101
|
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21:151-166. [DOI: 10.1038/s41580-019-0208-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
102
|
Vasan R, Rudraraju S, Akamatsu M, Garikipati K, Rangamani P. A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier associated with membrane neck constriction. SOFT MATTER 2020; 16:784-797. [PMID: 31830191 DOI: 10.1039/c9sm01494b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Membrane neck formation is essential for scission, which, as recent experiments on tubules have demonstrated, can be location dependent. The diversity of biological machinery that can constrict a neck such as dynamin, actin, ESCRTs and BAR proteins, and the range of forces and deflection over which they operate, suggest that the constriction process is functionally mechanical and robust to changes in biological environment. In this study, we used a mechanical model of the lipid bilayer to systematically investigate the influence of location, symmetry constraints, and helical forces on membrane neck constriction. Simulations from our model demonstrated that the energy barriers associated with constriction of a membrane neck are location-dependent. Importantly, if symmetry restrictions are relaxed, then the energy barrier for constriction is dramatically lowered and the membrane buckles at lower values of forcing parameters. Our simulations also show that constriction due to helical proteins further reduces the energy barrier for neck formation when compared to cylindrical proteins. These studies establish that despite different molecular mechanisms of neck formation in cells, the mechanics of constriction naturally leads to a loss of symmetry that can lower the energy barrier to constriction.
Collapse
Affiliation(s)
- R Vasan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
103
|
Xing F, Qu S, Liu J, Yang J, Hu F, Drevenšek-Olenik I, Pan L, Xu J. Intercellular Bridge Mediates Ca 2+ Signals between Micropatterned Cells via IP 3 and Ca 2+ Diffusion. Biophys J 2020; 118:1196-1204. [PMID: 32023438 DOI: 10.1016/j.bpj.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intercellular bridges are plasma continuities formed at the end of the cytokinesis process that facilitate intercellular mass transport between the two daughter cells. However, it remains largely unknown how the intercellular bridge mediates Ca2+ communication between postmitotic cells. In this work, we utilize BV-2 microglial cells planted on dumbbell-shaped micropatterned assemblies to resolve spatiotemporal characteristics of Ca2+ signal transfer over the intercellular bridges. With the use of such micropatterns, considerably longer and more regular intercellular bridges can be obtained than in conventional cell cultures. The initial Ca2+ signal is evoked by mechanical stimulation of one of the daughter cells. A considerable time delay is observed between the arrivals of passive Ca2+ diffusion and endogenous Ca2+ response in the intercellular-bridge-connected cell, indicating two different pathways of the Ca2+ communication. Extracellular Ca2+ and the paracrine pathway have practically no effect on the endogenous Ca2+ response, demonstrated by application of Ca2+-free medium, exogenous ATP, and P2Y13 receptor antagonist. In contrast, the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin and inositol trisphosphate (IP3) receptor blocker 2-aminoethyl diphenylborate significantly inhibit the endogenous Ca2+ increase, which signifies involvement of IP3-sensitive calcium store release. Notably, passive Ca2+ diffusion into the connected cell can clearly be detected when IP3-sensitive calcium store release is abolished by 2-aminoethyl diphenylborate. Those observations prove that both passive Ca2+ diffusion and IP3-mediated endogenous Ca2+ response contribute to the Ca2+ increase in intercellular-bridge-connected cells. Moreover, a simulation model agreed well with the experimental observations.
Collapse
Affiliation(s)
- Fulin Xing
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Songyue Qu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Junfang Liu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Jianyu Yang
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Fen Hu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China
| | - Irena Drevenšek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, and J. Stefan Institute, Ljubljana, Slovenia
| | - Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China.
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics of Education Ministry, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
104
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
105
|
Lü J, Liu Z, Guo W, Guo M, Chen S, Li H, Yang C, Zhang Y, Pan H. Feeding Delivery of dsHvSnf7 Is a Promising Method for Management of the Pest Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). INSECTS 2019; 11:insects11010034. [PMID: 31906124 PMCID: PMC7022289 DOI: 10.3390/insects11010034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) techniques have emerged as powerful tools in the development of novel management strategies for the control of insect pests, such as Henosepilachna vigintioctopunctata, which is a major solanaceous pest in Asia. Our results showed that levels of HvSnf7 expression were greater in larval midguts than in other tissues. Silencing of HvSnf7 led to greater H. vigintioctopunctata mortality rates and appeared to be time- and partially dose-dependent. Bacterially expressed dsHvSnf7 that was applied to detached plant leaves caused 98, 88, and 60% mortality in 1st and 3rd instars, and adults after 10, 12, and 14 d, respectively; when applied to living plants, bacterially expressed dsHvSnf7 led to mortality in 1st and 3rd instars, with no effect on adults. Bacterially expressed dsHvSnf7 led to improved plant protection against H. vigintioctopunctata. Ultrastructural changes caused by HvSnf7-RNAi in larval midguts showed extensive loss of cellular contents that indicate loss of membrane integrity. This study indicate that HvSnf7 potentially can be used as RNAi target gene for controlling of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Zhuoqi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (H.L.); (C.Y.)
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (H.L.); (C.Y.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Z.); (H.P.)
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangdong Province, Guangzhou 510642, China; (J.L.); (Z.L.); (W.G.); (M.G.); (S.C.)
- Engineering Research Center of Biocontrol, Ministry of Education and South China Agricultural University, Guangdong Province, Guangzhou 510642, China
- Correspondence: (Y.Z.); (H.P.)
| |
Collapse
|
106
|
Abstract
Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The 'classical' budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.
Collapse
|
107
|
Monteonofrio L, Valente D, Rinaldo C, Soddu S. Extrachromosomal Histone H2B Contributes to the Formation of the Abscission Site for Cell Division. Cells 2019; 8:cells8111391. [PMID: 31694230 PMCID: PMC6912571 DOI: 10.3390/cells8111391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Histones are constitutive components of nucleosomes and key regulators of chromatin structure. We previously observed that an extrachromosomal histone H2B (ecH2B) localizes at the intercellular bridge (ICB) connecting the two daughter cells during cytokinesis independently of DNA and RNA. Here, we show that ecH2B binds and colocalizes with CHMP4B, a key component of the ESCRT-III machinery responsible for abscission, the final step of cell division. Abscission requires the formation of an abscission site at the ICB where the ESCRT-III complex organizes into narrowing cortical helices that drive the physical separation of sibling cells. ecH2B depletion does not prevent membrane cleavage rather results in abscission delay and accumulation of abnormally long and thin ICBs. In the absence of ecH2B, CHMP4B and other components of the fission machinery, such as IST1 and Spastin, are recruited to the ICB and localize at the midbody. However, in the late stage of abscission, these fission factors fail to re-localize at the periphery of the midbody and the abscission site fails to form. These results show that extrachromosomal activity of histone H2B is required in the formation of the abscission site and the proper localization of the fission machinery.
Collapse
Affiliation(s)
- Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
- Correspondence: (L.M.); (S.S.); Tel.: +1-(443)-410-9571 (L.M.); +39-065266-2492 (S.S.)
| | - Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
- Institutes of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, 00185 Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (D.V.); (C.R.)
- Correspondence: (L.M.); (S.S.); Tel.: +1-(443)-410-9571 (L.M.); +39-065266-2492 (S.S.)
| |
Collapse
|
108
|
Peterman E, Prekeris R. The postmitotic midbody: Regulating polarity, stemness, and proliferation. J Cell Biol 2019; 218:3903-3911. [PMID: 31690620 PMCID: PMC6891101 DOI: 10.1083/jcb.201906148] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Peterman and Prekeris review abscission and discuss the diverse roles for the postmitotic midbody in regulating polarity, tumorigenesis, and stemness. Abscission, the final stage of cell division, requires well-orchestrated changes in endocytic trafficking, microtubule severing, actin clearance, and the physical sealing of the daughter cell membranes. These processes are highly regulated, and any missteps in localized membrane and cytoskeleton dynamics often lead to a delay or a failure in cell division. The midbody, a microtubule-rich structure that forms during cytokinesis, is a key regulator of abscission and appears to function as a signaling platform coordinating cytoskeleton and endosomal dynamics during the terminal stages of cell division. It was long thought that immediately following abscission and the conclusion of cell division, the midbody is either released or rapidly degraded by one of the daughter cells. Recently, the midbody has gained prominence for exerting postmitotic functions. In this review, we detail the role of the midbody in orchestrating abscission, as well as discuss the relatively new field of postabscission midbody biology, particularly focusing on how it may act to regulate cell polarity and its potential to regulate cell tumorigenicity or stemness.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
109
|
Petsalaki E, Zachos G. Building bridges between chromosomes: novel insights into the abscission checkpoint. Cell Mol Life Sci 2019; 76:4291-4307. [PMID: 31302750 PMCID: PMC11105294 DOI: 10.1007/s00018-019-03224-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022]
Abstract
In the presence of chromatin bridges, mammalian cells delay completion of cytokinesis (abscission) to prevent chromatin breakage or tetraploidization by regression of the cleavage furrow. This abscission delay is called "the abscission checkpoint" and is dependent on Aurora B kinase. Furthermore, cells stabilize the narrow cytoplasmic canal between the two daughter cells until the DNA bridges are resolved. Impaired abscission checkpoint signaling or unstable intercellular canals can lead to accumulation of DNA damage, aneuploidy, or generation of polyploid cells which are associated with tumourigenesis. However, the molecular mechanisms involved have only recently started to emerge. In this review, we focus on the molecular pathways of the abscission checkpoint and describe newly identified triggers, Aurora B-regulators and effector proteins in abscission checkpoint signaling. We also describe mechanisms that control intercellular bridge stabilization, DNA bridge resolution, or abscission checkpoint silencing upon satisfaction, and discuss how abscission checkpoint proteins can be targeted to potentially improve cancer therapy.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece.
| |
Collapse
|
110
|
Renshaw MJ, Panagiotou TC, Lavoie BD, Wilde A. CDK11 p58-cyclin L1β regulates abscission site assembly. J Biol Chem 2019; 294:18639-18649. [PMID: 31653703 DOI: 10.1074/jbc.ra119.009107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/10/2019] [Indexed: 01/22/2023] Open
Abstract
Rigorous spatiotemporal regulation of cell division is required to maintain genome stability. The final stage in cell division, when the cells physically separate (abscission), is tightly regulated to ensure that it occurs after cytokinetic events such as chromosome segregation. A key regulator of abscission timing is Aurora B kinase activity, which inhibits abscission and forms the major activity of the abscission checkpoint. This checkpoint prevents abscission until chromosomes have been cleared from the cytokinetic machinery. Here we demonstrate that the mitosis-specific CDK11p58 kinase specifically forms a complex with cyclin L1β that, in late cytokinesis, localizes to the stem body, a structure in the middle of the intercellular bridge that forms between two dividing cells. Depletion of CDK11 inhibits abscission, and rescue of this phenotype requires CDK11p58 kinase activity or inhibition of Aurora B kinase activity. Furthermore, CDK11p58 kinase activity is required for formation of endosomal sorting complex required for transport III filaments at the site of abscission. Combined, these data suggest that CDK11p58 kinase activity opposes Aurora B activity to enable abscission to proceed and result in successful completion of cytokinesis.
Collapse
Affiliation(s)
- Matthew J Renshaw
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Brigitte D Lavoie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Andrew Wilde
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
111
|
The midbody interactome reveals unexpected roles for PP1 phosphatases in cytokinesis. Nat Commun 2019; 10:4513. [PMID: 31586073 PMCID: PMC6778137 DOI: 10.1038/s41467-019-12507-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022] Open
Abstract
The midbody is an organelle assembled at the intercellular bridge between the two daughter cells at the end of mitosis. It controls the final separation of the daughter cells and has been involved in cell fate, polarity, tissue organization, and cilium and lumen formation. Here, we report the characterization of the intricate midbody protein-protein interaction network (interactome), which identifies many previously unknown interactions and provides an extremely valuable resource for dissecting the multiple roles of the midbody. Initial analysis of this interactome revealed that PP1β-MYPT1 phosphatase regulates microtubule dynamics in late cytokinesis and de-phosphorylates the kinesin component MKLP1/KIF23 of the centralspindlin complex. This de-phosphorylation antagonizes Aurora B kinase to modify the functions and interactions of centralspindlin in late cytokinesis. Our findings expand the repertoire of PP1 functions during mitosis and indicate that spatiotemporal changes in the distribution of kinases and counteracting phosphatases finely tune the activity of cytokinesis proteins. The midbody is an organelle present at the bridge connecting two cells at the end of cell division. Here, the authors use mass spectrometry to define the midbody interactome and uncover a role for PP1 phosphatases in microtubule dynamics and regulation of cytokinesis.
Collapse
|
112
|
Centralspindlin Recruits ALIX to the Midbody during Cytokinetic Abscission in Drosophila via a Mechanism Analogous to Virus Budding. Curr Biol 2019; 29:3538-3548.e7. [DOI: 10.1016/j.cub.2019.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/06/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
|
113
|
Holder J, Poser E, Barr FA. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett 2019; 593:2908-2924. [PMID: 31494926 DOI: 10.1002/1873-3468.13595] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Here, we will review the evidence showing that mitotic exit is initiated by regulated proteolysis and then driven by the PPP family of phosphoserine/threonine phosphatases. Rapid APC/CCDC20 and ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid separation, the first step of mitotic exit. Because proteolysis of Aurora and Polo family kinases dependent on APC/CCDH1 is relatively slow, this creates a new regulatory state, anaphase, different to G2 and M-phase. We will discuss how the CDK1-counteracting phosphatases PP1 and PP2A-B55, together with Aurora and Polo kinases, contribute to the temporal regulation and order of events in the different stages of mitotic exit from anaphase to cytokinesis. For PP2A-B55, these timing properties are created by the ENSA-dependent inhibitory pathway and differential recognition of phosphoserine and phosphothreonine. Finally, we will discuss how Aurora B and PP2A-B56 are needed for the spatial regulation of anaphase spindle formation and how APC/C-dependent destruction of PLK1 acts as a timer for abscission, the final event of cytokinesis.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, UK
| | - Elena Poser
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
114
|
Nan H, Ichinose Y, Tanaka M, Koh K, Ishiura H, Mitsui J, Mizukami H, Morimoto M, Hamada S, Ohtsuka T, Tsuji S, Takiyama Y. UBAP1 mutations cause juvenile-onset hereditary spastic paraplegias (SPG80) and impair UBAP1 targeting to endosomes. J Hum Genet 2019; 64:1055-1065. [PMID: 31515522 DOI: 10.1038/s10038-019-0670-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/28/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022]
Abstract
We aimed to find a new causative gene and elucidate the molecular mechanisms underlying a new type of hereditary spastic paraplegia (HSP). Patients with HSP were recruited from the Japan Spastic Paraplegia Research Consortium (JASPAC). Exome sequencing of genomic DNA from patients in four families was carried out, followed by Sanger sequencing of the UBAP1 gene. A mouse homolog of one UBAP1 frameshift mutation carried by one of the patients was created as a disease model. Functional properties of the UBAP1 wild type and UBAP1-mutant in mouse hippocampus neurons were examined. We identified three novel heterozygous loss of function mutations (c.425_426delAG, c.312delC, and c.535G>T) in the UBAP1 gene as the genetic cause of a new type of HSP (SPG80). All the patients presented identical clinical features of a pure type of juvenile-onset HSP. Functional studies on mouse hippocampal neurons revealed that the C-terminal deletion UBAP1-mutant of our disease model had lost its ability to bind ubiquitin in vitro. Overexpression of the UBAP1 wild type interacts directly with ubiquitin on enlarged endosomes, while the UBAP1-mutant cannot be recruited to endosome membranes. Our study demonstrated that mutations in the UBAP1 gene cause a new type of HSP and elucidated its pathogenesis. The full-length UBAP1 protein is involved in endosomal dynamics in neurons, while loss of UBAP1 function may perturb endosomal fusion and sorting of ubiquitinated cargos. These effects could be more prominent in neurons, thereby giving rise to the phenotype of a neurodegenerative disease such as HSP.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yuta Ichinose
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Masaki Tanaka
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, 286-8686, Japan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, University of Tokyo, Graduate School of Medicine, Tokyo, 113-8655, Japan
| | - Heisuke Mizukami
- Department of Neurology, Yokohama City Seibu Hospital, St. Marianna University School of Medicine, Yokohama, 241-0811, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shun Hamada
- Department of Biochemistry, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, 286-8686, Japan.,Department of Molecular Neurology, University of Tokyo, Graduate School of Medicine, Tokyo, 113-8655, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
115
|
Salas-Pino S, Daga RR. Spatiotemporal control of spindle disassembly in fission yeast. Cell Mol Life Sci 2019; 76:3543-3551. [PMID: 31129857 PMCID: PMC11105212 DOI: 10.1007/s00018-019-03139-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Maintenance of genomic stability during cell division is one of the most important cellular tasks, and it critically depends on the faithful replication of the genetic material and its equal partitioning into daughter cells, gametes, or spores in the case of yeasts. Defective mitotic spindle assembly and disassembly both result in changes in cellular ploidy that ultimately impinge proliferation fitness and might increase tumor malignancy. Although a great progress has been made in understanding how spindles are assembled to orchestrate chromosome segregation, much less is known about how they are disassembled once completed their function. Here, we review two recently uncovered mechanisms of spindle disassembly that operate at different stages of the fission yeast life cycle.
Collapse
Affiliation(s)
- Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucia, Carretera de Utrera, km1, 41013, Seville, Spain.
| |
Collapse
|
116
|
Yu CH, Redemann S, Wu HY, Kiewisz R, Yoo TY, Conway W, Farhadifar R, Müller-Reichert T, Needleman D. Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B. Mol Biol Cell 2019; 30:2503-2514. [PMID: 31339442 PMCID: PMC6743361 DOI: 10.1091/mbc.e19-01-0074] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 01/05/2023] Open
Abstract
Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.
Collapse
Affiliation(s)
- Che-Hang Yu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Stefanie Redemann
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Membrane and Cell Physiology & Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Hai-Yin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tae Yeon Yoo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - William Conway
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Reza Farhadifar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Daniel Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
117
|
Reshetniak S, Rizzoli SO. Interrogating Synaptic Architecture: Approaches for Labeling Organelles and Cytoskeleton Components. Front Synaptic Neurosci 2019; 11:23. [PMID: 31507402 PMCID: PMC6716447 DOI: 10.3389/fnsyn.2019.00023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
Synaptic transmission has been studied for decades, as a fundamental step in brain function. The structure of the synapse, and its changes during activity, turned out to be key aspects not only in the transfer of information between neurons, but also in cognitive processes such as learning and memory. The overall synaptic morphology has traditionally been studied by electron microscopy, which enables the visualization of synaptic structure in great detail. The changes in the organization of easily identified structures, such as the presynaptic active zone, or the postsynaptic density, are optimally studied via electron microscopy. However, few reliable methods are available for labeling individual organelles or protein complexes in electron microscopy. For such targets one typically relies either on combination of electron and fluorescence microscopy, or on super-resolution fluorescence microscopy. This review focuses on approaches and techniques used to specifically reveal synaptic organelles and protein complexes, such as cytoskeletal assemblies. We place the strongest emphasis on methods detecting the targets of interest by affinity binding, and we discuss the advantages and limitations of each method.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research School for Molecular Biology, Göttingen, Germany
| | - Silvio O. Rizzoli
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
118
|
Gatta AT, Carlton JG. The ESCRT-machinery: closing holes and expanding roles. Curr Opin Cell Biol 2019; 59:121-132. [DOI: 10.1016/j.ceb.2019.04.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
|
119
|
Zhen Y, Spangenberg H, Munson MJ, Brech A, Schink KO, Tan KW, Sørensen V, Wenzel EM, Radulovic M, Engedal N, Simonsen A, Raiborg C, Stenmark H. ESCRT-mediated phagophore sealing during mitophagy. Autophagy 2019; 16:826-841. [PMID: 31366282 PMCID: PMC7158923 DOI: 10.1080/15548627.2019.1639301] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Inactivation of the endosomal sorting complex required for transport (ESCRT) machinery has been reported to cause autophagic defects, but the exact functions of ESCRT proteins in macroautophagy/autophagy remain incompletely understood. Using live-cell fluorescence microscopy we found that the filament-forming ESCRT-III subunit CHMP4B was recruited transiently to nascent autophagosomes during starvation-induced autophagy and mitophagy, with residence times of about 1 and 2 min, respectively. Correlative light microscopy and electron tomography revealed CHMP4B recruitment at a late step in mitophagosome formation. The autophagosomal dwell time of CHMP4B was strongly increased by depletion of the regulatory ESCRT-III subunit CHMP2A. Using a novel optogenetic closure assay we observed that depletion of CHMP2A inhibited phagophore sealing during mitophagy. Consistent with this, depletion of CHMP2A and other ESCRT-III subunits inhibited both PRKN/PARKIN-dependent and -independent mitophagy. We conclude that the ESCRT machinery mediates phagophore closure, and that this is essential for mitophagic flux.Abbreviations: BSA: bovine serum albumin; CHMP: chromatin-modifying protein; CLEM: correlative light and electron microscopy; EGFP: enhanced green fluorescent protein; ESCRT: endosomal sorting complex required for transport; HEPES: 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid; HRP: horseradish peroxidase; ILV: intralumenal vesicle; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; LOV2: light oxygen voltage 2; MLS: mitochondrial localization sequence; MT-CO2: mitochondrially encoded cytochrome c oxidase II; O+A: oligomycin and antimycin A; PBS: phosphate-buffered saline; PIPES: piperazine-N,N-bis(2-ethanesulfonic acid); PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; RAB: RAS-related in brain; SD: standard deviation; SEM: standard error of the mean; TOMM20: TOMM20: translocase of outer mitochondrial membrane 20; VCL: vinculin; VPS4: vacuolar protein sorting protein 4; Zdk1: Zdark 1; TUBG: Tubulin gamma chain.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Hélène Spangenberg
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Michael J Munson
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Kay O Schink
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Kia-Wee Tan
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Vigdis Sørensen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Maja Radulovic
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Norway
| |
Collapse
|
120
|
Kumar H, Pushpa K, Kumari A, Verma K, Pergu R, Mylavarapu SVS. The exocyst complex and Rab5 are required for abscission by localizing ESCRT III subunits to the cytokinetic bridge. J Cell Sci 2019; 132:jcs226001. [PMID: 31221728 PMCID: PMC6679584 DOI: 10.1242/jcs.226001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/14/2019] [Indexed: 01/26/2023] Open
Abstract
Cytokinesis is the final step of cell division following chromosome segregation that generates two daughter cells. The conserved exocyst complex is required for scission of the intercellular cytokinetic bridge, although the molecular mechanisms it employs in this process are unclear. We identify and validate the early endocytic GTPase Rab5 as interacting with the exocyst complex in mammalian cells. Rab5 localizes in the cytokinetic bridge and on the midbody ring in a manner similar to the exocyst complex. Depletion of Rab5 led to delayed abscission. Caenorhabditis elegans orthologs of both exocyst complex subunits and Rab5 localize along the cleavage furrow and are required for cytokinesis in early embryos. Cytokinetic cells depleted of either Rab5 or the exocyst subunits Exoc3 and Exoc4 showed impaired deposition of the endosomal sorting complexes required for transport (ESCRT) III subunits CHMP2B and/or CHMP4B near the midbody ring. The study reveals an evolutionarily conserved role for the early endocytic marker Rab5 in cytokinetic abscission. In addition, it uncovers a key requirement of the exocyst and Rab5 for the delivery of components of the membrane-severing ESCRT III machinery to complete cytokinesis.
Collapse
Affiliation(s)
- Harsh Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kuldeep Verma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Rajaiah Pergu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
121
|
Little JN, Dwyer ND. p53 deletion rescues lethal microcephaly in a mouse model with neural stem cell abscission defects. Hum Mol Genet 2019; 28:434-447. [PMID: 30304535 DOI: 10.1093/hmg/ddy350] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
Building a cerebral cortex of the proper size involves balancing rates and timing of neural stem cell (NSC) proliferation, neurogenesis and cell death. The cellular mechanisms connecting genetic mutations to brain malformation phenotypes are still poorly understood. Microcephaly may result when NSC divisions are too slow, produce neurons too early or undergo apoptosis but the relative contributions of these cellular mechanisms to various types of microcephaly are not understood. We previously showed that mouse mutants in Kif20b (formerly called Mphosph1, Mpp1 or KRMP1) have small cortices that show elevated apoptosis and defects in maturation of NSC midbodies, which mediate cytokinetic abscission. Here we test the contribution of intrinsic NSC apoptosis to brain size reduction in this lethal microcephaly model. By making double mutants with the pro-apoptotic genes Bax and Trp53 (p53), we find that p53-dependent apoptosis of cortical NSCs accounts for most of the microcephaly, but that there is a significant apoptosis-independent contribution as well. Remarkably, heterozygous p53 deletion is sufficient to fully rescue survival of the Kif20b mutant into adulthood. In addition, the NSC midbody maturation defects are not rescued by p53 deletion, showing that they are either upstream of p53 activation, or in a parallel pathway. Accumulation of p53 in the nucleus of mutant NSCs at midbody stage suggests the possibility of a novel midbody-mediated pathway for p53 activation. This work elucidates both NSC apoptosis and abscission mechanisms that could underlie human microcephaly or other brain malformations.
Collapse
Affiliation(s)
- Jessica Neville Little
- Department of Cell Biology.,Cell and Developmental Biology Graduate Program.,Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
122
|
HIPK2 Phosphorylates the Microtubule-Severing Enzyme Spastin at S268 for Abscission. Cells 2019; 8:cells8070684. [PMID: 31284535 PMCID: PMC6678495 DOI: 10.3390/cells8070684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Abscission is the final step of cell division, mediating the physical separation of the two daughter cells. A key player in this process is the microtubule-severing enzyme spastin that localizes at the midbody where its activity is crucial to cut microtubules and culminate the cytokinesis. Recently, we demonstrated that HIPK2, a multifunctional kinase involved in several cellular pathways, contributes to abscission and prevents tetraploidization. Here, we show that HIPK2 binds and phosphorylates spastin at serine 268. During cytokinesis, the midbody-localized spastin is phosphorylated at S268 in HIPK2-proficient cells. In contrast, no spastin is detectable at the midbody in HIPK2-depleted cells. The non-phosphorylatable spastin-S268A mutant does not localize at the midbody and cannot rescue HIPK2-depleted cells from abscission defects. In contrast, the phosphomimetic spastin-S268D mutant localizes at the midbody and restores successful abscission in the HIPK2-depleted cells. These results show that spastin is a novel target of HIPK2 and that HIPK2-mediated phosphorylation of spastin contributes to its midbody localization for successful abscission.
Collapse
|
123
|
Karasmanis EP, Hwang D, Nakos K, Bowen JR, Angelis D, Spiliotis ET. A Septin Double Ring Controls the Spatiotemporal Organization of the ESCRT Machinery in Cytokinetic Abscission. Curr Biol 2019; 29:2174-2182.e7. [PMID: 31204162 DOI: 10.1016/j.cub.2019.05.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Abscission is the terminal step of mitosis that physically separates two daughter cells [1, 2]. Abscission requires the endocytic sorting complex required for transport (ESCRT), a molecular machinery of multiple subcomplexes (ESCRT-I/II/III) that promotes membrane remodeling and scission [3-5]. Recruitment of ESCRT-I/II complexes to the midbody of telophase cells initiates ESCRT-III assembly into two rings, which subsequently expand into helices and spirals that narrow down to the incipient site of abscission [6-8]. ESCRT-III assembly is highly dynamic and spatiotemporally ordered, but the underlying mechanisms are poorly understood. Here, we report that, after cleavage furrow closure, septins form a membrane-bound double ring that controls the organization and function of ESCRT-III. The septin double ring demarcates the sites of ESCRT-III assembly into rings and disassembles before ESCRT-III rings expand into helices and spirals. We show that septin 9 (SEPT9) depletion, which abrogates abscission, impairs recruitment of VPS25 (ESCRT-II) and CHMP6 (ESCRT-III). Strikingly, ESCRT-III subunits (CHMP4B and CHMP2A/B) accumulate to the midbody, but they are highly disorganized, failing to form symmetric rings and to expand laterally into the cone-shaped helices and spirals of abscission. We found that SEPT9 interacts directly with the ubiquitin E2 variant (UEV) domain of ESCRT-I protein TSG101 through two N-terminal PTAP motifs, which are required for the recruitment of VPS25 and CHMP6, and the spatial organization of ESCRT-III (CHMP4B and CHMP2B) into functional rings. These results reveal that septins function in the ESCRT-I-ESCRT-II-CHMP6 pathway of ESCRT-III assembly and provide a framework for the spatiotemporal control of the ESCRT machinery of cytokinetic abscission.
Collapse
Affiliation(s)
- Eva P Karasmanis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Daniel Hwang
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | | | - Jonathan R Bowen
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Dimitrios Angelis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
124
|
|
125
|
Zuck M, Hybiske K. The Chlamydia trachomatis Extrusion Exit Mechanism Is Regulated by Host Abscission Proteins. Microorganisms 2019; 7:microorganisms7050149. [PMID: 31130662 PMCID: PMC6560402 DOI: 10.3390/microorganisms7050149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
The cellular exit strategies of intracellular pathogens have a direct impact on microbial dissemination, transmission, and engagement of immune responses of the host. Chlamydia exit their host via a budding mechanism called extrusion, which offers protective benefits to Chlamydia as they navigate their extracellular environment. Many intracellular pathogens co-opt cellular abscission machinery to facilitate cell exit, which is utilized to perform scission of two newly formed daughter cells following mitosis. Similar to viral budding exit strategies, we hypothesize that an abscission-like mechanism is required to physically sever the chlamydial extrusion from the host cell, co-opting the membrane fission activities of the endosomal sorting complex required for transport (ESCRT) family of proteins that are necessary for cellular scission events, including abscission. To test this, C. trachomatis L2-infected HeLa cells were depleted of key abscission machinery proteins charged multivesicle body protein 4b (CHMP4B), ALIX, centrosome protein 55 (CEP55), or vacuolar protein sorting-associated protein 4A (VPS4A), using RNA interference (RNAi). Over 50% reduction in extrusion formation was achieved by depletion of CHMP4B, VPS4A, and ALIX, but no effect on extrusion was observed with CEP55 depletion. These results demonstrate a role for abscission machinery in C. trachomatis extrusion from the host cell, with ALIX, VPS4A and CHMP4B playing key functional roles in optimal extrusion release.
Collapse
Affiliation(s)
- Meghan Zuck
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA 98109, USA.
- Division of Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Kevin Hybiske
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Reemerging Infectious Disease (CERID), University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
126
|
Maity S, Caillat C, Miguet N, Sulbaran G, Effantin G, Schoehn G, Roos WH, Weissenhorn W. VPS4 triggers constriction and cleavage of ESCRT-III helical filaments. SCIENCE ADVANCES 2019; 5:eaau7198. [PMID: 30989108 PMCID: PMC6457934 DOI: 10.1126/sciadv.aau7198] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/21/2019] [Indexed: 05/19/2023]
Abstract
Many cellular processes such as endosomal vesicle budding, virus budding, and cytokinesis require extensive membrane remodeling by the endosomal sorting complex required for transport III (ESCRT-III). ESCRT-III protein family members form spirals with variable diameters in vitro and in vivo inside tubular membrane structures, which need to be constricted to proceed to membrane fission. Here, we show, using high-speed atomic force microscopy and electron microscopy, that the AAA-type adenosine triphosphatase VPS4 constricts and cleaves ESCRT-III CHMP2A-CHMP3 helical filaments in vitro. Constriction starts asymmetrically and progressively decreases the diameter of CHMP2A-CHMP3 tubular structure, thereby coiling up the CHMP2A-CHMP3 filaments into dome-like end caps. Our results demonstrate that VPS4 actively constricts ESCRT-III filaments and cleaves them before their complete disassembly. We propose that the formation of ESCRT-III dome-like end caps by VPS4 within a membrane neck structure constricts the membrane to set the stage for membrane fission.
Collapse
Affiliation(s)
- Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Christophe Caillat
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Nolwenn Miguet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Guidenn Sulbaran
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Gregory Effantin
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Guy Schoehn
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
- Corresponding author. (W.H.R.); (W.W.)
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
- Corresponding author. (W.H.R.); (W.W.)
| |
Collapse
|
127
|
The role of VPS4 in ESCRT-III polymer remodeling. Biochem Soc Trans 2019; 47:441-448. [DOI: 10.1042/bst20180026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 01/04/2023]
Abstract
Abstract
The endosomal sorting complex required for transport-III (ESCRT-III) and VPS4 catalyze a variety of membrane-remodeling processes in eukaryotes and archaea. Common to these processes is the dynamic recruitment of ESCRT-III proteins from the cytosol to the inner face of a membrane neck structure, their activation and filament formation inside or at the membrane neck and the subsequent or concomitant recruitment of the AAA-type ATPase VPS4. The dynamic assembly of ESCRT-III filaments and VPS4 on cellular membranes induces constriction of membrane necks with large diameters such as the cytokinetic midbody and necks with small diameters such as those of intraluminal vesicles or enveloped viruses. The two processes seem to use different sets of ESCRT-III filaments. Constriction is then thought to set the stage for membrane fission. Here, we review recent progress in understanding the structural transitions of ESCRT-III proteins required for filament formation, the functional role of VPS4 in dynamic ESCRT-III assembly and its active role in filament constriction. The recent data will be discussed in the context of different mechanistic models for inside-out membrane fission.
Collapse
|
128
|
Wang K, Wloka C, Bi E. Non-muscle Myosin-II Is Required for the Generation of a Constriction Site for Subsequent Abscission. iScience 2019; 13:69-81. [PMID: 30825839 PMCID: PMC6396101 DOI: 10.1016/j.isci.2019.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/07/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
It remains unknown when, where, and how the site of abscission is generated during cytokinesis. Here, we show that the sites of constriction, i.e., the sites of future abscission, are initially formed at the ends of the intercellular bridge during early midbody stage, and that these sites are associated with the non-muscle myosin-IIB (not myosin-IIA), actin filaments, and septin 9 until abscission. The ESCRT-III component CHMP4B localizes to the midbody and "spreads" to the site of abscission only during late midbody stage. Strikingly, inhibition of myosin-II motor activity by a low dose of Blebbistatin completely abolishes the formation of the constriction sites, resulting in the localization of all the above-mentioned components to the midbody region. These data strongly suggest that a secondary actomyosin ring provides the primary driving force for the thinning of the intercellular bridge to allow ESCRT-mediated membrane fission.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Carsten Wloka
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AE Groningen, the Netherlands.
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
129
|
Schöneberg J, Pavlin MR, Yan S, Righini M, Lee IH, Carlson LA, Bahrami AH, Goldman DH, Ren X, Hummer G, Bustamante C, Hurley JH. ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science 2019; 362:1423-1428. [PMID: 30573630 DOI: 10.1126/science.aat1839] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/17/2018] [Accepted: 11/07/2018] [Indexed: 12/23/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRTs) catalyze reverse-topology scission from the inner face of membrane necks in HIV budding, multivesicular endosome biogenesis, cytokinesis, and other pathways. We encapsulated ESCRT-III subunits Snf7, Vps24, and Vps2 and the AAA+ ATPase (adenosine triphosphatase) Vps4 in giant vesicles from which membrane nanotubes reflecting the correct topology of scission could be pulled. Upon ATP release by photo-uncaging, this system generated forces within the nanotubes that led to membrane scission in a manner dependent upon Vps4 catalytic activity and Vps4 coupling to the ESCRT-III proteins. Imaging of scission revealed Snf7 and Vps4 puncta within nanotubes whose presence followed ATP release, correlated with force generation and nanotube constriction, and preceded scission. These observations directly verify long-standing predictions that ATP-hydrolyzing assemblies of ESCRT-III and Vps4 sever membranes.
Collapse
Affiliation(s)
- Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Mark Remec Pavlin
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shannon Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maurizio Righini
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Il-Hyung Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lars-Anders Carlson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amir Houshang Bahrami
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Daniel H Goldman
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuefeng Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University, Frankfurt/M, Germany
| | - Carlos Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
130
|
Khidiyatova IM, Akhmetgaleyeva AF, Saifullina EV, Idrisova RF, Yankina MA, Shavalieva VV, Magzhanov RV, Khusnutdinova EK. Major Mutation in the SPAST Gene in Patients with Autosomal Dominant Spastic Paraplegia from the Republic of Bashkortostan. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
131
|
Paez-Valencia J, Otegui MS. Purification of Plant ESCRT Proteins for Polyclonal Antibody Production. Methods Mol Biol 2019; 1998:227-238. [PMID: 31250306 DOI: 10.1007/978-1-4939-9492-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Most endosomal sorting complex required for transport (ESCRT)-III proteins are not fully functional when expressed as fusion of fluorescent or epitope tags, frequently making the use of specific antibodies the only available method for their detection. Heterologous expression of ESCRT-III proteins in bacteria often results in the formation of insoluble aggregates or inclusion bodies that interfere with their purification. However, inclusion bodies are usually pure protein aggregates with high antigenicity. In addition, since proteins within inclusion bodies are presented in a range of folding states, immunization with inclusion bodies can potentially result in antibodies with specificity for different folding states of the protein under study. We describe here a protocol to isolate bacterial inclusion bodies of plant ESCRT-III proteins for production of polyclonal antibodies. We also describe a nitrocellulose-based immunoaffinity purification method that allows the immobilization of ESCRT-III proteins and the subsequent isolation of specific antibodies from a crude serum.
Collapse
Affiliation(s)
- Julio Paez-Valencia
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
- Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
- Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
132
|
Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC. Super-resolution microscopy demystified. Nat Cell Biol 2019; 21:72-84. [PMID: 30602772 DOI: 10.1038/s41556-018-0251-8] [Citation(s) in RCA: 629] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/12/2018] [Indexed: 02/08/2023]
Abstract
Super-resolution microscopy (SRM) bypasses the diffraction limit, a physical barrier that restricts the optical resolution to roughly 250 nm and was previously thought to be impenetrable. SRM techniques allow the visualization of subcellular organization with unprecedented detail, but also confront biologists with the challenge of selecting the best-suited approach for their particular research question. Here, we provide guidance on how to use SRM techniques advantageously for investigating cellular structures and dynamics to promote new discoveries.
Collapse
Affiliation(s)
- Lothar Schermelleh
- Micron Oxford Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Alexia Ferrand
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| | - Christian Eggeling
- MRC Human Immunology Unit and Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Institute for Applied Optics, Friedrich-Schiller-University Jena & Leibniz Institute of Photonic Technology, Jena, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Oliver Biehlmaier
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Gregor P C Drummen
- Advanced Bio-Imaging Program, Bio&Nano Solutions‒LAB3BIO, Bielefeld, Germany.
- ICON-Europe.org, Exxilon Scientific Events, Steinhagen, Germany.
| |
Collapse
|
133
|
Capalbo L, Mela I, Abad MA, Jeyaprakash AA, Edwardson JM, D'Avino PP. Purification of Recombinant ESCRT-III Proteins and Their Use in Atomic Force Microscopy and In Vitro Binding and Phosphorylation Assays. Methods Mol Biol 2019; 1998:203-217. [PMID: 31250304 DOI: 10.1007/978-1-4939-9492-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT)-III proteins are known to assemble into filaments that mediate membrane remodeling and fission in various biological processes, including the formation of endosomal multivesicular bodies, viral budding, cytokinesis, plasma membrane repair, nuclear pore quality control, nuclear envelope reformation, and neuron pruning. The study of the regulation and function of ESCRT-III proteins is therefore crucial to understand these events and requires a combination of in vivo and in vitro experimental techniques. Here we describe two protocols for the purification of human and Drosophila ESCRT-III proteins from bacteria and their use in in vitro phosphorylation assays and atomic force microscopy experiments on membrane lipid bilayers. These protocols can also be applied for the purification of other proteins that are insoluble when expressed in bacteria.
Collapse
Affiliation(s)
- Luisa Capalbo
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Ioanna Mela
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Maria Alba Abad
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
134
|
Studying the Spatial Organization of ESCRTs in Cytokinetic Abscission Using the High-Resolution Imaging Techniques SIM and Cryo-SXT. Methods Mol Biol 2019; 1998:129-148. [PMID: 31250299 DOI: 10.1007/978-1-4939-9492-2_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ESCRT machinery mediates scission of the intercellular bridge that connects two daughter cells at the end of cytokinesis. Structured illumination microscopy (SIM) and cryo-soft-X-ray tomography (cryo-SXT) have been used in recent years to study the topology of ESCRT-driven cytokinetic abscission. These studies revealed that the intercellular bridge is occupied by cortical rings and spiral-like filaments and that ESCRTs form ring-like structures in this region during abscission. In this chapter, we provide two protocols: a protocol for determining the spatial organization of specific ESCRT components at the intercellular bridge using SIM and a protocol for resolving the ultrastructural organization of cortical filaments at the intercellular bridge using cryo-SXT.
Collapse
|
135
|
Abstract
Mierzwa studies mechanisms of cell division in different cell types and tissue contexts. Mierzwa studies mechanisms of cell division in different cell types and tissue contexts.
Collapse
|
136
|
Colicino EG, Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton (Hoboken) 2018; 75:481-494. [PMID: 30414309 PMCID: PMC7113694 DOI: 10.1002/cm.21504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
During cell division, duplicated genetic material is separated into two distinct daughter cells. This process is essential for initial tissue formation during development and to maintain tissue integrity throughout an organism's lifetime. To ensure the efficacy and efficiency of this process, the cell employs a variety of regulatory and signaling proteins that function as mitotic regulators and checkpoint proteins. One vital mitotic regulator is polo-like kinase 1 (PLK1), a highly conserved member of the polo-like kinase family. Unique from its paralogues, it functions specifically during mitosis as a regulator of cell division. PLK1 is spatially and temporally enriched at three distinct subcellular locales; the mitotic centrosomes, kinetochores, and the cytokinetic midbody. These localization patterns allow PLK1 to phosphorylate specific downstream targets to regulate mitosis. In this review, we will explore how polo-like kinases were originally discovered and diverged into the five paralogues (PLK1-5) in mammals. We will then focus specifically on the most conserved, PLK1, where we will discuss what is known about how its activity is modulated, its role during the cell cycle, and new, innovative tools that have been developed to examine its function and interactions in cells.
Collapse
Affiliation(s)
- Erica G. Colicino
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
| | - Heidi Hehnly
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
- Department of BiologySyracuse UniversitySyracuseNew York
| |
Collapse
|
137
|
Jaykumar AB, Caceres PS, Ortiz PA. Single-molecule labeling for studying trafficking of renal transporters. Am J Physiol Renal Physiol 2018; 315:F1243-F1249. [PMID: 30043625 DOI: 10.1152/ajprenal.00082.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to detect and track single molecules presents the advantage of visualizing the complex behavior of transmembrane proteins with a time and space resolution that would otherwise be lost with traditional labeling and biochemical techniques. Development of new imaging probes has provided a robust method to study their trafficking and surface dynamics. This mini-review focuses on the current technology available for single-molecule labeling of transmembrane proteins, their advantages, and limitations. We also discuss the application of these techniques to the study of renal transporter trafficking in light of recent research.
Collapse
Affiliation(s)
- Ankita Bachhawat Jaykumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| | - Paulo S Caceres
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
138
|
McNally FJ, Roll-Mecak A. Microtubule-severing enzymes: From cellular functions to molecular mechanism. J Cell Biol 2018; 217:4057-4069. [PMID: 30373906 PMCID: PMC6279391 DOI: 10.1083/jcb.201612104] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/13/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
McNally and Roll-Mecak review the molecular mechanism of microtubule-severing enzymes and their diverse roles in processes ranging from cell division to ciliogensis and morphogenesis. Microtubule-severing enzymes generate internal breaks in microtubules. They are conserved in eukaryotes from ciliates to mammals, and their function is important in diverse cellular processes ranging from cilia biogenesis to cell division, phototropism, and neurogenesis. Their mutation leads to neurodegenerative and neurodevelopmental disorders in humans. All three known microtubule-severing enzymes, katanin, spastin, and fidgetin, are members of the meiotic subfamily of AAA ATPases that also includes VPS4, which disassembles ESCRTIII polymers. Despite their conservation and importance to cell physiology, the cellular and molecular mechanisms of action of microtubule-severing enzymes are not well understood. Here we review a subset of cellular processes that require microtubule-severing enzymes as well as recent advances in understanding their structure, biophysical mechanism, and regulation.
Collapse
Affiliation(s)
- Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD .,Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD
| |
Collapse
|
139
|
Klein A, Hank S, Raulf A, Joest EF, Tissen F, Heilemann M, Wieneke R, Tampé R. Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies. Chem Sci 2018; 9:7835-7842. [PMID: 30429993 PMCID: PMC6194584 DOI: 10.1039/c8sc02910e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022] Open
Abstract
Accurate labeling of endogenous proteins for advanced light microscopy in living cells remains challenging. Nanobodies have been widely used for antigen labeling, visualization of subcellular protein localization and interactions. To facilitate an expanded application, we present a scalable and high-throughput strategy to simultaneously target multiple endogenous proteins in living cells with micro- to nanometer resolution. For intracellular protein labeling, we advanced nanobodies by site-specific and stoichiometric attachment of bright organic fluorophores. Their fast and fine-tuned intracellular transfer by microfluidic cell squeezing enabled high-throughput delivery with less than 10% dead cells. This strategy allowed for the dual-color imaging of distinct endogenous cellular structures, and culminated in super-resolution imaging of native protein networks in genetically non-modified living cells. The simultaneous delivery of multiple engineered nanobodies does not only offer exciting prospects for multiplexed imaging of endogenous protein, but also holds potential for visualizing native cellular structures with unprecedented accuracy.
Collapse
Affiliation(s)
- A Klein
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - S Hank
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - A Raulf
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt/Main , Germany
| | - E F Joest
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - F Tissen
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - M Heilemann
- Institute of Physical and Theoretical Chemistry , Goethe University Frankfurt , Max-von-Laue-Str. 7 , 60438 Frankfurt/Main , Germany
| | - R Wieneke
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
| | - R Tampé
- Institute of Biochemistry, Biocenter , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany .
- Cluster of Excellence - Macromolecular Complexes , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/Main , Germany
| |
Collapse
|
140
|
McCullough J, Frost A, Sundquist WI. Structures, Functions, and Dynamics of ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes. Annu Rev Cell Dev Biol 2018; 34:85-109. [PMID: 30095293 PMCID: PMC6241870 DOI: 10.1146/annurev-cellbio-100616-060600] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway mediates cellular membrane remodeling and fission reactions. The pathway comprises five core complexes: ALIX, ESCRT-I, ESCRT-II, ESCRT-III, and Vps4. These soluble complexes are typically recruited to target membranes by site-specific adaptors that bind one or both of the early-acting ESCRT factors: ALIX and ESCRT-I/ESCRT-II. These factors, in turn, nucleate assembly of ESCRT-III subunits into membrane-bound filaments that recruit the AAA ATPase Vps4. Together, ESCRT-III filaments and Vps4 remodel and sever membranes. Here, we review recent advances in our understanding of the structures, activities, and mechanisms of the ESCRT-III and Vps4 machinery, including the first high-resolution structures of ESCRT-III filaments, the assembled Vps4 enzyme in complex with an ESCRT-III substrate, the discovery that ESCRT-III/Vps4 complexes can promote both inside-out and outside-in membrane fission reactions, and emerging mechanistic models for ESCRT-mediated membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA;
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
141
|
Sadler JBA, Wenzel DM, Strohacker LK, Guindo-Martínez M, Alam SL, Mercader JM, Torrents D, Ullman KS, Sundquist WI, Martin-Serrano J. A cancer-associated polymorphism in ESCRT-III disrupts the abscission checkpoint and promotes genome instability. Proc Natl Acad Sci U S A 2018; 115:E8900-E8908. [PMID: 30181294 PMCID: PMC6156662 DOI: 10.1073/pnas.1805504115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytokinetic abscission facilitates the irreversible separation of daughter cells. This process requires the endosomal-sorting complexes required for transport (ESCRT) machinery and is tightly regulated by charged multivesicular body protein 4C (CHMP4C), an ESCRT-III subunit that engages the abscission checkpoint (NoCut) in response to mitotic problems such as persisting chromatin bridges within the midbody. Importantly, a human polymorphism in CHMP4C (rs35094336, CHMP4CT232) increases cancer susceptibility. Here, we explain the structural and functional basis for this cancer association: The CHMP4CT232 allele unwinds the C-terminal helix of CHMP4C, impairs binding to the early-acting ESCRT factor ALIX, and disrupts the abscission checkpoint. Cells expressing CHMP4CT232 exhibit increased levels of DNA damage and are sensitized to several conditions that increase chromosome missegregation, including DNA replication stress, inhibition of the mitotic checkpoint, and loss of p53. Our data demonstrate the biological importance of the abscission checkpoint and suggest that dysregulation of abscission by CHMP4CT232 may synergize with oncogene-induced mitotic stress to promote genomic instability and tumorigenesis.
Collapse
Affiliation(s)
- Jessica B A Sadler
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, SE1 9RT London, United Kingdom
| | - Dawn M Wenzel
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Lauren K Strohacker
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Marta Guindo-Martínez
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | - Steven L Alam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Josep M Mercader
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Program in Metabolism, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - David Torrents
- Joint Barcelona Supercomputing Center-Centre for Genomic Regulation-Institute for Research in Biomedicine Research Program in Computational Biology, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112;
| | - Juan Martin-Serrano
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, SE1 9RT London, United Kingdom;
| |
Collapse
|
142
|
Vemu A, Szczesna E, Zehr EA, Spector JO, Grigorieff N, Deaconescu AM, Roll-Mecak A. Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. Science 2018; 361:eaau1504. [PMID: 30139843 PMCID: PMC6510489 DOI: 10.1126/science.aau1504] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Spastin and katanin sever and destabilize microtubules. Paradoxically, despite their destructive activity they increase microtubule mass in vivo. We combined single-molecule total internal reflection fluorescence microscopy and electron microscopy to show that the elemental step in microtubule severing is the generation of nanoscale damage throughout the microtubule by active extraction of tubulin heterodimers. These damage sites are repaired spontaneously by guanosine triphosphate (GTP)-tubulin incorporation, which rejuvenates and stabilizes the microtubule shaft. Consequently, spastin and katanin increase microtubule rescue rates. Furthermore, newly severed ends emerge with a high density of GTP-tubulin that protects them against depolymerization. The stabilization of the newly severed plus ends and the higher rescue frequency synergize to amplify microtubule number and mass. Thus, severing enzymes regulate microtubule architecture and dynamics by promoting GTP-tubulin incorporation within the microtubule shaft.
Collapse
Affiliation(s)
- Annapurna Vemu
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Ewa Szczesna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Jeffrey O Spector
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Nikolaus Grigorieff
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
143
|
Agudo-Canalejo J, Lipowsky R. Domes and cones: Adhesion-induced fission of membranes by ESCRT proteins. PLoS Comput Biol 2018; 14:e1006422. [PMID: 30130367 PMCID: PMC6118396 DOI: 10.1371/journal.pcbi.1006422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/31/2018] [Accepted: 08/08/2018] [Indexed: 01/07/2023] Open
Abstract
ESCRT proteins participate in the fission step of exocytic membrane budding, by assisting in the closure and scission of the membrane neck that connects the nascent bud to the plasma membrane. However, the precise mechanism by which the proteins achieve this so-called reverse-topology membrane scission remains to be elucidated. One mechanism is described by the dome model, which postulates that ESCRT-III proteins assemble in the shape of a hemispherical dome at the location of the neck, and guide the closure of this neck via membrane–protein adhesion. A different mechanism is described by the flattening cone model, in which the ESCRT-III complex first assembles at the neck in the shape of a cone, which then flattens leading to neck closure. Here, we use the theoretical framework of curvature elasticity and membrane–protein adhesion to quantitatively describe and compare both mechanisms. This comparison shows that the minimal adhesive strength of the membrane–protein interactions required for scission is much lower for cones than for domes, and that the geometric constraints on the shape of the assembly required to induce scission are more stringent for domes than for cones. Finally, we compute for the first time the adhesion-induced constriction forces exerted by the ESCRT assemblies onto the membrane necks. These forces are higher for cones and of the order of 100 pN. Membrane fission is a crucial step in many biological processes ranging from cell division to viral budding. During fission, the membrane forms a narrow neck that is subsequently cleaved by proteins. ESCRT proteins initiate this process by forming supramolecular assemblies that adhere to the cytosolic face of the membranes. However, how these assemblies achieve the closure and scission of membrane necks is still a matter of controversy. Here, we elucidate and compare the two most prominent mechanisms that have been proposed for ESCRT-induced membrane fission. In both mechanisms, the ESCRT molecules form assemblies that adhere to the open neck of the membrane bud. In the first mechanism, these assemblies grow in a dome-like shape, whereas in the second mechanism the assemblies take a cone-like shape and flatten as they grow. Our computational study shows that the minimal strength of membrane–protein adhesion necessary for cone-induced fission is lower than for dome-induced fission, and that cones generate higher constriction forces of the order of 100 pN onto the membrane necks.
Collapse
Affiliation(s)
- Jaime Agudo-Canalejo
- Theory & Bio-Systems Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (JAC); (RL)
| | - Reinhard Lipowsky
- Theory & Bio-Systems Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (JAC); (RL)
| |
Collapse
|
144
|
Goliand I, Adar-Levor S, Segal I, Nachmias D, Dadosh T, Kozlov MM, Elia N. Resolving ESCRT-III Spirals at the Intercellular Bridge of Dividing Cells Using 3D STORM. Cell Rep 2018; 24:1756-1764. [PMID: 30110633 DOI: 10.1016/j.celrep.2018.07.051] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022] Open
Abstract
The ESCRT machinery mediates membrane fission in a variety of processes in cells. According to current models, ESCRT-III proteins drive membrane fission by assembling into helical filaments on membranes. Here, we used 3D STORM imaging of endogenous ESCRT-III component IST1 to reveal the evolution of the structural organization of ESCRT-III in mammalian cytokinetic abscission. Using this approach, ESCRT-III ring and spiral assemblies were resolved and characterized at different stages of abscission. Visualization of IST1 structures in cells lacking the microtubule-severing enzyme spastin and in cells depleted of specific ESCRT-III components or the ATPase VPS4 demonstrated the contribution of these components to the organization and function of ESCRTs in cells. This work provides direct evidence that ESCRT-III proteins form helical filaments to mediate their function in cells and raises new mechanistic scenarios for ESCRT-driven cytokinetic abscission.
Collapse
Affiliation(s)
- Inna Goliand
- Department of Life Sciences and NIBN, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Shai Adar-Levor
- Department of Life Sciences and NIBN, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Inbar Segal
- Department of Life Sciences and NIBN, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Dikla Nachmias
- Department of Life Sciences and NIBN, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Natalie Elia
- Department of Life Sciences and NIBN, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
145
|
Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. Nat Commun 2018; 9:2932. [PMID: 30050131 PMCID: PMC6062606 DOI: 10.1038/s41467-018-05345-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/29/2018] [Indexed: 01/09/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery mediates cargo sorting, membrane deformation and membrane scission on the surface of endosomes, generating intraluminal vesicles (ILVs) to degrade signaling receptors. By live-cell imaging of individual endosomes in human cells, we find that ESCRT proteins are recruited in a repetitive pattern: ESCRT-0 and -I show a gradual and linear recruitment and dissociation, whereas ESCRT-III and its regulatory ATPase VPS4 display fast and transient dynamics. Electron microscopy shows that ILVs are formed consecutively, starting immediately after endocytic uptake of cargo proteins and correlating with the repeated ESCRT recruitment waves, unraveling the timing of ILV formation. Clathrin, recruited by ESCRT-0, is required for timely ESCRT-0 dissociation, efficient ILV formation, correct ILV size and cargo degradation. Thus, cargo sorting and ILV formation occur by concerted, coordinated and repetitive recruitment waves of individual ESCRT subcomplexes and are controlled by clathrin. Intraluminal vesicles are formed by the endosomal sorting complex required for transport (ESCRT) machinery. Here, the authors unravel the timing of vesicle budding, and that endosomal clathrin regulates concerted recruitment of ESCRT subcomplexes, required for efficient membrane remodeling.
Collapse
|
146
|
Crespo-Yàñez X, Aguilar-Gurrieri C, Jacomin AC, Journet A, Mortier M, Taillebourg E, Soleilhac E, Weissenhorn W, Fauvarque MO. CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis. PLoS Genet 2018; 14:e1007456. [PMID: 29933386 PMCID: PMC6033466 DOI: 10.1371/journal.pgen.1007456] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 07/05/2018] [Accepted: 05/30/2018] [Indexed: 11/29/2022] Open
Abstract
Integration and down-regulation of cell growth and differentiation signals rely on plasma membrane receptor endocytosis and sorting towards either recycling vesicles or degradative lysosomes via multivesicular bodies (MVB). In this process, the endosomal sorting complex-III required for transport (ESCRT-III) controls membrane deformation and scission triggering intraluminal vesicle (ILV) formation at early endosomes. Here, we show that the ESCRT-III member CHMP1B can be ubiquitinated within a flexible loop known to undergo conformational changes during polymerization. We demonstrate further that CHMP1B is deubiquitinated by the ubiquitin specific protease USP8 (syn. UBPY) and found fully devoid of ubiquitin in a ~500 kDa large complex that also contains its ESCRT-III partner IST1. Moreover, EGF stimulation induces the rapid and transient accumulation of ubiquitinated forms of CHMP1B on cell membranes. Accordingly, CHMP1B ubiquitination is necessary for CHMP1B function in both EGF receptor trafficking in human cells and wing development in Drosophila. Based on these observations, we propose that CHMP1B is dynamically regulated by ubiquitination in response to EGF and that USP8 triggers CHMP1B deubiquitination possibly favoring its subsequent assembly into a membrane-associated ESCRT-III polymer. In multicellular organisms, the interpretation and transmission of cell growth and differentiation signals strongly rely on plasma membrane receptors. Once activated by their ligands, these receptors activate downstream signaling cascades and are rapidly internalized into intracellular vesicles that fuse inside the cell to form the endosomal compartment. From there, the receptors are sorted towards either recycling vesicles or degradative lysosomes via multivesicular bodies. Receptors sorting therefore plays a crucial role in the integration and regulation of intracellular signals during development and numerous physio-pathological processes. It requires extensive membrane remodeling and scission events at the level of the endosomal compartment by so-called ESCRT proteins, including CHMP1B. In this study, we provide evidence for dynamic regulation of CHMP1B function and subcellular localization by ubiquitin linkage. We also show the contribution of the ubiquitin specific protease USP8 in this regulation, which is a known actor of intracellular trafficking and Cushing’s disease.
Collapse
Affiliation(s)
- Xènia Crespo-Yàñez
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Carmen Aguilar-Gurrieri
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Anne-Claire Jacomin
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Agnès Journet
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Magda Mortier
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Emmanuel Taillebourg
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Emmanuelle Soleilhac
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Marie-Odile Fauvarque
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
- * E-mail:
| |
Collapse
|
147
|
ESCRTs in membrane sealing. Biochem Soc Trans 2018; 46:773-778. [PMID: 29903934 DOI: 10.1042/bst20170435] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022]
Abstract
The multisubunit endosomal sorting complex required for transport (ESCRT) machinery is a key regulator of cellular membrane dynamics. Initially characterized in the budding yeast Saccharomyces cerevisiae for its involvement in cargo sorting to the vacuole, the yeast lysosome, this protein complex has emerged over the past decade as a driver for diverse membrane remodeling processes. Its pleiotropic functional connection is mirrored in numerous cellular processes, such as cytokinetic abscission during the final step of cell division, nuclear pore quality control, nuclear envelope sealing and repair, plasma membrane repair, vesicle shedding from the plasma membrane, viral budding, and axonal pruning. Common to all the processes regulated by the ESCRT machinery is their assembly on the cytosolic side of the respective membrane to stabilize concave membranes, budding, and scission of narrow membrane necks away from the cytosol. Thus, this machinery has evolved to perform many functions in membrane dynamics, and given its importance, it is not surprising that the dysfunctional ESCRT machinery has been implicated in several diseases. In this mini-review, we summarize the role of ESCRT proteins in membrane deformation specifically during membrane sealing and repair.
Collapse
|
148
|
Mast FD, Herricks T, Strehler KM, Miller LR, Saleem RA, Rachubinski RA, Aitchison JD. ESCRT-III is required for scissioning new peroxisomes from the endoplasmic reticulum. J Cell Biol 2018; 217:2087-2102. [PMID: 29588378 PMCID: PMC5987711 DOI: 10.1083/jcb.201706044] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 01/23/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
Dynamic control of peroxisome proliferation is integral to the peroxisome's many functions. The endoplasmic reticulum (ER) serves as a source of preperoxisomal vesicles (PPVs) that mature into peroxisomes during de novo peroxisome biogenesis and support growth and division of existing peroxisomes. However, the mechanism of PPV formation and release from the ER remains poorly understood. In this study, we show that endosomal sorting complexes required for transport (ESCRT)-III are required to release PPVs budding from the ER into the cytosol. Absence of ESCRT-III proteins impedes de novo peroxisome formation and results in an aberrant peroxisome population in vivo. Using a cell-free PPV budding assay, we show that ESCRT-III proteins Vps20 and Snf7 are necessary to release PPVs from the ER. ESCRT-III is therefore a positive effector of membrane scission for vesicles budding both away from and toward the cytosol. These findings have important implications for the evolutionary timing of emergence of peroxisomes and the rest of the internal membrane architecture of the eukaryotic cell.
Collapse
Affiliation(s)
- Fred D. Mast
- Center for Infectious Disease Research, Seattle, WA
- Institute for Systems Biology, Seattle, WA
| | - Thurston Herricks
- Center for Infectious Disease Research, Seattle, WA
- Institute for Systems Biology, Seattle, WA
| | - Kathleen M. Strehler
- Center for Infectious Disease Research, Seattle, WA
- Institute for Systems Biology, Seattle, WA
| | - Leslie R. Miller
- Center for Infectious Disease Research, Seattle, WA
- Institute for Systems Biology, Seattle, WA
| | - Ramsey A. Saleem
- Center for Infectious Disease Research, Seattle, WA
- Institute for Systems Biology, Seattle, WA
| | | | - John D. Aitchison
- Center for Infectious Disease Research, Seattle, WA
- Institute for Systems Biology, Seattle, WA
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
149
|
Abstract
A portfolio is presented documenting economic, high-resolution correlative focused ion beam scanning electron microscopy (FIB/SEM) in routine, comprising: (i) the use of custom-labeled slides and coverslips, (ii) embedding of cells in thin, or ultra-thin resin layers for correlative light and electron microscopy (CLEM) and (iii) the claim to reach the highest resolution possible with FIB/SEM in xyz. Regions of interest (ROIs) defined in light microscope (LM), can be relocated quickly and precisely in SEM. As proof of principle, HeLa cells were investigated in 3D context at all stages of the cell cycle, documenting ultrastructural changes during mitosis: nuclear envelope breakdown and reassembly, Golgi degradation and reconstitution and the formation of the midzone and midbody.
Collapse
|
150
|
Daniel E, Daudé M, Kolotuev I, Charish K, Auld V, Le Borgne R. Coordination of Septate Junctions Assembly and Completion of Cytokinesis in Proliferative Epithelial Tissues. Curr Biol 2018; 28:1380-1391.e4. [PMID: 29706514 DOI: 10.1016/j.cub.2018.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/26/2017] [Accepted: 03/15/2018] [Indexed: 01/22/2023]
Abstract
How permeability barrier function is maintained when epithelial cells divide is largely unknown. Here, we have investigated how the bicellular septate junctions (BSJs) and tricellular septate junctions (TSJs) are remodeled throughout completion of cytokinesis in Drosophila epithelia. We report that, following cytokinetic ring constriction, the midbody assembles, matures within SJs, and is displaced basally in two phases. In a first slow phase, the neighboring cells remain connected to the dividing cells by means of SJ-containing membrane protrusions pointing to the maturing midbody. Fluorescence recovery after photobleaching (FRAP) experiments revealed that SJs within the membrane protrusions correspond to the old SJs that were present prior to cytokinesis. In contrast, new SJs are assembled below the adherens junctions and spread basally to build a new belt of SJs in a manner analogous to a conveyor belt. Loss of function of a core BSJ component, the Na+/K+-ATPase pump Nervana 2 subunit, revealed that the apical-to-basal spread of BSJs drives the basal displacement of the midbody. In contrast, loss of the TSJ protein Bark beetle indicated that remodeling of TSJs is rate limiting and slowed down midbody migration. In the second phase, once the belt of SJs is assembled, the basal displacement of the midbody is accelerated and ultimately leads to abscission. This last step is temporally uncoupled from the remodeling of SJs. We propose that cytokinesis in epithelia involves the coordinated polarized assembly and remodeling of SJs both in the dividing cell and its neighbors to ensure the maintenance of permeability barrier integrity in proliferative epithelia.
Collapse
Affiliation(s)
- Emeline Daniel
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
| | - Marion Daudé
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
| | - Irina Kolotuev
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
| | - Kristi Charish
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vanessa Auld
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France; Équipe Labellisée Ligue Nationale contre le Cancer.
| |
Collapse
|