101
|
Oktaba K, Zhang W, Lotz TS, Jun DJ, Lemke SB, Ng SP, Esposito E, Levine M, Hilgers V. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol Cell 2014; 57:341-8. [PMID: 25544561 DOI: 10.1016/j.molcel.2014.11.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/03/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
Alternative polyadenylation (APA) has been implicated in a variety of developmental and disease processes. A particularly dramatic form of APA occurs in the developing nervous system of flies and mammals, whereby various developmental genes undergo coordinate 3' UTR extension. In Drosophila, the RNA-binding protein ELAV inhibits RNA processing at proximal polyadenylation sites, thereby fostering the formation of exceptionally long 3' UTRs. Here, we present evidence that paused Pol II promotes recruitment of ELAV to extended genes. Replacing promoters of extended genes with heterologous promoters blocks normal 3' extension in the nervous system, while extension-associated promoters can induce 3' extension in ectopic tissues expressing ELAV. Computational analyses suggest that promoter regions of extended genes tend to contain paused Pol II and associated cis-regulatory elements such as GAGA. ChIP-seq assays identify ELAV in the promoter regions of extended genes. Our study provides evidence for a regulatory link between promoter-proximal pausing and APA.
Collapse
Affiliation(s)
- Katarzyna Oktaba
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Wei Zhang
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Thea Sabrina Lotz
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - David Jayhyun Jun
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Sandra Beatrice Lemke
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Samuel Pak Ng
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Emilia Esposito
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Michael Levine
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Valérie Hilgers
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
102
|
Puri D, Gala H, Mishra R, Dhawan J. High-wire act: the poised genome and cellular memory. FEBS J 2014; 282:1675-91. [PMID: 25440020 DOI: 10.1111/febs.13165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Emerging evidence aided by genome-wide analysis of chromatin and transcriptional states has shed light on the mechanisms by which stem cells achieve cellular memory. The epigenetic and transcriptional plasticity governing stem cell behavior is highlighted by the identification of 'poised' genes, which permit cells to maintain readiness to undertake alternate developmental fates. This review focuses on two crucial mechanisms of gene poising: bivalent chromatin marks and RNA polymerase II stalling. We provide the context for these mechanisms by exploring the current consensus on the regulation of chromatin states, especially in quiescent adult stem cells, where poised genes are critical for recapitulating developmental choices, leading to regenerative function.
Collapse
Affiliation(s)
- Deepika Puri
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | |
Collapse
|
103
|
Zheng LW, Zhang BP, Xu RS, Xu X, Ye L, Zhou XD. Bivalent histone modifications during tooth development. Int J Oral Sci 2014; 6:205-11. [PMID: 25394593 PMCID: PMC5153591 DOI: 10.1038/ijos.2014.60] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 02/05/2023] Open
Abstract
Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. To explore the spatiotemporal expression of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) epigenetic marks and methylation or demethylation transferases in tooth organ development, we measured the expression of SET7, EZH2, KDM5B and JMJD3 via immunohistochemistry and quantitative polymerase chain reaction (qPCR) analysis in the first molar of BALB/c mice embryos at E13.5, E15.5, E17.5, P0 and P3, respectively. We also measured the expression of H3K4me3 and H3K27me3 with immunofluorescence staining. During murine tooth germ development, methylation or demethylation transferases were expressed in a spatial–temporal manner. The bivalent modification characterized by H3K4me3 and H3K27me3 can be found during the tooth germ development, as shown by immunofluorescence. The expression of SET7, EZH2 as methylation transferases and KDM5B and JMJD3 as demethylation transferases indicated accordingly with the expression of H3K4me3 and H3K27me3 respectively to some extent. The bivalent histone may play a critical role in tooth organ development via the regulation of cell differentiation.
Collapse
Affiliation(s)
- Li-Wei Zheng
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] Department of Orthopedics, Johns Hopkins University, Baltimore, USA
| | - Bin-Peng Zhang
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ruo-Shi Xu
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xue-Dong Zhou
- 1] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China [2] West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
104
|
Rao MK, Matsumoto Y, Richardson ME, Panneerdoss S, Bhardwaj A, Ward JM, Shanker S, Bettegowda A, Wilkinson MF. Hormone-induced and DNA demethylation-induced relief of a tissue-specific and developmentally regulated block in transcriptional elongation. J Biol Chem 2014; 289:35087-101. [PMID: 25331959 DOI: 10.1074/jbc.m114.615435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Genome-wide studies have revealed that genes commonly have a high density of RNA polymerase II just downstream of the transcription start site. This has raised the possibility that genes are commonly regulated by transcriptional elongation, but this remains largely untested in vivo, particularly in vertebrates. Here, we show that the proximal promoter from the Rhox5 homeobox gene recruits polymerase II and begins elongating in all tissues and cell lines that we tested, but it only completes elongation in a tissue-specific and developmentally regulated manner. Relief of the elongation block is associated with recruitment of the elongation factor P-TEFb, the co-activator GRIP1, the chromatin remodeling factor BRG1, and specific histone modifications. We provide evidence that two mechanisms relieve the elongation block at the proximal promoter: demethylation and recruitment of androgen receptor. Together, our findings support a model in which promoter proximal pausing helps confer tissue-specific and developmental gene expression through a mechanism regulated by DNA demethylation-dependent nuclear hormone receptor recruitment.
Collapse
Affiliation(s)
- Manjeet K Rao
- From the Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, the Greehey Children's Cancer Research Institute, Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Yuiko Matsumoto
- From the Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Marcy E Richardson
- the Department of Reproductive Medicine, University of California at San Diego, La Jolla, California 92037, the Institute of Genomic Medicine, University of California at San Diego, La Jolla, California 92093, and
| | - Subbarayalu Panneerdoss
- the Greehey Children's Cancer Research Institute, Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Anjana Bhardwaj
- From the Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Jacqueline M Ward
- the Department of Reproductive Medicine, University of California at San Diego, La Jolla, California 92037, the Institute of Genomic Medicine, University of California at San Diego, La Jolla, California 92093, and
| | - Sreenath Shanker
- From the Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Anilkumar Bettegowda
- From the Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, the Department of Reproductive Medicine, University of California at San Diego, La Jolla, California 92037, the Institute of Genomic Medicine, University of California at San Diego, La Jolla, California 92093, and
| | - Miles F Wilkinson
- From the Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, the Department of Reproductive Medicine, University of California at San Diego, La Jolla, California 92037, the Institute of Genomic Medicine, University of California at San Diego, La Jolla, California 92093, and
| |
Collapse
|
105
|
D'Orso I. Mechanisms of eukaryotic transcription: A meeting report. Transcription 2014. [DOI: 10.4161/trns.27094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
106
|
Zhang J, Zhou T. Promoter-mediated transcriptional dynamics. Biophys J 2014; 106:479-88. [PMID: 24461023 DOI: 10.1016/j.bpj.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/24/2022] Open
Abstract
Genes in eukaryotic cells are typically regulated by complex promoters containing multiple binding sites for a variety of transcription factors, but how promoter dynamics affect transcriptional dynamics has remained poorly understood. In this study, we analyze gene models at the transcriptional regulation level, which incorporate the complexity of promoter structure (PS) defined as transcriptional exits (i.e., ON states of the promoter) and the transition pattern (described by a matrix consisting of transition rates among promoter activity states). We show that multiple exits of transcription are the essential origin of generating multimodal distributions of mRNA, but promoters with the same transition pattern can lead to multimodality of different modes, depending on the regulation of transcriptional factors. In turn, for similar mRNA distributions in the models, the mean ON or OFF time distributions may exhibit different characteristics, thus providing the supplemental information on PS. In addition, we demonstrate that the transcriptional noise can be characterized by a nonlinear function of mean ON and OFF times. These results not only reveal essential characteristics of promoter-mediated transcriptional dynamics but also provide signatures useful for inferring PS based on characteristics of transcriptional outputs.
Collapse
Affiliation(s)
- Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
107
|
Analytic approaches to stochastic gene expression in multicellular systems. Biophys J 2014; 105:2629-40. [PMID: 24359735 DOI: 10.1016/j.bpj.2013.10.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 10/16/2013] [Indexed: 11/22/2022] Open
Abstract
Deterministic thermodynamic models of the complex systems, which control gene expression in metazoa, are helping researchers identify fundamental themes in the regulation of transcription. However, quantitative single cell studies are increasingly identifying regulatory mechanisms that control variability in expression. Such behaviors cannot be captured by deterministic models and are poorly suited to contemporary stochastic approaches that rely on continuum approximations, such as Langevin methods. Fortunately, theoretical advances in the modeling of transcription have assembled some general results that can be readily applied to systems being explored only through a deterministic approach. Here, I review some of the recent experimental evidence for the importance of genetically regulating stochastic effects during embryonic development and discuss key results from Markov theory that can be used to model this regulation. I then discuss several pairs of regulatory mechanisms recently investigated through a Markov approach. In each case, a deterministic treatment predicts no difference between the mechanisms, but the statistical treatment reveals the potential for substantially different distributions of transcriptional activity. In this light, features of gene regulation that seemed needlessly complex evolutionary baggage may be appreciated for their key contributions to reliability and precision of gene expression.
Collapse
|
108
|
Gregor T, Garcia HG, Little SC. The embryo as a laboratory: quantifying transcription in Drosophila. Trends Genet 2014; 30:364-75. [PMID: 25005921 DOI: 10.1016/j.tig.2014.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/08/2014] [Accepted: 06/16/2014] [Indexed: 11/16/2022]
Abstract
Transcriptional regulation of gene expression is fundamental to most cellular processes, including determination of cellular fates. Quantitative studies of transcription in cultured cells have led to significant advances in identifying mechanisms underlying transcriptional control. Recent progress allowed implementation of these same quantitative methods in multicellular organisms to ask how transcriptional regulation unfolds both in vivo and at the single molecule level in the context of embryonic development. Here we review some of these advances in early Drosophila development, which bring the embryo on par with its single celled counterparts. In particular, we discuss progress in methods to measure mRNA and protein distributions in fixed and living embryos, and we highlight some initial applications that lead to fundamental new insights about molecular transcription processes. We end with an outlook on how to further exploit the unique advantages that come with investigating transcriptional control in the multicellular context of development.
Collapse
Affiliation(s)
- Thomas Gregor
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 085444, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Hernan G Garcia
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 085444, USA
| | - Shawn C Little
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
109
|
Stein DS, Stevens LM. Maternal control of the Drosophila dorsal-ventral body axis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:301-30. [PMID: 25124754 DOI: 10.1002/wdev.138] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED The pathway that generates the dorsal-ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- David S Stein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
110
|
Abstract
The rapid expansion of genomics methods has enabled developmental biologists to address fundamental questions of developmental gene regulation on a genome-wide scale. These efforts have demonstrated that transcription of developmental control genes by RNA polymerase II (Pol II) is commonly regulated at the transition to productive elongation, resulting in the promoter-proximal accumulation of transcriptionally engaged but paused Pol II prior to gene induction. Here we review the mechanisms and possible functions of Pol II pausing and their implications for development.
Collapse
Affiliation(s)
- Bjoern Gaertner
- Stowers Institute for Medical Research, Kansas City, 64110 MO, USA
| | | |
Collapse
|
111
|
An algebra-based method for inferring gene regulatory networks. BMC SYSTEMS BIOLOGY 2014; 8:37. [PMID: 24669835 PMCID: PMC4022379 DOI: 10.1186/1752-0509-8-37] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 03/06/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. RESULTS This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network. CONCLUSIONS Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html.
Collapse
|
112
|
Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, Tanaka K, Ren Y, Xia Z, Wu J, Li B, Barton MC, Li W, Li H, Shi X. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 2014; 508:263-8. [PMID: 24590075 DOI: 10.1038/nature13045] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
Recognition of modified histones by 'reader' proteins plays a critical role in the regulation of chromatin. H3K36 trimethylation (H3K36me3) is deposited onto the nucleosomes in the transcribed regions after RNA polymerase II elongation. In yeast, this mark in turn recruits epigenetic regulators to reset the chromatin to a relatively repressive state, thus suppressing cryptic transcription. However, much less is known about the role of H3K36me3 in transcription regulation in mammals. This is further complicated by the transcription-coupled incorporation of the histone variant H3.3 in gene bodies. Here we show that the candidate tumour suppressor ZMYND11 specifically recognizes H3K36me3 on H3.3 (H3.3K36me3) and regulates RNA polymerase II elongation. Structural studies show that in addition to the trimethyl-lysine binding by an aromatic cage within the PWWP domain, the H3.3-dependent recognition is mediated by the encapsulation of the H3.3-specific 'Ser 31' residue in a composite pocket formed by the tandem bromo-PWWP domains of ZMYND11. Chromatin immunoprecipitation followed by sequencing shows a genome-wide co-localization of ZMYND11 with H3K36me3 and H3.3 in gene bodies, and its occupancy requires the pre-deposition of H3.3K36me3. Although ZMYND11 is associated with highly expressed genes, it functions as an unconventional transcription co-repressor by modulating RNA polymerase II at the elongation stage. ZMYND11 is critical for the repression of a transcriptional program that is essential for tumour cell growth; low expression levels of ZMYND11 in breast cancer patients correlate with worse prognosis. Consistently, overexpression of ZMYND11 suppresses cancer cell growth in vitro and tumour formation in mice. Together, this study identifies ZMYND11 as an H3.3-specific reader of H3K36me3 that links the histone-variant-mediated transcription elongation control to tumour suppression.
Collapse
Affiliation(s)
- Hong Wen
- 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3]
| | - Yuanyuan Li
- 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China [3]
| | - Yuanxin Xi
- 1] Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA [2]
| | - Shiming Jiang
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sabrina Stratton
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Danni Peng
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kaori Tanaka
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yongfeng Ren
- 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zheng Xia
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jun Wu
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bing Li
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michelle C Barton
- 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Teaxs 77030, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Haitao Li
- 1] MOE Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China [2] Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaobing Shi
- 1] Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for Cancer Epigenetics, Center for Genetics and Genomics, and Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, Teaxs 77030, USA
| |
Collapse
|
113
|
Hah N, Kraus WL. Hormone-regulated transcriptomes: lessons learned from estrogen signaling pathways in breast cancer cells. Mol Cell Endocrinol 2014; 382:652-664. [PMID: 23810978 PMCID: PMC3844033 DOI: 10.1016/j.mce.2013.06.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022]
Abstract
Recent rapid advances in next generation sequencing technologies have expanded our understanding of steroid hormone signaling to a genome-wide level. In this review, we discuss the use of a novel genomic approach, global nuclear run-on coupled with massively parallel sequencing (GRO-seq), to explore new facets of the steroid hormone-regulated transcriptome, especially estrogen responses in breast cancer cells. GRO-seq is a high throughput sequencing method adapted from conventional nuclear run-on methodologies, which is used to obtain a map of the position and orientation of all transcriptionally engaged RNA polymerases across the genome with extremely high spatial resolution. GRO-seq, which is an excellent tool for examining transcriptional responses to extracellular stimuli, has been used to comprehensively assay the effects of estrogen signaling on the transcriptome of ERα-positive MCF-7 human breast cancer cells. These studies have revealed new details about estrogen-dependent transcriptional regulation, including effects on transcription by all three RNA polymerases, complex transcriptional dynamics in response to estrogen signaling, and identification novel, unannotated non-coding RNAs. Collectively, these studies have been useful in discerning the molecular logic of the estrogen-regulated mitogenic response.
Collapse
Affiliation(s)
- Nasun Hah
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, United States.
| | - W Lee Kraus
- The Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
114
|
Erceg J, Saunders TE, Girardot C, Devos DP, Hufnagel L, Furlong EEM. Subtle changes in motif positioning cause tissue-specific effects on robustness of an enhancer's activity. PLoS Genet 2014; 10:e1004060. [PMID: 24391522 PMCID: PMC3879207 DOI: 10.1371/journal.pgen.1004060] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022] Open
Abstract
Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood.
Collapse
Affiliation(s)
- Jelena Erceg
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Timothy E. Saunders
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Charles Girardot
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Damien P. Devos
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Eileen E. M. Furlong
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
115
|
Woods HA. Mosaic physiology from developmental noise: within-organism physiological diversity as an alternative to phenotypic plasticity and phenotypic flexibility. J Exp Biol 2014; 217:35-45. [DOI: 10.1242/jeb.089698] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A key problem in organismal biology is to explain the origins of functional diversity. In the context of organismal biology, functional diversity describes the set of phenotypes, across scales of biological organization and through time, that a single genotype, or genome, or organism, can produce. Functional diversity encompasses many phenomena: differences in cell types within organisms; physiological and morphological differences among tissues and organs; differences in performance; morphological shifts in external phenotype; and changes in behavior. How can single genomes produce so many different phenotypes? Modern biology proposes two general mechanisms. The first is developmental programs, by which single cells and their single genomes diversify, via relatively deterministic processes, into the sets of cell types, tissues and organs that we see in most multicellular organisms. The second general mechanism is phenotypic modification stemming from interactions between organisms and their environments – modifications known either as phenotypic plasticity or as phenotypic flexibility, depending on the time scale of the response and the degree of reversibility. These two diversity-generating mechanisms are related because phenotypic modifications may sometimes arise as a consequence of environments influencing developmental programs. Here, I propose that functional diversity also arises via a third fundamental mechanism: stochastic developmental events giving rise to mosaics of physiological diversity within individual organisms. In biological systems, stochasticity stems from the inherently random actions of small numbers of molecules interacting with one another. Although stochastic effects occur in many biological contexts, available evidence suggests that they can be especially important in gene networks, specifically as a consequence of low transcript numbers in individual cells. I briefly review known mechanisms by which organisms control such stochasticity, and how they may use it to create adaptive functional diversity. I then fold this idea into modern thinking on phenotypic plasticity and flexibility, proposing that multicellular organisms exhibit ‘mosaic physiology’. Mosaic physiology refers to sets of diversified phenotypes, within individual organisms, that carry out related functions at the same time, but that are distributed in space. Mosaic physiology arises from stochasticity-driven differentiation of cells, early during cell diversification, which is then amplified by cell division and growth into macroscopic phenotypic modules (cells, tissues, organs) making up the physiological systems of later life stages. Mosaic physiology provides a set of standing, diversified phenotypes, within single organisms, that raise the likelihood of the organism coping well with novel environmental challenges. These diversified phenotypes can be distinct, akin to polyphenisms at the organismal level; or they can be continuously distributed, creating a kind of standing, simultaneously expressed reaction norm of physiological capacities.
Collapse
Affiliation(s)
- H. Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
116
|
Wang Q, Zhou T. Alternative-splicing-mediated gene expression. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012713. [PMID: 24580263 DOI: 10.1103/physreve.89.012713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Indexed: 06/03/2023]
Abstract
Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.
Collapse
Affiliation(s)
- Qianliang Wang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tianshou Zhou
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China and Guangdong Province Key Laboratory of Computational Science and School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
117
|
Berlivet S, Paquette D, Dumouchel A, Langlais D, Dostie J, Kmita M. Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs. PLoS Genet 2013; 9:e1004018. [PMID: 24385922 PMCID: PMC3873244 DOI: 10.1371/journal.pgen.1004018] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/25/2013] [Indexed: 12/19/2022] Open
Abstract
HoxA genes exhibit central roles during development and causal mutations have been found in several human syndromes including limb malformation. Despite their importance, information on how these genes are regulated is lacking. Here, we report on the first identification of bona fide transcriptional enhancers controlling HoxA genes in developing limbs and show that these enhancers are grouped into distinct topological domains at the sub-megabase scale (sub-TADs). We provide evidence that target genes and regulatory elements physically interact with each other through contacts between sub-TADs rather than by the formation of discreet “DNA loops”. Interestingly, there is no obvious relationship between the functional domains of the enhancers within the limb and how they are partitioned among the topological domains, suggesting that sub-TAD formation does not rely on enhancer activity. Moreover, we show that suppressing the transcriptional activity of enhancers does not abrogate their contacts with HoxA genes. Based on these data, we propose a model whereby chromatin architecture defines the functional landscapes of enhancers. From an evolutionary standpoint, our data points to the convergent evolution of HoxA and HoxD regulation in the fin-to-limb transition, one of the major morphological innovations in vertebrates. Hox genes encode transcription factors with crucial roles during development. These genes are grouped in four different clusters names HoxA, B, C, and D. Mutations in genes of the HoxA and D clusters have been found in several human syndromes, affecting in some cases limb development. Despite their essential role and contrary to the genes of the HoxD cluster, little is known about how the HoxA genes are regulated. Here, we identified a large set of regulatory elements controlling HoxA genes during limb development. By studying spatial chromatin organization at the HoxA region, we found that the regulatory elements are spatially clustered regardless of their activity. Clustering of enhancers define tissue-specific chromatin domains that interact specifically with each other and with active genes in the limb. Our findings give support to the emerging concept that chromatin architecture defines the functional properties of genomes. Additionally, our study suggests a common constraint of the chromatin topology in the evolution of HoxA and HoxD regulation in the emergence of the hand/foot, which is one of the major morphological innovations in vertebrates.
Collapse
Affiliation(s)
- Soizik Berlivet
- Unité de génétique et développement, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Denis Paquette
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Annie Dumouchel
- Unité de génétique et développement, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - David Langlais
- Unité de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- * E-mail: (JD); (MK)
| | - Marie Kmita
- Unité de génétique et développement, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
- * E-mail: (JD); (MK)
| |
Collapse
|
118
|
Bhat R, Bissell MJ. Of plasticity and specificity: dialectics of the microenvironment and macroenvironment and the organ phenotype. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:147-63. [PMID: 24719287 DOI: 10.1002/wdev.130] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 07/30/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023]
Abstract
The study of biological form and how it arises is the domain of the developmental biologists; but once the form is achieved, the organ poses a fascinating conundrum for all the life scientists: how are form and function maintained in adult organs throughout most of the life of the organism? That they do appears to contradict the inherently plastic nature of organogenesis during development. How do cells with the same genetic information arrive at, and maintain such different architectures and functions, and how do they keep remembering that they are different from each other? It is now clear that narratives based solely on genes and an irreversible regulatory dynamics cannot answer these questions satisfactorily, and the concept of microenvironmental signaling needs to be added to the equation. During development, cells rearrange and differentiate in response to diffusive morphogens, juxtacrine signals, and the extracellular matrix (ECM). These components, which constitute the modular microenvironment, are sensitive to cues from other tissues and organs of the developing embryo as well as from the external macroenvironment. On the other hand, once the organ is formed, these modular constituents integrate and constrain the organ architecture, which ensures structural and functional homeostasis and therefore, organ specificity. We argue here that a corollary of the above is that once the organ architecture is compromised in adults by mutations or by changes in the microenvironment such as aging or inflammation, that organ becomes subjected to the developmental and embryonic circuits in search of a new identity. But since the microenvironment is no longer embryonic, the confusion leads to cancer: hence as we have argued, tumors become new evolutionary organs perhaps in search of an elusive homeostasis.
Collapse
Affiliation(s)
- Ramray Bhat
- Department of Cancer & DNA Damage Responses, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
119
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
120
|
Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell 2013; 154:789-800. [PMID: 23953111 DOI: 10.1016/j.cell.2013.07.025] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/20/2013] [Accepted: 07/12/2013] [Indexed: 01/03/2023]
Abstract
Early embryonic patterning events are strikingly precise, a fact that appears incompatible with the stochastic gene expression observed across phyla. Using single-molecule mRNA quantification in Drosophila embryos, we determine the magnitude of fluctuations in the expression of four critical patterning genes. The accumulation of mRNAs is identical across genes and fluctuates by only ∼8% between neighboring nuclei, generating precise protein distributions. In contrast, transcribing loci exhibit an intrinsic noise of ∼45% independent of specific promoter-enhancer architecture or fluctuating inputs. Precise transcript distribution in the syncytium is recovered via straightforward spatiotemporal averaging, i.e., accumulation and diffusion of transcripts during nuclear cycles, without regulatory feedback. Common expression characteristics shared between genes suggest that fluctuations in mRNA production are context independent and are a fundamental property of transcription. The findings shed light on how the apparent paradox between stochastic transcription and developmental precision is resolved.
Collapse
|
121
|
Lucas T, Ferraro T, Roelens B, De Las Heras Chanes J, Walczak AM, Coppey M, Dostatni N. Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr Biol 2013; 23:2135-9. [PMID: 24139736 DOI: 10.1016/j.cub.2013.08.053] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
The early Drosophila embryo is an ideal model to understand the transcriptional regulation of well-defined patterns of gene expression in a developing organism. In this system, snapshots of transcription measurements obtained by RNA FISH on fixed samples cannot provide the temporal resolution needed to distinguish spatial heterogeneity from inherent noise. Here, we used the MS2-MCP system to visualize in living embryos nascent transcripts expressed from the canonical hunchback (hb) promoter under the control of Bicoid (Bcd). The hb-MS2 reporter is expressed as synchronously as endogenous hb in the anterior half of the embryo, but unlike hb it is also active in the posterior, though more heterogeneously and more transiently than in the anterior. The length and intensity of active transcription periods in the anterior are strongly reduced in absence of Bcd, whereas posterior ones are mostly Bcd independent. This posterior noisy signal decreases progressively through nuclear divisions, so that the MS2 reporter expression mimics the known anterior hb pattern at cellularization. We propose that the establishment of the hb pattern relies on Bcd-dependent lengthening of transcriptional activity periods in the anterior and may require two distinct repression mechanisms in the posterior.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified/embryology
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/metabolism
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- In Situ Hybridization, Fluorescence
- Microscopy, Confocal
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Videotape Recording
Collapse
Affiliation(s)
- Tanguy Lucas
- Institut Curie, Centre de Recherche, Paris 75248, France; CNRS, UMR218/UMR168/UMR8549/UMR8550, Paris 75248, France; UPMC, Paris 75248, France
| | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Histone modifications and chromatin-associated protein complexes are crucially involved in the control of gene expression, supervising cell fate decisions and differentiation. Many promoters in embryonic stem (ES) cells harbor a distinctive histone modification signature that combines the activating histone H3 Lys 4 trimethylation (H3K4me3) mark and the repressive H3K27me3 mark. These bivalent domains are considered to poise expression of developmental genes, allowing timely activation while maintaining repression in the absence of differentiation signals. Recent advances shed light on the establishment and function of bivalent domains; however, their role in development remains controversial, not least because suitable genetic models to probe their function in developing organisms are missing. Here, we explore avenues to and from bivalency and propose that bivalent domains and associated chromatin-modifying complexes safeguard proper and robust differentiation.
Collapse
Affiliation(s)
- Philipp Voigt
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
123
|
HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell 2013; 153:1327-39. [PMID: 23746844 DOI: 10.1016/j.cell.2013.04.048] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 02/26/2013] [Accepted: 04/25/2013] [Indexed: 01/17/2023]
Abstract
The transcription factor HIF1A is a key mediator of the cellular response to hypoxia. Despite the importance of HIF1A in homeostasis and various pathologies, little is known about how it regulates RNA polymerase II (RNAPII). We report here that HIF1A employs a specific variant of the Mediator complex to stimulate RNAPII elongation. The Mediator-associated kinase CDK8, but not the paralog CDK19, is required for induction of many HIF1A target genes. HIF1A induces binding of CDK8-Mediator and the super elongation complex (SEC), containing AFF4 and CDK9, to alleviate RNAPII pausing. CDK8 is dispensable for HIF1A chromatin binding and histone acetylation, but it is essential for binding of SEC and RNAPII elongation. Global analysis of active RNAPII reveals that hypoxia-inducible genes are paused and active prior to their induction. Our results provide a mechanistic link between HIF1A and CDK8, two potent oncogenes, in the cellular response to hypoxia.
Collapse
|
124
|
Zhang J, Nie Q, He M, Zhou T. An effective method for computing the noise in biochemical networks. J Chem Phys 2013; 138:084106. [PMID: 23464139 DOI: 10.1063/1.4792444] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present a simple yet effective method, which is based on power series expansion, for computing exact binomial moments that can be in turn used to compute steady-state probability distributions as well as the noise in linear or nonlinear biochemical reaction networks. When the method is applied to representative reaction networks such as the ON-OFF models of gene expression, gene models of promoter progression, gene auto-regulatory models, and common signaling motifs, the exact formulae for computing the intensities of noise in the species of interest or steady-state distributions are analytically given. Interestingly, we find that positive (negative) feedback does not enlarge (reduce) noise as claimed in previous works but has a counter-intuitive effect and that the multi-OFF (or ON) mechanism always attenuates the noise in contrast to the common ON-OFF mechanism and can modulate the noise to the lowest level independently of the mRNA mean. Except for its power in deriving analytical expressions for distributions and noise, our method is programmable and has apparent advantages in reducing computational cost.
Collapse
Affiliation(s)
- Jiajun Zhang
- School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | | | | | | |
Collapse
|
125
|
Chen K, Johnston J, Shao W, Meier S, Staber C, Zeitlinger J. A global change in RNA polymerase II pausing during the Drosophila midblastula transition. eLife 2013; 2:e00861. [PMID: 23951546 PMCID: PMC3743134 DOI: 10.7554/elife.00861] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022] Open
Abstract
Massive zygotic transcription begins in many organisms during the midblastula transition when the cell cycle of the dividing egg slows down. A few genes are transcribed before this stage but how this differential activation is accomplished is still an open question. We have performed ChIP-seq experiments on tightly staged Drosophila embryos and show that massive recruitment of RNA polymerase II (Pol II) with widespread pausing occurs de novo during the midblastula transition. However, ∼100 genes are strongly occupied by Pol II before this timepoint and most of them do not show Pol II pausing, consistent with a requirement for rapid transcription during the fast nuclear cycles. This global change in Pol II pausing correlates with distinct core promoter elements and associates a TATA-enriched promoter with the rapid early transcription. This suggests that promoters are differentially used during the zygotic genome activation, presumably because they have distinct dynamic properties. DOI:http://dx.doi.org/10.7554/eLife.00861.001.
Collapse
Affiliation(s)
- Kai Chen
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jeff Johnston
- Stowers Institute for Medical Research, Kansas City, United States
| | - Wanqing Shao
- Stowers Institute for Medical Research, Kansas City, United States
| | - Samuel Meier
- Stowers Institute for Medical Research, Kansas City, United States
| | - Cynthia Staber
- Stowers Institute for Medical Research, Kansas City, United States
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, United States
- Department of Pathology, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|
126
|
The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells. Nat Struct Mol Biol 2013; 20:1093-7. [PMID: 23934151 PMCID: PMC3805109 DOI: 10.1038/nsmb.2653] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022]
Abstract
Promoters of many developmentally regulated genes have a bivalent mark of H3K27me3 and H3K4me3 in embryonic stem cells state, which is proposed to confer precise temporal activation upon differentiation. Although Polycomb repressive complex 2 (PRC2) is known to implement H3K27me3, the COMPASS family member responsible for H3K4me3 at bivalently-marked promoters was previously unknown. Here, we identify Mll2 (KMT2b) as the enzyme responsible for H3K4me3 on bivalently-marked promoters in embryonic stem cells. Although H3K4me3 at bivalent genes is proposed to prime future activation, we did not detect a substantial defect in rapid transcriptional induction after retinoic acid treatment in Mll2 depleted cells. Our identification of the Mll2 complex as the COMPASS family member responsible for implementing H3K4me3 at bivalent promoters provides an opportunity to reevaluate and experimentally test models for the function of bivalency in the embryonic stem cell state and in differentiation.
Collapse
|
127
|
Lagha M, Bothma JP, Esposito E, Ng S, Stefanik L, Tsui C, Johnston J, Chen K, Gilmour DS, Zeitlinger J, Levine MS. Paused Pol II coordinates tissue morphogenesis in the Drosophila embryo. Cell 2013; 153:976-87. [PMID: 23706736 DOI: 10.1016/j.cell.2013.04.045] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/23/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Paused RNA polymerase (Pol II) is a pervasive feature of Drosophila embryos and mammalian stem cells, but its role in development is uncertain. Here, we demonstrate that a spectrum of paused Pol II determines the "time to synchrony"-the time required to achieve coordinated gene expression across the cells of a tissue. To determine whether synchronous patterns of gene activation are significant in development, we manipulated the timing of snail expression, which controls the coordinated invagination of ∼1,000 mesoderm cells during gastrulation. Replacement of the strongly paused snail promoter with moderately paused or nonpaused promoters causes stochastic activation of snail expression and increased variability of mesoderm invagination. Computational modeling of the dorsal-ventral patterning network recapitulates these variable and bistable gastrulation profiles and emphasizes the importance of timing of gene activation in development. We conclude that paused Pol II and transcriptional synchrony are essential for coordinating cell behavior during morphogenesis.
Collapse
Affiliation(s)
- Mounia Lagha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Saunders A, Core LJ, Sutcliffe C, Lis JT, Ashe HL. Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription. Genes Dev 2013; 27:1146-58. [PMID: 23699410 DOI: 10.1101/gad.215459.113] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cascades of zygotic gene expression pattern the anterior-posterior (AP) and dorsal-ventral (DV) axes of the early Drosophila embryo. Here, we used the global run-on sequencing assay (GRO-seq) to map the genome-wide RNA polymerase distribution during early Drosophila embryogenesis, thus providing insights into how genes are regulated. We identify widespread promoter-proximal pausing yet show that the presence of paused polymerase does not necessarily equate to direct regulation through pause release to productive elongation. Our data reveal that a subset of early Zelda-activated genes is regulated at the level of polymerase recruitment, whereas other Zelda target and axis patterning genes are predominantly regulated through pause release. In contrast to other signaling pathways, we found that bone morphogenetic protein (BMP) target genes are collectively more highly paused than BMP pathway components and show that BMP target gene expression requires the pause-inducing negative elongation factor (NELF) complex. Our data also suggest that polymerase pausing allows plasticity in gene activation throughout embryogenesis, as transiently repressed and transcriptionally silenced genes maintain and lose promoter polymerases, respectively. Finally, we provide evidence that the major effect of pausing is on the levels, rather than timing, of transcription. These data are discussed in terms of the efficiency of transcriptional activation required across cell populations during developmental time constraints.
Collapse
Affiliation(s)
- Abbie Saunders
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
129
|
Smith E, Shilatifard A. Transcriptional elongation checkpoint control in development and disease. Genes Dev 2013; 27:1079-88. [PMID: 23699407 DOI: 10.1101/gad.215137.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transcriptional elongation control by RNA polymerase II and its associated factors has taken center stage as a process essential for the regulation of gene expression throughout development. In this review, we analyze recent findings on the identification of factors functioning in the regulation of the transcriptional elongation checkpoint control (TECC) stage of gene expression and how the factors' misregulation is associated with disease pathogenesis, including cancer.
Collapse
Affiliation(s)
- Edwin Smith
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
130
|
Distinct mechanisms of transcriptional pausing orchestrated by GAGA factor and M1BP, a novel transcription factor. EMBO J 2013; 32:1829-41. [PMID: 23708796 DOI: 10.1038/emboj.2013.111] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/24/2013] [Indexed: 01/14/2023] Open
Abstract
Thousands of genes in Drosophila have Pol II paused in the promoter proximal region. Almost half of these genes are associated with either GAGA factor (GAF) or a newly discovered factor we call M1BP. Although both factors dictate the association of Pol II at their target promoters, they are nearly mutually exclusive on the genome and mediate different mechanisms of regulation. High-resolution mapping of Pol II using permanganate-ChIP-seq indicates that pausing on M1BP genes is transient and could involve the +1 nucleosome. In contrast, pausing on GAF genes is much stronger and largely independent of nucleosomes. Distinct regulatory mechanisms are reflected by transcriptional plasticity: M1BP genes are constitutively expressed throughout development while GAF genes exhibit much greater developmental specificity. M1BP binds a core promoter element called Motif 1. Motif 1 potentially directs a distinct transcriptional mechanism from the canonical TATA box, which does not correlate with paused Pol II on the genomic scale. In contrast to M1BP and GAF genes, a significant portion of TATA box genes appear to be controlled at preinitiation complex formation.
Collapse
|
131
|
|
132
|
Liu J, Ma J. Uncovering a dynamic feature of the transcriptional regulatory network for anterior-posterior patterning in the Drosophila embryo. PLoS One 2013; 8:e62641. [PMID: 23646132 PMCID: PMC3639989 DOI: 10.1371/journal.pone.0062641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023] Open
Abstract
Anterior-posterior (AP) patterning in the Drosophila embryo is dependent on the Bicoid (Bcd) morphogen gradient. However, most target genes of Bcd also require additional inputs to establish their expression domains, reflective of the operation of a cross-regulatory network and contributions of other maternal signals. This is in contrast to hunchback (hb), which has an anterior expression domain driven by an enhancer that appears to respond primarily to the Bcd input. To gain a better understanding of the regulatory logic of the AP patterning network, we perform quantitative studies that specifically investigate the dynamics of hb transcription during development. We show that Bcd-dependent hb transcription, monitored by the intron-containing nascent transcripts near the P2 promoter, is turned off quickly–on the order of a few minutes–upon entering the interphase of nuclear cycle 14A. This shutdown contrasts with earlier cycles during which active hb transcription can persist until the moment when the nucleus enters mitosis. The shutdown takes place at a time when the nuclear Bcd gradient profile in the embryo remains largely intact, suggesting that this is a process likely subject to control of a currently unknown regulatory mechanism. We suggest that this dynamic feature offers a window of opportunity for hb to faithfully interpret, and directly benefit from, Bcd gradient properties, including its scaling properties, to help craft a robust AP patterning outcome.
Collapse
Affiliation(s)
- Junbo Liu
- Division of Biomedical Informatics, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
133
|
He F, Ma J. A spatial point pattern analysis in Drosophila blastoderm embryos evaluating the potential inheritance of transcriptional states. PLoS One 2013; 8:e60876. [PMID: 23593336 PMCID: PMC3621909 DOI: 10.1371/journal.pone.0060876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/04/2013] [Indexed: 01/10/2023] Open
Abstract
The Drosophila blastoderm embryo undergoes rapid cycles of nuclear division. This poses a challenge to genes that need to reliably sense the concentrations of morphogen molecules to form desired expression patterns. Here we investigate whether the transcriptional state of hunchback (hb), a target gene directly activated by the morphogenetic protein Bicoid (Bcd), exhibits properties indicative of inheritance between mitotic cycles. To achieve this, we build a dataset of hb transcriptional states at the resolution of individual nuclei in embryos at early cycle 14. We perform a spatial point pattern (SPP) analysis to evaluate the spatial relationships among the nuclei that have distinct numbers of hb gene copies undergoing active transcription in snapshots of embryos. Our statistical tests and simulation studies reveal properties of dispersed clustering for nuclei with both or neither copies of hb undergoing active transcription. Modeling of nuclear lineages from cycle 11 to cycle 14 suggests that these two types of nuclei can achieve spatial clustering when, and only when, the transcriptional states are allowed to propagate between mitotic cycles. Our results are consistent with the possibility where the positional information encoded by the Bcd morphogen gradient may not need to be decoded de novo at all mitotic cycles in the Drosophila blastoderm embryo.
Collapse
Affiliation(s)
- Feng He
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
134
|
Danko CG, Hah N, Luo X, Martins AL, Core L, Lis JT, Siepel A, Kraus WL. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 2013; 50:212-22. [PMID: 23523369 DOI: 10.1016/j.molcel.2013.02.015] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/16/2013] [Accepted: 02/12/2013] [Indexed: 01/30/2023]
Abstract
RNA polymerase II (Pol II) transcribes hundreds of kilobases of DNA, limiting the production of mRNAs and lncRNAs. We used global run-on sequencing (GRO-seq) to measure the rates of transcription by Pol II following gene activation. Elongation rates vary as much as 4-fold at different genomic loci and in response to two distinct cellular signaling pathways (i.e., 17β-estradiol [E2] and TNF-α). The rates are slowest near the promoter and increase during the first ~15 kb transcribed. Gene body elongation rates correlate with Pol II density, resulting in systematically higher rates of transcript production at genes with higher Pol II density. Pol II dynamics following short inductions indicate that E2 stimulates gene expression by increasing Pol II initiation, whereas TNF-α reduces Pol II residence time at pause sites. Collectively, our results identify previously uncharacterized variation in the rate of transcription and highlight elongation as an important, variable, and regulated rate-limiting step during transcription.
Collapse
Affiliation(s)
- Charles G Danko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Viñuelas J, Kaneko G, Coulon A, Vallin E, Morin V, Mejia-Pous C, Kupiec JJ, Beslon G, Gandrillon O. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts. BMC Biol 2013; 11:15. [PMID: 23442824 PMCID: PMC3635915 DOI: 10.1186/1741-7007-11-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells. RESULTS For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the closed state, and that the agents we used mainly seem to act on the opening probability. CONCLUSIONS In this study, we report biological experiments combined with computational modeling, highlighting the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with long (hours to days) periods of quiet state.
Collapse
Affiliation(s)
- José Viñuelas
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
| | - Gaël Kaneko
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
- Université de Lyon, INSA-Lyon, INRIA, Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), CNRS UMR5205, F-69621 Lyon, France
| | - Antoine Coulon
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elodie Vallin
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
| | - Valérie Morin
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
| | - Camila Mejia-Pous
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
| | | | - Guillaume Beslon
- Université de Lyon, INSA-Lyon, INRIA, Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), CNRS UMR5205, F-69621 Lyon, France
| | - Olivier Gandrillon
- Université de Lyon, Université Lyon 1, Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, F-69622 Lyon, France
| |
Collapse
|
136
|
Ribavirin-induced intracellular GTP depletion activates transcription elongation in coagulation factor VII gene expression. Biochem J 2013; 449:231-9. [PMID: 23050902 DOI: 10.1042/bj20121286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Coagulation FVII (Factor VII) is a vitamin K-dependent glycoprotein synthesized in hepatocytes. It was reported previously that FVII gene (F7) expression was up-regulated by ribavirin treatment in hepatitis C virus-infected haemophilia patients; however, its precise mechanism is still unknown. In the present study, we investigated the molecular mechanism of ribavirin-induced up-regulation of F7 expression in HepG2 (human hepatoma cell line). We found that intracellular GTP depletion by ribavirin as well as other IMPDH (inosine-5'-monophosphate dehydrogenase) inhibitors, such as mycophenolic acid and 6-mercaptopurine, up-regulated F7 expression. FVII mRNA transcription was mainly enhanced by accelerated transcription elongation, which was mediated by the P-TEFb (positive-transcription elongation factor b) complex, rather than by promoter activation. Ribavirin unregulated ELL (eleven-nineteen lysine-rich leukaemia) 3 mRNA expression before F7 up-regulation. We observed that ribavirin enhanced ELL3 recruitment to F7, whereas knockdown of ELL3 diminished ribavirin-induced FVII mRNA up-regulation. Ribavirin also enhanced recruitment of CDK9 (cyclin-dependent kinase 9) and AFF4 to F7. These data suggest that ribavirin-induced intracellular GTP depletion recruits a super elongation complex containing P-TEFb, AFF4 and ELL3, to F7, and modulates FVII mRNA transcription elongation. Collectively, we have elucidated a basal mechanism for ribavirin-induced FVII mRNA up-regulation by acceleration of transcription elongation, which may be crucial in understanding its pleiotropic functions in vivo.
Collapse
|
137
|
Rapid transcription fosters coordinate snail expression in the Drosophila embryo. Cell Rep 2013; 3:8-15. [PMID: 23352665 DOI: 10.1016/j.celrep.2012.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/31/2012] [Accepted: 12/26/2012] [Indexed: 11/23/2022] Open
Abstract
Transcription is commonly held to be a highly stochastic process, resulting in considerable heterogeneity of gene expression among the different cells in a population. Here, we employ quantitative in situ hybridization methods coupled with high-resolution imaging assays to measure the expression of snail, a developmental patterning gene necessary for coordinating the invagination of the mesoderm during gastrulation of the Drosophila embryo. Our measurements of steady-state mRNAs suggest that there is very little variation in snail expression across the different cells that make up the mesoderm and that synthesis approaches the kinetic limits of Pol II processivity. We propose that rapid transcription kinetics and negative autoregulation are responsible for the remarkable homogeneity of snail expression and the coordination of mesoderm invagination.
Collapse
|
138
|
Shah K, Tyagi S. Barriers to transmission of transcriptional noise in a c-fos c-jun pathway. Mol Syst Biol 2013; 9:687. [PMID: 24022005 PMCID: PMC3792345 DOI: 10.1038/msb.2013.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 08/08/2013] [Indexed: 12/16/2022] Open
Abstract
We explored how transcriptional noise propagates in gene-regulatory pathways by studying the induction of two downstream genes by transcription factors c-fos and c-jun. They are produced for a brief period following serum stimulation of cells and then activate the promoters of their target genes by binding to them as heterodimers. We found that, even though they are coordinately expressed at the population level, in individual cells the expression of c-fos and c-jun is noisy and uncorrelated with each other. The expression of the downstream genes is also noisy, but there is little or no effect of the noise in the upstream genes on the expression of the downstream genes. The noise is not transmitted, because the number of heterodimers present in single cells is relatively invariant, and the induction of downstream genes is insensitive to the number of heterodimers in individual cells. Sequestration of promoters of the downstream genes within compact chromatin is a likely cause of this insensitivity. These barriers to the propagation and amplification of noise are likely to be commonplace in higher eukaryotes.
Collapse
Affiliation(s)
- Khyati Shah
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
139
|
Leach BI, Kuntimaddi A, Schmidt CR, Cierpicki T, Johnson SA, Bushweller JH. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 2012; 21:176-183. [PMID: 23260655 DOI: 10.1016/j.str.2012.11.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/19/2012] [Accepted: 11/13/2012] [Indexed: 01/31/2023]
Abstract
Mixed lineage leukemia (MLL) fusion proteins cause oncogenic transformation of hematopoietic cells by constitutive recruitment of elongation factors to HOX promoters, resulting in overexpression of target genes. The structural basis of transactivation by MLL fusion partners remains undetermined. We show that the ANC1 homology domain (AHD) of AF9, one of the most common MLL translocation partners, is intrinsically disordered and recruits multiple transcription factors through coupled folding and binding. We determined the structure of the AF9 AHD in complex with the elongation factor AF4 and show that aliphatic residues, which are conserved in each of the AF9 binding partners, form an integral part of the hydrophobic core of the complex. Nuclear magnetic resonance relaxation measurements show that AF9 retains significant dynamic behavior which may facilitate exchange between disordered partners. We propose that AF9 functions as a signaling hub that regulates transcription through dynamic recruitment of cofactors in normal hematopoiesis and in acute leukemia.
Collapse
Affiliation(s)
- Benjamin I Leach
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Aravinda Kuntimaddi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Charles R Schmidt
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Tomasz Cierpicki
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephanie A Johnson
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
140
|
Gaertner B, Johnston J, Chen K, Wallaschek N, Paulson A, Garruss AS, Gaudenz K, De Kumar B, Krumlauf R, Zeitlinger J. Poised RNA polymerase II changes over developmental time and prepares genes for future expression. Cell Rep 2012; 2:1670-83. [PMID: 23260668 DOI: 10.1016/j.celrep.2012.11.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 09/29/2012] [Accepted: 11/27/2012] [Indexed: 01/20/2023] Open
Abstract
Poised RNA polymerase II (Pol II) is predominantly found at developmental control genes and is thought to allow their rapid and synchronous induction in response to extracellular signals. How the recruitment of poised RNA Pol II is regulated during development is not known. By isolating muscle tissue from Drosophila embryos at five stages of differentiation, we show that the recruitment of poised Pol II occurs at many genes de novo and this makes them permissive for future gene expression. A comparison with other tissues shows that these changes are stage specific and not tissue specific. In contrast, Polycomb group repression is tissue specific, and in combination with Pol II (the balanced state) marks genes with highly dynamic expression. This suggests that poised Pol II is temporally regulated and is held in check in a tissue-specific fashion. We compare our data with findings in mammalian embryonic stem cells and discuss a framework for predicting developmental programs on the basis of the chromatin state.
Collapse
Affiliation(s)
- Bjoern Gaertner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Sayed D, He M, Yang Z, Lin L, Abdellatif M. Transcriptional regulation patterns revealed by high resolution chromatin immunoprecipitation during cardiac hypertrophy. J Biol Chem 2012; 288:2546-58. [PMID: 23229551 DOI: 10.1074/jbc.m112.429449] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac hypertrophy is characterized by a generalized increase in gene expression that is commensurate with the increase in myocyte size and mass, on which is superimposed more robust changes in the expression of specialized genes. Both transcriptional and posttranscriptional mechanisms play fundamental roles in these processes; however, genome-wide characterization of the transcriptional changes has not been investigated. Our goal was to identify the extent and modes, RNA polymerase II (pol II) pausing versus recruitment, of transcriptional regulation underlying cardiac hypertrophy. We used anti-pol II and anti-histone H3K9-acetyl (H3K9ac) chromatin immunoprecipitation-deep sequencing to determine the extent of pol II recruitment and pausing, and the underlying epigenetic modifications, respectively, during cardiac growth. The data uniquely reveal two mutually exclusive modes of transcriptional regulation. One involves an incremental increase (30-50%) in the elongational activity of preassembled, promoter-paused, pol II, and encompasses ∼25% of expressed genes that are essential/housekeeping genes (e.g. RNA synthesis and splicing). Another involves a more robust activation via de novo pol II recruitment, encompassing ∼5% of specialized genes (e.g. contractile and extracellular matrix). Moreover, the latter subset has relatively shorter 3'-UTRs with fewer predicted targeting miRNA, whereas most miRNA targets fall in the former category, underscoring the significance of posttranscriptional regulation by miRNA. The results, for the first time, demonstrate that promoter-paused pol II plays a role in incrementally increasing housekeeping genes, proportionate to the increase in heart size. Additionally, the data distinguish between the roles of posttranscriptional versus transcriptional regulation of specific genes.
Collapse
Affiliation(s)
- Danish Sayed
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
142
|
Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 2012; 13:720-31. [PMID: 22986266 DOI: 10.1038/nrg3293] [Citation(s) in RCA: 906] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed a sea change in our understanding of transcription regulation: whereas traditional models focused solely on the events that brought RNA polymerase II (Pol II) to a gene promoter to initiate RNA synthesis, emerging evidence points to the pausing of Pol II during early elongation as a widespread regulatory mechanism in higher eukaryotes. Current data indicate that pausing is particularly enriched at genes in signal-responsive pathways. Here the evidence for pausing of Pol II from recent high-throughput studies will be discussed, as well as the potential interconnected functions of promoter-proximally paused Pol II.
Collapse
|
143
|
Core LJ, Waterfall JJ, Gilchrist DA, Fargo DC, Kwak H, Adelman K, Lis JT. Defining the status of RNA polymerase at promoters. Cell Rep 2012; 2:1025-35. [PMID: 23062713 DOI: 10.1016/j.celrep.2012.08.034] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022] Open
Abstract
Recent genome-wide studies in metazoans have shown that RNA polymerase II (Pol II) accumulates to high densities on many promoters at a rate-limited step in transcription. However, the status of this Pol II remains an area of debate. Here, we compare quantitative outputs of a global run-on sequencing assay and chromatin immunoprecipitation sequencing assays and demonstrate that the majority of the Pol II on Drosophila promoters is transcriptionally engaged; very little exists in a preinitiation or arrested complex. These promoter-proximal polymerases are inhibited from further elongation by detergent-sensitive factors, and knockdown of negative elongation factor, NELF, reduces their levels. These results not only solidify the notion that pausing occurs at most promoters, but demonstrate that it is the major rate-limiting step in early transcription at these promoters. Finally, the divergent elongation complexes seen at mammalian promoters are far less prevalent in Drosophila, and this specificity in orientation correlates with directional core promoter elements, which are abundant in Drosophila.
Collapse
Affiliation(s)
- Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Luo Z, Lin C, Shilatifard A. The super elongation complex (SEC) family in transcriptional control. Nat Rev Mol Cell Biol 2012; 13:543-7. [PMID: 22895430 DOI: 10.1038/nrm3417] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The super elongation complex (SEC) consists of the RNA polymerase II (Pol II) elongation factors eleven-nineteen Lys-rich leukaemia (ELL) proteins, positive transcription elongation factor b (P-TEFb) and several frequent mixed lineage leukaemia (MLL) translocation partners. It is one of the most active P-TEFb-containing complexes required for rapid transcriptional induction in the presence or absence of paused Pol II. The SEC was found to regulate the transcriptional elongation checkpoint control (TECC) stage of transcription, and misregulation of this stage is associated with cancer pathogenesis. Recent studies have shown that the SEC belongs to a larger family of SEC-like complexes, which includes SEC-L2 and SEC-L3, each with distinct gene target specificities.
Collapse
Affiliation(s)
- Zhuojuan Luo
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
145
|
Lagha M, Bothma JP, Levine M. Mechanisms of transcriptional precision in animal development. Trends Genet 2012; 28:409-16. [PMID: 22513408 PMCID: PMC4257495 DOI: 10.1016/j.tig.2012.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
We review recently identified mechanisms of transcriptional control that ensure reliable and reproducible patterns of gene expression in natural populations of developing embryos, despite inherent fluctuations in gene regulatory processes, variations in genetic backgrounds and exposure to diverse environmental conditions. These mechanisms are not responsible for switching genes on and off. Instead, they control the fine-tuning of gene expression and ensure regulatory precision. Several such mechanisms are discussed, including redundant binding sites within transcriptional enhancers, shadow enhancers, and 'poised' enhancers and promoters, as well as the role of 'redundant' gene interactions within regulatory networks. We propose that such regulatory mechanisms provide population fitness and 'fine-tune' the spatial and temporal control of gene expression.
Collapse
Affiliation(s)
- Mounia Lagha
- Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
146
|
Abstract
Heat-shock proteins (Hsps) maintain homeostasis by assisting protein folding, and the transcriptional regulation of Hsp-coding genes has long been under study. Sawarkar et al. (2012) now report in Cell that Hsp90 is itself a transcriptional regulator required for RNA polymerase pausing, contributing to rapid, robust induction of many genes.
Collapse
Affiliation(s)
- Mark L Siegal
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| | | |
Collapse
|
147
|
Gilchrist DA, Fromm G, dos Santos G, Pham LN, McDaniel IE, Burkholder A, Fargo DC, Adelman K. Regulating the regulators: the pervasive effects of Pol II pausing on stimulus-responsive gene networks. Genes Dev 2012; 26:933-44. [PMID: 22549956 DOI: 10.1101/gad.187781.112] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The expression of many metazoan genes is regulated through controlled release of RNA polymerase II (Pol II) that has paused during early transcription elongation. Pausing is highly enriched at genes in stimulus-responsive pathways, where it has been proposed to poise downstream targets for rapid gene activation. However, whether this represents the major function of pausing in these pathways remains to be determined. To address this question, we analyzed pausing within several stimulus-responsive networks in Drosophila and discovered that paused Pol II is much more prevalent at genes encoding components and regulators of signal transduction cascades than at inducible downstream targets. Within immune-responsive pathways, we found that pausing maintains basal expression of critical network hubs, including the key NF-κB transcription factor that triggers gene activation. Accordingly, loss of pausing through knockdown of the pause-inducing factor NELF leads to broadly attenuated immune gene activation. Investigation of murine embryonic stem cells revealed that pausing is similarly widespread at genes encoding signaling components that regulate self-renewal, particularly within the MAPK/ERK pathway. We conclude that the role of pausing goes well beyond poising-inducible genes for activation and propose that the primary function of paused Pol II is to establish basal activity of signal-responsive networks.
Collapse
Affiliation(s)
- Daniel A Gilchrist
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Liu S, Tao Y. Interplay between chromatin modifications and paused RNA polymerase II in dynamic transition between stalled and activated genes. Biol Rev Camb Philos Soc 2012; 88:40-8. [PMID: 22765520 DOI: 10.1111/j.1469-185x.2012.00237.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dynamic interplay between chromatin modification (e.g. DNA methylation) and RNA polymerase II (Pol II) plays a critical role in gene transcription during stem cell development, establishment, and maintenance and in the cellular response to extracellular stimuli such as those that cause DNA damage. Pol II is recruited to the promoter-proximal regions of numerous inactive genes at high conentrations in a process called Pol II stalling. This is a key process prior to gene activation and it involves many interacting factors. Chromatin modification including nucleosome position is dependent on chromatin structure. Stalled genes create a particular structural conformation of chromatin, which acts as a target for chromatin modification. In this way, Pol II stalling may be regarded as a type of signal for chromatin modification in these regions during the dynamic transition between stalled and activated genes.
Collapse
Affiliation(s)
- Shuang Liu
- Cancer Research Institute, Central South University, Changsha, Hunan 410078, China
| | | |
Collapse
|
149
|
Vorobyeva NE, Nikolenko JV, Nabirochkina EN, Krasnov AN, Shidlovskii YV, Georgieva SG. SAYP and Brahma are important for 'repressive' and 'transient' Pol II pausing. Nucleic Acids Res 2012; 40:7319-31. [PMID: 22638575 PMCID: PMC3424582 DOI: 10.1093/nar/gks472] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Drosophila SAYP, a homologue of human PHF10/BAF45a, is a metazoan coactivator associated with Brahma and essential for its recruitment on the promoter. The role of SAYP in DHR3 activator-driven transcription of the ftz-f1 gene, a member of the ecdysone cascade was studied. In the repressed state of ftz-f1 in the presence of DHR3, the Pol II complex is pre-recruited on the promoter; Pol II starts transcription but is paused 1.5 kb downstream of the promoter, with SAYP and Brahma forming a 'nucleosomal barrier' (a region of high nucleosome density) ahead of paused Pol II. SAYP depletion leads to the removal of Brahma, thereby eliminating the nucleosomal barrier. During active transcription, Pol II pausing at the same point correlates with Pol II CTD Ser2 phosphorylation. SAYP is essential for Ser2 phosphorylation and transcription elongation. Thus, SAYP as part of the Brahma complex participates in both 'repressive' and 'transient' Pol II pausing.
Collapse
Affiliation(s)
- Nadezhda E Vorobyeva
- Group of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | | | | | | | | | | |
Collapse
|
150
|
The super elongation complex family of RNA polymerase II elongation factors: gene target specificity and transcriptional output. Mol Cell Biol 2012; 32:2608-17. [PMID: 22547686 DOI: 10.1128/mcb.00182-12] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The elongation stage of transcription is highly regulated in metazoans. We previously purified the AFF1- and AFF4-containing super elongation complex (SEC) as a major regulator of development and cancer pathogenesis. Here, we report the biochemical isolation of SEC-like 2 (SEC-L2) and SEC-like 3 (SEC-L3) containing AFF2 and AFF3 in association with P-TEFb, ENL/MLLT1, and AF9/MLLT3. The SEC family members demonstrate high levels of polymerase II (Pol II) C-terminal domain kinase activity; however, only SEC is required for the proper induction of the HSP70 gene upon stress. Genome-wide mRNA-Seq analyses demonstrated that SEC-L2 and SEC-L3 control the expression of different subsets of genes, while AFF4/SEC plays a more dominant role in rapid transcriptional induction in cells. MYC is one of the direct targets of AFF4/SEC, and SEC recruitment to the MYC gene regulates its expression in different cancer cells, including those in acute myeloid or lymphoid leukemia. These findings suggest that AFF4/SEC could be a potential therapeutic target for the treatment of leukemia or other cancers associated with MYC overexpression.
Collapse
|