101
|
Seppala M, Thivichon-Prince B, Xavier GM, Shaffie N, Sangani I, Birjandi AA, Rooney J, Lau JNS, Dhaliwal R, Rossi O, Riaz MA, Stonehouse-Smith D, Wang Y, Papageorgiou SN, Viriot L, Cobourne MT. Gas1 Regulates Patterning of the Murine and Human Dentitions through Sonic Hedgehog. J Dent Res 2021; 101:473-482. [PMID: 34796774 PMCID: PMC8935464 DOI: 10.1177/00220345211049403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian dentition is a serially homogeneous structure that exhibits wide numerical and morphological variation among multiple different species. Patterning of the dentition is achieved through complex reiterative molecular signaling interactions that occur throughout the process of odontogenesis. The secreted signaling molecule Sonic hedgehog (Shh) plays a key role in this process, and the Shh coreceptor growth arrest-specific 1 (Gas1) is expressed in odontogenic mesenchyme and epithelium during multiple stages of tooth development. We show that mice engineered with Gas1 loss-of-function mutation have variation in number, morphology, and size of teeth within their molar dentition. Specifically, supernumerary teeth with variable morphology are present mesial to the first molar with high penetrance, while molar teeth are characterized by the presence of both additional and absent cusps, combined with reduced dimensions and exacerbated by the presence of a supernumerary tooth. We demonstrate that the supernumerary tooth in Gas1 mutant mice arises through proliferation and survival of vestigial tooth germs and that Gas1 function in cranial neural crest cells is essential for the regulation of tooth number, acting to restrict Wnt and downstream FGF signaling in odontogenic epithelium through facilitation of Shh signal transduction. Moreover, regulation of tooth number is independent of the additional Hedgehog coreceptors Cdon and Boc, which are also expressed in multiple regions of the developing tooth germ. Interestingly, further reduction of Hedgehog pathway activity in Shhtm6Amc hypomorphic mice leads to fusion of the molar field and reduced prevalence of supernumerary teeth in a Gas1 mutant background. Finally, we demonstrate defective coronal morphology and reduced coronal dimensions in the molar dentition of human subjects identified with pathogenic mutations in GAS1 and SHH/GAS1, suggesting that regulation of Hedgehog signaling through GAS1 is also essential for normal patterning of the human dentition.
Collapse
Affiliation(s)
- M Seppala
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - B Thivichon-Prince
- Laboratoire de Biologie tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305/Université de Lyon 1, IBCP, Lyon, France.,Faculté d'Odontologie, Université de Lyon 1, Université de Lyon, Lyon, France.,Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - G M Xavier
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - N Shaffie
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - I Sangani
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - A A Birjandi
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - J Rooney
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - J N S Lau
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - R Dhaliwal
- Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - O Rossi
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - M A Riaz
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - D Stonehouse-Smith
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Y Wang
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - S N Papageorgiou
- Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - L Viriot
- Laboratoire de Biologie tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305/Université de Lyon 1, IBCP, Lyon, France
| | - M T Cobourne
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Orthodontics, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
102
|
Tabata E, Itoigawa A, Koinuma T, Tayama H, Kashimura A, Sakaguchi M, Matoska V, Bauer PO, Oyama F. Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora. Mol Biol Evol 2021; 39:6432054. [PMID: 34897517 PMCID: PMC8789059 DOI: 10.1093/molbev/msab331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science (PD), Tokyo, Japan
| | - Akihiro Itoigawa
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Takumi Koinuma
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | - Hiroshi Tayama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | | | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
- Bioinova JSC, Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
- Corresponding author: E-mail:
| |
Collapse
|
103
|
Lang AJ, Engler T, Martin T. Dental topographic and three-dimensional geometric morphometric analysis of carnassialization in different clades of carnivorous mammals (Dasyuromorphia, Carnivora, Hyaenodonta). J Morphol 2021; 283:91-108. [PMID: 34775616 DOI: 10.1002/jmor.21429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023]
Abstract
The evolution of carnassial teeth in mammals, especially in the Carnivora, has been subject of many morphometric and some dental topographic studies. Here, we use a combination of dental topographic analysis (Dirichlet normal energy) and 3D geometric morphometrics of less and high carnassialized lower teeth of carnivoran, dasyuromorph and hyaenodont taxa. Carnassial crown curvature, as indicated by Dirichlet normal energy, is high in lesser carnassialized teeth and low in higher carnassialized teeth, where it is influenced by the reduction of crown features such as cusps and crests. PC1 of the geometric morphometric analysis is linked to enlargement of the carnassial blade, reduction of the talonid crushing basin and an increasingly asymmetric cervix line with an enlarged mesial flexure in more carnassialized teeth. Distribution of PC1 values further indicates that along the tooth row of dasyuromorphs (m2-m4) and hyaenodonts (m1-m3) the most distal carnassial is the most carnassialized (principal carnassial), and in most taxa with overall higher carnassialized teeth, carnassialization successively increases from the anterior to the posterior tooth position along the tooth row. PC2 indicates that a longitudinal elongated carnassial is present in caniforms and in unspecialized feliforms, which separates these taxa in morphospace from all dasyuromorphs, hyaenodonts and specialized feliforms. An ancestral state reconstruction shows that this longitudinal elongation may be a plesiomorphic ancestral state for the Carnivora, which is different from the Dasyuromorphia and the Hyaenodonta. This elongation, enabling the presence of a longitudinally aligned carnassial blade as well as a complete talonid basin, might have provided the Carnivora with an advantage in terms of adaptive versatility.
Collapse
Affiliation(s)
- Andreas Johann Lang
- Institute of Geosciences, Section Paleontology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Thomas Engler
- Institute of Geosciences, Section Paleontology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Thomas Martin
- Institute of Geosciences, Section Paleontology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
104
|
Fuzessy L, Silveira FAO, Culot L, Jordano P, Verdú M. Phylogenetic congruence between Neotropical primates and plants is driven by frugivory. Ecol Lett 2021; 25:320-329. [PMID: 34775664 DOI: 10.1111/ele.13918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
Seed dispersal benefits plants and frugivores, and potentially drives co-evolution, with consequences to diversification evidenced for, e.g., primates. Evidence for macro-coevolutionary patterns in multi-specific, plant-animal mutualisms is scarce, and the mechanisms driving them remain unexplored. We tested for phylogenetic congruences in primate-plant interactions and showed strong co-phylogenetic signals across Neotropical forests, suggesting that both primates and plants share evolutionary history. Phylogenetic congruence between Platyrrhini and Angiosperms was driven by the most generalist primates, modulated by their functional traits, interacting with a wide-range of Angiosperms. Consistently similar eco-evolutionary dynamics seem to be operating irrespective of local assemblages, since co-phylogenetic signal emerged independently across three Neotropical regions. Our analysis supports the idea that macroevolutionary, coevolved patterns among interacting mutualistic partners are driven by super-generalist taxa. Trait convergence among multiple partners within multi-specific assemblages appears as a mechanism favouring these likely coevolved outcomes.
Collapse
Affiliation(s)
- Lisieux Fuzessy
- Department of Biodiversity, Universidade Estadual Paulista, UNESP campus Rio Claro, São Paulo, Brazil.,CREAF, Centre de Recerca Ecològica i Aplicacions Foresta, Universitat Autònoma de Barcelona, Catalunya, Spain.,Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Fernando A O Silveira
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laurence Culot
- Department of Biodiversity, Universidade Estadual Paulista, UNESP campus Rio Claro, São Paulo, Brazil
| | - Pedro Jordano
- Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain.,Facultad de Biología, Department Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación, CSIC-UV-GV, Moncada, Valencia, Spain
| |
Collapse
|
105
|
Hughes JJ, Berv JS, Chester SGB, Sargis EJ, Field DJ. Ecological selectivity and the evolution of mammalian substrate preference across the K-Pg boundary. Ecol Evol 2021; 11:14540-14554. [PMID: 34765124 PMCID: PMC8571592 DOI: 10.1002/ece3.8114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
The Cretaceous-Paleogene (K-Pg) mass extinction 66 million years ago was characterized by a worldwide ecological catastrophe and rapid species turnover. Large-scale devastation of forested environments resulting from the Chicxulub asteroid impact likely influenced the evolutionary trajectories of multiple clades in terrestrial environments, and it has been hypothesized to have biased survivorship in favour of nonarboreal lineages across the K-Pg boundary. Here, we evaluate patterns of substrate preferences across the K-Pg boundary among crown group mammals, a group that underwent rapid diversification following the mass extinction. Using Bayesian, likelihood, and parsimony reconstructions, we identify patterns of mammalian ecological selectivity that are broadly similar to those previously hypothesized for birds. Models based on extant taxa indicate predominant K-Pg survivorship among semi- or nonarboreal taxa, followed by numerous independent transitions to arboreality in the early Cenozoic. However, contrary to the predominant signal, some or all members of total-clade Euarchonta (Primates + Dermoptera + Scandentia) appear to have maintained arboreal habits across the K-Pg boundary, suggesting ecological flexibility during an interval of global habitat instability. We further observe a pronounced shift in character state transitions away from plesiomorphic arboreality associated with the K-Pg transition. Our findings are consistent with the hypothesis that predominantly nonarboreal taxa preferentially survived the end-Cretaceous mass extinction, and emphasize the pivotal influence of the K-Pg transition in shaping the early evolutionary trajectories of extant terrestrial vertebrates.
Collapse
Affiliation(s)
- Jonathan J. Hughes
- Department of Ecology & Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
| | - Jacob S. Berv
- Department of Ecology & Evolutionary BiologyCornell UniversityIthacaNew YorkUSA
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- University of Michigan Museum of PaleontologyUniversity of MichiganAnn ArborMichiganUSA
| | - Stephen G. B. Chester
- Department of AnthropologyBrooklyn CollegeCity University of New YorkBrooklynNew YorkUSA
- Department of AnthropologyThe Graduate CenterCity University of New YorkNew YorkNew YorkUSA
- New York Consortium in Evolutionary PrimatologyNew YorkNew YorkUSA
| | - Eric J. Sargis
- Department of AnthropologyYale UniversityNew HavenConnecticutUSA
- Divisions of Vertebrate Paleontology and Vertebrate ZoologyYale Peabody Museum of Natural HistoryNew HavenConnecticutUSA
- Yale Institute for Biospheric StudiesNew HavenConnecticutUSA
| | - Daniel J. Field
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
106
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
107
|
Bussi Y, Kapon R, Reich Z. Large-scale k-mer-based analysis of the informational properties of genomes, comparative genomics and taxonomy. PLoS One 2021; 16:e0258693. [PMID: 34648558 PMCID: PMC8516232 DOI: 10.1371/journal.pone.0258693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/02/2021] [Indexed: 12/24/2022] Open
Abstract
Information theoretic approaches are ubiquitous and effective in a wide variety of bioinformatics applications. In comparative genomics, alignment-free methods, based on short DNA words, or k-mers, are particularly powerful. We evaluated the utility of varying k-mer lengths for genome comparisons by analyzing their sequence space coverage of 5805 genomes in the KEGG GENOME database. In subsequent analyses on four k-mer lengths spanning the relevant range (11, 21, 31, 41), hierarchical clustering of 1634 genus-level representative genomes using pairwise 21- and 31-mer Jaccard similarities best recapitulated a phylogenetic/taxonomic tree of life with clear boundaries for superkingdom domains and high subtree similarity for named taxons at lower levels (family through phylum). By analyzing ~14.2M prokaryotic genome comparisons by their lowest-common-ancestor taxon levels, we detected many potential misclassification errors in a curated database, further demonstrating the need for wide-scale adoption of quantitative taxonomic classifications based on whole-genome similarity.
Collapse
Affiliation(s)
- Yuval Bussi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ruti Kapon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
108
|
Rapid increase in snake dietary diversity and complexity following the end-Cretaceous mass extinction. PLoS Biol 2021; 19:e3001414. [PMID: 34648487 PMCID: PMC8516226 DOI: 10.1371/journal.pbio.3001414] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
The Cenozoic marked a period of dramatic ecological opportunity in Earth history due to the extinction of non-avian dinosaurs as well as to long-term physiographic changes that created new biogeographic theaters and new habitats. Snakes underwent massive ecological diversification during this period, repeatedly evolving novel dietary adaptations and prey preferences. The evolutionary tempo and mode of these trophic ecological changes remain virtually unknown, especially compared with co-radiating lineages of birds and mammals that are simultaneously predators and prey of snakes. Here, we assemble a dataset on snake diets (34,060 observations on the diets of 882 species) to investigate the history and dynamics of the multidimensional trophic niche during the global radiation of snakes. Our results show that per-lineage dietary niche breadths remained remarkably constant even as snakes diversified to occupy disparate outposts of dietary ecospace. Rapid increases in dietary diversity and complexity occurred in the early Cenozoic, and the overall rate of ecospace expansion has slowed through time, suggesting a potential response to ecological opportunity in the wake of the end-Cretaceous mass extinction. Explosive bursts of trophic innovation followed colonization of the Nearctic and Neotropical realms by a group of snakes that today comprises a majority of living snake diversity. Our results indicate that repeated transformational shifts in dietary ecology are important drivers of adaptive radiation in snakes and provide a framework for analyzing and visualizing the evolution of complex ecological phenotypes on phylogenetic trees. The Cenozoic marked a period of dramatic ecological opportunity in Earth history due to the extinction of non-avian dinosaurs and long-term physiographic changes. This phylogenetic natural history study offers new insights into the evolution of snake ecological diversity after the end-Cretaceous mass extinction, as they took advantage of these new opportunities.
Collapse
|
109
|
Abstract
The human brain is characterized by the large size and intricate folding of its cerebral cortex, which are fundamental for our higher cognitive function and frequently altered in pathological dysfunction. Cortex folding is not unique to humans, nor even to primates, but is common across mammals. Cortical growth and folding are the result of complex developmental processes that involve neural stem and progenitor cells and their cellular lineages, the migration and differentiation of neurons, and the genetic programs that regulate and fine-tune these processes. All these factors combined generate mechanical stress and strain on the developing neural tissue, which ultimately drives orderly cortical deformation and folding. In this review we examine and summarize the current knowledge on the molecular, cellular, histogenic and mechanical mechanisms that are involved in and influence folding of the cerebral cortex, and how they emerged and changed during mammalian evolution. We discuss the main types of pathological malformations of human cortex folding, their specific developmental origin, and how investigating their genetic causes has illuminated our understanding of key events involved. We close our review by presenting the state-of-the-art animal and in vitro models of cortex folding that are currently used to study these devastating developmental brain disorders in children, and what are the main challenges that remain ahead of us to fully understand brain folding.
Collapse
Affiliation(s)
- Lucia Del Valle Anton
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| | - Victor Borrell
- Instituto de Neurociencias, Agencia Estatal Consejo Superior de Investigaciones Científicas, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
110
|
Upham NS, Esselstyn JA, Jetz W. Molecules and fossils tell distinct yet complementary stories of mammal diversification. Curr Biol 2021; 31:4195-4206.e3. [PMID: 34329589 DOI: 10.1016/j.cub.2021.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
Reconstructing the tempo at which biodiversity arose is a fundamental goal of evolutionary biologists, yet the relative merits of evolutionary-rate estimates are debated based on whether they are derived from the fossil record or time-calibrated phylogenies (timetrees) of living species. Extinct lineages unsampled in timetrees are known to "pull" speciation rates downward, but the temporal scale at which this bias matters is unclear. To investigate this problem, we compare mammalian diversification-rate signatures in a credible set of molecular timetrees (n = 5,911 species, ∼70% from DNA) to those in fossil genus durations (n = 5,320). We use fossil extinction rates to correct or "push" the timetree-based (pulled) speciation-rate estimates, finding a surge of speciation during the Paleocene (∼66-56 million years ago, Ma) between the Cretaceous-Paleogene (K-Pg) boundary and the Paleocene-Eocene Thermal Maximum (PETM). However, about two-thirds of the K-Pg-to-PETM originating taxa did not leave modern descendants, indicating that this rate signature is likely undetectable from extant lineages alone. For groups without substantial fossil records, thankfully all is not lost. Pushed and pulled speciation rates converge starting ∼10 Ma and are equal at the present day when recent evolutionary processes can be estimated without bias using species-specific "tip" rates of speciation. Clade-wide moments of tip rates also enable enriched inference, as the skewness of tip rates is shown to approximate a clade's extent of past diversification-rate shifts. Molecular timetrees need fossil-correction to address deep-time questions, but they are sufficient for shallower time questions where extinctions are fewer.
Collapse
Affiliation(s)
- Nathan S Upham
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT 06511, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Jacob A Esselstyn
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Walter Jetz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
111
|
Khudyakov JI, Treat MD, Shanafelt MC, Deyarmin JS, Neely BA, van Breukelen F. Liver proteome response to torpor in a basoendothermic mammal, Tenrec ecaudatus, provides insights into the evolution of homeothermy. Am J Physiol Regul Integr Comp Physiol 2021; 321:R614-R624. [PMID: 34431404 DOI: 10.1152/ajpregu.00150.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many mammals use adaptive heterothermy (e.g., torpor, hibernation) to reduce metabolic demands of maintaining high body temperature (Tb). Torpor is typically characterized by coordinated declines in Tb and metabolic rate (MR) followed by active rewarming. Most hibernators experience periods of euthermy between bouts of torpor during which homeostatic processes are restored. In contrast, the common tenrec, a basoendothermic Afrotherian mammal, hibernates without interbout arousals and displays extreme flexibility in Tb and MR. We investigated the molecular basis of this plasticity in tenrecs by profiling the liver proteome of animals that were active or torpid with high and more stable Tb (∼32°C) or lower Tb (∼14°C). We identified 768 tenrec liver proteins, of which 50.9% were differentially abundant between torpid and active animals. Protein abundance was significantly more variable in active cold and torpid compared with active warm animals, suggesting poor control of proteostasis. Our data suggest that torpor in tenrecs may lead to mismatches in protein pools due to poor coordination of anabolic and catabolic processes. We propose that the evolution of endothermy leading to a more realized homeothermy of boreoeutherians likely led to greater coordination of homeostatic processes and reduced mismatches in thermal sensitivities of metabolic pathways.
Collapse
Affiliation(s)
- Jane I Khudyakov
- Biological Sciences Department, University of the Pacific, Stockton, California
| | - Michael D Treat
- School of Life Sciences, University of Nevada, Las Vegas, Nevada
| | - Mikayla C Shanafelt
- Biological Sciences Department, University of the Pacific, Stockton, California
| | - Jared S Deyarmin
- Biological Sciences Department, University of the Pacific, Stockton, California
| | - Benjamin A Neely
- National Institute of Standards and Technology, Charleston, South Carolina
| | | |
Collapse
|
112
|
Ruiz-García M, Pinilla-Beltrán D, Murillo-García OE, Pinto CM, Brito J, Shostell JM. Comparative mitogenome phylogeography of two anteater genera ( Tamandua and Myrmecophaga; Myrmecophagidae, Xenarthra): Evidence of discrepant evolutionary traits. Zool Res 2021; 42:525-547. [PMID: 34313411 PMCID: PMC8455474 DOI: 10.24272/j.issn.2095-8137.2020.365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 11/07/2022] Open
Abstract
The species within Xenarthra (sloths, anteaters, and armadillos) are quintessential South American mammals. Of the three groups, Vermilingua (anteaters) contains the fewest extant and paleontological species. Here, we sampled and sequenced the entire mitochondrial genomes (mitogenomes) of two Tamandua species (Tamandua tetradactyla and Tamandua mexicana) (n=74) from Central and South America, as well as Myrmecophaga tridactyla (n=41) from South America. Within Tamandua, we detected three different haplogroups. The oldest (THI) contained many specimens with the T. tetradactyla morphotype (but also several with the T. mexicana morphotype) and originated in southeastern South America (currently Uruguay) before moving towards northern South America, where the THII haplogroup originated. THII primarily contained specimens with the T. mexicana morphotype (but also several with the T. tetradactyla morphotype) and was distributed in Central America, Colombia, and Ecuador. THI and THII yielded a genetic distance of 4%. THII originated in either northern South America or "in situ" in Central America with haplogroup THIII, which consisted of ~50% T. mexicana and 50% T. tetradactyla phenotypes. THIII was mostly located in the same areas as THII, i.e., Central America, Ecuador, and Colombia, though mainly in the latter. The three haplogroups overlapped in Colombia and Ecuador. Thus, T. tetradactyla and T. mexicana were not reciprocally monophyletic. For this reason, we considered that a unique species of Tamandua likely exists, i.e., T. tetradactyla. In contrast to Tamandua, M. tridactyla did not show different morphotypes throughout its geographical range in the Neotropics. However, two very divergent genetic haplogroups (MHI and MHII), with a genetic distance of ~10%, were detected. The basal haplogroup, MHI, originated in northwestern South America, whereas the more geographically derived haplogroup, MHII, overlapped with MHI, but also expanded into central and southern South America. Thus, Tamandua migrated from south to north whereas Myrmecophaga migrated from north to south. Our results also showed that temporal mitochondrial diversification for Tamandua began during the Late Pliocene and Upper Pleistocene, but for Myrmecophaga began during the Late Miocene. Furthermore, both taxa showed elevated levels of mitochondrial genetic diversity. Tamandua showed more evidence of female population expansion than Myrmecophaga. Tamandua experienced population expansion ~0.6-0.17 million years ago (Mya), whereas Myrmecophaga showed possible population expansion ~0.3-0.2 Mya. However, both taxa experienced a conspicuous female decline in the last 10 000-20 000 years. Our results also showed little spatial genetic structure for both taxa. However, several analyses revealed higher spatial structure in Tamandua than in Myrmecophaga. Therefore, Tamandua and Myrmecophaga were not subjected to the same biogeographical, geological, or climatological events in shaping their genetic structures.
Collapse
Affiliation(s)
- Manuel Ruiz-García
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC 110231, Colombia. E-mail:
| | - Daniel Pinilla-Beltrán
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC 110231, Colombia
| | - Oscar E Murillo-García
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado Aéreo, Cali 25360, Colombia
| | | | - Jorge Brito
- Instituto Nacional de Biodiversidad (INABIO), Quito 170135, Ecuador
| | - Joseph Mark Shostell
- Math, Science and Technology Department, University of Minnesota Crookston, Crookston, MN 56716, USA
| |
Collapse
|
113
|
Brady PL, Springer MS. The effects of fossil taxa, hypothetical predicted ancestors, and a molecular scaffold on pseudoextinction analyses of extant placental orders. PLoS One 2021; 16:e0257338. [PMID: 34534236 PMCID: PMC8448315 DOI: 10.1371/journal.pone.0257338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudoextinction analyses, which simulate extinction in extant taxa, use molecular phylogenetics to assess the accuracy of morphological phylogenetics. Previous pseudoextinction analyses have shown a failure of morphological phylogenetics to place some individual placental orders in the correct superordinal clade. Recent work suggests that the inclusion of hypothetical ancestors of extant placental clades, estimated by ancestral state reconstructions of morphological characters, may increase the accuracy of morphological phylogenetic analyses. However, these studies reconstructed direct hypothetical ancestors for each extant taxon based on a well-corroborated molecular phylogeny, which is not possible for extinct taxa that lack molecular data. It remains to be determined if pseudoextinct taxa, and by proxy extinct taxa, can be accurately placed when their immediate hypothetical ancestors are unknown. To investigate this, we employed molecular scaffolds with the largest available morphological data set for placental mammals. Each placental order was sequentially treated as pseudoextinct by exempting it from the molecular scaffold and recoding soft morphological characters as missing for all its constituent species. For each pseudoextinct data set, we omitted the pseudoextinct taxon and performed a parsimony ancestral state reconstruction to obtain hypothetical predicted ancestors. Each pseudoextinct order was then evaluated in seven parsimony analyses that employed combinations of fossil taxa, hypothetical predicted ancestors, and a molecular scaffold. In treatments that included fossils, hypothetical predicted ancestors, and a molecular scaffold, only 8 of 19 pseudoextinct placental orders (42%) retained the same interordinal placement as on the molecular scaffold. In treatments that included hypothetical predicted ancestors but not fossils or a scaffold, only four placental orders (21%) were recovered in positions that are congruent with the scaffold. These results indicate that hypothetical predicted ancestors do not increase the accuracy of pseudoextinct taxon placement when the immediate hypothetical ancestor of the taxon is unknown. Hypothetical predicted ancestors are not a panacea for morphological phylogenetics.
Collapse
Affiliation(s)
- Peggy L. Brady
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States of America
| | - Mark S. Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States of America
| |
Collapse
|
114
|
Liu S, Westbury MV, Dussex N, Mitchell KJ, Sinding MHS, Heintzman PD, Duchêne DA, Kapp JD, von Seth J, Heiniger H, Sánchez-Barreiro F, Margaryan A, André-Olsen R, De Cahsan B, Meng G, Yang C, Chen L, van der Valk T, Moodley Y, Rookmaaker K, Bruford MW, Ryder O, Steiner C, Bruins-van Sonsbeek LGR, Vartanyan S, Guo C, Cooper A, Kosintsev P, Kirillova I, Lister AM, Marques-Bonet T, Gopalakrishnan S, Dunn RR, Lorenzen ED, Shapiro B, Zhang G, Antoine PO, Dalén L, Gilbert MTP. Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell 2021; 184:4874-4885.e16. [PMID: 34433011 DOI: 10.1016/j.cell.2021.07.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/16/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022]
Abstract
Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines.
Collapse
Affiliation(s)
- Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark.
| | - Michael V Westbury
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius vag 20C, Stockholm 10691, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 10405, Sweden; Department of Zoology, Stockholm University, Stockholm 10691, Sweden
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Mikkel-Holger S Sinding
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Peter D Heintzman
- The Arctic University Museum of Norway, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - David A Duchêne
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Joshua D Kapp
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius vag 20C, Stockholm 10691, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 10405, Sweden; Department of Zoology, Stockholm University, Stockholm 10691, Sweden
| | - Holly Heiniger
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Fátima Sánchez-Barreiro
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Ashot Margaryan
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Remi André-Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| | - Binia De Cahsan
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Guanliang Meng
- China National Genebank, BGI Shenzhen, Shenzhen 518083, China
| | - Chentao Yang
- China National Genebank, BGI Shenzhen, Shenzhen 518083, China
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tom van der Valk
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Yoshan Moodley
- Department of Zoology, University of Venda, Thohoyandou 0950, Republic of South Africa
| | - Kees Rookmaaker
- Editor of the Rhino Resource Center, Utrecht, the Netherlands
| | - Michael W Bruford
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Cardiff CF10 3AX, UK; Sustainable Places Research Institute, Cardiff University, Cardiff CF10 3BA, UK
| | - Oliver Ryder
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, San Diego, CA 92027, USA
| | - Cynthia Steiner
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, San Diego, CA 92027, USA
| | | | - Sergey Vartanyan
- N.A. Shilo North-East Interdisciplinary Scientific Research Institute, Far East Branch, Russian Academy of Sciences (NEISRI FEB RAS), Magadan 685000, Russia
| | - Chunxue Guo
- China National Genebank, BGI Shenzhen, Shenzhen 518083, China
| | - Alan Cooper
- South Australian Museum, Adelaide, SA 5000, Australia
| | - Pavel Kosintsev
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia; Ural Federal University, Yekaterinburg, Russia
| | - Irina Kirillova
- Institute of Geography, Russian Academy of Sciences, Moscow 119017, Russia
| | - Adrian M Lister
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain; Centre Nacional d'Anàlisi Genòmica, Centre for Genomic Regulation (CNAG-CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Shyam Gopalakrishnan
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Robert R Dunn
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark; Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Eline D Lorenzen
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 96050, USA
| | - Guojie Zhang
- China National Genebank, BGI Shenzhen, Shenzhen 518083, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Pierre-Olivier Antoine
- Institut des Sciences de l'Évolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius vag 20C, Stockholm 10691, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm 10405, Sweden; Department of Zoology, Stockholm University, Stockholm 10691, Sweden.
| | - M Thomas P Gilbert
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark; Norwegian University of Science and Technology (NTNU) University Museum, Trondheim 7012, Norway.
| |
Collapse
|
115
|
Prothero DR, Domning D, Fordyce RE, Foss S, Janis C, Lucas S, Marriott KL, Metais G, Naish D, Padian K, Rössner G, Solounias N, Spaulding M, Stucky RM, Theodor J, Uhen M. On the Unnecessary and Misleading Taxon “Cetartiodactyla”. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09572-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
116
|
Orrico VGD, Grant T, Faivovich J, Rivera-Correa M, Rada MA, Lyra ML, Cassini CS, Valdujo PH, Schargel WE, Machado DJ, Wheeler WC, Barrio-Amorós C, Loebmann D, Moravec J, Zina J, Solé M, Sturaro MJ, Peloso PLV, Suarez P, Haddad CFB. The phylogeny of Dendropsophini (Anura: Hylidae: Hylinae). Cladistics 2021; 37:73-105. [PMID: 34478175 DOI: 10.1111/cla.12429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 11/29/2022] Open
Abstract
The relationships of the hyline tribe Dendropsophini remain poorly studied, with most published analyses dealing with few of the species groups of Dendropsophus. In order to test the monophyly of Dendropsophini, its genera, and the species groups currently recognized in Dendropsophus, we performed a total evidence phylogenetic analysis. The molecular dataset included sequences of three mitochondrial and five nuclear genes from 210 terminals, including 12 outgroup species, the two species of Xenohyla, and 93 of the 108 recognized species of Dendropsophus. The phenomic dataset includes 46 terminals, one per species (34 Dendropsophus, one Xenohyla, and 11 outgroup species). Our results corroborate the monophyly of Dendropsophini and the reciprocal monophyly of Dendropsophus and Xenohyla. Some species groups of Dendropsophus are paraphyletic (the D. microcephalus, D. minimus, and D. parviceps groups, and the D. rubicundulus clade). On the basis of our results, we recognize nine species groups; for three of them (D. leucophyllatus, D. microcephalus, and D. parviceps groups) we recognize some nominal clades to highlight specific morphology or relationships and facilitate species taxonomy. We further discuss the evolution of oviposition site selection, where our results show multiple instances of independent evolution of terrestrial egg clutches during the evolutionary history of Dendropsophus.
Collapse
Affiliation(s)
- Victor G D Orrico
- Tropical Herpetology Laboratory, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brazil
| | - Taran Grant
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, CEP 05508-090, Brazil
| | - Julian Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Angel Gallardo 470, Buenos Aires, C1405DJR, Argentina.,Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Rivera-Correa
- Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Marco A Rada
- Laboratório de Anfíbios, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, CEP 05508-090, Brazil
| | - Mariana L Lyra
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Av. 24A 1515, Rio Claro, CEP 13506-900, Brazil
| | - Carla S Cassini
- Tropical Herpetology Laboratory, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brazil
| | - Paula H Valdujo
- Laboratório de Ecologia da Paisagem - Superintendência de Conservação, WWF-Brasil, Entre Quadra SHIS EQL 6/8 Conjunto E, Setor de Habitações Individuais Sul, Brasília, CEP 71620-430, Brazil
| | - Walter E Schargel
- Department of Biology, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Denis J Machado
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, New York, NY, 10024, USA
| | | | - Daniel Loebmann
- Laboratório de Vertebrados, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, CEP 96.203-900, Brazil
| | - Jiří Moravec
- Department of Zoology, National Museum, Cirkusová 1740, 193 00 Prague 9, Prague, Czech Republic
| | - Juliana Zina
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Av. José Moreira Sobrinho, Jequié, CEP 45205-490, Brazil
| | - Mirco Solé
- Tropical Herpetology Laboratory, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brazil
| | - Marcelo J Sturaro
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Av. Professor Artur Riedel, 275, Jardim Eldorado, Diadema, CEP 09972-270, Brazil.,Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Avenida Perimetral 1901, Terra Firme, Belém, CEP 66017-970, Brazil
| | - Pedro L V Peloso
- Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 1, Guamá, Belém, 66075-110, Brazil
| | - Pablo Suarez
- Instituto de Biología Subtropical (IBS), CONICET-UNaM, Bertoni 85, Puerto Iguazú, (3370), Argentina
| | - Célio F B Haddad
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Av. 24A 1515, Rio Claro, CEP 13506-900, Brazil
| |
Collapse
|
117
|
Yu C, Jiangzuo Q, Tschopp E, Wang H, Norell M. Information in morphological characters. Ecol Evol 2021; 11:11689-11699. [PMID: 34522333 PMCID: PMC8427622 DOI: 10.1002/ece3.7874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
The construction of morphological character matrices is central to paleontological systematic study, which extracts paleontological information from fossils. Although the word information has been repeatedly mentioned in a wide array of paleontological systematic studies, its meaning has rarely been clarified nor specifically defined. It is important, however, to establish a standard to measure paleontological information because fossils are hardly complete, rendering the recognition of homologous and homoplastic structures difficult. Here, based on information theory, we show the deep connections between paleontological systematic study and communication system engineering. Information is defined as the decrease of uncertainty and it is the information in morphological characters that allows distinguishing operational taxonomic units (OTUs) and reconstructing evolutionary history. We propose that concepts in communication system engineering such as source coding and channel coding, correspond to the construction of diagnostic features and the entire character matrices in paleontological studies. The two coding strategies should be distinguished following typical communication system engineering, because they serve dual purposes. With character matrices from six different vertebrate groups, we analyzed their information properties including source entropy, mutual information, and channel capacity. Estimation of channel capacity shows character saturation of all matrices in transmitting paleontological information, indicating that, due to the presence of noise, oversampling characters not only increases the burden in character scoring, but also may decrease quality of matrices. We further test the use of information entropy, which measures how informative a variable is, as a character weighting criterion in parsimony-based systematic studies. The results show high consistency with existing knowledge with both good resolution and interpretability.
Collapse
Affiliation(s)
- Congyu Yu
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Department of Earth and Environmental SciencesColumbia UniversityNew YorkNYUSA
| | - Qigao Jiangzuo
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- Key Laboratory of Orogenic Belts and Crustal EvolutionSchool of Earth and Space SciencesPeking UniversityBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Emanuel Tschopp
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Center of Natural HistoryUniversity of HamburgHamburgGermany
| | - Haibing Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Mark Norell
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
| |
Collapse
|
118
|
Asher RJ, Smith MR. Phylogenetic Signal and Bias in Paleontology. Syst Biol 2021; 71:986-1008. [PMID: 34469583 PMCID: PMC9248965 DOI: 10.1093/sysbio/syab072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/12/2022] Open
Abstract
An unprecedented amount of evidence now illuminates the phylogeny of living mammals and birds on the Tree of Life. We use this tree to measure phylogenetic value of data typically used in paleontology (bones and teeth) from six datasets derived from five published studies. We ask three interrelated questions: 1) Can these data adequately reconstruct known parts of the Tree of Life? 2) Is accuracy generally similar for studies using morphology, or do some morphological datasets perform better than others? 3) Does the loss of non-fossilizable data cause taxa to occur in misleadingly basal positions? Adding morphology to DNA datasets usually increases congruence of resulting topologies to the well corroborated tree, but this varies among morphological datasets. Extant taxa with a high proportion of missing morphological characters can greatly reduce phylogenetic resolution when analyzed together with fossils. Attempts to ameliorate this by deleting extant taxa missing morphology are prone to decreased accuracy due to long-branch artefacts. We find no evidence that fossilization causes extinct taxa to incorrectly appear at or near topologically basal branches. Morphology comprises the evidence held in common by living taxa and fossils, and phylogenetic analysis of fossils greatly benefits from inclusion of molecular and morphological data sampled for living taxa, whatever methods are used for phylogeny estimation.
Collapse
Affiliation(s)
- Robert J Asher
- Department of Zoology, Downing St., University of Cambridge CB2 3EJ, UK
| | - Martin R Smith
- Department of Earth Sciences, Lower Mount Joy, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
119
|
Shelley SL, Bertrand OC, Brusatte SL, Williamson TE. Petrosal Anatomy of the Paleocene Eutherian Mammal Deltatherium fundaminis (Cope, 1881). J MAMM EVOL 2021; 28:1161-1180. [PMID: 34483638 PMCID: PMC8406390 DOI: 10.1007/s10914-021-09568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 12/04/2022]
Abstract
We describe the tympanic anatomy of the petrosal of Deltatherium fundaminis, an enigmatic Paleocene mammal based on cranial specimens recovered from New Mexico, U.S.A. Although the ear region of Deltatherium has previously been described, there has not been a comprehensive, well-illustrated contribution using current anatomical terminology. The dental and cranial anatomy of Deltatherium is a chimera, with morphological similarities to both ‘condylarth’ and ‘cimolestan’ taxa. As such, the phylogenetic relationships of this taxon have remained elusive since its discovery, and it has variably been associated with Arctocyonidae, Pantodonta and Tillodontia. The petrosal of Deltatherium is anteriorly bordered by an open space comprising a contiguous carotid opening and pyriform fenestra. The promontorium features both a small rostral tympanic process and small epitympanic wing but lacks well-marked sulci. A large ventral facing external aperture of the canaliculus cochleae is present and bordered posteriorly by a well-developed caudal tympanic process. The hiatus Fallopii opens on the ventral surface of the petrosal. The tegmen tympani is mediolaterally broad and anteriorly expanded, and its anterior margin is perforated by a foramen for the ramus superior of the stapedial artery. The tympanohyal is small but approximates the caudal tympanic process to nearly enclose the stylomastoid notch. The mastoid is widely exposed on the basicranium and bears an enlarged mastoid process, separate from the paraoccipital process. These new observations provide novel anatomical data corroborating previous hypotheses regarding the plesiomorphic eutherian condition but also reveal subtle differences among Paleocene eutherians that have the potential to help inform the phylogeny of Deltatherium.
Collapse
Affiliation(s)
- Sarah L Shelley
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom.,Carnegie Museum of Natural History, Pittsburgh, Pennsylvania United States of America
| | - Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom.,New Mexico Museum of Natural History and Science, Albuquerque, New Mexico United States of America
| | - Thomas E Williamson
- New Mexico Museum of Natural History and Science, Albuquerque, New Mexico United States of America
| |
Collapse
|
120
|
Valente R, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Functional or Vestigial? The Genomics of the Pineal Gland in Xenarthra. J Mol Evol 2021; 89:565-575. [PMID: 34342686 DOI: 10.1007/s00239-021-10025-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Vestigial organs are historical echoes of past phenotypes. Determining whether a specific organ constitutes a functional or vestigial structure can be a challenging task, given that distinct levels of atrophy may arise between and within lineages. The mammalian pineal gland, an endocrine organ involved in melatonin biorhythmicity, represents a classic example, often yielding contradicting anatomical observations. In Xenarthra (sloths, anteaters, and armadillos), a peculiar mammalian order, the presence of a distinct pineal organ was clearly observed in some species (i.e., Linnaeus's two-toed sloth), but undetected in other closely related species (i.e., brown-throated sloth). In the nine-banded armadillo, contradicting evidence supports either functional or vestigial scenarios. Thus, to untangle the physiological status of the pineal gland in Xenarthra, we used a genomic approach to investigate the evolution of the gene hub responsible for melatonin synthesis and signaling. We show that both synthesis and signaling compartments are eroded and were probably lost independently among Xenarthra orders. Additionally, by expanding our analysis to 157 mammal genomes, we offer a comprehensive view showing that species with very distinctive habitats and lifestyles have convergently evolved a similar phenotype: Cetacea, Pholidota, Dermoptera, Sirenia, and Xenarthra. Our findings suggest that the recurrent inactivation of melatonin genes correlates with pineal atrophy and endorses the use of genomic analyses to ascertain the physiological status of suspected vestigial structures.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE-Marine and Environmental Sciences Centre, ARDITI, Madeira, Portugal.,OOM-Oceanic Observatory of Madeira, Funchal, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal. .,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
121
|
Yoshikawa K. Necdin: A purposive integrator of molecular interaction networks for mammalian neuron vitality. Genes Cells 2021; 26:641-683. [PMID: 34338396 PMCID: PMC9290590 DOI: 10.1111/gtc.12884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
Necdin was originally found in 1991 as a hypothetical protein encoded by a neural differentiation‐specific gene transcript in murine embryonal carcinoma cells. Virtually all postmitotic neurons and their precursor cells express the necdin gene (Ndn) during neuronal development. Necdin mRNA is expressed only from the paternal allele through genomic imprinting, a placental mammal‐specific epigenetic mechanism. Necdin and its homologous MAGE (melanoma antigen) family, which have evolved presumedly from a subcomplex component of the SMC5/6 complex, are expressed exclusively in placental mammals. Paternal Ndn‐mutated mice totally lack necdin expression and exhibit various types of neuronal abnormalities throughout the nervous system. Ndn‐null neurons are vulnerable to detrimental stresses such as DNA damage. Necdin also suppresses both proliferation and apoptosis of neural stem/progenitor cells. Functional analyses using Ndn‐manipulated cells reveal that necdin consistently exerts antimitotic, anti‐apoptotic and prosurvival effects. Necdin interacts directly with a number of regulatory proteins including E2F1, p53, neurotrophin receptors, Sirt1 and PGC‐1α, which serve as major hubs of protein–protein interaction networks for mitosis, apoptosis, differentiation, neuroprotection and energy homeostasis. This review focuses on necdin as a pleiotropic protein that integrates molecular interaction networks to promote neuronal vitality in modern placental mammals.
Collapse
|
122
|
Farré X, Molina R, Barteri F, Timmers PRHJ, Joshi PK, Oliva B, Acosta S, Esteve-Altava B, Navarro A, Muntané G. Comparative Analysis of Mammal Genomes Unveils Key Genomic Variability for Human Life Span. Mol Biol Evol 2021; 38:4948-4961. [PMID: 34297086 PMCID: PMC8557403 DOI: 10.1093/molbev/msab219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The enormous mammal's lifespan variation is the result of each species' adaptations to their own biological trade-offs and ecological conditions. Comparative genomics have demonstrated that genomic factors underlying both, species lifespans and longevity of individuals, are in part shared across the tree of life. Here, we compared protein-coding regions across the mammalian phylogeny to detect individual amino acid (AA) changes shared by the most long-lived mammals and genes whose rates of protein evolution correlate with longevity. We discovered a total of 2,737 AA in 2,004 genes that distinguish long- and short-lived mammals, significantly more than expected by chance (P = 0.003). These genes belong to pathways involved in regulating lifespan, such as inflammatory response and hemostasis. Among them, a total 1,157 AA showed a significant association with maximum lifespan in a phylogenetic test. Interestingly, most of the detected AA positions do not vary in extant human populations (81.2%) or have allele frequencies below 1% (99.78%). Consequently, almost none of these putatively important variants could have been detected by genome-wide association studies. Additionally, we identified four more genes whose rate of protein evolution correlated with longevity in mammals. Crucially, SNPs located in the detected genes explain a larger fraction of human lifespan heritability than expected, successfully demonstrating for the first time that comparative genomics can be used to enhance interpretation of human genome-wide association studies. Finally, we show that the human longevity-associated proteins are significantly more stable than the orthologous proteins from short-lived mammals, strongly suggesting that general protein stability is linked to increased lifespan.
Collapse
Affiliation(s)
- Xavier Farré
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Ruben Molina
- Structural Bioinformatics Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Fabio Barteri
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul R H J Timmers
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom,Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Baldomero Oliva
- Structural Bioinformatics Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Acosta
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Borja Esteve-Altava
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
123
|
Avilla LS, Mothé D. Out of Africa: A New Afrotheria Lineage Rises From Extinct South American Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.654302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The South American native ungulates (SANUs) are usually overlooked in Eutherian phylogenetic studies. In the rare studies where they were included, the diversity of SANUs was underrated, keeping their evolutionary history poorly known. Some authors recognized the SANUs as a monophyletic lineage and formally named it Meridiungulata. Here, we recognized and defined a new supraordinal lineage of Eutheria, the Sudamericungulata, after performing morphological phylogenetic analyses including all lineages of SANUs and Eutheria. The SANUs resulted as non-monophyletic; thus, Meridiungulata is not a natural group; Litopterna and “Didolodontidae” are Panameriungulata and closer to Laurasiatheria than to other “Meridiungulata” (Astrapotheria, Notoungulata, Pyrotheria, and Xenungulata). The other “Meridiungulata” is grouped in the Sudamericungulata, as a new monophyletic lineage of Afrotheria Paenungulata, and shared a common ancestor with Hyracoidea. The divergence between the African and South American lineages is estimated to Early Paleocene, and their interrelationships support the Atlantogea biogeographic model. Shortly afterward, the Sudamericungulata explosively diversified in its four lineages. Confronting the Sudamericungulata evolutionary patterns and the Cenozoic natural events (such as tectonics and climatic and environmental changes, among others) helps to unveil a new chapter in the evolution of Gondwanan Eutheria, as well as the natural history of South America during the Cenozoic.
Collapse
|
124
|
Irish JD, Grabowski M. Relative tooth size, Bayesian inference, and Homo naledi. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 176:262-282. [PMID: 34190335 DOI: 10.1002/ajpa.24353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/04/2021] [Accepted: 06/08/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Size-corrected tooth crown measurements were used to estimate phenetic affinities among Homo naledi (~335-236 ka) and 11 other Plio-Pleistocene and recent species. To assess further their efficacy, and identify dental evolutionary trends, the data were then quantitatively coded for phylogenetic analyses. Results from both methods contribute additional characterization of H. naledi relative to other hominins. MATERIALS AND METHODS After division by their geometric mean, scaled mesiodistal and buccolingual dimensions were used in tooth size apportionment analysis to compare H. naledi with Australopithecus africanus, A. afarensis, Paranthropus robustus, P. boisei, H. habilis, H. ergaster, H. erectus, H. heidelbergensis, H. neanderthalensis, H. sapiens, and Pan troglodytes. These data produce equivalently scaled samples unaffected by interspecific size differences. The data were then gap-weighted for Bayesian inference. RESULTS Congruence in interspecific relationships is evident between methods, and with many inferred from earlier systematic studies. However, the present results place H. naledi as a sister taxon to H. habilis, based on a symplesiomorphic pattern of relative tooth size. In the preferred Bayesian phylogram, H. naledi is nested within a clade comprising all Homo species, but it shares some characteristics with australopiths and, particularly, early Homo. DISCUSSION Phylogenetic analyses of relative tooth size yield information about evolutionary dental trends not previously reported in H. naledi and the other hominins. Moreover, with an appropriate model these data recovered plausible evolutionary relationships. Together, the findings support recent study suggesting H. naledi originated long before the geological date of the Dinaledi Chamber, from which the specimens under study were recovered.
Collapse
Affiliation(s)
- Joel D Irish
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,The Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.,Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
125
|
Dimanico MM, Klaassen AL, Wang J, Kaeser M, Harvey M, Rasch B, Rainer G. Aspects of tree shrew consolidated sleep structure resemble human sleep. Commun Biol 2021; 4:722. [PMID: 34117351 PMCID: PMC8196209 DOI: 10.1038/s42003-021-02234-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species. Tree shrews exhibited consolidated sleep, with a sleep bout duration parameter, τ, uncharacteristically high for a small mammal, and differing substantially from the sleep of rodents that is often punctuated by wakefulness. Two NREM sleep stages were observed in tree shrews: NREM, characterized by high delta waves and spindles, and an intermediate stage (IS-NREM) occurring on NREM to REM transitions and consisting of intermediate delta waves with concomitant theta-alpha activity. While IS-NREM activity was reliable in tree shrews, we could also detect it in human EEG data, on a subset of transitions. Finally, coupling events between sleep spindles and slow waves clustered near the beginning of the sleep period in tree shrews, paralleling humans, whereas they were more evenly distributed in rats. Our results suggest considerable homology of sleep structure between humans and tree shrews despite the large difference in body mass between these species. Dimanico et al investigated sleep in tree shrews using electrophysiological recordings and compared it to equivalent read-outs in rats and humans. They reported that there was considerable homology of sleep structure between humans and tree shrews despite the difference in body mass between these species.
Collapse
Affiliation(s)
- Marta M Dimanico
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Arndt-Lukas Klaassen
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Jing Wang
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Melanie Kaeser
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Harvey
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Gregor Rainer
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
126
|
Developmental influence on evolutionary rates and the origin of placental mammal tooth complexity. Proc Natl Acad Sci U S A 2021; 118:2019294118. [PMID: 34083433 PMCID: PMC8202019 DOI: 10.1073/pnas.2019294118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Interactions during development among genes, cells, and tissues can favor the more frequent generation of some trait variants compared with others. This developmental bias has often been considered to constrain adaptation, but its exact influence on evolution is poorly understood. Using computer simulations of development, we provide evidence that molecules promoting the formation of mammalian tooth cusps could help accelerate tooth complexity evolution. Only relatively small developmental changes were needed to derive the more complex, rectangular upper molar typical of early placental mammals from the simpler triangular ancestral pattern. Development may therefore have enabled the relatively fast divergence of the early placental molar dentition. Development has often been viewed as a constraining force on morphological adaptation, but its precise influence, especially on evolutionary rates, is poorly understood. Placental mammals provide a classic example of adaptive radiation, but the debate around rate and drivers of early placental evolution remains contentious. A hallmark of early dental evolution in many placental lineages was a transition from a triangular upper molar to a more complex upper molar with a rectangular cusp pattern better specialized for crushing. To examine how development influenced this transition, we simulated dental evolution on “landscapes” built from different parameters of a computational model of tooth morphogenesis. Among the parameters examined, we find that increases in the number of enamel knots, the developmental precursors of the tooth cusps, were primarily influenced by increased self-regulation of the molecular activator (activation), whereas the pattern of knots resulted from changes in both activation and biases in tooth bud growth. In simulations, increased activation facilitated accelerated evolutionary increases in knot number, creating a lateral knot arrangement that evolved at least ten times on placental upper molars. Relatively small increases in activation, superimposed on an ancestral tritubercular molar growth pattern, could recreate key changes leading to a rectangular upper molar cusp pattern. Tinkering with tooth bud geometry varied the way cusps initiated along the posterolingual molar margin, suggesting that small spatial variations in ancestral molar growth may have influenced how placental lineages acquired a hypocone cusp. We suggest that development could have enabled relatively fast higher-level divergence of the placental molar dentition.
Collapse
|
127
|
Abstract
Giant land vertebrates have evolved more than 30 times, notably in dinosaurs and mammals. The evolutionary and biomechanical perspectives considered here unify data from extant and extinct species, assessing current theory regarding how the locomotor biomechanics of giants has evolved. In terrestrial tetrapods, isometric and allometric scaling patterns of bones are evident throughout evolutionary history, reflecting general trends and lineage-specific divergences as animals evolve giant size. Added to data on the scaling of other supportive tissues and neuromuscular control, these patterns illuminate how lineages of giant tetrapods each evolved into robust forms adapted to the constraints of gigantism, but with some morphological variation. Insights from scaling of the leverage of limbs and trends in maximal speed reinforce the idea that, beyond 100-300 kg of body mass, tetrapods reduce their locomotor abilities, and eventually may lose entire behaviours such as galloping or even running. Compared with prehistory, extant megafaunas are depauperate in diversity and morphological disparity; therefore, turning to the fossil record can tell us more about the evolutionary biomechanics of giant tetrapods. Interspecific variation and uncertainty about unknown aspects of form and function in living and extinct taxa still render it impossible to use first principles of theoretical biomechanics to tightly bound the limits of gigantism. Yet sauropod dinosaurs demonstrate that >50 tonne masses repeatedly evolved, with body plans quite different from those of mammalian giants. Considering the largest bipedal dinosaurs, and the disparity in locomotor function of modern megafauna, this shows that even in terrestrial giants there is flexibility allowing divergent locomotor specialisations.
Collapse
Affiliation(s)
- John R. Hutchinson
- Structure & Motion Lab, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA,UK
| |
Collapse
|
128
|
Conley AJ, Loux SC, Legacki EL, Stoops MA, Pukazhenthi B, Brown JL, Sattler R, French HM, Tibary A, Robeck TR. The steroid metabolome of pregnancy, insights into the maintenance of pregnancy and evolution of reproductive traits. Mol Cell Endocrinol 2021; 528:111241. [PMID: 33711335 DOI: 10.1016/j.mce.2021.111241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Modes of mammalian reproduction are diverse and not always conserved among related species. Progesterone is universally required to supports pregnancy but sites of synthesis and metabolic pathways vary widely. The steroid metabolome of mid-to late gestation was characterized, focusing on 5α-reduced pregnanes in species representing the Perissodactyla, Cetartiodactyla and Carnivora using mass spectrometry. Metabolomes and steroidogenic enzyme ortholog sequences were used in heirarchial analyses. Steroid metabolite profiles were similar within orders, whales within cetartiodactyls for instance, but with notable exceptions such as rhinoceros clustering with goats, and tapirs with pigs. Steroidogenic enzyme sequence clustering reflected expected evolutionary relationships but once again with exceptions. Human sequences (expected outgroups) clustered with perissodactyl CYP11A1, CYP17A1 and SRD5A1 gene orthologues, forming outgroups only for HSD17B1 and SRD5A2. Spotted hyena CYP19A1 clustered within the Perissodactyla, between rhinoceros and equid orthologues, whereas CYP17A1 clustered within the Carnivora. This variability highlights the random adoption of divergent physiological strategies as pregnancy evolved among genetically similar species.
Collapse
Affiliation(s)
- A J Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - S C Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - E L Legacki
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Hollings Marine Laboratory, National Institute of Standards & Technology, Charleston, SC, USA
| | - M A Stoops
- Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE, USA
| | - B Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - J L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - R Sattler
- Alaska Department of Fish and Game, Palmer, AK, USA
| | - H M French
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - A Tibary
- Comparative Theriogenology, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - T R Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| |
Collapse
|
129
|
Marjanović D. The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates. Front Genet 2021; 12:521693. [PMID: 34054911 PMCID: PMC8149952 DOI: 10.3389/fgene.2021.521693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/22/2021] [Indexed: 01/20/2023] Open
Abstract
Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of the sites the fossils were found in. Paleontologists have therefore tried to help by publishing compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record have made heavy use of such works (in addition to using scattered primary sources and copying from each other). Using a recent example of a large node-dated timetree inferred from molecular data, I reevaluate all 30 calibrations in detail, present the current state of knowledge on them with its various uncertainties, rerun the dating analysis, and conclude that calibration dates cannot be taken from published compendia or other secondary or tertiary sources without risking strong distortions to the results, because all such sources become outdated faster than they are published: 50 of the (primary) sources I cite to constrain calibrations were published in 2019, half of the total of 280 after mid-2016, and 90% after mid-2005. It follows that the present work cannot serve as such a compendium either; in the slightly longer term, it can only highlight known and overlooked problems. Future authors will need to solve each of these problems anew through a thorough search of the primary paleobiological and chronostratigraphic literature on each calibration date every time they infer a new timetree, and that literature is not optimized for that task, but largely has other objectives.
Collapse
Affiliation(s)
- David Marjanović
- Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, Germany
| |
Collapse
|
130
|
Shelley SL, Brusatte SL, Williamson TE. Quantitative assessment of tarsal morphology illuminates locomotor behaviour in Palaeocene mammals following the end-Cretaceous mass extinction. Proc Biol Sci 2021; 288:20210393. [PMID: 33977789 PMCID: PMC8114852 DOI: 10.1098/rspb.2021.0393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammals exhibit vast ecological diversity, including a panoply of locomotor behaviours. The foundations of this diversity were established in the Mesozoic, but it was only after the end-Cretaceous mass extinction that mammals began to increase in body size, diversify into many new species and establish the extant orders. Little is known about the palaeobiology of the mammals that diversified immediately after the extinction during the Palaeocene, which are often perceived as ‘archaic’ precursors to extant orders. Here, we investigate the locomotor ecology of Palaeocene mammals using multivariate and disparity analyses. We show that tarsal measurements can be used to infer locomotor mode in extant mammals, and then demonstrate that Palaeocene mammals occupy distinctive regions of tarsal morphospace relative to Cretaceous and extant therian mammals, that is distinguished by their morphological robustness. We find that many Palaeocene species exhibit tarsal morphologies most comparable with morphologies of extant ground-dwelling mammals. Disparity analyses indicate that Palaeocene mammals attained similar morphospace diversity to the extant sample. Our results show that mammals underwent a post-extinction adaptive radiation in tarsal morphology relating to locomotor behaviour by combining a basic eutherian bauplan with anatomical specializations to attain considerable ecomorphological diversity.
Collapse
Affiliation(s)
- Sarah L Shelley
- School of Geosciences, University of Edinburgh, Edinburgh, UK.,Section of Mammals, Carnegie Museum of Natural History, Pittsburgh, USA
| | | | | |
Collapse
|
131
|
Abstract
Phylogenomics, the study of phylogenetic relationships among taxa based on their genome sequences, has emerged as the preferred phylogenetic method because of the wealth of phylogenetic information contained in genome sequences. Genome sequencing, however, can be prohibitively expensive, especially for taxa with huge genomes and when many taxa need sequencing. Consequently, the less costly phylotranscriptomics has seen an increased use in recent years. Phylotranscriptomics reconstructs phylogenies using DNA sequences derived from transcriptomes, which are often orders of magnitude smaller than genomes. However, in the absence of corresponding genome sequences, comparative analyses of transcriptomes can be challenging and it is unclear whether phylotranscriptomics is as reliable as phylogenomics. Here, we respectively compare the phylogenomic and phylotranscriptomic trees of 22 mammals and 15 plants that have both sequenced nuclear genomes and publicly available RNA sequencing data from multiple tissues. We found that phylotranscriptomic analysis can be sensitive to orthologous gene identification. When a rigorous method for identifying orthologs is employed, phylogenomic and phylotranscriptomic trees are virtually identical to each other, regardless of the tissue of origin of the transcriptomes and whether the same tissue is used across species. These findings validate phylotranscriptomics, brighten its prospect, and illustrate the criticality of reliable ortholog detection in such practices.
Collapse
Affiliation(s)
- Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
132
|
Abstract
Evolutionary biologists have long been fascinated with the episodes of rapid phenotypic innovation that underlie the emergence of major lineages. Although our understanding of the environmental and ecological contexts of such episodes has steadily increased, it has remained unclear how population processes contribute to emergent macroevolutionary patterns. One insight gleaned from phylogenomics is that gene-tree conflict, frequently caused by population-level processes, is often rampant during the origin of major lineages. With the understanding that phylogenomic conflict is often driven by complex population processes, we hypothesized that there may be a direct correspondence between instances of high conflict and elevated rates of phenotypic innovation if both patterns result from the same processes. We evaluated this hypothesis in six clades spanning vertebrates and plants. We found that the most conflict-rich regions of these six clades also tended to experience the highest rates of phenotypic innovation, suggesting that population processes shaping both phenotypic and genomic evolution may leave signatures at deep timescales. Closer examination of the biological significance of phylogenomic conflict may yield improved connections between micro- and macroevolution and increase our understanding of the processes that shape the origin of major lineages across the Tree of Life.
Collapse
|
133
|
Hovlinc is a recently evolved class of ribozyme found in human lncRNA. Nat Chem Biol 2021; 17:601-607. [PMID: 33753927 DOI: 10.1038/s41589-021-00763-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
Although naturally occurring catalytic RNA molecules-ribozymes-have attracted a great deal of research interest, very few have been identified in humans. Here, we developed a genome-wide approach to discovering self-cleaving ribozymes and identified a naturally occurring ribozyme in humans. The secondary structure and biochemical properties of this ribozyme indicate that it belongs to an unidentified class of small, self-cleaving ribozymes. The sequence of the ribozyme exhibits a clear evolutionary path, from its appearance between ~130 and ~65 million years ago (Ma), to acquiring self-cleavage activity very recently, ~13-10 Ma, in the common ancestors of humans, chimpanzees and gorillas. The ribozyme appears to be functional in vivo and is embedded within a long noncoding RNA belonging to a class of very long intergenic noncoding RNAs. The presence of a catalytic RNA enzyme in lncRNA creates the possibility that these transcripts could function by carrying catalytic RNA domains.
Collapse
|
134
|
Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:661759. [PMID: 33996819 PMCID: PMC8118648 DOI: 10.3389/fcell.2021.661759] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The neocortex is the largest part of the cerebral cortex and a key structure involved in human behavior and cognition. Comparison of neocortex development across mammals reveals that the proliferative capacity of neural stem and progenitor cells and the length of the neurogenic period are essential for regulating neocortex size and complexity, which in turn are thought to be instrumental for the increased cognitive abilities in humans. The domesticated ferret, Mustela putorius furo, is an important animal model in neurodevelopment for its complex postnatal cortical folding, its long period of forebrain development and its accessibility to genetic manipulation in vivo. Here, we discuss the molecular, cellular, and histological features that make this small gyrencephalic carnivore a suitable animal model to study the physiological and pathological mechanisms for the development of an expanded neocortex. We particularly focus on the mechanisms of neural stem cell proliferation, neuronal differentiation, cortical folding, visual system development, and neurodevelopmental pathologies. We further discuss the technological advances that have enabled the genetic manipulation of the ferret in vivo. Finally, we compare the features of neocortex development in the ferret with those of other model organisms.
Collapse
|
135
|
Schmidt AR, Gariboldi MC, Cortasa SA, Proietto S, Corso MC, Inserra PIF, Jaime VS, Halperin J, Vitullo AD, Dorfman VB. Neocortical Anatomy in the South American Plains Vizcacha, Lagostomus maximus, Reveals Different Strategies in Encephalic Development among Hystricomorpha and Myomorpha Rodents. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:318-329. [PMID: 33910193 DOI: 10.1159/000515638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Depending on the presence or absence of sulci and convolutions, the brains of mammals are classified as gyrencephalic or lissencephalic. We analyzed the encephalic anatomy of the hystricomorph rodent Lagostomus maximus in comparison with other evolutionarily related species. The encephalization quotient (EQ), gyrencephaly index (GI), and minimum cortical thickness (MCT) were calculated for the plains vizcacha as well as for other myomorph and hystricomorph rodents. The vizcacha showed a gyrencephalic brain with a sagittal longitudinal fissure that divides both hemispheres, and 3 pairs of sulci with bilateral symmetry; that is, lateral-rostral, intraparietal, and transverse sulci. The EQ had one of the lowest values among Hystricomorpha, while GI was one of the highest. Besides, the MCT was close to the mean value for the suborder. The comparison of EQ, GI, and MCT values between hystricomorph and myomorph species allowed the detection of significant variations. Both EQ and GI showed a significant increase in Hystricomorpha compared to Myomorpha, whereas a Pearson's analysis between EQ and GI depicted an inverse correlation pattern for Hystricomorpha. Furthermore, the ratio between MCT and GI also showed a negative correlation for Hystricomorpha and Myomorpha. Our phylogenetic analyses showed that Hystricomorpha and Myomorpha do not differ in their allometric patterning between the brain and body mass, GI and brain mass, and MCT and GI. In conclusion, gyrencephalic neuroanatomy in the vizcacha could have developed from the balance between the brain size, the presence of invaginations, and the cortical thickness, which resulted in a mixed encephalization strategy for the species. Gyrencephaly in the vizcacha, as well as in other Hystricomorpha, advocates in favor of the proposal that in the more recently evolved Myomorpha lissencephaly would have arisen from a phenotype reversal process.
Collapse
Affiliation(s)
- Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Constanza Gariboldi
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Santiago Andrés Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Clara Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vanina Soledad Jaime
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
136
|
Fossoriality and evolutionary development in two Cretaceous mammaliamorphs. Nature 2021; 592:577-582. [PMID: 33828300 DOI: 10.1038/s41586-021-03433-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
Mammaliamorpha comprises the last common ancestor of Tritylodontidae and Mammalia plus all its descendants1. Tritylodontids are nonmammaliaform herbivorous cynodonts that originated in the Late Triassic epoch, diversified in the Jurassic period2-5 and survived into the Early Cretaceous epoch6,7. Eutriconodontans have generally been considered to be an extinct mammalian group, although different views exist8. Here we report a newly discovered tritylodontid and eutriconodontan from the Early Cretaceous Jehol Biota of China. Eutriconodontans are common in this biota9, but it was not previously known to contain tritylodontids. The two distantly related species show convergent features that are adapted for fossorial life, and are the first 'scratch-diggers' known from this biota. Both species also show an increased number of presacral vertebrae, relative to the ancestral state in synapsids or mammals10,11, that display meristic and homeotic changes. These fossils shed light on the evolutionary development of the axial skeleton in mammaliamorphs, which has been the focus of numerous studies in vertebrate evolution12-17 and developmental biology18-28. The phenotypes recorded by these fossils indicate that developmental plasticity in somitogenesis and HOX gene expression in the axial skeleton-similar to that observed in extant mammals-was already in place in stem mammaliamorphs. The interaction of these developmental mechanisms with natural selection may have underpinned the diverse phenotypes of body plan that evolved independently in various clades of mammaliamorph.
Collapse
|
137
|
Genome Analysis of Endotrypanum and Porcisia spp., Closest Phylogenetic Relatives of Leishmania, Highlights the Role of Amastins in Shaping Pathogenicity. Genes (Basel) 2021; 12:genes12030444. [PMID: 33804709 PMCID: PMC8004069 DOI: 10.3390/genes12030444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. We have sequenced and analyzed genomes of three members of this clade in order to fill this gap. Their comparative analyses revealed only minute differences from Leishmaniamajor genome in terms of metabolic capacities. We also documented that the number of genes under positive selection on the Endotrypanum/Porcisia branch is rather small, with the flagellum-related group of genes being over-represented. Most significantly, the analysis of gene family evolution revealed a substantially reduced repertoire of surface proteins, such as amastins and biopterin transporters BT1 in the Endotrypanum/Porcisia species when compared to amastigote-dwelling Leishmania. This reduction was especially pronounced for δ-amastins, a subfamily of cell surface proteins crucial in the propagation of Leishmania amastigotes inside vertebrate macrophages and, apparently, dispensable for Endotrypanum/Porcisia, which do not infect such cells.
Collapse
|
138
|
Wilson Mantilla GP, Chester SGB, Clemens WA, Moore JR, Sprain CJ, Hovatter BT, Mitchell WS, Mans WW, Mundil R, Renne PR. Earliest Palaeocene purgatoriids and the initial radiation of stem primates. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210050. [PMID: 33972886 PMCID: PMC8074693 DOI: 10.1098/rsos.210050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 06/03/2023]
Abstract
Plesiadapiform mammals, as stem primates, are key to understanding the evolutionary and ecological origins of Pan-Primates and Euarchonta. The Purgatoriidae, as the geologically oldest and most primitive known plesiadapiforms and one of the oldest known placental groups, are also central to the evolutionary radiation of placentals and the Cretaceous-Palaeogene biotic recovery on land. Here, we report new dental fossils of Purgatorius from early Palaeocene (early Puercan) age deposits in northeastern Montana that represent the earliest dated occurrences of plesiadapiforms. We constrain the age of these earliest purgatoriids to magnetochron C29R and most likely to within 105-139 thousand years post-K/Pg boundary. Given the occurrence of at least two species, Purgatorius janisae and a new species, at the locality, we provide the strongest support to date that purgatoriids and, by extension, Pan-Primates, Euarchonta and Placentalia probably originated by the Late Cretaceous. Within 1 million years of their arrival in northeastern Montana, plesiadapiforms outstripped archaic ungulates in numerical abundance and dominated the arboreal omnivore-frugivore niche in mammalian local faunas.
Collapse
Affiliation(s)
- Gregory P. Wilson Mantilla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Paleontology, Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Stephen G. B. Chester
- Department of Anthropology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Department of Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - William A. Clemens
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Museum of Paleontology, University of California, Berkeley, CA 94720, USA
| | - Jason R. Moore
- Honors College, University of New Mexico, Albuquerque, NM 87131, USA
| | - Courtney J. Sprain
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Brody T. Hovatter
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Wade W. Mans
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Roland Mundil
- Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94720, USA
| | - Paul R. Renne
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
- Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94720, USA
| |
Collapse
|
139
|
Hao Y, Lee HJ, Baraboo M, Burch K, Maurer T, Somarelli JA, Conant GC. Baby Genomics: Tracing the Evolutionary Changes That Gave Rise to Placentation. Genome Biol Evol 2021; 12:35-47. [PMID: 32053193 PMCID: PMC7144826 DOI: 10.1093/gbe/evaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
It has long been challenging to uncover the molecular mechanisms behind striking morphological innovations such as mammalian pregnancy. We studied the power of a robust comparative orthology pipeline based on gene synteny to address such problems. We inferred orthology relations between human genes and genes from each of 43 other vertebrate genomes, resulting in ∼18,000 orthologous pairs for each genome comparison. By identifying genes that first appear coincident with origin of the placental mammals, we hypothesized that we would define a subset of the genome enriched for genes that played a role in placental evolution. We thus pinpointed orthologs that appeared before and after the divergence of eutherian mammals from marsupials. Reinforcing previous work, we found instead that much of the genetic toolkit of mammalian pregnancy evolved through the repurposing of preexisting genes to new roles. These genes acquired regulatory controls for their novel roles from a group of regulatory genes, many of which did in fact originate at the appearance of the eutherians. Thus, orthologs appearing at the origin of the eutherians are enriched in functions such as transcriptional regulation by Krüppel-associated box-zinc-finger proteins, innate immune responses, keratinization, and the melanoma-associated antigen protein class. Because the cellular mechanisms of invasive placentae are similar to those of metastatic cancers, we then used our orthology inferences to explore the association between placenta invasion and cancer metastasis. Again echoing previous work, we find that genes that are phylogenetically older are more likely to be implicated in cancer development.
Collapse
Affiliation(s)
- Yue Hao
- Bioinformatics Research Center, North Carolina State University
| | - Hyuk Jin Lee
- Division of Biological Sciences, University of Missouri-Columbia
| | | | | | | | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center.,Department of Medicine, Duke University School of Medicine
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University.,Division of Animal Sciences, University of Missouri-Columbia.,Program in Genetics, North Carolina State University.,Department of Biological Sciences, North Carolina State University
| |
Collapse
|
140
|
Franchini LF. Genetic Mechanisms Underlying Cortical Evolution in Mammals. Front Cell Dev Biol 2021; 9:591017. [PMID: 33659245 PMCID: PMC7917222 DOI: 10.3389/fcell.2021.591017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The remarkable sensory, motor, and cognitive abilities of mammals mainly depend on the neocortex. Thus, the emergence of the six-layered neocortex in reptilian ancestors of mammals constitutes a fundamental evolutionary landmark. The mammalian cortex is a columnar epithelium of densely packed cells organized in layers where neurons are generated mainly in the subventricular zone in successive waves throughout development. Newborn cells move away from their site of neurogenesis through radial or tangential migration to reach their specific destination closer to the pial surface of the same or different cortical area. Interestingly, the genetic programs underlying neocortical development diversified in different mammalian lineages. In this work, I will review several recent studies that characterized how distinct transcriptional programs relate to the development and functional organization of the neocortex across diverse mammalian lineages. In some primates such as the anthropoids, the neocortex became extremely large, especially in humans where it comprises around 80% of the brain. It has been hypothesized that the massive expansion of the cortical surface and elaboration of its connections in the human lineage, has enabled our unique cognitive capacities including abstract thinking, long-term planning, verbal language and elaborated tool making capabilities. I will also analyze the lineage-specific genetic changes that could have led to the modification of key neurodevelopmental events, including regulation of cell number, neuronal migration, and differentiation into specific phenotypes, in order to shed light on the evolutionary mechanisms underlying the diversity of mammalian brains including the human brain.
Collapse
Affiliation(s)
- Lucía Florencia Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
141
|
Kumar V. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Front Immunol 2021; 11:624597. [PMID: 33643304 PMCID: PMC7905024 DOI: 10.3389/fimmu.2020.624597] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immune system has evolved to protect the host from the pathogens and allergens surrounding their environment. The immune system develops in such a way to recognize self and non-self and develops self-tolerance against self-proteins, nucleic acids, and other larger molecules. However, the broken immunological self-tolerance leads to the development of autoimmune or autoinflammatory diseases. Pattern-recognition receptors (PRRs) are expressed by immunological cells on their cell membrane and in the cytosol. Different Toll-like receptors (TLRs), Nod-like receptors (NLRs) and absent in melanoma-2 (AIM-2)-like receptors (ALRs) forming inflammasomes in the cytosol, RIG (retinoic acid-inducible gene)-1-like receptors (RLRs), and C-type lectin receptors (CLRs) are some of the PRRs. The DNA-sensing receptor cyclic GMP–AMP synthase (cGAS) is another PRR present in the cytosol and the nucleus. The present review describes the role of ALRs (AIM2), TLR9, and cGAS in recognizing the host cell DNA as a potent damage/danger-associated molecular pattern (DAMP), which moves out to the cytosol from its housing organelles (nucleus and mitochondria). The introduction opens with the concept that the immune system has evolved to recognize pathogens, the idea of horror autotoxicus, and its failure due to the emergence of autoimmune diseases (ADs), and the discovery of PRRs revolutionizing immunology. The second section describes the cGAS-STING signaling pathway mediated cytosolic self-DNA recognition, its evolution, characteristics of self-DNAs activating it, and its role in different inflammatory conditions. The third section describes the role of TLR9 in recognizing self-DNA in the endolysosomes during infections depending on the self-DNA characteristics and various inflammatory diseases. The fourth section discusses about AIM2 (an ALR), which also binds cytosolic self-DNA (with 80–300 base pairs or bp) that inhibits cGAS-STING-dependent type 1 IFN generation but induces inflammation and pyroptosis during different inflammatory conditions. Hence, this trinity of PRRs has evolved to recognize self-DNA as a potential DAMP and comes into action to guard the cellular galaxy. However, their dysregulation proves dangerous to the host and leads to several inflammatory conditions, including sterile-inflammatory conditions autoinflammatory and ADs.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| |
Collapse
|
142
|
Cai F, Druzhinina IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00464-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractModern taxonomy has developed towards the establishment of global authoritative lists of species that assume the standardized principles of species recognition, at least in a given taxonomic group. However, in fungi, species delimitation is frequently subjective because it depends on the choice of a species concept and the criteria selected by a taxonomist. Contrary to it, identification of fungal species is expected to be accurate and precise because it should predict the properties that are required for applications or that are relevant in pathology. The industrial and plant-beneficial fungi from the genus Trichoderma (Hypocreales) offer a suitable model to address this collision between species delimitation and species identification. A few decades ago, Trichoderma diversity was limited to a few dozen species. The introduction of molecular evolutionary methods resulted in the exponential expansion of Trichoderma taxonomy, with up to 50 new species recognized per year. Here, we have reviewed the genus-wide taxonomy of Trichoderma and compiled a complete inventory of all Trichoderma species and DNA barcoding material deposited in public databases (the inventory is available at the website of the International Subcommission on Taxonomy of Trichodermawww.trichoderma.info). Among the 375 species with valid names as of July 2020, 361 (96%) have been cultivated in vitro and DNA barcoded. Thus, we have developed a protocol for molecular identification of Trichoderma that requires analysis of the three DNA barcodes (ITS, tef1, and rpb2), and it is supported by online tools that are available on www.trichokey.info. We then used all the whole-genome sequenced (WGS) Trichoderma strains that are available in public databases to provide versatile practical examples of molecular identification, reveal shortcomings, and discuss possible ambiguities. Based on the Trichoderma example, this study shows why the identification of a fungal species is an intricate and laborious task that requires a background in mycology, molecular biological skills, training in molecular evolutionary analysis, and knowledge of taxonomic literature. We provide an in-depth discussion of species concepts that are applied in Trichoderma taxonomy, and conclude that these fungi are particularly suitable for the implementation of a polyphasic approach that was first introduced in Trichoderma taxonomy by John Bissett (1948–2020), whose work inspired the current study. We also propose a regulatory and unifying role of international commissions on the taxonomy of particular fungal groups. An important outcome of this work is the demonstration of an urgent need for cooperation between Trichoderma researchers to get prepared to the efficient use of the upcoming wave of Trichoderma genomic data.
Collapse
|
143
|
Couvreur TL, Dauby G, Blach‐Overgaard A, Deblauwe V, Dessein S, Droissart V, Hardy OJ, Harris DJ, Janssens SB, Ley AC, Mackinder BA, Sonké B, Sosef MS, Stévart T, Svenning J, Wieringa JJ, Faye A, Missoup AD, Tolley KA, Nicolas V, Ntie S, Fluteau F, Robin C, Guillocheau F, Barboni D, Sepulchre P. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol Rev Camb Philos Soc 2021; 96:16-51. [PMID: 32924323 PMCID: PMC7821006 DOI: 10.1111/brv.12644] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.
Collapse
Affiliation(s)
| | - Gilles Dauby
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - Anne Blach‐Overgaard
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Vincent Deblauwe
- Center for Tropical Research (CTR), Institute of the Environment and SustainabilityUniversity of California, Los Angeles (UCLA)Los AngelesCA90095U.S.A.
- International Institute of Tropical Agriculture (IITA)YaoundéCameroon
| | | | - Vincent Droissart
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Oliver J. Hardy
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - David J. Harris
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghU.K.
| | | | - Alexandra C. Ley
- Institut für Geobotanik und Botanischer GartenUniversity Halle‐WittenbergNeuwerk 21Halle06108Germany
| | | | - Bonaventure Sonké
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
| | | | - Tariq Stévart
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Jan J. Wieringa
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333 CRThe Netherlands
| | - Adama Faye
- Laboratoire National de Recherches sur les Productions Végétales (LNRPV)Institut Sénégalais de Recherches Agricoles (ISRA)Route des Hydrocarbures, Bel Air BP 1386‐ CP18524DakarSenegal
| | - Alain D. Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaPO Box 24157DoualaCameroon
| | - Krystal A. Tolley
- South African National Biodiversity InstituteKirstenbosch Research CentrePrivate Bag X7, ClaremontCape Town7735South Africa
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandPrivate Bag 3Wits2050South Africa
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHEUniversité des AntillesCP51, 57 rue CuvierParis75005France
| | - Stéphan Ntie
- Département de Biologie, Faculté des SciencesUniversité des Sciences et Techniques de MasukuFrancevilleBP 941Gabon
| | - Frédiéric Fluteau
- Institut de Physique du Globe de Paris, CNRSUniversité de ParisParisF‐75005France
| | - Cécile Robin
- CNRS, Géosciences Rennes, UMR6118University of RennesRennes35042France
| | | | - Doris Barboni
- CEREGE, Aix‐Marseille University, CNRS, IRD, Collège de France, INRA, Technopole Arbois MéditerranéeBP80Aix‐en‐Provence cedex413545France
| | - Pierre Sepulchre
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteF‐91191France
| |
Collapse
|
144
|
Patterns and tempo of PCSK9 pseudogenizations suggest an ancient divergence in mammalian cholesterol homeostasis mechanisms. Genetica 2021; 149:1-19. [PMID: 33515402 PMCID: PMC7929951 DOI: 10.1007/s10709-021-00113-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/04/2021] [Indexed: 01/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a central role in cholesterol homeostasis in humans as a major regulator of LDLR levels. PCSK9 is an intriguing protease in that it does not act by proteolysis but by preventing LDLR recirculation from endosomes to the plasma membrane. This, and the inexistence of any other proteolytic substrate but itself could suggest that PCSK9 is an exquisite example of evolutionary fine-tuning. However, the gene has been lost in several mammalian species, and null alleles are present (albeit at low frequencies) in some human populations without apparently deleterious health effects, raising the possibility that the PCSK9 may have become dispensable in the mammalian lineage. To address this issue, we systematically recovered, assembled, corrected, annotated and analysed publicly available PCSK9 sequences for 420 eutherian species to determine the distribution, frequencies, mechanisms and timing of PCSK9 pseudogenization events, as well as the evolutionary pressures underlying the preservation or loss of the gene. We found a dramatic difference in the patterns of PCSK9 retention and loss between Euarchontoglires—where there is strong pressure for gene preservation—and Laurasiatheria, where multiple independent events have led to PCSK9 loss in most species. These results suggest that there is a fundamental difference in the regulation of cholesterol metabolism between Euarchontoglires and Laurasiatheria, which in turn has important implications for the use of Laurasiatheria species (e.g. pigs) as animal models of human cholesterol-related diseases.
Collapse
|
145
|
Nishimaki T, Sato K. P*R*O*P: a web application to perform phylogenetic analysis considering the effect of gaps. BMC Bioinformatics 2021; 22:36. [PMID: 33516169 PMCID: PMC7847139 DOI: 10.1186/s12859-021-03978-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/21/2021] [Indexed: 11/27/2022] Open
Abstract
Background Phylogenetic analysis strongly depends on evolutionary models. Most evolutionary models for estimating genetic differences and phylogenetic relationships do not treat gap sites in the alignment of sequences. Appropriately incorporating evolutionary information of sites containing insertions and deletions into genetic difference measures will be improve the accuracy of phylogenetic estimates. Results We introduced a new measure for estimating genetic differences, and presented P*R*O*P, a web application for performing phylogenetic analysis based on genetic difference considering the effect of gaps. As an example of phylogenetic analysis using P*R*O*P, we used complete p53 amino acid sequences of 31 organisms and illustrated that the genetic differences with and without information on sites containing gaps result in trees with different topologies. Conclusions P*R*O*P is available at https://www.rs.tus.ac.jp/bioinformatics/prop and the user can perform phylogenetic analysis by uploading sequence data on the website. The most distinctive feature of P*R*O*P is its genetic difference that is estimated without eliminating gap sites for alignment sequences, which helps users detect meaningful difference in an evolutionary process. The source code is available in GitHub: https://github.com/TUS-Satolab/PROP.
Collapse
Affiliation(s)
- Takuma Nishimaki
- Department of Information Sciences, Tokyo University of Science, Noda City, Chiba, 278-8510, Japan
| | - Keiko Sato
- Department of Information Sciences, Tokyo University of Science, Noda City, Chiba, 278-8510, Japan.
| |
Collapse
|
146
|
Vazquez JM, Lynch VJ. Pervasive duplication of tumor suppressors in Afrotherians during the evolution of large bodies and reduced cancer risk. eLife 2021; 10:e65041. [PMID: 33513090 PMCID: PMC7952090 DOI: 10.7554/elife.65041] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
The risk of developing cancer is correlated with body size and lifespan within species. Between species, however, there is no correlation between cancer and either body size or lifespan, indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Elephants and their relatives (Proboscideans) are a particularly interesting lineage for the exploration of mechanisms underlying the evolution of augmented cancer resistance because they evolved large bodies recently within a clade of smaller-bodied species (Afrotherians). Here, we explore the contribution of gene duplication to body size and cancer risk in Afrotherians. Unexpectedly, we found that tumor suppressor duplication was pervasive in Afrotherian genomes, rather than restricted to Proboscideans. Proboscideans, however, have duplicates in unique pathways that may underlie some aspects of their remarkable anti-cancer cell biology. These data suggest that duplication of tumor suppressor genes facilitated the evolution of increased body size by compensating for decreasing intrinsic cancer risk.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Human Genetics, The University of ChicagoChicagoUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
147
|
O'Leary MA. A dense sample of fossil primates (Adapiformes, Notharctidae, Notharctinae) from the Early Eocene Willwood Formation, Wyoming: Documentation of gradual change in tooth area and shape through time. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:728-743. [PMID: 33483945 DOI: 10.1002/ajpa.24177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVES The Willwood Formation of the southern Bighorn Basin, Wyoming is a fluvial rock sequence that spans approximately 3 million years of early Eocene time. It has yielded one the largest collections of fossil mammals in the world including thousands of dentitions of extinct lemur-like primates known as notharctines. In the southern Bighorn Basin, specimens of these primates have been collected on numerous paleontological expeditions and the stratigraphic levels yielding the dentitions have been carefully recorded. Notharctine dentitions represent a rare opportunity to study morphological variation in a single anatomical system through time among closely related individuals. MATERIALS AND METHODS Prior studies of Bighorn Basin notharctines through time produced measurements of hundreds of specimens but I report here results from measurement and comparison of the dentitions and dentaries of more than 3,000 specimens, all stratigraphically mapped. RESULTS Variation in premolar and molar area and variation in dentary depth are apparent throughout the section. Specimens with relatively small teeth and dentaries are known from the older part of the section. In younger rocks, variation in tooth area among specimens increases. Variation in tooth area is continuous and overlaps extensively both within and between stratigraphic levels. Other dental variables examined by inspection change in a mosaic and continuous fashion through the section. These features include variation in the presence and number of paraconids on the lower fourth premolar (p4), the size and shape of the entoconid notch on the lower first and second molars, and the relative development of the pseudohypocone, mesostyle, and cingula on the upper molars. DISCUSSION These broad patterns can be identified despite notharctine alpha taxonomy being in need of extensive revision and, importantly, simplification. Such revision is beyond the scope of this article but is essential if we are to develop a taxonomy that is both free of stratigraphic influence and useful for rapid, repeatable species assignment. Boundaries among the patterns of tokogenesis, anagenesis, and cladogenesis are blurred in this dense sample of extinct primates. While pattern of evolution, a population-level phenomenon, may be difficult to falsify in the fossil record, this notharctine sample suggests that in the rare instance such as this, when the fossil record is densely sampled, change through time is continuous and more consistent with gradual evolution.
Collapse
Affiliation(s)
- Maureen A O'Leary
- Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
148
|
Phillips MJ, Shazwani Zakaria S. Enhancing mitogenomic phylogeny and resolving the relationships of extinct megafaunal placental mammals. Mol Phylogenet Evol 2021; 158:107082. [PMID: 33482383 DOI: 10.1016/j.ympev.2021.107082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.
Collapse
Affiliation(s)
- Matthew J Phillips
- School of Biology and Environmental Science, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia.
| | - Sarah Shazwani Zakaria
- School of Biology and Environmental Science, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia; School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Caw. Negeri Sembilan, Kuala Pilah 72000, Malaysia
| |
Collapse
|
149
|
Bhagat R, Bertrand OC, Silcox MT. Evolution of arboreality and fossoriality in squirrels and aplodontid rodents: Insights from the semicircular canals of fossil rodents. J Anat 2021; 238:96-112. [PMID: 32812227 PMCID: PMC7754939 DOI: 10.1111/joa.13296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023] Open
Abstract
Reconstructing locomotor behaviour for fossil animals is typically done with postcranial elements. However, for species only known from cranial material, locomotor behaviour is difficult to reconstruct. The semicircular canals (SCCs) in the inner ear provide insight into an animal's locomotor agility. A relationship exists between the size of the SCCs relative to body mass and the jerkiness of an animal's locomotion. Additionally, studies have also demonstrated a relationship between SCC orthogonality and angular head velocity. Here, we employ two metrics for reconstructing locomotor agility, radius of curvature dimensions and SCC orthogonality, in a sample of twelve fossil rodents from the families Ischyromyidae, Sciuridae and Aplodontidae. The method utilizing radius of curvature dimensions provided a reconstruction of fossil rodent locomotor behaviour that is more consistent with previous studies assessing fossil rodent locomotor behaviour compared to the method based on SCC orthogonality. Previous work on ischyromyids suggests that this group displayed a variety of locomotor modes. Members of Paramyinae and Ischyromyinae have relatively smaller SCCs and are reconstructed to be relatively slower compared to members of Reithroparamyinae. Early members of the Sciuroidea clade including the sciurid Cedromus wilsoni and the aplodontid Prosciurus relictus are reconstructed to be more agile than ischyromyids, in the range of extant arboreal squirrels. This reconstruction supports previous inferences that arboreality was likely an ancestral trait for this group. Derived members of Sciuridae and Aplodontidae vary in agility scores. The fossil squirrel Protosciurus cf. rachelae is inferred from postcranial material as arboreal, which is in agreement with its high agility, in the range of extant arboreal squirrels. In contrast, the fossil aplodontid Mesogaulus paniensis has a relatively low agility score, similar to the fossorial Aplodontia rufa, the only living aplodontid rodent. This result is in agreement with its postcranial reconstruction as fossorial and with previous indications that early aplodontids were more arboreal than their burrowing descendants.
Collapse
Affiliation(s)
- Raj Bhagat
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoONCanada
| | | | - Mary T. Silcox
- Department of AnthropologyUniversity of Toronto ScarboroughTorontoONCanada
| |
Collapse
|
150
|
Simões TR, Caldwell MW, Pierce SE. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biol 2020; 18:191. [PMID: 33287835 PMCID: PMC7720557 DOI: 10.1186/s12915-020-00901-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The vast majority of all life that ever existed on earth is now extinct and several aspects of their evolutionary history can only be assessed by using morphological data from the fossil record. Sphenodontian reptiles are a classic example, having an evolutionary history of at least 230 million years, but currently represented by a single living species (Sphenodon punctatus). Hence, it is imperative to improve the development and implementation of probabilistic models to estimate evolutionary trees from morphological data (e.g., morphological clocks), which has direct benefits to understanding relationships and evolutionary patterns for both fossil and living species. However, the impact of model choice on morphology-only datasets has been poorly explored. RESULTS Here, we investigate the impact of a wide array of model choices on the inference of evolutionary trees and macroevolutionary parameters (divergence times and evolutionary rates) using a new data matrix on sphenodontian reptiles. Specifically, we tested different clock models, clock partitioning, taxon sampling strategies, sampling for ancestors, and variations on the fossilized birth-death (FBD) tree model parameters through time. We find a strong impact on divergence times and background evolutionary rates when applying widely utilized approaches, such as allowing for ancestors in the tree and the inappropriate assumption of diversification parameters being constant through time. We compare those results with previous studies on the impact of model choice to molecular data analysis and provide suggestions for improving the implementation of morphological clocks. Optimal model combinations find the radiation of most major lineages of sphenodontians to be in the Triassic and a gradual but continuous drop in morphological rates of evolution across distinct regions of the phenotype throughout the history of the group. CONCLUSIONS We provide a new hypothesis of sphenodontian classification, along with detailed macroevolutionary patterns in the evolutionary history of the group. Importantly, we provide suggestions to avoid overestimated divergence times and biased parameter estimates using morphological clocks. Partitioning relaxed clocks offers methodological limitations, but those can be at least partially circumvented to reveal a detailed assessment of rates of evolution across the phenotype and tests of evolutionary mosaicism.
Collapse
Affiliation(s)
- Tiago R Simões
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Michael W Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Stephanie E Pierce
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|