101
|
Proust B, Herak Bosnar M, Ćetković H, Tokarska-Schlattner M, Schlattner U. Mitochondrial NME6: A Paradigm Change within the NME/NDP Kinase Protein Family? Cells 2024; 13:1278. [PMID: 39120309 PMCID: PMC11312278 DOI: 10.3390/cells13151278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic NMEs/NDP kinases are a family of 10 multifunctional proteins that occur in different cellular compartments and interact with various cellular components (proteins, membranes, and DNA). In contrast to the well-studied Group I NMEs (NME1-4), little is known about the more divergent Group II NMEs (NME5-9). Three recent publications now shed new light on NME6. First, NME6 is a third mitochondrial NME, largely localized in the matrix space, associated with the mitochondrial inner membrane. Second, while its monomeric form is inactive, NME6 gains NDP kinase activity through interaction with mitochondrial RCC1L. This challenges the current notion that mammalian NMEs require the formation of hexamers to become active. The formation of complexes between NME6 and RCC1L, likely heterodimers, seemingly obviates the necessity for hexamer formation, stabilizing a NDP kinase-competent conformation. Third, NME6 is involved in mitochondrial gene maintenance and expression by providing (d)NTPs for replication and transcription (in particular the pyrimidine nucleotides) and by a less characterized mechanism that supports mitoribosome function. This review offers an overview of NME evolution and structure and highlights the new insight into NME6. The new findings position NME6 as the most comprehensively studied protein in NME Group II and may even suggest it as a new paradigm for related family members.
Collapse
Affiliation(s)
- Bastien Proust
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | | - Uwe Schlattner
- Univ. Grenoble Alpes, Inserm U1055, Lab. of Fundamental and Applied Bioenergetics (LBFA), 38058 Grenoble, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
102
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
103
|
Delhaye L, Moschonas GD, Fijalkowska D, Verhee A, De Sutter D, Van de Steene T, De Meyer M, Grzesik H, Van Moortel L, De Bosscher K, Jacobs T, Eyckerman S. Leveraging a self-cleaving peptide for tailored control in proximity labeling proteomics. CELL REPORTS METHODS 2024; 4:100818. [PMID: 38986614 PMCID: PMC11294833 DOI: 10.1016/j.crmeth.2024.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/15/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Protein-protein interactions play an important biological role in every aspect of cellular homeostasis and functioning. Proximity labeling mass spectrometry-based proteomics overcomes challenges typically associated with other methods and has quickly become the current state of the art in the field. Nevertheless, tight control of proximity-labeling enzymatic activity and expression levels is crucial to accurately identify protein interactors. Here, we leverage a T2A self-cleaving peptide and a non-cleaving mutant to accommodate the protein of interest in the experimental and control TurboID setup. To allow easy and streamlined plasmid assembly, we built a Golden Gate modular cloning system to generate plasmids for transient expression and stable integration. To highlight our T2A Split/link design, we applied it to identify protein interactions of the glucocorticoid receptor and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and non-structural protein 7 (NSP7) proteins by TurboID proximity labeling. Our results demonstrate that our T2A split/link provides an opportune control that builds upon previously established control requirements in the field.
Collapse
Affiliation(s)
- Louis Delhaye
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; OncoRNALab, Center for Medical Genetics Ghent (CMGG), Ghent University, Ghent, Belgium
| | - George D Moschonas
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Annick Verhee
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Delphine De Sutter
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tessa Van de Steene
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Margaux De Meyer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hanna Grzesik
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Laura Van Moortel
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Thomas Jacobs
- VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
104
|
Lu D, Chen J, Zhang M, Fu Y, Raheem A, Chen Y, Chen X, Hu C, Chen J, Schieck E, Zhao G, Guo A. Identification of potential nucleomodulins of Mycoplasma bovis by direct biotinylation and proximity-based biotinylation approaches. Front Microbiol 2024; 15:1421585. [PMID: 39044956 PMCID: PMC11263210 DOI: 10.3389/fmicb.2024.1421585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Mycoplasma bovis (M. bovis) is a significant bovine pathogen associated with various diseases, including bovine bronchopneumonia and mastitis resulting in substantial economic losses within the livestock industry. However, the development of effective control measures for M. bovis is hindered by a limited understanding of its virulence factors and pathogenesis. Nucleomodulins are newly identified secreted proteins of bacteria that internalize the host nuclei to regulate host cell gene expression and serve as critical virulence factors. Although recent reports have initiated exploration of mycoplasma nucleomodulins, the efficiency of conventional techniques for identification is very limited. Therefore, this study aimed to establish high-throughput methods to identify novel nucleomodulins of M. bovis. Using a direct biotinylation (DB) approach, a total of 289 proteins were identified including 66 high abundant proteins. In parallel, the use of proximity-based biotinylation (PBB), identified 28 proteins. Finally, seven nucleomodulins were verified to be nuclear by transfecting the bovine macrophage cell line BoMac with the plasmids encoding EGFP-fused proteins and observed with Opera Phenix, including the known nucleomodulin MbovP475 and six novel nucleomodulins. The novel nucleomodulins were four ribosomal proteins (MbovP599, MbovP678, MbovP710, and MbovP712), one transposase (MbovP790), and one conserved hypothetical protein (MbovP513). Among them, one unique nucleomodulin MbovP475 was identified with DB, two unique nucleomodulins (MbovP513 and MbovP710) with PBB, and four nucleomodulins by both. Overall, these findings established a foundation for further research on M. bovis nucleomodulin-host interactions for identification of new virulence factors.
Collapse
Affiliation(s)
- Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiongxi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Menghan Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingjie Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Abdul Raheem
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Elise Schieck
- International Livestock Research Institute, Nairobi, Kenya
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
105
|
Peng M, Mathew ND, Anderson VE, Falk MJ, Nakamaru-Ogiso E. N-Glycosylation of MRS2 balances aerobic and anaerobic energy production by reducing rapid mitochondrial Mg 2+ influx in conditions of high glucose or impaired respiratory chain function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602756. [PMID: 39026824 PMCID: PMC11257584 DOI: 10.1101/2024.07.09.602756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
N-linked glycoproteins function in numerous biological processes, modulating enzyme activities as well as protein folding, stability, oligomerization, and trafficking. While N-glycosylation of mitochondrial proteins has been detected by untargeted MS-analyses, the physiological existence and roles of mitochondrial protein N-linked glycosylation remain under debate. Here, we report that MRS2, a mitochondrial inner membrane protein that functions as the high flux magnesium transporter, is N-glycosylated to various extents depending on cellular bioenergetic status. Both N-glycosylated and unglycosylated isoforms were consistently detected in mitochondria isolated from mouse liver, rat and mouse liver fibroblast cells (BRL 3A and AFT024, respectively) as well as human skin fibroblast cells. Immunoblotting of MRS2 showed it was bound to, and required stringent elution conditions to remove from, lectin affinity columns with covalently bound concanavalin A or Lens culinaris agglutinin. Following peptide:N-glycosidase F (PNGase F) digestion of the stringently eluted proteins, the higher Mr MRS2 bands gel-shifted to lower Mr and loss of lectin affinity was seen. BRL 3A cells treated with two different N-linked glycosylation inhibitors, tunicamycin or 6-diazo-5-oxo-l-norleucine, resulted in decreased intensity or loss of the higher Mr MRS2 isoform. To investigate the possible functional role of MRS2 N- glycosylation, we measured rapid Mg2+ influx capacity in intact mitochondria isolated from BRL 3A cells in control media or following treatment with tunicamycin or 6-diazo-5-oxo-l-norleucine. Interestingly, rapid Mg2+ influx capacity increased in mitochondria isolated from BRL 3A cells treated with either N-glycosylation inhibitor. Forcing reliance on mitochondrial respiration by treatment with either galactose media or the glycolytic inhibitor 2-deoxyglucose or by minimizing glucose concentration similarly reduced the N-glycosylated isoform of MRS2, with a correlated concomitant increase in rapid Mg2+ influx capacity. Conversely, inhibiting mitochondrial energy production in BRL 3A cells with either rotenone or oligomycin resulted in an increased fraction of N-glycosylated MRS2, with decreased rapid Mg2+ influx capacity. Collectively, these data provide strong evidence that MRS2 N-glycosylation is directly involved in the regulation of mitochondrial matrix Mg2+, dynamically communicating relative cellular nutrient status and bioenergetic capacity by serving as a physiologic brake on the influx of mitochondrial matrix Mg2+ under conditions of glucose excess or mitochondrial bioenergetic impairment.
Collapse
Affiliation(s)
- Min Peng
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Neal D. Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Vernon E. Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
106
|
Li H, Smeriglio N, Ni J, Wang Y, Sekine S, Hao L. Benchmarking and Automating the Biotinylation Proteomics Workflow. RESEARCH SQUARE 2024:rs.3.rs-4590410. [PMID: 39011118 PMCID: PMC11247940 DOI: 10.21203/rs.3.rs-4590410/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Protein biotinylation has been widely used in biotechnology with various labeling and enrichment strategies. However, different enrichment strategies have not been systematically evaluated due to the lack of a benchmarking model for fair comparison. Most biotinylation proteomics workflows suffer from lengthy experimental steps, non-specific bindings, limited throughput, and experimental variability. To address these challenges, we designed a two-proteome model, where biotinylated yeast proteins were spiked in unlabeled human proteins, allowing us to distinguish true enrichment from non-specific bindings. Using this benchmarking model, we compared common biotinylation proteomics methods and provided practical selection guidelines. We significantly optimized and shortened sample preparation from 3 days to 9 hours, enabling fully-automated 96-well plate sample processing. Next, we applied this optimized and automated workflow for proximity labeling to investigate the intricate interplay between mitochondria and lysosomes in living cells under both healthy state and mitochondrial damage. Our results suggested a time-dependent proteome remodeling and dynamic translocation within mitochondria and between mitochondria and lysosomes upon mitochondrial damage. This newly established benchmarking model and the fully-automated 9-hour workflow can be readily applied to the broad fields of protein biotinylation to study protein interaction and organelle dynamics.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Noah Smeriglio
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Jiawei Ni
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Yan Wang
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shiori Sekine
- Aging Institute, Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Ling Hao
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
107
|
Zhang S, Tang Q, Zhang X, Chen X. Proximitomics by Reactive Species. ACS CENTRAL SCIENCE 2024; 10:1135-1147. [PMID: 38947200 PMCID: PMC11212136 DOI: 10.1021/acscentsci.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
The proximitome is defined as the entire collection of biomolecules spatially in the proximity of a biomolecule of interest. More broadly, the concept of the proximitome can be extended to the totality of cells proximal to a specific cell type. Since the spatial organization of biomolecules and cells is essential for almost all biological processes, proximitomics has recently emerged as an active area of scientific research. One of the growing strategies for proximitomics leverages reactive species-which are generated in situ and spatially confined, to chemically tag and capture proximal biomolecules and cells for systematic analysis. In this Outlook, we summarize different types of reactive species that have been exploited for proximitomics and discuss their pros and cons for specific applications. In addition, we discuss the current challenges and future directions of this exciting field.
Collapse
Affiliation(s)
- Shaoran Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Qi Tang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
| | - Xu Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Xing Chen
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
- Synthetic
and Functional Biomolecules Center, Peking
University, Beijing 100871, People’s
Republic of China
- Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
108
|
Susa KJ, Bradshaw GA, Eisert RJ, Schilling CM, Kalocsay M, Blacklow SC, Kruse AC. A spatiotemporal map of co-receptor signaling networks underlying B cell activation. Cell Rep 2024; 43:114332. [PMID: 38850533 PMCID: PMC11256977 DOI: 10.1016/j.celrep.2024.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
The B cell receptor (BCR) signals together with a multi-component co-receptor complex to initiate B cell activation in response to antigen binding. Here, we take advantage of peroxidase-catalyzed proximity labeling combined with quantitative mass spectrometry to track co-receptor signaling dynamics in Raji cells from 10 s to 2 h after BCR stimulation. This approach enables tracking of 2,814 proximity-labeled proteins and 1,394 phosphosites and provides an unbiased and quantitative molecular map of proteins recruited to the vicinity of CD19, the signaling subunit of the co-receptor complex. We detail the recruitment kinetics of signaling effectors to CD19 and identify previously uncharacterized mediators of B cell activation. We show that the glutamate transporter SLC1A1 is responsible for mediating rapid metabolic reprogramming and for maintaining redox homeostasis during B cell activation. This study provides a comprehensive map of BCR signaling and a rich resource for uncovering the complex signaling networks that regulate activation.
Collapse
Affiliation(s)
- Katherine J Susa
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Gary A Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robyn J Eisert
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Charlotte M Schilling
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
109
|
Knutson SD, Buksh BF, Huth SW, Morgan DC, MacMillan DWC. Current advances in photocatalytic proximity labeling. Cell Chem Biol 2024; 31:1145-1161. [PMID: 38663396 PMCID: PMC11193652 DOI: 10.1016/j.chembiol.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 06/23/2024]
Abstract
Understanding the intricate network of biomolecular interactions that govern cellular processes is a fundamental pursuit in biology. Over the past decade, photocatalytic proximity labeling has emerged as one of the most powerful and versatile techniques for studying these interactions as well as uncovering subcellular trafficking patterns, drug mechanisms of action, and basic cellular physiology. In this article, we review the basic principles, methodologies, and applications of photocatalytic proximity labeling as well as examine its modern development into currently available platforms. We also discuss recent key studies that have successfully leveraged these technologies and importantly highlight current challenges faced by the field. Together, this review seeks to underscore the potential of photocatalysis in proximity labeling for enhancing our understanding of cell biology while also providing perspective on technological advances needed for future discovery.
Collapse
Affiliation(s)
- Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Danielle C Morgan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
110
|
Zhou C, Wagner S, Liang FS. Induced proximity labeling and editing for epigenetic research. Cell Chem Biol 2024; 31:1118-1131. [PMID: 38866004 PMCID: PMC11193966 DOI: 10.1016/j.chembiol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic regulation plays a pivotal role in various biological and disease processes. Two key lines of investigation have been pursued that aim to unravel endogenous epigenetic events at particular genes (probing) and artificially manipulate the epigenetic landscape (editing). The concept of induced proximity has inspired the development of powerful tools for epigenetic research. Induced proximity strategies involve bringing molecular effectors into spatial proximity with specific genomic regions to achieve the probing or manipulation of local epigenetic environments with increased proximity. In this review, we detail the development of induced proximity methods and applications in shedding light on the intricacies of epigenetic regulation.
Collapse
Affiliation(s)
- Chenwei Zhou
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Sarah Wagner
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
111
|
Kageler L, Perr J, Flynn RA. Tools to investigate the cell surface: Proximity as a central concept in glycoRNA biology. Cell Chem Biol 2024; 31:1132-1144. [PMID: 38772372 PMCID: PMC11193615 DOI: 10.1016/j.chembiol.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
Proximity is a fundamental concept in chemistry and biology, referring to the convergence of molecules to facilitate new molecular interactions or reactions. Hybrid biopolymers like glycosylphosphatidylinositol (GPI)-anchored proteins, ubiquitinated proteins, glycosylated RNAs (glycoRNAs), and RNAylated proteins exemplify this by covalent bonding of moieties that are often orthogonally active. Hybrid molecules like glycoRNAs are localized to new physical spaces, generating new interfaces for biological functions. To fully investigate the compositional and spatial features of molecules like glycoRNAs, flexible genetic and chemical tools that encompass different encoding and targeting biopolymers are required. Here we discuss concepts of molecular proximity and explore newer proximity labeling technologies that facilitate applications in RNA biology, cell surface biology, and the interface therein with a particular focus on glycoRNA biology. We review the advantages and disadvantages of methods pertaining to cell surface RNA identification and provide insights into the vast opportunities for method development in this area.
Collapse
Affiliation(s)
- Lauren Kageler
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan Perr
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
112
|
Yi S, Singh SS, Rozen-Gagnon K, Luna JM. Mapping RNA-protein interactions with subcellular resolution using colocalization CLIP. RNA (NEW YORK, N.Y.) 2024; 30:920-937. [PMID: 38658162 PMCID: PMC11182006 DOI: 10.1261/rna.079890.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
RNA-binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP (coCLIP), a method that combines cross-linking and immunoprecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the RBP human antigen R (HuR). Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule (SG) compartments. We uncover HuR's unique binding preferences within SGs during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP-RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.
Collapse
Affiliation(s)
- Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shashi S Singh
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Kathryn Rozen-Gagnon
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Joseph M Luna
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
113
|
Zhang H, Zhang D, Li L, Willard B, Runge KW. In Vivo Proximity Labeling Identifies a New Function for the Lifespan and Autophagy-regulating Kinase Pef1, an Ortholog of Human Cdk5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598664. [PMID: 38915521 PMCID: PMC11195251 DOI: 10.1101/2024.06.12.598664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cdk5 is a highly-conserved, noncanonical cell division kinase important to the terminal differentiation of mammalian cells in multiple organ systems. We previously identified Pef1, the Schizosaccharomyces pombe ortholog of cdk5, as regulator of chronological lifespan. To reveal the processes impacted by Pef1, we developed APEX2-biotin phenol-mediated proximity labeling in S. pombe. Efficient labeling required a short period of cell wall digestion and eliminating glucose and nitrogen sources from the medium. We identified 255 high-confidence Pef1 neighbors in growing cells and a novel Pef1-interacting partner, the DNA damage response protein Rad24. The Pef1-Rad24 interaction was validated by reciprocal proximity labeling and co-immunoprecipitation. Eliminating Pef1 partially rescued the DNA damage sensitivity of cells lacking Rad24. To monitor how Pef1 neighbors change under different conditions, cells induced for autophagy were labeled and 177 high-confidence Pef1 neighbors were identified. Gene ontology (GO) analysis of the Pef1 neighbors identified proteins participating in processes required for autophagosome expansion including regulation of actin dynamics and vesicle-mediated transport. Some of these proteins were identified in both exponentially growing and autophagic cells. Pef1-APEX2 proximity labeling therefore identified a new Pef1 function in modulating the DNA damage response and candidate processes that Pef1 and other cdk5 orthologs may regulate.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at CWRU
| | - Dongmei Zhang
- Lerner Research Institute Proteomics Core and Case Comprehensive Cancer Center Cleveland Clinic Lerner College of Medicine at CWRU
| | - Ling Li
- Lerner Research Institute Proteomics Core and Case Comprehensive Cancer Center Cleveland Clinic Lerner College of Medicine at CWRU
| | - Belinda Willard
- Lerner Research Institute Proteomics Core and Case Comprehensive Cancer Center Cleveland Clinic Lerner College of Medicine at CWRU
| | - Kurt W. Runge
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at CWRU
- Department of Genomics and Genome Sciences, Case Western Reserve University School of Medicine
| |
Collapse
|
114
|
Zhang W, Zhang J, Yan C, Gan X. Discovery of Novel N-Phenyltriazinone Derivatives Containing Oxime Ether or Oxime Ester Moieties as Promising Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12946-12955. [PMID: 38809794 DOI: 10.1021/acs.jafc.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is one of the most important targets for the discovery of green herbicides. In order to find novel PPO inhibitors with a higher herbicidal activity, a series of novel N-phenyltriazinone derivatives containing oxime ether and oxime ester groups were designed and synthesized based on the strategy of pharmacophore and scaffold hopping. Bioassay results revealed that some compounds showed herbicidal activities; especially, compound B16 exhibited broad-spectrum and excellent 100% herbicidal effects to Echinochloa crusgalli, Digitaria sanguinalis, Setaria faberii, Abutilon juncea, Amaranthus retroflexus, and Portulaca oleracea at a concentration of 37.5 g a.i./ha, which were comparable to trifludimoxazin. Nicotiana tabacum PPO (NtPPO) enzyme inhibitory assay indicated that B16 showed an excellent enzyme inhibitory activity with a value of 32.14 nM, which was similar to that of trifludimoxazin (31.33 nM). Meanwhile, compound B16 revealed more safety for crops (rice, maize, wheat, peanut, soybean, and cotton) than trifludimoxazin at a dose of 150 g a.i./ha. Moreover, molecular docking and molecular dynamics simulation further showed that B16 has a very strong and stable binding to NtPPO. It indicated that B16 can be used as a potential PPO inhibitor and herbicide candidate for application in the field.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiahui Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chaohui Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
115
|
Li S, Ouyang X, Su B. ATP6AP1 was Phast-ID'ed as a long-sought GEF for Rheb. Cell Res 2024; 34:397-398. [PMID: 38744982 PMCID: PMC11143262 DOI: 10.1038/s41422-024-00967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Affiliation(s)
- Song Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Chest Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology at Basic Medical College, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Gastroenterology and Center for Immune-Related Diseases Research at Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
116
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
117
|
Deng X, Seguinot BO, Bradshaw G, Lee JS, Coy S, Kalocsay M, Santagata S, Mitchison T. STMND1 is a phylogenetically ancient stathmin which localizes to motile cilia and exhibits nuclear translocation that is inhibited when soluble tubulin concentration increases. Mol Biol Cell 2024; 35:ar82. [PMID: 38630521 PMCID: PMC11238091 DOI: 10.1091/mbc.e23-12-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Stathmins are small, unstructured proteins that bind tubulin dimers and are implicated in several human diseases, but whose function remains unknown. We characterized a new stathmin, STMND1 (Stathmin Domain Containing 1) as the human representative of an ancient subfamily. STMND1 features a N-terminal myristoylated and palmitoylated motif which directs it to membranes and a tubulin-binding stathmin-like domain (SLD) that contains an internal nuclear localization signal. Biochemistry and proximity labeling showed that STMND1 binds tubulin, and live imaging showed that tubulin binding inhibits translocation from cellular membranes to the nucleus. STMND1 is highly expressed in multiciliated epithelial cells, where it localizes to motile cilia. Overexpression in a model system increased the length of primary cilia. Our study suggests that the most ancient stathmins have cilium-related functions that involve sensing soluble tubulin.
Collapse
Affiliation(s)
- Xiang Deng
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Bryan O. Seguinot
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jong Suk Lee
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Shannon Coy
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Sandro Santagata
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Timothy Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
118
|
Chandrasekharan G, Unnikrishnan M. High throughput methods to study protein-protein interactions during host-pathogen interactions. Eur J Cell Biol 2024; 103:151393. [PMID: 38306772 DOI: 10.1016/j.ejcb.2024.151393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
The ability of a pathogen to survive and cause an infection is often determined by specific interactions between the host and pathogen proteins. Such interactions can be both intra- and extracellular and may define the outcome of an infection. There are a range of innovative biochemical, biophysical and bioinformatic techniques currently available to identify protein-protein interactions (PPI) between the host and the pathogen. However, the complexity and the diversity of host-pathogen PPIs has led to the development of several high throughput (HT) techniques that enable the study of multiple interactions at once and/or screen multiple samples at the same time, in an unbiased manner. We review here the major HT laboratory-based technologies employed for host-bacterial interaction studies.
Collapse
Affiliation(s)
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
119
|
Cavestro C, Morra F, Legati A, D'Amato M, Nasca A, Iuso A, Lubarr N, Morrison JL, Wheeler PG, Serra‐Juhé C, Rodríguez‐Santiago B, Turón‐Viñas E, Prouteau C, Barth M, Hayflick SJ, Ghezzi D, Tiranti V, Di Meo I. Emerging variants, unique phenotypes, and transcriptomic signatures: an integrated study of COASY-associated diseases. Ann Clin Transl Neurol 2024; 11:1615-1629. [PMID: 38750253 PMCID: PMC11187879 DOI: 10.1002/acn3.52079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE COASY, the gene encoding the bifunctional enzyme CoA synthase, which catalyzes the last two reactions of cellular de novo coenzyme A (CoA) biosynthesis, has been linked to two exceedingly rare autosomal recessive disorders, such as COASY protein-associated neurodegeneration (CoPAN), a form of neurodegeneration with brain iron accumulation (NBIA), and pontocerebellar hypoplasia type 12 (PCH12). We aimed to expand the phenotypic spectrum and gain insights into the pathogenesis of COASY-related disorders. METHODS Patients were identified through targeted or exome sequencing. To unravel the molecular mechanisms of disease, RNA sequencing, bioenergetic analysis, and quantification of critical proteins were performed on fibroblasts. RESULTS We identified five new individuals harboring novel COASY variants. While one case exhibited classical CoPAN features, the others displayed atypical symptoms such as deafness, language and autism spectrum disorders, brain atrophy, and microcephaly. All patients experienced epilepsy, highlighting its potential frequency in COASY-related disorders. Fibroblast transcriptomic profiling unveiled dysregulated expression in genes associated with mitochondrial respiration, responses to oxidative stress, transmembrane transport, various cellular signaling pathways, and protein translation, modification, and trafficking. Bioenergetic analysis revealed impaired mitochondrial oxygen consumption in COASY fibroblasts. Despite comparable total CoA levels to control cells, the amounts of mitochondrial 4'-phosphopantetheinylated proteins were significantly reduced in COASY patients. INTERPRETATION These results not only extend the clinical phenotype associated with COASY variants but also suggest a continuum between CoPAN and PCH12. The intricate interplay of altered cellular processes and signaling pathways provides valuable insights for further research into the pathogenesis of COASY-associated diseases.
Collapse
Affiliation(s)
- Chiara Cavestro
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Francesca Morra
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Andrea Legati
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Marco D'Amato
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Alessia Nasca
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Arcangela Iuso
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
- Institute of NeurogenomicsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Naomi Lubarr
- Department of NeurologyIcahn School of Medicine at Mount Sinai, Mount Sinai Beth IsraelNew YorkNew YorkUSA
| | | | | | - Clara Serra‐Juhé
- Genetics DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Benjamín Rodríguez‐Santiago
- Genetics DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)MadridSpain
- Genomic Instability Syndromes and DNA Repair Group and Join Research Unit on Genomic Medicine UAB‐Sant Pau Biomedical Research InstituteHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Eulalia Turón‐Viñas
- Child Neurology Unit, Pediatrics ServiceHospital de la Santa Creu i Sant PauBarcelonaSpain
| | | | - Magalie Barth
- Department of GeneticsUniversity Hospital of AngersAngersFrance
| | - Susan J. Hayflick
- Department of Molecular and Medical GeneticsOregon Health & Science UniversityPortlandOregonUSA
- Department of PediatricsOregon Health & Science UniversityPortlandOregonUSA
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Daniele Ghezzi
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Valeria Tiranti
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Ivano Di Meo
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| |
Collapse
|
120
|
Barritt SA, DuBois-Coyne SE, Dibble CC. Coenzyme A biosynthesis: mechanisms of regulation, function and disease. Nat Metab 2024; 6:1008-1023. [PMID: 38871981 DOI: 10.1038/s42255-024-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
The tricarboxylic acid cycle, nutrient oxidation, histone acetylation and synthesis of lipids, glycans and haem all require the cofactor coenzyme A (CoA). Although the sources and regulation of the acyl groups carried by CoA for these processes are heavily studied, a key underlying question is less often considered: how is production of CoA itself controlled? Here, we discuss the many cellular roles of CoA and the regulatory mechanisms that govern its biosynthesis from cysteine, ATP and the essential nutrient pantothenate (vitamin B5), or from salvaged precursors in mammals. Metabolite feedback and signalling mechanisms involving acetyl-CoA, other acyl-CoAs, acyl-carnitines, MYC, p53, PPARα, PINK1 and insulin- and growth factor-stimulated PI3K-AKT signalling regulate the vitamin B5 transporter SLC5A6/SMVT and CoA biosynthesis enzymes PANK1, PANK2, PANK3, PANK4 and COASY. We also discuss methods for measuring CoA-related metabolites, compounds that target CoA biosynthesis and diseases caused by mutations in pathway enzymes including types of cataracts, cardiomyopathy and neurodegeneration (PKAN and COPAN).
Collapse
Affiliation(s)
- Samuel A Barritt
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah E DuBois-Coyne
- Department of Medicine, Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
121
|
Charneau S, de Oliveira LS, Zenonos Z, Hopp CS, Bastos IMD, Loew D, Lombard B, Pandolfo Silveira A, de Carvalho Nardeli Basílio Lobo G, Bao SN, Grellier P, Rayner JC. APEX2-based proximity proteomic analysis identifies candidate interactors for Plasmodium falciparum knob-associated histidine-rich protein in infected erythrocytes. Sci Rep 2024; 14:11242. [PMID: 38755230 PMCID: PMC11099048 DOI: 10.1038/s41598-024-61295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.
Collapse
Affiliation(s)
- Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil.
| | - Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil
- UMR 7245 MCAM Molecules of Communication and Adaptation of Microorganisms, Muséum National d'Histoire Naturelle, CNRS, 75231, Paris Cedex 05, France
| | - Zenon Zenonos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Biologics Engineering, Oncology R&D, AstraZenecaGranta Park, Cambridge, UK
| | - Christine S Hopp
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Izabela M D Bastos
- Laboratory of Host Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil
| | - Damarys Loew
- Institut Curie, Centre de Recherche, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Bérangère Lombard
- Institut Curie, Centre de Recherche, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Ariane Pandolfo Silveira
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | | | - Sônia Nair Bao
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Philippe Grellier
- UMR 7245 MCAM Molecules of Communication and Adaptation of Microorganisms, Muséum National d'Histoire Naturelle, CNRS, 75231, Paris Cedex 05, France
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
122
|
Liu X, Abad L, Chatterjee L, Cristea IM, Varjosalo M. Mapping protein-protein interactions by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21887. [PMID: 38742660 PMCID: PMC11561166 DOI: 10.1002/mas.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lawrence Abad
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lopamudra Chatterjee
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
123
|
Yan X, Yu PY, Srinivasan A, Abdul Rehman S, Prigozhin MB. Identifying Intermolecular Interactions in Single-Molecule Localization Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593617. [PMID: 38798627 PMCID: PMC11118527 DOI: 10.1101/2024.05.10.593617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Intermolecular interactions underlie all cellular functions, yet visualizing these interactions at the single-molecule level remains challenging. Single-molecule localization microscopy (SMLM) offers a potential solution. Given a nanoscale map of two putative interaction partners, it should be possible to assign molecules either to the class of coupled pairs or to the class of non-coupled bystanders. Here, we developed a probabilistic algorithm that allows accurate determination of both the absolute number and the proportion of molecules that form coupled pairs. The algorithm calculates interaction probabilities for all possible pairs of localized molecules, selects the most likely interaction set, and corrects for any spurious colocalizations. Benchmarking this approach across a set of simulated molecular localization maps with varying densities (up to ∼ 50 molecules µm - 2 ) and localization precisions (5 to 50 nm) showed typical errors in the identification of correct pairs of only a few percent. At molecular densities of ∼ 5-10 molecules µm - 2 and localization precisions of 20-30 nm, which are typical parameters for SMLM imaging, the recall was ∼ 90%. The algorithm was effective at differentiating between non-interacting and coupled molecules both in simulations and experiments. Finally, it correctly inferred the number of coupled pairs over time in a simulated reaction-diffusion system, enabling determination of the underlying rate constants. The proposed approach promises to enable direct visualization and quantification of intermolecular interactions using SMLM.
Collapse
|
124
|
Shin S, Lee SY, Kang MG, Jang DG, Kim J, Rhee HW, Kim JS. Super-resolution proximity labeling with enhanced direct identification of biotinylation sites. Commun Biol 2024; 7:554. [PMID: 38724559 PMCID: PMC11082246 DOI: 10.1038/s42003-024-06112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
Promiscuous labeling enzymes, such as APEX2 or TurboID, are commonly used in in situ biotinylation studies of subcellular proteomes or protein-protein interactions. Although the conventional approach of enriching biotinylated proteins is widely implemented, in-depth identification of specific biotinylation sites remains challenging, and current approaches are technically demanding with low yields. A novel method to systematically identify specific biotinylation sites for LC-MS analysis followed by proximity labeling showed excellent performance compared with that of related approaches in terms of identification depth with high enrichment power. The systematic identification of biotinylation sites enabled a simpler and more efficient experimental design to identify subcellular localized proteins within membranous organelles. Applying this method to the processing body (PB), a non-membranous organelle, successfully allowed unbiased identification of PB core proteins, including novel candidates. We anticipate that our newly developed method will replace the conventional method for identifying biotinylated proteins labeled by promiscuous labeling enzymes.
Collapse
Affiliation(s)
- Sanghee Shin
- Center for RNA Research, Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- The Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Song-Yi Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Dong-Gi Jang
- Center for RNA Research, Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyun-Woo Rhee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea.
| | - Jong-Seo Kim
- Center for RNA Research, Institute of Basic Science, Seoul National University, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
125
|
Choudhury R, Venkateswaran Venkatasubramani A, Hua J, Borsò M, Franconi C, Kinkley S, Forné I, Imhof A. The role of RNA in the maintenance of chromatin domains as revealed by antibody-mediated proximity labelling coupled to mass spectrometry. eLife 2024; 13:e95718. [PMID: 38717135 PMCID: PMC11147508 DOI: 10.7554/elife.95718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity biotinylation method targeting the RNA and proteins constituents. The method that we termed antibody-mediated proximity labelling coupled to mass spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X chromosome in Drosophila. This analysis identified a number of known RNA-binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.
Collapse
Affiliation(s)
- Rupam Choudhury
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians UniversityPlanegg-MartinsriedGermany
| | - Anuroop Venkateswaran Venkatasubramani
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians UniversityPlanegg-MartinsriedGermany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Jie Hua
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians UniversityPlanegg-MartinsriedGermany
| | - Marco Borsò
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians, University (LMU) MunichPlanegg-MartinsriedGermany
| | - Celeste Franconi
- Chromatin Structure and Function group, Department of Computational Molecular Biology, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Sarah Kinkley
- Chromatin Structure and Function group, Department of Computational Molecular Biology, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians, University (LMU) MunichPlanegg-MartinsriedGermany
| | - Axel Imhof
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians UniversityPlanegg-MartinsriedGermany
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians, University (LMU) MunichPlanegg-MartinsriedGermany
| |
Collapse
|
126
|
Martin de Fourchambault E, Rouillé Y. [Hepatitis C virus alters the structure and function of peroxisomes]. Med Sci (Paris) 2024; 40:399-401. [PMID: 38819270 DOI: 10.1051/medsci/2024043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Affiliation(s)
- Esther Martin de Fourchambault
- Université de Lille, CNRS UMR9017, Inserm U1019, Centre hospitalo-universitaire de Lille, Institut Pasteur de Lille, Centre d'infection et d'immunité de Lille, Lille, France
| | - Yves Rouillé
- Université de Lille, CNRS UMR9017, Inserm U1019, Centre hospitalo-universitaire de Lille, Institut Pasteur de Lille, Centre d'infection et d'immunité de Lille, Lille, France
| |
Collapse
|
127
|
Jiang C, Zhou P, Zhang X, Ma N, Hu Y, Zhang M, Ghonaim AH, Li H, Dong L, Zeng W, Li C, Lang Y, Sun Y, He Q, Li W. ARF6 promotes Streptococcus suis suilysin induced apoptosis in HBMECs. Int J Biol Macromol 2024; 268:131839. [PMID: 38663699 DOI: 10.1016/j.ijbiomac.2024.131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.
Collapse
Affiliation(s)
- Changsheng Jiang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaoqian Zhang
- China Institute of Veterinary Drug Control, Beijing 102629, China
| | - NingNing Ma
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yaofang Hu
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Desert Research Center, Cairo 11435, Egypt
| | - Huimin Li
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ling Dong
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wei Zeng
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yumei Sun
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
128
|
D M Santos M, C Camillo-Andrade A, Rodriguez A, Durán R. A Module for Analyzing Interactomes via APEX-MS Integrated into PatternLab for Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1055-1058. [PMID: 38606722 DOI: 10.1021/jasms.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Proximity labeling techniques, such as APEX-MS, provide valuable insights into proximal interactome mapping; however, the verification of biotinylated peptides is not straightforward. With this as motivation, we present a new module integrated into PatternLab for proteomics to enable APEX-MS data interpretation by targeting diagnostic fragment ions associated with APEX modifications. We reanalyzed a previously published APEX-MS data set and report a significant number of biotinylated peptides and, consequently, a confident set of proximal proteins. As the module is part of the widely adopted PatternLab for proteomics software suite, it offers users a comprehensive, easy, and integrated solution for data analysis. Given the broad utility of the APEX-MS technique in various biological contexts, we anticipate that our module will be a valuable asset to researchers, facilitating and enhancing interactome studies. PatternLab's APEX, including a usage protocol, is available at http://patternlabforproteomics.org/apex.
Collapse
Affiliation(s)
- Marlon D M Santos
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz-Paraná, R. Professor Algacyr Munhoz Mader, 3775 Curitiba, PR, Brazil
| | - Amanda C Camillo-Andrade
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz-Paraná, R. Professor Algacyr Munhoz Mader, 3775 Curitiba, PR, Brazil
| | - Azalia Rodriguez
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
- Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, 11800 Montevideo, Uruguay
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| |
Collapse
|
129
|
Yue W, Li X, Zhan X, Wang L, Ma J, Bi M, Wang Q, Gu X, Xie B, Liu T, Guo H, Zhu X, Song C, Qiao J, Li M. PARP inhibitors suppress tumours via centrosome error-induced senescence independent of DNA damage response. EBioMedicine 2024; 103:105129. [PMID: 38640836 PMCID: PMC11052917 DOI: 10.1016/j.ebiom.2024.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).
Collapse
Affiliation(s)
- Wei Yue
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xinyu Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaolu Zhan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lei Wang
- Centre for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jihong Ma
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Meiyu Bi
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Qilong Wang
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaoyang Gu
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hongyan Guo
- National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xin Zhu
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Chen Song
- Centre for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
130
|
Pani S, Qiu T, Kentala K, Azizi SA, Dickinson BC. Bioorthogonal masked acylating agents for proximity-dependent RNA labelling. Nat Chem 2024; 16:717-726. [PMID: 38594368 PMCID: PMC11613155 DOI: 10.1038/s41557-024-01493-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
RNA localization is highly regulated, with subcellular organization driving context-dependent cell physiology. Although proximity-based labelling technologies that use highly reactive radicals or carbenes provide a powerful method for unbiased mapping of protein organization within a cell, methods for unbiased RNA mapping are scarce and comparably less robust. Here we develop α-alkoxy thioenol and chloroenol esters that function as potent acylating agents upon controlled ester unmasking. We pair these probes with subcellular-localized expression of a bioorthogonal esterase to establish a platform for spatial analysis of RNA: bioorthogonal acylating agents for proximity labelling and sequencing (BAP-seq). We demonstrate that, by selectively unmasking the enol probe in a locale of interest, we can map RNA distribution in membrane-bound and membrane-less organelles. The controlled-release acylating agent chemistry and corresponding BAP-seq method expand the scope of proximity labelling technologies and provide a powerful approach to interrogate the cellular organization of RNAs.
Collapse
Affiliation(s)
- Shubhashree Pani
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Tian Qiu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Kaitlin Kentala
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
131
|
Feng H, Zhao Q, Zhao N, Liang Z, Huang Y, Zhang X, Zhang L, Liu Y. A Cell-Permeable Photosensitizer for Selective Proximity Labeling and Crosslinking of Aggregated Proteome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306950. [PMID: 38441365 PMCID: PMC11095223 DOI: 10.1002/advs.202306950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/08/2024] [Indexed: 05/16/2024]
Abstract
Intracellular proteome aggregation is a ubiquitous disease hallmark with its composition associated with pathogenicity. Herein, this work reports on a cell-permeable photosensitizer (P8, Rose Bengal derivative) for selective photo induced proximity labeling and crosslinking of cellular aggregated proteome. Rose Bengal is identified out of common photosensitizer scaffolds for its unique intrinsic binding affinity to various protein aggregates driven by the hydrophobic effect. Further acetylation permeabilizes Rose Bengal to selectively image, label, and crosslink aggregated proteome in live stressed cells. A combination of photo-chemical, tandem mass spectrometry, and protein biochemistry characterizations reveals the complexity in photosensitizing pathways (both Type I & II), modification sites and labeling mechanisms. The diverse labeling sites and reaction types result in highly effective enrichment and identification of aggregated proteome. Finally, aggregated proteomics and interaction analyses thereby reveal extensive entangling of proteostasis network components mediated by HSP70 chaperone (HSPA1B) and active participation of autophagy pathway in combating proteasome inhibition. Overall, this work exemplifies the first photo induced proximity labeling and crosslinking method (namely AggID) to profile intracellular aggregated proteome and analyze its interactions.
Collapse
Affiliation(s)
- Huan Feng
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Nan Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhen Liang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yanan Huang
- Department of Chemistry and Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Xin Zhang
- Department of Chemistry and Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
132
|
Yan B, Zeng T, Liu X, Guo Y, Chen H, Guo S, Liu W. Study on the interaction protein of transcription factor Smad3 based on TurboID proximity labeling technology. Genomics 2024; 116:110839. [PMID: 38537808 DOI: 10.1016/j.ygeno.2024.110839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/27/2024] [Accepted: 03/24/2024] [Indexed: 05/27/2024]
Abstract
TurboID is a highly efficient biotin-labelling enzyme, which can be used to explore a number of new intercalating proteins due to the very transient binding and catalytic functions of many proteins. TGF-β/Smad3 signaling pathway is involved in many diseases, especially in diabetic nephropathy and inflammation. In this paper, a stably cell line transfected with Smad3 were constructed by using lentiviral infection. To further investigate the function of TGF-β/Smad3, the protein labeling experiment was conducted to find the interacting protein with Smad3 gene. Label-free mass spectrometry analysis was performed to obtain 491 interacting proteins, and the interacting protein hnRNPM was selected for IP and immunofluorescence verification, and it was verified that the Smad3 gene had a certain promoting effect on the expression of hnRNPM gene, and then had an inhibitory effect on IL-6. It lays a foundation for further study of the function of Smad3 gene and its involved regulatory network.
Collapse
Affiliation(s)
- Biao Yan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Ting Zeng
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Xiaoshan Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Yuanyuan Guo
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Hongguang Chen
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| | - Shuang Guo
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| | - Wu Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| |
Collapse
|
133
|
Masked acid chlorides for proximity labelling of RNA. Nat Chem 2024; 16:682-683. [PMID: 38594367 DOI: 10.1038/s41557-024-01492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
|
134
|
Zhong X, Li Q, Polacco BJ, Patil T, Marley A, Foussard H, Khare P, Vartak R, Xu J, DiBerto JF, Roth BL, Eckhardt M, Zastrow MV, Krogan NJ, Hüttenhain R. A proximity proteomics pipeline with improved reproducibility and throughput. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.11.536358. [PMID: 37090610 PMCID: PMC10120663 DOI: 10.1101/2023.04.11.536358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Proximity labeling (PL) through biotinylation coupled with mass spectrometry (MS) has emerged as a powerful technique for capturing spatial proteomes within living cells. Large-scale sample processing for proximity proteomics requires a workflow that minimizes hands-on time while enhancing quantitative reproducibility. Here, we present a scalable PL pipeline integrating automated enrichment of biotinylated proteins in a 96-well plate format. By combining this pipeline with an optimized quantitative MS acquisition method based on data-independent acquisition (DIA), we not only significantly increased sample throughput but also improved the reproducibility of protein identification and quantification. We applied this pipeline to delineate subcellular proteomes across various cellular compartments, including endosomes, late endosomes/lysosomes, the Golgi apparatus, and the plasma membrane. Moreover, employing 5HT2A serotonin receptor as a model, we investigated temporal changes of proximal interaction networks induced by the receptor's activation with serotonin. Finally, to demonstrate the applicability of our PL pipeline across multiple experimental conditions, we further modified the PL pipeline for reduced sample input amounts to accommodate CRISPR-based gene knockout, and assessed the dynamics of the 5HT2A network in response to the perturbation of selected proximal interactors. Importantly, the presented PL approach is universally applicable to PL proteomics using biotinylation-based PL enzymes, increasing both throughput and reproducibility of standard protocols.
Collapse
Affiliation(s)
- Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Trupti Patil
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aaron Marley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Prachi Khare
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rasika Vartak
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark Von Zastrow
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
135
|
Ito Y, Nagamoto S, Takano T. Synaptic proteomics decode novel molecular landscape in the brain. Front Mol Neurosci 2024; 17:1361956. [PMID: 38726307 PMCID: PMC11079194 DOI: 10.3389/fnmol.2024.1361956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Synapses play a pivotal role in forming neural circuits, with critical implications for brain functions such as learning, memory, and emotions. Several advances in synaptic research have demonstrated the diversity of synaptic structure and function, which can form thousands of connections depending on the neuronal cell types. Moreover, synapses not only interconnect neurons but also establish connections with glial cells such as astrocytes, which play a key role in the architecture and function of neuronal circuits in the brain. Emerging evidence suggests that dysfunction of synaptic proteins contributes to a variety of neurological and psychiatric disorders. Therefore, it is crucial to determine the molecular networks within synapses in various neuronal cell types to gain a deeper understanding of how the nervous system regulates brain function. Recent advances in synaptic proteome approaches, such as fluorescence-activated synaptosome sorting (FASS) and proximity labeling, have allowed for a detailed and spatial analysis of many cell-type-specific synaptic molecules in vivo. In this brief review, we highlight these novel spatial proteomic approaches and discuss the regulation of synaptic formation and function in the brain. This knowledge of molecular networks provides new insight into the understanding of many neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Yuki Ito
- Division of Molecular Systems for Brain Function, Institute for Advanced Study, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sayaka Nagamoto
- Division of Molecular Systems for Brain Function, Institute for Advanced Study, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tetsuya Takano
- Division of Molecular Systems for Brain Function, Institute for Advanced Study, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Neurophysiology, Keio University School of Medicine, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
136
|
Zhu Y, Akkaya KC, Ruta J, Yokoyama N, Wang C, Ruwolt M, Lima DB, Lehmann M, Liu F. Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies. Nat Commun 2024; 15:3290. [PMID: 38632225 PMCID: PMC11024108 DOI: 10.1038/s41467-024-47569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
The functions of cellular organelles and sub-compartments depend on their protein content, which can be characterized by spatial proteomics approaches. However, many spatial proteomics methods are limited in their ability to resolve organellar sub-compartments, profile multiple sub-compartments in parallel, and/or characterize membrane-associated proteomes. Here, we develop a cross-link assisted spatial proteomics (CLASP) strategy that addresses these shortcomings. Using human mitochondria as a model system, we show that CLASP can elucidate spatial proteomes of all mitochondrial sub-compartments and provide topological insight into the mitochondrial membrane proteome. Biochemical and imaging-based follow-up studies confirm that CLASP allows discovering mitochondria-associated proteins and revising previous protein sub-compartment localization and membrane topology data. We also validate the CLASP concept in synaptic vesicles, demonstrating its applicability to different sub-cellular compartments. This study extends the scope of cross-linking mass spectrometry beyond protein structure and interaction analysis towards spatial proteomics, and establishes a method for concomitant profiling of sub-organelle and membrane proteomes.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Kerem Can Akkaya
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Julia Ruta
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Nanako Yokoyama
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Cong Wang
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Max Ruwolt
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Diogo Borges Lima
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Martin Lehmann
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany
| | - Fan Liu
- Department of Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10 13125, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Charitépl. 1, 10117, Berlin, Germany.
| |
Collapse
|
137
|
Schreiber KJ, Kadijk E, Youn JY. Exploring Options for Proximity-Dependent Biotinylation Experiments: Comparative Analysis of Labeling Enzymes and Affinity Purification Resins. J Proteome Res 2024; 23:1531-1543. [PMID: 38507741 PMCID: PMC11002925 DOI: 10.1021/acs.jproteome.3c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Proximity-dependent biotinylation (PDB) techniques provide information about the molecular neighborhood of a protein of interest, yielding insights into its function and localization. Here, we assessed how different labeling enzymes and streptavidin resins influence PDB results. We compared the high-confidence interactors of the DNA/RNA-binding protein transactive response DNA-binding protein 43 kDa (TDP-43) identified using either miniTurbo (biotin ligase) or APEX2 (peroxidase) enzymes. We also evaluated two commercial affinity resins for purification of biotinylated proteins: conventional streptavidin sepharose versus a new trypsin-resistant streptavidin conjugated to magnetic resin, which significantly reduces the level of contamination by streptavidin peptides following on-bead trypsin digestion. Downstream analyses involved liquid chromatography coupled to mass spectrometry in data-dependent acquisition mode, database searching, and statistical analysis of high-confidence interactors using SAINTexpress. The APEX2-TDP-43 experiment identified more interactors than miniTurbo-TDP-43, although miniTurbo provided greater overlap with previously documented TDP-43 interactors. Purifications on sepharose resin yielded more interactors than magnetic resin in small-scale experiments using a range of magnetic resin volumes. We suggest that resin-specific background protein binding profiles and different lysate-to-resin ratios cumulatively affect the distributions of prey protein abundance in experimental and control samples, which impact statistical confidence scores. Overall, we highlight key experimental variables to consider for the empirical optimization of PDB experiments.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Program
in Molecular Medicine, The Hospital for
Sick Children, Toronto, ON M5G 0A4, Canada
| | - Eileigh Kadijk
- Program
in Molecular Medicine, The Hospital for
Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ji-Young Youn
- Program
in Molecular Medicine, The Hospital for
Sick Children, Toronto, ON M5G 0A4, Canada
- Department
of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
138
|
You W, Li Y, Liu K, Mi X, Li Y, Guo X, Li Z. Latest assessment methods for mitochondrial homeostasis in cognitive diseases. Neural Regen Res 2024; 19:754-768. [PMID: 37843209 PMCID: PMC10664105 DOI: 10.4103/1673-5374.382222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mitochondria play an essential role in neural function, such as supporting normal energy metabolism, regulating reactive oxygen species, buffering physiological calcium loads, and maintaining the balance of morphology, subcellular distribution, and overall health through mitochondrial dynamics. Given the recent technological advances in the assessment of mitochondrial structure and functions, mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, mild cognitive impairment, and postoperative cognitive dysfunction. This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences, from the perspectives of energy metabolism, oxidative stress, calcium homeostasis, and mitochondrial dynamics (including fission-fusion, transport, and mitophagy).
Collapse
Affiliation(s)
- Wei You
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Peking University Third Clinical Medical College, Beijing, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| |
Collapse
|
139
|
Liu Z, Guo F, Zhu Y, Qin S, Hou Y, Guo H, Lin F, Chen PR, Fan X. Bioorthogonal photocatalytic proximity labeling in primary living samples. Nat Commun 2024; 15:2712. [PMID: 38548729 PMCID: PMC10978841 DOI: 10.1038/s41467-024-46985-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
In situ profiling of subcellular proteomics in primary living systems, such as native tissues or clinic samples, is crucial for understanding life processes and diseases, yet challenging due to methodological obstacles. Here we report CAT-S, a bioorthogonal photocatalytic chemistry-enabled proximity labeling method, that expands proximity labeling to a wide range of primary living samples for in situ profiling of mitochondrial proteomes. Powered by our thioQM labeling warhead development and targeted bioorthogonal photocatalytic chemistry, CAT-S enables the labeling of mitochondrial proteins in living cells with high efficiency and specificity. We apply CAT-S to diverse cell cultures, dissociated mouse tissues as well as primary T cells from human blood, portraying the native-state mitochondrial proteomic characteristics, and unveiled hidden mitochondrial proteins (PTPN1, SLC35A4 uORF, and TRABD). Furthermore, CAT-S allows quantification of proteomic perturbations on dysfunctional tissues, exampled by diabetic mouse kidneys, revealing the alterations of lipid metabolism that may drive disease progression. Given the advantages of non-genetic operation, generality, and spatiotemporal resolution, CAT-S may open exciting avenues for subcellular proteomic investigations of primary samples that are otherwise inaccessible.
Collapse
Affiliation(s)
- Ziqi Liu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fuhu Guo
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yufan Zhu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shengnan Qin
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuchen Hou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haotian Guo
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Feng Lin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
140
|
Huang Y, Zhai G, Fu Y, Li Y, Zang Y, Lin Y, Zhang K. A proximity labeling-based orthogonal trap strategy identifies HDAC8 promotes cell motility by modulating cortactin acetylation. Cell Chem Biol 2024; 31:514-522.e4. [PMID: 38460516 DOI: 10.1016/j.chembiol.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
It is a challenge for the traditional affinity methods to capture transient interactions of enzyme-post-translational modification (PTM) substrates in vivo. Herein we presented a strategy termed proximity labeling-based orthogonal trap approach (ProLORT), relying upon APEX2-catalysed proximity labeling and an orthogonal trap pipeline as well as quantitative proteomics to directly investigate the transient interactome of enzyme-PTM substrates in living cells. As a proof of concept, ProLORT allows for robust evaluation of a known HDAC8 substrate, histone H3K9ac. By leveraging this approach, we identified numerous of putative acetylated proteins targeted by HDAC8, and further confirmed CTTN as a bona fide substrate in vivo. Next, we demonstrated that HDAC8 facilitates cell motility via deacetylation of CTTN at lysine 144 that attenuates its interaction with F-actin, expanding the underlying regulatory mechanisms of HDAC8. We developed a general strategy to profile the transient enzyme-substrate interactions mediated by PTMs, providing a powerful tool for identifying the spatiotemporal PTM-network regulated by enzymes in living cells.
Collapse
Affiliation(s)
- Yepei Huang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China; Laboratory of Biochemistry and Molecular Biology Research, Department of Clinical Laboratory, Fujian Medical University Cancer Hospital, No. 420 Fuma Road, Jin'an District, Fuzhou 350014, Fujian Province, China
| | - Guijin Zhai
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.
| | - Yun Fu
- Fujian Provincial Sperm bank, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Yanan Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yong Zang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yu Lin
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, United States.
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
141
|
Peng Q, Weerapana E. Profiling nuclear cysteine ligandability and effects on nuclear localization using proximity labeling-coupled chemoproteomics. Cell Chem Biol 2024; 31:550-564.e9. [PMID: 38086369 PMCID: PMC10960692 DOI: 10.1016/j.chembiol.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 03/24/2024]
Abstract
The nucleus controls cell growth and division through coordinated interactions between nuclear proteins and chromatin. Mutations that impair nuclear protein association with chromatin are implicated in numerous diseases. Covalent ligands are a promising strategy to pharmacologically target nuclear proteins, such as transcription factors, which lack ordered small-molecule binding pockets. To identify nuclear cysteines that are susceptible to covalent liganding, we couple proximity labeling (PL), using a histone H3.3-TurboID (His-TID) construct, with chemoproteomics. Using covalent scout fragments, KB02 and KB05, we identified ligandable cysteines on proteins involved in spindle assembly, DNA repair, and transcriptional regulation, such as Cys101 of histone acetyltransferase 1 (HAT1). Furthermore, we show that covalent fragments can affect the abundance, localization, and chromatin association of nuclear proteins. Notably, the Parkinson disease protein 7 (PARK7) showed increased nuclear localization and chromatin association upon KB02 modification at Cys106. Together, this platform provides insights into targeting nuclear cysteines with covalent ligands.
Collapse
Affiliation(s)
- Qianni Peng
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
142
|
Uozumi R, Mori K, Gotoh S, Miyamoto T, Kondo S, Yamashita T, Kawabe Y, Tagami S, Akamine S, Ikeda M. PABPC1 mediates degradation of C9orf72-FTLD/ALS GGGGCC repeat RNA. iScience 2024; 27:109303. [PMID: 38444607 PMCID: PMC10914486 DOI: 10.1016/j.isci.2024.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
GGGGCC hexanucleotide repeat expansion in C9orf72 causes frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Expanded GGGGCC repeat RNA accumulates within RNA foci and is translated into toxic dipeptide repeat proteins; thus, efficient repeat RNA degradation may alleviate diseases. hnRNPA3, one of the repeat RNA-binding proteins, has been implicated in the destabilization of repeat RNA. Using APEX2-mediated proximity biotinylation, here, we demonstrate PABPC1, a cytoplasmic poly (A)-binding protein, interacts with hnRNPA3. Knockdown of PABPC1 increased the accumulation of repeat RNA and RNA foci to the same extent as the knockdown of hnRNPA3. Proximity ligation assays indicated PABPC1-hnRNPA3 and PABPC1-RNA exosomes, a complex that degrades repeat RNA, preferentially co-localized when repeat RNA was present. Our results suggest that PABPC1 functions as a mediator of polyadenylated GGGGCC repeat RNA degradation through interactions with hnRNPA3 and RNA exosome complex.
Collapse
Affiliation(s)
- Ryota Uozumi
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohji Mori
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shiho Gotoh
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tesshin Miyamoto
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shizuko Kondo
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoko Yamashita
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuya Kawabe
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- Psychiatry, Minoh Neuropsychiatric Hospital, Minoh, Osaka 562-0004, Japan
| | - Shinji Tagami
- Psychiatry, Minoh Neuropsychiatric Hospital, Minoh, Osaka 562-0004, Japan
- Health and Counseling Center, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shoshin Akamine
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
143
|
Shi Y, Bashian EE, Hou Y, Wu P. Chemical immunology: Recent advances in tool development and applications. Cell Chem Biol 2024; 31:S2451-9456(24)00080-1. [PMID: 38508196 PMCID: PMC11393185 DOI: 10.1016/j.chembiol.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Immunology was one of the first biological fields to embrace chemical approaches. The development of new chemical approaches and techniques has provided immunologists with an impressive arsenal of tools to address challenges once considered insurmountable. This review focuses on advances at the interface of chemistry and immunobiology over the past two decades that have not only opened new avenues in basic immunological research, but also revolutionized drug development for the treatment of cancer and autoimmune diseases. These include chemical approaches to understand and manipulate antigen presentation and the T cell priming process, to facilitate immune cell trafficking and regulate immune cell functions, and therapeutic applications of chemical approaches to disease control and treatment.
Collapse
Affiliation(s)
- Yujie Shi
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eleanor E Bashian
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yingqin Hou
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peng Wu
- Department of Molecular and Cellular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
144
|
Sharma N, Jung M, Mishra PK, Mun JY, Rhee HW. FLEX: genetically encodable enzymatic fluorescence signal amplification using engineered peroxidase. Cell Chem Biol 2024; 31:S2451-9456(24)00081-3. [PMID: 38513646 DOI: 10.1016/j.chembiol.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
Fluorescent tagging of biomolecules enables their sensitive detection during separation and determining their subcellular location. In this context, peroxidase-based reactions are actively utilized for signal amplification. To harness this potential, we developed a genetically encodable enzymatic fluorescence signal amplification method using APEX (FLEX). We synthesized a fluorescent probe, Jenfluor triazole (JFT1), which effectively amplifies and restricts fluorescence signals under fixed conditions, enabling fluorescence-based detection of subcellularly localized electron-rich metabolites. Moreover, JFT1 exhibited stable fluorescence signals even under osmium-treated and polymer-embedded conditions, which supported findings from correlative light and electron microscopy (CLEM) using APEX. Using various APEX-conjugated proteins of interest (POIs) targeted to different organelles, we successfully visualized their localization through FLEX imaging while effectively preserving organelle ultrastructures. FLEX provides insights into dynamic lysosome-mitochondria interactions upon exposure to chemical stressors. Overall, FLEX holds significant promise as a sensitive and versatile system for fluorescently detecting APEX2-POIs in multiscale biological samples.
Collapse
Affiliation(s)
- Nirmali Sharma
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Minkyo Jung
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | | | - Ji Young Mun
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
145
|
Yang N, Ren J, Dai S, Wang K, Leung M, Lu Y, An Y, Burlingame A, Xu S, Wang Z, Yu W, Li N. The Quantitative Biotinylproteomics Studies Reveal a WInd-Related Kinase 1 (Raf-Like Kinase 36) Functioning as an Early Signaling Component in Wind-Induced Thigmomorphogenesis and Gravitropism. Mol Cell Proteomics 2024; 23:100738. [PMID: 38364992 PMCID: PMC10951710 DOI: 10.1016/j.mcpro.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.
Collapse
Affiliation(s)
- Nan Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jia Ren
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shuaijian Dai
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kai Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Manhin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shouling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
146
|
Ruturaj, Mishra M, Saha S, Maji S, Rodriguez-Boulan E, Schreiner R, Gupta A. Regulation of the apico-basolateral trafficking polarity of the homologous copper-ATPases ATP7A and ATP7B. J Cell Sci 2024; 137:jcs261258. [PMID: 38032054 PMCID: PMC10729821 DOI: 10.1242/jcs.261258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
The homologous P-type copper-ATPases (Cu-ATPases) ATP7A and ATP7B are the key regulators of copper homeostasis in mammalian cells. In polarized epithelia, upon copper treatment, ATP7A and ATP7B traffic from the trans-Golgi network (TGN) to basolateral and apical membranes, respectively. We characterized the sorting pathways of Cu-ATPases between TGN and the plasma membrane and identified the machinery involved. ATP7A and ATP7B reside on distinct domains of TGN in limiting copper conditions, and in high copper, ATP7A traffics to basolateral membrane, whereas ATP7B traverses common recycling, apical sorting and apical recycling endosomes en route to apical membrane. Mass spectrometry identified regulatory partners of ATP7A and ATP7B that include the adaptor protein-1 complex. Upon knocking out pan-AP-1, sorting of both Cu-ATPases is disrupted. ATP7A loses its trafficking polarity and localizes on both apical and basolateral surfaces in high copper. By contrast, ATP7B loses TGN retention but retained its trafficking polarity to the apical domain, which became copper independent. Using isoform-specific knockouts, we found that the AP-1A complex provides directionality and TGN retention for both Cu-ATPases, whereas the AP-1B complex governs copper-independent trafficking of ATP7B solely. Trafficking phenotypes of Wilson disease-causing ATP7B mutants that disrupts putative ATP7B-AP1 interaction further substantiates the role of AP-1 in apical sorting of ATP7B.
Collapse
Affiliation(s)
- Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Monalisa Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Soumyendu Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Enrique Rodriguez-Boulan
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
147
|
Milione RR, Schell BB, Douglas CJ, Seath CP. Creative approaches using proximity labeling to gain new biological insights. Trends Biochem Sci 2024; 49:224-235. [PMID: 38160064 PMCID: PMC10939868 DOI: 10.1016/j.tibs.2023.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
At its most fundamental level, life is a collection of synchronized cellular processes driven by interactions among biomolecules. Proximity labeling has emerged as a powerful technique to capture these interactions in native settings, revealing previously unexplored elements of biology. This review highlights recent developments in proximity labeling, focusing on methods that push the fundamental technologies beyond the classic bait-prey paradigm, such as RNA-protein interactions, ligand/small-molecule-protein interactions, cell surface protein interactions, and subcellular protein trafficking. The advancement of proximity labeling methods to address different biological problems will accelerate our understanding of the complex biological systems that make up life.
Collapse
Affiliation(s)
- Ryan R Milione
- Skaggs Graduate School of Chemical and Biological Sciences, 120 Scripps Way, Jupiter, FL 33458, USA; Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Bin-Bin Schell
- Skaggs Graduate School of Chemical and Biological Sciences, 120 Scripps Way, Jupiter, FL 33458, USA; Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Cameron J Douglas
- Skaggs Graduate School of Chemical and Biological Sciences, 120 Scripps Way, Jupiter, FL 33458, USA; Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Ciaran P Seath
- Skaggs Graduate School of Chemical and Biological Sciences, 120 Scripps Way, Jupiter, FL 33458, USA; Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 120 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
148
|
Lee A, Sung G, Shin S, Lee SY, Sim J, Nhung TTM, Nghi TD, Park SK, Sathieshkumar PP, Kang I, Mun JY, Kim JS, Rhee HW, Park KM, Kim K. OrthoID: profiling dynamic proteomes through time and space using mutually orthogonal chemical tools. Nat Commun 2024; 15:1851. [PMID: 38424052 PMCID: PMC10904832 DOI: 10.1038/s41467-024-46034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Identifying proteins at organelle contact sites, such as mitochondria-associated endoplasmic reticulum membranes (MAM), is essential for understanding vital cellular processes, yet challenging due to their dynamic nature. Here we report "OrthoID", a proteomic method utilizing engineered enzymes, TurboID and APEX2, for the biotinylation (Bt) and adamantylation (Ad) of proteins close to the mitochondria and endoplasmic reticulum (ER), respectively, in conjunction with high-affinity binding pairs, streptavidin-biotin (SA-Bt) and cucurbit[7]uril-adamantane (CB[7]-Ad), for selective orthogonal enrichment of Bt- and Ad-labeled proteins. This approach effectively identifies protein candidates associated with the ER-mitochondria contact, including LRC59, whose roles at the contact site were-to the best of our knowledge-previously unknown, and tracks multiple protein sets undergoing structural and locational changes at MAM during mitophagy. These findings demonstrate that OrthoID could be a powerful proteomics tool for the identification and analysis of spatiotemporal proteins at organelle contact sites and revealing their dynamic behaviors in vital cellular processes.
Collapse
Affiliation(s)
- Ara Lee
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Gihyun Sung
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Song-Yi Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jaehwan Sim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | - Imkyeung Kang
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Microbiology, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| | - Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, Daegu, Republic of Korea.
| | - Kimoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea.
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
149
|
Wang G, Chen Y, Wei Y, Zheng L, Jiao J, Guo Y. Highly Sensitive Labeling, Clickable Functionalization, and Glycoengineering of the MUC1 Neighboring System. JACS AU 2024; 4:828-836. [PMID: 38425906 PMCID: PMC10900198 DOI: 10.1021/jacsau.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
This study introduces a novel wash-type affinity-primed proximity labeling (WAPL) strategy for labeling and surface engineering of the MUC1 protein neighboring system. The strategy entails the utilization of peroxidase in conjunction with a MUC1-selective aptamer, facilitating targeted binding to MUC1 and inducing covalent labeling of the protein neighboring system. This study reveals a novel finding that the WAPL strategy demonstrates superior labeling efficiency in comparison to nonwash-type affinity-primed proximity labeling, marking the first instance of such observations. The WAPL strategy provides signal amplification by converting a single recognition event into multiple covalent labeling events, thereby improving the detection sensitivity for subtle changes in MUC1. The WAPL platform employs two levels of labeling upgrades, modifying the biotin handles of the conventional labeling substrate, biotin-phenol. The first level involves a range of clickable molecules, facilitating dibenzoazacyclooctynylation, alkynylation, and trans-cyclooctenylation of the protein neighboring system. The second level utilizes lactose as a post-translational modification model, enabling rapid and reliable glycoengineering of the MUC1 neighboring system while remaining compatible with cell-based assays. The implementation of the WAPL strategy in protein neighboring systems has resulted in the establishment of a versatile platform that can effectively facilitate diverse monitoring and regulation techniques. This platform offers valuable insights into the regulation of relevant signaling pathways and promotes the advancement of novel therapeutic approaches, thereby bringing substantial implications for human health.
Collapse
Affiliation(s)
- Gang Wang
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
- Nanjing
University School of Life Sciences, Nanjing
University, Nanjing 210023, China
| | - Ying Chen
- School
of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Yuan Wei
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Lei Zheng
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| | - Jianwei Jiao
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
- Laboratory
of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuna Guo
- Medical
Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, China
| |
Collapse
|
150
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|