, Nouvel LX, Dordet-Frisoni E, Sagné E, Baranowski E, Hygonenq MC, Marenda MS, Tardy F, Citti C. Mycoplasmas under experimental antimicrobial selection: The unpredicted contribution of horizontal chromosomal transfer. PLoS Genet 2019; 15:e1007910. [PMID: 30668569 PMCID: PMC6358093 DOI: 10.1371/journal.pgen.1007910] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/01/2019] [Accepted: 12/19/2018] [Indexed: 11/18/2022] Open
Abstract
Horizontal Gene Transfer was long thought to be marginal in Mycoplasma a large group of wall-less bacteria often portrayed as minimal cells because of their reduced genomes (ca. 0.5 to 2.0 Mb) and their limited metabolic pathways. This view was recently challenged by the discovery of conjugative exchanges of large chromosomal fragments that equally affected all parts of the chromosome via an unconventional mechanism, so that the whole mycoplasma genome is potentially mobile. By combining next generation sequencing to classical mating and evolutionary experiments, the current study further explored the contribution and impact of this phenomenon on mycoplasma evolution and adaptation using the fluoroquinolone enrofloxacin (Enro), for selective pressure and the ruminant pathogen Mycoplasma agalactiae, as a model organism. For this purpose, we generated isogenic lineages that displayed different combination of spontaneous mutations in Enro target genes (gyrA, gyrB, parC and parE) in association to gradual level of resistance to Enro. We then tested whether these mutations can be acquired by a susceptible population via conjugative chromosomal transfer knowing that, in our model organism, the 4 target genes are scattered in three distinct and distant loci. Our data show that under antibiotic selective pressure, the time scale of the mutational pathway leading to high-level of Enro resistance can be readily compressed into a single conjugative step, in which several EnroR alleles were transferred from resistant to susceptible mycoplasma cells. In addition to acting as an accelerator for antimicrobial dissemination, mycoplasma chromosomal transfer reshuffled genomes beyond expectations and created a mosaic of resistant sub-populations with unpredicted and unrelated features. Our findings provide insights into the process that may drive evolution and adaptability of several pathogenic Mycoplasma spp. via an unconventional conjugative mechanism.
Collapse
Affiliation(s)
- Marion Faucher
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
- UMR Mycoplasmoses of ruminants, ANSES, VetAgro Sup, University of Lyon, Lyon, France
| | | | | | - Eveline Sagné
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | | | | | - Marc-Serge Marenda
- Asia-Pacific Centre for Animal Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Florence Tardy
- UMR Mycoplasmoses of ruminants, ANSES, VetAgro Sup, University of Lyon, Lyon, France
| | - Christine Citti
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
- * E-mail: (LXN); (CC)
| |
Collapse
|
135
|
Du Preez I, Loots DT. Novel insights into the pharmacometabonomics of first-line tuberculosis drugs relating to metabolism, mechanism of action and drug-resistance. Drug Metab Rev 2019; 50:466-481. [PMID: 30558443 DOI: 10.1080/03602532.2018.1559184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ilse Du Preez
- Human Metabolomics, North-West University , Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University , Potchefstroom, South Africa
| |
Collapse
|
136
|
Al-Mutairi NM, Ahmad S, Mokaddas E, Eldeen HS, Joseph S. Occurrence of disputed rpoB mutations among Mycobacterium tuberculosis isolates phenotypically susceptible to rifampicin in a country with a low incidence of multidrug-resistant tuberculosis. BMC Infect Dis 2019; 19:3. [PMID: 30606116 PMCID: PMC6318973 DOI: 10.1186/s12879-018-3638-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022] Open
Abstract
Background Accurate drug susceptibility testing (DST) of Mycobacterium tuberculosis in clinical specimens and culture isolates to first-line drugs is crucial for diagnosis and management of multidrug-resistant tuberculosis (MDR-TB). Resistance of M. tuberculosis to rifampicin is mainly due to mutations in hot-spot region of rpoB gene (HSR-rpoB). The prevalence of disputed (generally missed by rapid phenotypic DST methods) rpoB mutations, which mainly include L511P, D516Y, H526N, H526L, H526S, and L533P in HSR-rpoB and I572F in cluster II region of rpoB gene, is largely unknown. This study determined the occurrence of all disputed mutations in HSR-rpoB and at rpoB codon 572 in M. tuberculosis strains phenotypically susceptible to rifampicin in Kuwait. Methods A total of 242 M. tuberculosis isolates phenotypically susceptible to rifampicin were used. The DST against first-line drugs was performed by Mycobacteria growth indicator tube (MGIT) 960 system. Mutations in HSR-rpoB (and katG codon 315 and inhA-regulatory region for isoniazid resistance) were detected by GenoType MDBDRplus assay. The I572F mutation in cluster II region of rpoB was detected by developing a multiplex allele-specific (MAS)-PCR assay. Results were confirmed by PCR-sequencing of respective loci. Molecular detection of resistance for ethambutol and pyrazinamide and fingerprinting by spoligotyping were also performed for isolates with an rpoB mutation. Results Among 242 rifampicin-susceptible isolates, 0 of 130 pansusceptible/monodrug-resistant isolates but 4 of 112 polydrug-resistant isolates contained a disputed rpoB mutation. All 4 isolates were also resistant to isoniazid and molecular screening identified additional resistance to pyrazinamide and ethambutol in one isolate each. In final analysis, 2 of 4 isolates were resistant to all 4 first-line drugs. Spoligotyping showed that the isolates belonged to different M. tuberculosis lineages. Conclusions Four of 242 (1.7%) rifampicin-susceptible M. tuberculosis isolates contained a disputed rpoB mutation including 2 isolates resistant to all four first-line drugs. The occurrence of a disputed rpoB mutation in polydrug-resistant M. tuberculosis isolates resistant at least to isoniazid (MDR-TB) suggests that polydrug-resistant strains should be checked for genotypic rifampicin resistance for optimal patient management since the failure/relapse rates are nearly same in isolates with a canonical or disputed rpoB mutation.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.,Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| | | | - Susan Joseph
- Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| |
Collapse
|
137
|
王 朋. Biological Adaptation Cost and Its Survival Strategies under Environmental Pollution. INTERNATIONAL JOURNAL OF ECOLOGY 2019. [DOI: 10.12677/ije.2019.83029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
138
|
Yang E, Yang R, Guo M, Huang D, Wang W, Zhang Z, Chen C, Wang F, Ho W, Shen L, Xiao H, Chen ZW, Shen H. Multidrug-resistant tuberculosis (MDR-TB) strain infection in macaques results in high bacilli burdens in airways, driving broad innate/adaptive immune responses. Emerg Microbes Infect 2018; 7:207. [PMID: 30538219 PMCID: PMC6290002 DOI: 10.1038/s41426-018-0213-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) has become the most deadly infectious diseases due to epidemics of HIV/AIDS and multidrug-resistant/extensively drug-resistant TB (MDR-/XDR-TB). Although person-to-person transmission contributes to MDR-TB, it remains unknown whether infection with MDR strains resembles infection with drug-sensitive (DS) TB strains, manipulating limited or broad immune responses. To address these questions, macaques were infected with MDR strain V791 and a drug-sensitive Erdman strain of TB. MDR bacilli burdens in the airway were significantly higher than those of the Erdman control after pulmonary exposure. This productive MDR strain infection upregulated the expression of caspase 3 in macrophages/monocytes and induced appreciable innate-like effector responses of CD3-negative lymphocytes and Ag-specific γδ T-cell subsets. Concurrently, MDR strain infection induced broad immune responses of T-cell subpopulations producing Th1, Th17, Th22, and CTL cytokines. Furthermore, MDR bacilli, like the Erdman strain, were capable of inducing typical TB disease characterized by weight loss, lymphocytopenia, and severe TB lesions. For the first time, our results suggest that MDR-TB infection acts like DS to induce high bacterial burdens in the airway (transmission advantage), innate/adaptive immune responses, and disease processes. Because nonhuman primates are biologically closer to humans than other species, our data may provide useful information for predicting the effects of primary MDR strain infection after person-to-person transmission. The findings also support the hypothesis that a vaccine or host-directed adjunctive modality that is effective for drug-sensitive TB is likely to also impact MDR-TB.
Collapse
Affiliation(s)
- Enzhuo Yang
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Rui Yang
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Unit of Anti-Tuberculosis Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming Guo
- College of Medicine,Wuhan University, Wuhan, Hubei Province, 430072, China
| | - Dan Huang
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Wandang Wang
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Zhuoran Zhang
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Crystal Chen
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Feifei Wang
- Department of Medical Microbiology and Parasitology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenzhe Ho
- College of Medicine,Wuhan University, Wuhan, Hubei Province, 430072, China
| | - Ling Shen
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Heping Xiao
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zheng W Chen
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA.
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
- Unit of Anti-Tuberculosis Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
139
|
Kayser J, Schreck CF, Gralka M, Fusco D, Hallatschek O. Collective motion conceals fitness differences in crowded cellular populations. Nat Ecol Evol 2018; 3:125-134. [PMID: 30510177 PMCID: PMC6309230 DOI: 10.1038/s41559-018-0734-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022]
Abstract
Many cellular populations are tightly-packed, such as microbial colonies and biofilms, or tissues and tumors in multicellular organisms. Movement of one cell in those crowded assemblages requires motion of others, so that cell displacements are correlated over many cell diameters. Whenever movement is important for survival or growth, these correlated rearrangements could couple the evolutionary fate of different lineages. Yet, little is known about the interplay between mechanical forces and evolution in dense cellular populations. Here, by tracking slower-growing clones at the expanding edge of yeast colonies, we show that the collective motion of cells prevents costly mutations from being weeded out rapidly. Joint pushing by neighboring cells generates correlated movements that suppress the differential displacements required for selection to act. This mechanical screening of fitness differences allows slower-growing mutants to leave more descendants than expected under non-mechanical models, thereby increasing their chance for evolutionary rescue. Our work suggests that, in crowded populations, cells cooperate with surrounding neighbors through inevitable mechanical interactions. This effect has to be considered when predicting evolutionary outcomes, such as the emergence of drug resistance or cancer evolution.
Collapse
Affiliation(s)
- Jona Kayser
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Carl F Schreck
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Matti Gralka
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Diana Fusco
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA. .,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
140
|
Zhang M, Chen S, Gnegy M, Ye C, Lin W, Lin H, Yu X. Environmental strains potentially contribute to the proliferation and maintenance of antibiotic resistance in drinking water: A case study of Cupriavidus metallidurans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:819-826. [PMID: 29960223 DOI: 10.1016/j.scitotenv.2018.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Fitness costs of antibiotic resistance detrimentally affect the fate of resistance carriers. Intriguingly, numerous antibiotic resistant bacteria (ARB) have been detected despite the low concentration of antibiotics in drinking water. To reveal the causes of this discrepancy, we investigated the fitness cost of antimicrobial resistance in strain Cupriavidus metallidurans CR2 which was isolated from a drinking water filter. Pure culture and 1:1 competitive experiments were established at different nutrient levels. The growth rates of strain C. metallidurans CR2 significantly decreased when pure cultured under poor nutrient conditions, however, the multi-resistance and the resistance megaplasmids were well maintained. Competitiveness costs were observed in C. metallidurans when separately co-cultured with environmentally-isolated Flectobacillus BS1 and Pseudomonas sp. S3, while C. metallidurans was outnumbered by the rivals with a decrease of 1-2 logs. But the majority of C. metallidurans retained the plasmids under oligotrophic conditions even after 144 h (1.99 and 0.199 mg C/L). Additionally, C. metallidurans CR2 has a higher tolerance to chlorine and chloramine, which potentially could become prevalent in the subsequent distribution systems other than drinking water treatment plant. As a potential pathogen, the prevalence of Cupriavidus metallidurans in drinking water would also pose certain threats to human health.
Collapse
Affiliation(s)
- Menglu Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Sheng Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Mariah Gnegy
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Huirong Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
141
|
Xu Z, Zhou A, Wu J, Zhou A, Li J, Zhang S, Wu W, Karakousis PC, Yao YF. Transcriptional Approach for Decoding the Mechanism of rpoC Compensatory Mutations for the Fitness Cost in Rifampicin-Resistant Mycobacterium tuberculosis. Front Microbiol 2018; 9:2895. [PMID: 30555440 PMCID: PMC6283890 DOI: 10.3389/fmicb.2018.02895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022] Open
Abstract
Multidrug-resistant tuberculosis (TB), defined as TB resistant to the two first-line drugs, isoniazid and rifampin, is a serious challenge to global TB eradication efforts. Although mutations in rpoA or rpoC have been proposed to compensate for this fitness cost due to rpoB mutation in rifampicin-resistant Mycobacterium tuberculosis mutants, whether the compensatory effect exists and the underlying mechanisms of compensation remain unclear. Here, we used RNA sequencing to investigate the global transcriptional profiles of 6 rifampin-resistant clinical isolates with either single mutation in rpoB or dual mutations in rpoB/rpoC, as well as 3 rifampin-susceptible clinical isolates, trying to prove the potential compensatory effect of rpoC by transcriptomic alteration. In rifampin-free conditions, rpoC mutation was associated with M. tuberculosis upregulation of ribosomal protein-coding genes, dysregulation of growth-related essential genes and balancing the expression of arginine and glutamate synthesis-associated genes. Upon rifampin exposure of M. tuberculosis isolates, rpoC mutations were associated with the upregulation of the oxidative phosphorylation machinery, which was inhibited in the rpoB single mutants, as well as stabilization of the expression of rifampin-regulated essential genes and balancing the expression of genes involved in metabolism of sulfur-containing amino acids. Taken together, our data suggest that rpoC mutation may compensate for the fitness defect of rifampicin-resistant M. tuberculosis by altering gene expression in response to rifampin exposure.
Collapse
Affiliation(s)
- Zhihong Xu
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiawei Wu
- Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiwu Zhou
- Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shulin Zhang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Petros C Karakousis
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
142
|
Brandis G, Hughes D. Mechanisms of fitness cost reduction for rifampicin-resistant strains with deletion or duplication mutations in rpoB. Sci Rep 2018; 8:17488. [PMID: 30504835 PMCID: PMC6269455 DOI: 10.1038/s41598-018-36005-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
Rifampicin resistance (RifR) is caused by mutations in rpoB, encoding the β-subunit of RNA polymerase. RifR mutations generally incur a fitness cost and in resistant isolates are frequently accompanied by compensatory mutations in rpoA, rpoB or rpoC. Previous studies of fitness compensation focused on RifR caused by amino acid substitutions within rpoB. RifR is also caused by deletion and duplication mutations in rpoB but it is not known whether or how such mutants can ameliorate their fitness costs. Using experimental evolution of Salmonella carrying RifR deletion or duplication mutations we identified compensatory amino acid substitution mutations within rpoA, rpoB or rpoC in 16 of 21 evolved lineages. Additionally, we found one lineage where a large deletion was compensated by duplication of adjacent amino acids (possibly to fill the gap within the protein structure), two lineages where mutations occurred outside of rpoABC, and two lineages where a duplication mutant reverted to the wild-type sequence. All but the two revertant mutants maintained the RifR phenotype. These data suggest that amino acid substitution mutations are the major compensatory mechanism regardless of the nature of the primary RifR mutation.
Collapse
Affiliation(s)
- Gerrit Brandis
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, 75123, Sweden
| | - Diarmaid Hughes
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, 75123, Sweden.
| |
Collapse
|
143
|
Merker M, Barbier M, Cox H, Rasigade JP, Feuerriegel S, Kohl TA, Diel R, Borrell S, Gagneux S, Nikolayevskyy V, Andres S, Nübel U, Supply P, Wirth T, Niemann S. Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia. eLife 2018; 7:38200. [PMID: 30373719 PMCID: PMC6207422 DOI: 10.7554/elife.38200] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022] Open
Abstract
Bacterial factors favoring the unprecedented multidrug-resistant tuberculosis (MDR-TB) epidemic in the former Soviet Union remain unclear. We utilized whole genome sequencing and Bayesian statistics to analyze the evolutionary history, temporal emergence of resistance and transmission networks of MDR Mycobacterium tuberculosis complex isolates from Karakalpakstan, Uzbekistan (2001-2006). One clade (termed Central Asian outbreak, CAO) dating back to 1974 (95% HPD 1969-1982) subsequently acquired resistance mediating mutations to eight anti-TB drugs. Introduction of standardized WHO-endorsed directly observed treatment, short-course in Karakalpakstan in 1998 likely selected for CAO-strains, comprising 75% of sampled MDR-TB isolates in 2005/2006. CAO-isolates were also identified in a published cohort from Russia (2008-2010). Similarly, the presence of mutations supposed to compensate bacterial fitness deficits was associated with transmission success and higher drug resistance rates. The genetic make-up of these MDR-strains threatens the success of both empirical and standardized MDR-TB therapies, including the newly WHO-endorsed short MDR-TB regimen in Uzbekistan.
Collapse
Affiliation(s)
- Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Maxime Barbier
- Laboratoire Biologie Intégrative des Populations, Evolution Moléculaire, Ecole Pratique des Hautes Etudes, PSL University, Paris, France.,Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France
| | - Helen Cox
- Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jean-Philippe Rasigade
- Laboratoire Biologie Intégrative des Populations, Evolution Moléculaire, Ecole Pratique des Hautes Etudes, PSL University, Paris, France.,Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France.,CIRI INSERM U1111, University of Lyon, Lyon, France
| | - Silke Feuerriegel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Thomas Andreas Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany
| | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Vladyslav Nikolayevskyy
- Imperial College London, London, United Kingdom.,Public Health England, London, United Kingdom
| | - Sönke Andres
- Division of Mycobacteriology, National Tuberculosis Reference Laboratory, Research Center Borstel, Borstel, Germany
| | - Ulrich Nübel
- Microbial Genome Research, Leibniz-Institut DSMZ- Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,German Center for Infection Research, Braunschweig, Germany
| | - Philip Supply
- Université de Lille, CNRS UMR 8204, Inserm U1019, CHU de Lille, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France.,Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Center for Infection and Immunity of Lille, Lille, France.,Center for Infection and Immunity of Lille, Université de Lille Nord de France, Lille, France.,Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
| | - Thierry Wirth
- Laboratoire Biologie Intégrative des Populations, Evolution Moléculaire, Ecole Pratique des Hautes Etudes, PSL University, Paris, France.,Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Ecole Pratique des Hautes Etudes, Sorbonne Universités, Paris, France
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Germany
| |
Collapse
|
144
|
Kavvas ES, Catoiu E, Mih N, Yurkovich JT, Seif Y, Dillon N, Heckmann D, Anand A, Yang L, Nizet V, Monk JM, Palsson BO. Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat Commun 2018; 9:4306. [PMID: 30333483 PMCID: PMC6193043 DOI: 10.1038/s41467-018-06634-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis is a serious human pathogen threat exhibiting complex evolution of antimicrobial resistance (AMR). Accordingly, the many publicly available datasets describing its AMR characteristics demand disparate data-type analyses. Here, we develop a reference strain-agnostic computational platform that uses machine learning approaches, complemented by both genetic interaction analysis and 3D structural mutation-mapping, to identify signatures of AMR evolution to 13 antibiotics. This platform is applied to 1595 sequenced strains to yield four key results. First, a pan-genome analysis shows that M. tuberculosis is highly conserved with sequenced variation concentrated in PE/PPE/PGRS genes. Second, the platform corroborates 33 genes known to confer resistance and identifies 24 new genetic signatures of AMR. Third, 97 epistatic interactions across 10 resistance classes are revealed. Fourth, detailed structural analysis of these genes yields mechanistic bases for their selection. The platform can be used to study other human pathogens.
Collapse
Affiliation(s)
- Erol S Kavvas
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Edward Catoiu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nathan Mih
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - James T Yurkovich
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas Dillon
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - David Heckmann
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Amitesh Anand
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA. .,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
145
|
Ehsani S, van den Boom M, Gilpin C, Dara M. The role of novel molecular techniques for tuberculosis diagnostics in the WHO European Region. J Public Health (Oxf) 2018; 38:824-825. [PMID: 28158739 DOI: 10.1093/pubmed/fdv200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Soudeh Ehsani
- WHO Regional Office For Europe, Joint Tuberculosis, HIV/AIDS and Hepatitis Programme (JTH), Division of Communicable Diseases, Health Security and Environment, UN City, Marmorvej 51, DK-2100 Copenhagen, Denmark
| | - Martin van den Boom
- WHO Regional Office For Europe, Joint Tuberculosis, HIV/AIDS and Hepatitis Programme (JTH), Division of Communicable Diseases, Health Security and Environment, UN City, Marmorvej 51, DK-2100 Copenhagen, Denmark
| | - Christopher Gilpin
- WHO Global TB Programme (GTB), 20, Avenue Appia, CH-1211, Geneva, Switzerland
| | | | | |
Collapse
|
146
|
Sane M, Miranda JJ, Agashe D. Antagonistic pleiotropy for carbon use is rare in new mutations. Evolution 2018; 72:2202-2213. [PMID: 30095155 PMCID: PMC6203952 DOI: 10.1111/evo.13569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
Abstract
Pleiotropic effects of mutations underlie diverse biological phenomena such as ageing and specialization. In particular, antagonistic pleiotropy ("AP": when a mutation has opposite fitness effects in different environments) generates tradeoffs, which may constrain adaptation. Models of adaptation typically assume that AP is common - especially among large-effect mutations - and that pleiotropic effect sizes are positively correlated. Empirical tests of these assumptions have focused on de novo beneficial mutations arising under strong selection. However, most mutations are actually deleterious or neutral, and may contribute to standing genetic variation that can subsequently drive adaptation. We quantified the incidence, nature, and effect size of pleiotropy for carbon utilization across 80 single mutations in Escherichia coli that arose under mutation accumulation (i.e., weak selection). Although ∼46% of the mutations were pleiotropic, only 11% showed AP; among beneficial mutations, only ∼4% showed AP. In some environments, AP was more common in large-effect mutations; and AP effect sizes across environments were often negatively correlated. Thus, AP for carbon use is generally rare (especially among beneficial mutations); is not consistently enriched in large-effect mutations; and often involves weakly deleterious antagonistic effects. Our unbiased quantification of mutational effects therefore suggests that antagonistic pleiotropy may be unlikely to cause maladaptive tradeoffs.
Collapse
Affiliation(s)
- Mrudula Sane
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Joshua John Miranda
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Deepa Agashe
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
147
|
Bajda S, Riga M, Wybouw N, Papadaki S, Ouranou E, Fotoukkiaii SM, Vontas J, Van Leeuwen T. Fitness costs of key point mutations that underlie acaricide target-site resistance in the two-spotted spider mite Tetranychus urticae. Evol Appl 2018; 11:1540-1553. [PMID: 30344626 PMCID: PMC6183448 DOI: 10.1111/eva.12643] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/20/2018] [Accepted: 04/12/2018] [Indexed: 01/13/2023] Open
Abstract
The frequency of insecticide/acaricide target-site resistance is increasing in arthropod pest populations and is typically underpinned by single point mutations that affect the binding strength between the insecticide/acaricide and its target-site. Theory predicts that although resistance mutations clearly have advantageous effects under the selection pressure of the insecticide/acaricide, they might convey negative pleiotropic effects on other aspects of fitness. If such fitness costs are in place, target-site resistance is thus likely to disappear in the absence of insecticide/acaricide treatment, a process that would counteract the spread of resistance in agricultural crops. Hence, there is a great need to reliably quantify the various potential pleiotropic effects of target-site resistance point mutations on arthropod fitness. Here, we used near-isogenic lines of the spider mite pest Tetranychus urticae that carry well-characterized acaricide target-site resistance mutations to quantify potential fitness costs. Specifically, we analyzed P262T in the mitochondrial cytochrome b, the combined G314D and G326E substitutions in the glutamate-gated chloride channels, L1024V in the voltage-gated sodium channel, and I1017F in chitin synthase 1. Five fertility life table parameters and nine single-generation life-history traits were quantified and compared across a total of 15 mite lines. In addition, we monitored the temporal resistance level dynamics of populations with different starting frequency levels of the chitin synthase resistant allele to further support our findings. Three target-site resistance mutations, I1017F and the co-occurring G314D and G326E mutations, were shown to significantly and consistently alter certain fitness parameters in T. urticae. The other two mutations (P262T and L1024V) did not result in any consistent change in a fitness parameter analyzed in our study. Our findings are discussed in the context of the global spread of T. urticae pesticide resistance and integrated pest management.
Collapse
Affiliation(s)
- Sabina Bajda
- Laboratory of AgrozoologyDepartment of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
| | - Maria Riga
- Department of BiologyUniversity of CreteHeraklion, CreteGreece
- Institute of Molecular Biology & BiotechnologyFoundation for Research & Technology HellasHeraklion, CreteGreece
| | - Nicky Wybouw
- Laboratory of AgrozoologyDepartment of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
| | | | - Eleni Ouranou
- Department of BiologyUniversity of CreteHeraklion, CreteGreece
| | | | - John Vontas
- Institute of Molecular Biology & BiotechnologyFoundation for Research & Technology HellasHeraklion, CreteGreece
- Laboratory of Pesticide ScienceDepartment of Crop ScienceAgricultural University of AthensAthensGreece
| | - Thomas Van Leeuwen
- Laboratory of AgrozoologyDepartment of Plants and CropsFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
148
|
Nguyen QH, Contamin L, Nguyen TVA, Bañuls A. Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evol Appl 2018; 11:1498-1511. [PMID: 30344622 PMCID: PMC6183457 DOI: 10.1111/eva.12654] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 01/01/2023] Open
Abstract
At present, the successful transmission of drug-resistant Mycobacterium tuberculosis, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains, in human populations, threatens tuberculosis control worldwide. Differently from many other bacteria, M. tuberculosis drug resistance is acquired mainly through mutations in specific drug resistance-associated genes. The panel of mutations is highly diverse, but depends on the affected gene and M. tuberculosis genetic background. The variety of genetic profiles observed in drug-resistant clinical isolates underlines different evolutionary trajectories towards multiple drug resistance, although some mutation patterns are prominent. This review discusses the intrinsic processes that may influence drug resistance evolution in M. tuberculosis, such as mutation rate, drug resistance-associated mutations, fitness cost, compensatory mutations and epistasis. This knowledge should help to better predict the risk of emergence of highly resistant M. tuberculosis strains and to develop new tools and strategies to limit the development and spread of MDR and XDR strains.
Collapse
Affiliation(s)
- Quang Huy Nguyen
- Department of Pharmacological, Medical and Agronomical BiotechnologyUniversity of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
| | - Lucie Contamin
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| | - Thi Van Anh Nguyen
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| | - Anne‐Laure Bañuls
- Institute of Research for DevelopmentUMR MIVEGEC (CNRS‐IRD‐University of Montpellier)MontpellierFrance
- LMI Drug Resistance in South East Asia (LMI DRISA)University of Science and Technology of HanoiVietnam Academy of Science and Technology (VAST)HanoiVietnam
- Department of BacteriologyNational Institute of Hygiene and Epidemiology (NIHE)HanoiVietnam
| |
Collapse
|
149
|
Genetics and roadblocks of drug resistant tuberculosis. INFECTION GENETICS AND EVOLUTION 2018; 72:113-130. [PMID: 30261266 DOI: 10.1016/j.meegid.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
Abstract
Considering the extensive evolutionary history of Mycobacterium tuberculosis, anti-Tuberculosis (TB) drug therapy exerts a recent selective pressure. However, in a microorganism devoid of horizontal gene transfer and with a strictly clonal populational structure such as M. tuberculosis the usual, but not sole, path to overcome drug susceptibility is through de novo mutations on a relatively strict set of genes. The possible allelic diversity that can be associated with drug resistance through several mechanisms such as target alteration or target overexpression, will dictate how these genes can become associated with drug resistance. The success demonstrated by this pathogenic microbe in this latter process and its ability to spread is currently one of the major obstacles to an effective TB elimination. This article reviews the action mechanism of the more important anti-TB drugs, including bedaquiline and delamanid, along with new findings on specific resistance mechanisms. With the development, validation and endorsement of new in vitro molecular tests for drug resistance, knowledge on these resistance mechanisms and microevolutionary dynamics leading to the emergence and fixation of drug resistance mutations within the host is highly important. Additionally, the fitness toll imposed by resistance development is also herein discussed together with known compensatory mechanisms. By elucidating the possible mechanisms that enable one strain to reacquire the original fitness levels, it will be theoretically possible to make more informed decisions and develop novel strategies that can force M. tuberculosis microevolutionary trajectory down through a path of decreasing fitness levels.
Collapse
|
150
|
Modeling the implementation of population-level isoniazid preventive therapy for tuberculosis control in a high HIV-prevalence setting. AIDS 2018; 32:2129-2140. [PMID: 30096067 PMCID: PMC6150186 DOI: 10.1097/qad.0000000000001959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND We model the epidemiological impact of providing isoniazid preventive therapy (IPT) to South African adolescents, among whom HIV prevalence is low, latent tuberculosis (TB) prevalence is high, and school-based programs may enable population-level coverage. METHODS We simulate a dynamic compartmental model of age-structured HIV and TB coepidemics in South Africa. HIV dynamics are modeled by infection status, CD4 cell count, and antiretroviral therapy; TB dynamics are modeled by disease stage, diagnosis, treatment, and IPT status. We analyze the effects of continuous IPT coverage among adolescents from 5 (baseline) to 90%. RESULTS Our model is calibrated to WHO and the Joint United Nations Programme on HIV/AIDS epidemiological estimates. In simulations, increasing IPT coverage to 50% among adolescents reduced active TB incidence by 5-34%. Increasing coverage to 90% led to a 9-40% reduction in active TB incidence. Expanded IPT access causes TB incidence to decline in the general population of HIV-positive individuals, as well as in adult HIV-positive individuals. CONCLUSION Targeting IPT to a secondary school population with high latent TB prevalence and low-HIV prevalence, in which risk of false-negative diagnosis of active TB is low and IPT benefits are more established, could have substantial benefits to adolescents and spillover benefits to the adult population.
Collapse
|