101
|
Affiliation(s)
- M Zoratti
- CNR Unit for the Physiology of Mitochondria, Department of Biomedical Sciences, Padova, Italy
| | | |
Collapse
|
102
|
Braun V. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 1995; 16:295-307. [PMID: 7654405 DOI: 10.1111/j.1574-6976.1995.tb00177.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Iron in the form of ferric siderophore complexes and vitamin B12 are transported through the outer membrane of Gram-negative bacteria by a mechanism which consumes energy. There is no known energy source in the outer membrane or in the adjacent periplasmic space so that energy is provided by the electrochemical potential across the cytoplasmic membrane. Energy flows from the cytoplasmic into the outer membrane via a complex consisting of the TonB, ExbB and ExbD proteins which are anchored in the cytoplasmic membrane. It is proposed that the TonB--ExbB--ExbD complex opens--via an energized conformation of the TonB protein--channels in the outer membrane, formed by proteins which serves as highly specific binding sites for the various ferric siderophores and vitamin B12. In addition, outer membrane receptors together with the TonB--ExbB--ExbD complex are directly involved in induction of the transcription of ferric citrate and pseudobactin transport genes of Escherichia coli and Pseudomonas putida, respectively.
Collapse
Affiliation(s)
- V Braun
- Mikrobiologie II, Universität Tübingen, Germany
| |
Collapse
|
103
|
Podlesek Z, Comino A, Herzog-Velikonja B, Zgur-Bertok D, Komel R, Grabnar M. Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance. Mol Microbiol 1995; 16:969-76. [PMID: 7476193 DOI: 10.1111/j.1365-2958.1995.tb02322.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The nucleotide sequence of the Bacillus licheniformis bacitracin-resistance locus was determined. The presence of three open reading frames, bcrA, bcrB and bcrC, was revealed. The BcrA protein shares a high degree of homology with the hydrophilic ATP-binding components of the ABC family of transport proteins. The bcrB and bcrC genes were found to encode hydrophobic proteins, which may function as membrane components of the permease. Apart from Bacillus subtilis, these genes also confer resistance upon the Gram-negative Escherichia coli. The presumed function of the Bcr transporter is to remove the bacitracin molecule from its membrane target. In addition to the homology of the nucleotide-binding sites, BcrA protein and mammalian multidrug transporter or P-glycoprotein share collateral detergent sensitivity of resistant cells and possibly the mode of Bcr transport activity within the membrane. The advantage of the resistance phenotype of the Bcr transporter was used to construct deletions within the nucleotide-binding protein to determine the importance of various regions in transport.
Collapse
Affiliation(s)
- Z Podlesek
- Department of Biology, University of Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
104
|
Abstract
Treponema pallidum, the syphilis spirochaete, has a remarkable ability to evade the humoral and cellular responses it elicits in infected hosts. Although formerly attributed to the presence of an outer coat comprised of serum proteins and/or mucopolysaccharides, current evidence indicates that the immuno-evasiveness of this bacterium is largely the result of its unusual molecular architecture. Based upon a combination of molecular, biochemical, and ultrastructural data, it is now believed that the T. pallidum outer membrane (OM) contains a paucity of poorly immunogenic transmembrane proteins ('rare outer membrane proteins') and that its highly immunogenic proteins are lipoproteins anchored predominantly to the periplasmic leaflet of the cytoplasmic membrane. The presence in the T. pallidum OM of a limited number of transmembrane proteins has profound implications for understanding syphilis pathogenesis as well as treponemal physiology. Two major strategies for molecular characterization of rare outer membrane proteins have evolved. The first involves the identification of candidate OM proteins as fusions with Escherichia coli alkaline phosphatase. The second involves the characterization of candidate OM proteins identified in outer membranes isolated from virulent T. pallidum. Criteria to define candidate OM proteins and for definitive identification of rare OM proteins are proposed as a guide for future studies.
Collapse
Affiliation(s)
- J D Radolf
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-9113, USA
| |
Collapse
|
105
|
Armstrong SK, McIntosh MA. Epitope insertions define functional and topological features of the Escherichia coli ferric enterobactin receptor. J Biol Chem 1995; 270:2483-8. [PMID: 7531690 DOI: 10.1074/jbc.270.6.2483] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The outer membrane protein FepA of Escherichia coli is the receptor for the ferric enterobactin siderophore complex and colicins B and D. A foreign antigenic determinant inserted into selected FepA sites allowed mutational analysis of receptor function and in situ immunological tracking of specific protein domains with respect to the bacterial cell compartment. Immunoblot analysis of bacterial proteins using an epitope-specific antibody detected the peptide determinant in the receptor fusions. The impact of the insertions on FepA function was examined by ferric enterobactin-mediated iron uptake experiments and colicin sensitivity tests. In all cases, FepA retained biological activity despite introduction of the foreign sequence. To further develop the topological model of FepA, the peptide-specific antibody was used to localize epitope-carrying FepA domains in intact bacterial cells and their isolated membranes. One epitope resided in a region on the exterior of the cell, at the surface of the FepA protein, while other epitopes appeared to be localized to the periplasm or within the outer membrane.
Collapse
Affiliation(s)
- S K Armstrong
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858-4354
| | | |
Collapse
|
106
|
Leviton IM, Fraimow HS, Carrasco N, Dougherty TJ, Miller MH. Tobramycin uptake in Escherichia coli membrane vesicles. Antimicrob Agents Chemother 1995; 39:467-75. [PMID: 7726517 PMCID: PMC162562 DOI: 10.1128/aac.39.2.467] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The uptake of tobramycin was measured in Escherichia coli membrane vesicles prepared in KMES [K(+)-2-(N-morpholino)ethanesulfonic acid] buffer at pH 6.6. Uptake occurred in vesicles energized with ascorbic acid and phenazine methosulfate, in which the electrical potential (delta psi) was -120 mV, but not in vesicles energized with D-lactate (delta psi = -95 mV). The addition of nigericin to vesicles energized with D-lactate did not induce tobramycin uptake despite an increase in delta psi to -110 mV. However, when delta psi was increased or decreased by the addition of nigericin or valinomycin, respectively, uptake in vesicles energized with ascorbic acid and phenazine methosulfate was stimulated or inhibited, respectively, confirming studies with whole cells showing that uptake of aminoglycosides is gated by delta psi rather than by proton motive force (delta microH+) or delta pH. N-ethylmaleimide prevented uptake, suggesting that the aminoglycoside transporter is a cytoplasmic membrane protein with accessible sulfhydryl groups. The observation that uptake is gated in vesicles as well as in whole cells suggested that diffusion occurs through a voltage-gated channel. In vesicles preloaded with tobramycin, no efflux occurred after the addition of the protonophore carbonyl cyanide m-chlorophenylhydrazone. In susceptible cells, aminoglycosides themselves decreased the magnitude of delta psi. We propose a mechanism of aminoglycoside-induced killing in which aminoglycosides themselves close the voltage-gated channel by decreasing the magnitude of delta psi. Channel closure causes aminoglycosides accumulated prior to the fall in delta psi to be trapped, which in turn causes irreversible uptake and subsequent bactericidal effects.
Collapse
Affiliation(s)
- I M Leviton
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | |
Collapse
|
107
|
Affiliation(s)
- M Hofnung
- Unite de Programmation Moleculaire et Toxicologie Genetique-Biotechnologies, Institut Pasteur, Paris, France
| |
Collapse
|
108
|
Affiliation(s)
- L C Vining
- Department of Biology, Dalhousie University Halifax, N.S, Canada
| | | |
Collapse
|
109
|
Hisano T, Yonemoto Y, Yamashita T, Fukuda Y, Kimura A, Murata K. Direct uptake of alginate molecules through a pit on the bacterial cell surface: A novel mechanism for the uptake of macromolecules. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0922-338x(95)94744-c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
110
|
Zeuthen T. Molecular mechanisms for passive and active transport of water. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 160:99-161. [PMID: 7558688 DOI: 10.1016/s0074-7696(08)61554-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Water crosses cell membranes by passive transport and by secondary active cotransport along with ions. While the first concept is well established, the second is new. The two modes of transport allow cellular H2O homeostasis to be viewed as a balance between H2O leaks and H2O pumps. Consequently, cells can be hyperosmolar relative to their surroundings during steady states. Under physiological conditions, cells from leaky epithelia may be hyperosmolar by roughly 5 mosm liter-1, under dilute conditions, hyperosmolarities up to 40 mosm liter-1 have been recorded. Most intracellular H2O is free to serve as solvent for small inorganic ions. The mechanism of transport across the membrane depends on how H2O interacts with the proteinaceous or lipoid pathways. Osmotic transport of H2O through specific H2O channels such as CHIP 28 is hydraulic if the pore is impermeable to the solute and diffusive if the pore is permeable. Cotransport of ions and H2O can be a result of conformational changes in proteins, which in addition to ion transport also translocate H2O bound to or occlude in the protein. A cellular model of a leaky epithelium based on H2O leaks and H2O pumps quantitatively predicts a number of so-far unexplained observations of H2O transport.
Collapse
Affiliation(s)
- T Zeuthen
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
111
|
Fischbarg J, Cheung M, Li J, Iserovich P, Czegledy F, Kuang K, Garner M. Are most transporters and channels beta barrels? Mol Cell Biochem 1994; 140:147-62. [PMID: 7534868 DOI: 10.1007/bf00926753] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Given the sequence of transporters or channels of unknown secondary structure, it is usual to predict their putative transmembrane regions as alpha-helical. However, recent evidence for a facilitative glucose transporter (GLUT1) appears inconsistent with such predictions, which has led us to propose an alternative folding model for GLUTs based on the 16-stranded antiparallel beta-barrel of porins. Here we apply the same predictive algorithms we used for GLUTs to several other membrane proteins. For some of them, a high-resolution structure has been derived (beta-barrels: Rhodobacter capsulatus and Escherichia coli porins; multihelical: colicin A, bacteriorhodopsin, and reaction center L chain); we use them to test the prediction procedures. The other proteins we analyze (GLUT1, CHIP28, acetylcholine receptor alpha subunit, lac permease, Na(+)-glucose cotransporter, shaker K+ channel, sarcoplasmic reticulum Ca(2+)-ATPase) are representative of classes of similar membrane proteins. As with GLUTs, we find that the predicted transmembrane segments of these proteins are consistently shorter than expected for transmembrane spanning alpha-helices, but are of the correct length and number for the proteins to fold instead as porin-like beta-barrels.
Collapse
Affiliation(s)
- J Fischbarg
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | | | | | | | | | | | |
Collapse
|
112
|
Azizan A, Black PN. Use of transposon TnphoA to identify genes for cell envelope proteins of Escherichia coli required for long-chain fatty acid transport: the periplasmic protein Tsp potentiates long-chain fatty acid transport. J Bacteriol 1994; 176:6653-62. [PMID: 7961418 PMCID: PMC197022 DOI: 10.1128/jb.176.21.6653-6662.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
TnphoA was used to mutagenize the chromosome in an effort to identify membrane-bound and exported components of the long-chain fatty acid transport system of Escherichia coli. This strategy identified three classes of fusions that were unable to grow or grew at reduced rates on minimal agar plates containing the long-chain fatty acid oleate (C18:1), (i) fadL-phoA, (ii) tolC-phoA, and (iii) tsp-phoA, fadL-phoA and tolC-phoA fusions were unable to grow on oleate as the sole carbon and energy source, while the tsp-phoA fusion had a markedly reduced growth rate. As expected, fadL-phoA fusions were unable to grow on oleate plates because the outer membrane-bound fatty acid transport protein FadL was defective. The identification of multiple fadL-phoa fusions demonstrated that this strategy of mutagenesis specifically targeted membrane-bound and exported components required for growth on long-chain fatty acids. tolC-phoA fusions were sensitive to fatty acids (particularly medium chain) and thus unable to grow, whereas the reduced growth rate of tsp-phoA fusions on oleate was apparently due to changes in the energized state of the outer membrane or inner membrane. tsp-phoA fusions transported the long-chain fatty acid oleate at only 50% of wild-type levels when cells were energized with 1 mM DL-lactate. Under conditions in which transport was measured in the absence of lactate, tsp-phoA fusion strains and wild-type strains had the same levels of oleate transport. The tsp+ clone pAZA500 was able to restore wild-type transport activity to the tsp-phoA strain under lactate-energized conditions. These results indicate that the periplasmic protein Tsp potentiates long-chain fatty acid transport.
Collapse
Affiliation(s)
- A Azizan
- Department of Biochemistry, College of Medicine, University of Tennessee, Memphis 38163
| | | |
Collapse
|
113
|
Lengeler JW, Jahreis K, Wehmeier UF. Enzymes II of the phospho enol pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1188:1-28. [PMID: 7947897 DOI: 10.1016/0005-2728(94)90017-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J W Lengeler
- Arbeitsgruppe Genetik, Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | | | |
Collapse
|
114
|
Kolenbrander PE, Andersen RN, Ganeshkumar N. Nucleotide sequence of the Streptococcus gordonii PK488 coaggregation adhesin gene, scaA, and ATP-binding cassette. Infect Immun 1994; 62:4469-80. [PMID: 7927711 PMCID: PMC303132 DOI: 10.1128/iai.62.10.4469-4480.1994] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human oral viridans group streptococci that coaggregate with Actinomyces naeslundii PK606 express surface proteins related to ScaA, the coaggregation-mediating adhesin of Streptococcus gordonii PK488 (R. N. Andersen, N. Ganeshkumar, and P. E. Kolenbrander, Infect. Immun. 61:981-987, 1993). The nucleotide sequence of the 6,125-bp EcoRI insert of pRA1, containing scaA, the gene encoding ScaA, was determined. Six open reading frames (ORFs) were identified. The orientation of four ORFs, two upstream (ORF 1 and ORF 2) and one downstream (ORF 4) of scaA (ORF 3), indicated transcription in one direction, whereas ORF 5 and ORF 6 were transcribed divergently. Computer analysis of the deduced amino acid sequences identified a consensus binding site for ATP (GxxGxGKS) in the putative 28,054-Da protein encoded by ORF 1. ORF 2 potentially encoded a hydrophobic protein of 29,705 Da with six potential membrane-spanning regions. ScaA was 310 amino acids, 34,787 Da, and contained the lipoprotein consensus sequence LxxC, also reported for the ScaA-related proteins SsaB, FimA, and PsaA from Streptococcus sanguis 12, Streptococcus parasanguis FW213, and Streptococcus pneumoniae R36A, respectively. ORF 4 potentially encoded a 163-amino-acid protein of 17,912 Da, which was nearly identical to the downstream adjacent gene products of ssaB, fimA, and psaA. No significant homology with other proteins was found with the putative ORF 5 gene product, a 229-amino-acid protein of 25,107 Da. ORF 6 was incomplete and encoded a protein larger than 564 amino acids. This putative protein had a consensus Zn2+ binding motif, HExxH, found among bacterial thermolysins and mammalian neutral endopeptidases and was 40% identical to a homologous 210-amino-acid region of human enkephalinase. The genetic organization of ORFs 1, 2, and 3 was similar to those of the bacterial periplasmic-binding protein-dependent transport systems of gram-negative bacteria and binding-lipoprotein-dependent transport systems of gram-positive bacteria, and these genes appeared to encode ABC (ATP-binding cassette) proteins. This report describes a cell-to-cell adherence function associated with an ATP-binding cassette.
Collapse
Affiliation(s)
- P E Kolenbrander
- Laboratory of Microbial Ecology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
115
|
Roy S, Das AB, Ghosh AN, Biswas T. Purification, pore-forming ability, and antigenic relatedness of the major outer membrane protein of Shigella dysenteriae type 1. Infect Immun 1994; 62:4333-8. [PMID: 7927692 PMCID: PMC303113 DOI: 10.1128/iai.62.10.4333-4338.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The major outer membrane protein (MOMP), the most abundant outer membrane protein, was purified to homogeneity from Shigella dysenteriae type 1. The purification method involved selective extraction of MOMP with sodium dodecyl sulfate in the presence of 0.4 M sodium chloride followed by size exclusion chromatography with Sephacryl S-200 HR. MOMP was found to form hydrophilic diffusion pores by incorporation into artificial liposome vesicles composed of egg yolk phosphatidylcholine and dicetylphosphate, indicating that MOMP of S. dysenteriae type 1 exhibited significant porin activity. However, the liposomes containing heat-denatured MOMP were barely active. The molecular weight of MOMP found by size exclusion chromatography was 130,000, and in sodium dodecyl sulfate-10% polyacrylamide gel it moved as an oligomer of 78,000 molecular weight. Upon boiling, fully dissociated monomers of 38,000 molecular weight were seen for S. dysenteriae type 1. However, among the four Shigella spp., the monomeric MOMP generated upon boiling ranged from 38,000 to 35,000 in molecular weight. Antibody raised in BALB/c mice immunized with MOMP of S. dysenteriae type 1 reacted strongly with purified MOMP of S. dysenteriae type 1 in an enzyme-linked immunosorbent assay (ELISA). The antibody reacted with whole-cell preparations of S. dysenteriae type 1 in an ELISA, suggesting that MOMP possessed surface components. Moreover, MOMP could be visualized on the bacterial surface by immunoelectron microscopy with anti-MOMP antibody. S. dysenteriae type 1 MOMP-specific immunoglobulin eluted from MOMP bound to a nitrocellulose membrane was found to cross-react with MOMP preparations of S. flexneri, S. boydii, and S. sonnei, indicating that MOMPs were antigenically related among Shigella species. The strong immunogenicity, surface exposure, and antigenic relatedness make MOMP of Shigella species an immunologically significant macromolecule for study.
Collapse
Affiliation(s)
- S Roy
- Division of Immunology and Vaccine Development, National Institute of Cholera and Enteric Diseases, Beliaghata, Calcutta, India
| | | | | | | |
Collapse
|
116
|
Abstract
Potassium channels allow potassium ions to flow across the membrane and play a key role in maintaining membrane potential. Recent research has begun to reveal how these channels transport potassium in preference to other ions, how their activity is controlled, and how they are related to other channels.
Collapse
Affiliation(s)
- L Y Jan
- Howard Hughes Medical Institute, Department of Physiology and Biochemistry, University of California, San Francisco 94143-0724
| | | |
Collapse
|
117
|
Abstract
Specific affinity theory is compared with traditional ways of understanding the nutrient concentration dependency of microbial growth. It is demonstrated that the Michaelis constant increases with the ratio of metabolic enzyme to membrane permease content of bacteria so that small values can reflect specialization for nutrient collection. When compared to the specific affinity, Kt gives a measure of oligotrophic capacity. Specific affinity, on the other hand, reflects nutrient collection ability directly, and increases with the number of permeases. It can be estimated, along with the other kinetic constant, Vmax, by use of isotopes in natural samples. Because of systematic errors in estimating Vmax, specific affinity is the preferred measure of substrate accumulation ability. The advantage of simultaneous collection of multiple substrates in dilute solution is demonstrated. The structural basis of this advantage is computed from collision frequency and recollision probability, computations that further show that multisubstrate usage is essential for bacterial growth under low-nutrient conditions. Computed growth rates from specific affinities require that several substrates be used simultaneously for growth at measured concentrations. Formulations anticipate that the surface of oligobacteria should be occupied by a diversity of transporter types, that each type of transporter should occupy only a small portion of the cell surface, and the number of cytoplasmic enzymes can be small, allowing small cell size to give a large surface-to-volume ratio for high specific affinity. The large number of substrate types that may be accumulated by a single oligobacterial species is consistent with extensive species diversity.
Collapse
Affiliation(s)
- D K Button
- Institute of Marine Science and Department of Chemistry, University of Alaska, 99775, Fairbanks, Alaska, USA
| |
Collapse
|
118
|
Eichler K, Bourgis F, Buchet A, Kleber HP, Mandrand-Berthelot MA. Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol Microbiol 1994; 13:775-86. [PMID: 7815937 DOI: 10.1111/j.1365-2958.1994.tb00470.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sequence encompassing the cai genes of Escherichia coli, which encode the carnitine pathway, has been determined. Apart from the already identified caiB gene coding for the carnitine dehydratase, five additional open reading frames were identified. They belong to the caiTABCDE operon, which was shown to be located at the first minute on the chromosome and transcribed during anaerobic growth in the presence of carnitine. The activity of carnitine dehydratase was dependent on the CRP regulatory protein and strongly enhanced in the absence of a functional H-NS protein, in relation to the consensus sequences detected in the promoter region of the cai operon. In vivo expression studies led to the synthesis of five polypeptides in addition to CaiB, with predicted molecular masses of 56,613 Da (CaiT), 42,564 Da (CaiA), 59,311 Da (CaiC), 32,329 Da (CaiD) and 21,930 Da (CaiE). Amino acid sequence similarity or enzymatic analysis supported the function assigned to each protein. CaiT was suggested to be the transport system for carnitine or betaines, CaiA an oxidoreduction enzyme, and CaiC a crotonobetaine/carnitine CoA ligase. CaiD bears strong homology with enoyl hydratases/isomerases. Overproduction of CaiE was shown to stimulate the carnitine racemase activity of the CaiD protein and to markedly increase the basal level of carnitine dehydratase activity. It is inferred that CaiE is an enzyme involved in the synthesis or the activation of the still unknown cofactor required for carnitine dehydratase and carnitine racemase activities. Taken together, these data suggest that the carnitine pathway in E. coli resembles that found in a strain situated between Agrobacterium and Rhizobium.
Collapse
Affiliation(s)
- K Eichler
- Laboratoire de Génétique Moléculaire des Microorganismes et des Interactions Cellulaires URA 1486 du CNRS, Institut National des Sciences Appliquées, Villeurbanne, France
| | | | | | | | | |
Collapse
|
119
|
|
120
|
Larsen RA, Thomas MG, Wood GE, Postle K. Partial suppression of an Escherichia coli TonB transmembrane domain mutation (delta V17) by a missense mutation in ExbB. Mol Microbiol 1994; 13:627-40. [PMID: 7997175 DOI: 10.1111/j.1365-2958.1994.tb00457.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Active transport of vitamin B12 and Fe(III)-siderophore complexes across the outer membrane of Escherichia coli appears to be dependent upon the ability of the TonB protein to couple cytoplasmic membrane-generated protonmotive force to outer membrane receptors. TonB is supported in this role by an auxiliary protein, ExbB, which, in addition to stabilizing TonB against the activities of endogenous envelope proteases, directly contributes to the energy transduction process. The topological partitioning of TonB and ExbB to either side of the cytoplasmic membrane restricts the sites of interaction between these proteins primarily to their transmembrane domains. In this study, deletion of valine 17 within the aminoterminal transmembrane anchor of TonB resulted in complete loss of TonB activity, as well as loss of detectable in vivo crosslinking into a 59 kDa complex believed to contain ExbB. The delta V17 mutation had no effect on TonB export. The loss of crosslinking appeared to reflect conformational changes in the TonB/ExbB pair rather than loss of interaction since ExbB was still required for some stabilization of TonB delta V17. Molecular modeling suggested that the delta V17 mutation caused a significant change in the predicted conserved face of the TonB amino-terminal membrane anchor. TonB delta V17 was unable to achieve the 23 kDa proteinase K-resistant form in lysed sphaeroplasts that is characteristic of active TonB. Wild-type TonB also failed to achieve the proteinase K-resistant configuration when ExbB was absent. Taken together these results suggested that the delta V17 mutation interrupted productive TonB-ExbB interactions. The apparent ability to crosslink to ExbB as well as a limited ability to transduce energy were restored by a second mutation (A39E) in or near the first predicted transmembrane domain of the ExbB protein. Consistent with the weak suppression, a 23 kDa proteinase K-resistant form of TonB delta V17 was not observed in the presence of ExbBA39E. Neither the ExbBA39E allele nor the absence of ExbB affected TonB or TonB delta V17 export. Unlike the tonB delta V17 mutation, the exbBA39E mutation did not greatly alter a modelled ExbB transmembrane domain structure. Furthermore, the suppressor ExbBA39E functioned normally with wild-type TonB, suggesting that the suppressor was not allele specific. Contrary to expectations, the TonB delta V17, ExbBA39E pair resulted in a TonB with a greatly reduced half-life (approximately 10 min). These results together with protease susceptibility studies suggest that ExbB functions by modulating the conformation of TonB.
Collapse
Affiliation(s)
- R A Larsen
- Department of Microbiology, Washington State University, Pullman 99164
| | | | | | | |
Collapse
|
121
|
Rhiel E, Flükiger K, Wehrli C, Erni B. The mannose transporter of Escherichia coli K12: oligomeric structure, and function of two conserved cysteines. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1994; 375:551-9. [PMID: 7811395 DOI: 10.1515/bchm3.1994.375.8.551] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mannose transporter of E. coli is a member of the phosphotransferase system. It consists of two membrane spanning subunits, IICMan (27.64 kDa) and IIDMan (31.02 kDa) and a peripheral subunit IIABMan (35.02 kDa). It acts by a mechanism that couples vectorial translocation to phosphorylation of the substrate. The subunit ratio determined from densitometric scans of polyacrylamide gels is close to IIABMan2 IICMan1 IIDMan2. A molecular mass of 100 +/- 20 kDa was calculated from electronmicrographs of freeze fractured proteoliposomes containing particles of the IICMan/IIDMan subcomplex with a mean diameter of 6.3 +/- 1.1 nm. This is most compatible with IICMan:IIDMan subunit compositions of 1:2 (89.7 kDa). Fusion proteins between IICMan and IIDMan were generated, with the subunits connected either by a two-residue linker or a 20 residue Ala Pro rich hinge. The fusion proteins had 5%-15% of control phosphotransferase activity. The one with the Ala Pro rich linker could be cleaved with trypsin resulting in a 7 fold increase of activity while the fusion with the two residue linker was resistant to limited trypsinolysis. Taking into account the inside-out orientation of the membrane vesicles the C-terminus of IICMan and the N-terminus of IIDMan are both predicted to be on the cytoplasmic side of the membrane. Two cysteines in IICMan and IIDMan which are conserved in the homologous subunits of the fructose transporter of Bacillus subtilis and of sorbose transporter of Klebsiella pneumoniae are not necessary for phosphotransferase function.
Collapse
Affiliation(s)
- E Rhiel
- Fachbereich Biologie der Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
122
|
Dinh T, Paulsen IT, Saier MH. A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J Bacteriol 1994; 176:3825-31. [PMID: 8021163 PMCID: PMC205578 DOI: 10.1128/jb.176.13.3825-3831.1994] [Citation(s) in RCA: 263] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Seventeen fully sequenced and two partially sequenced extracytoplasmic proteins of purple, gram-negative bacteria constitute a homologous family termed the putative membrane fusion protein (MFP) family. Each such protein apparently functions in conjunction with a cytoplasmic membrane transporter of the ATP-binding cassette family, major facilitator superfamily, or heavy metal resistance/nodulation/cell division family to facilitate transport of proteins, peptides, drugs, or carbohydrates across the two membranes of the gram-negative bacterial cell envelope. Evidence suggests that at least some of these transport systems also function in conjunction with a distinct outer membrane protein. We report here that the phylogenies of these proteins correlate with the types of transport systems with which they function as well as with the natures of the substrates transported. Characterization of the MFPs with respect to secondary structure, average hydropathy, and average similarity provides circumstantial evidence as to how they may allow localized fusion of the two gram-negative bacterial cell membranes. The membrane fusion protein of simian virus 5 is shown to exhibit significant sequence similarity to representative bacterial MFPs.
Collapse
Affiliation(s)
- T Dinh
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | |
Collapse
|
123
|
Affiliation(s)
- R Krämer
- Institut für Biotechnologie 1, Forschungszentrum Jülich, Germany
| |
Collapse
|
124
|
Abstract
With the discovery of molecular chaperones and the development of heterologous gene expression techniques, protein folding in bacteria has come into focus as a potentially limiting factor in expression and as a topic of interest in its own right. Many proteins of importance in biotechnology contain disulphide bonds, which form in the Escherichia coli periplasm, but most work on protein folding in the periplasm of E. coli is very recent and is often speculative. This MicroReview gives a short overview of the possible fates of a periplasmic protein from the moment it is translocated, as well as of the E. coli proteins involved in this process. After an introduction to the specific physiological situation in the periplasm of E. coli, we discuss the proteins that might help other proteins to obtain their correctly folded conformation--disulphide isomerase, rotamase, parts of the translocation apparatus and putative periplasmic chaperones--and briefly cover the guided assembly of multi-subunit structures. Finally, our MicroReview turns to the fate of misfolded proteins: degradation by periplasmic proteases and aggregation phenomena.
Collapse
Affiliation(s)
- C Wülfing
- Biochemisches Institut, Universität Zurich, Switzerland
| | | |
Collapse
|
125
|
Ng EY, Trucksis M, Hooper DC. Quinolone resistance mediated by norA: physiologic characterization and relationship to flqB, a quinolone resistance locus on the Staphylococcus aureus chromosome. Antimicrob Agents Chemother 1994; 38:1345-55. [PMID: 8092836 PMCID: PMC188209 DOI: 10.1128/aac.38.6.1345] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We identified a quinolone resistance locus, flqB, linked to transposon insertion omega 1108 and fus on the SmaI D fragment of the Staphylococcus aureus NCTC 8325 chromosome, the same fragment that contains the norA gene. S. aureus norA cloned from flqB and flqB+ strains in Escherichia coli differed only in a single nucleotide in the putative promoter region. There was no detectable change in the number of copies of norA on the chromosomes of flqB strains, but they had increased levels of norA transcripts. Cloned norA produced resistance to norfloxacin and other hydrophilic quinolones and reduced norfloxacin accumulation in intact cells that was energy dependent, suggesting active drug efflux as the mechanism of resistance. Drug efflux was studied by measurement of norfloxacin uptake into everted inner membrane vesicles prepared from norA-containing E. coli cells. Vesicles exhibited norfloxacin uptake after the addition of lactate or NADH, and this uptake was abolished by carbonyl cyanide m-chlorophenylhydrazone and nigericin but not valinomycin, indicating that it was linked to the pH gradient across the cell membrane. Norfloxacin uptake into vesicles was also saturable, with an apparent Km of 6 microM, a concentration between those that inhibit the growth of flqB and flqB+ S. aureus cells, indicating that drug uptake is mediated by a carrier with a high apparent affinity for norfloxacin. Ciprofloxacin and ofloxacin competitively inhibited norfloxacin uptake into vesicles. Reserpine, which inhibits the multidrug efflux mediated by the bmr gene of bacillus subtilis, which is similar to norA, abolished norfloxacin uptake into vesicles as well as the norfloxacin resistance of an flqB mutant, suggesting a potential means for circumventing quinolone resistance as a result of drug efflux in S. aureus. These findings indicate that the chromosomal flqB resistance locus is associated with increased levels of expression of norA and strongly suggest that the NorA protein itself functions as a drug transporter that is coupled to the proton gradient across the cell membrane.
Collapse
Affiliation(s)
- E Y Ng
- Infectious Disease Unit, Massachusetts General Hospital, Harvard Medical School, Boston 02114-2696
| | | | | |
Collapse
|
126
|
Spooner PJ, Rutherford NG, Watts A, Henderson PJ. NMR observation of substrate in the binding site of an active sugar-H+ symport protein in native membranes. Proc Natl Acad Sci U S A 1994; 91:3877-81. [PMID: 8171005 PMCID: PMC43685 DOI: 10.1073/pnas.91.9.3877] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
NMR methods have been adopted to observe directly the characteristics of substrate binding to the galactose-H+ symport protein GalP, in its native environment, the inner membranes of Escherichia coli. Sedimented inner-membrane vesicles containing the GalP protein, overexpressed to levels above 50% of total protein, were analyzed by 13C magic-angle spinning NMR, when in their normal "fluid" state and with incorporated D-[1-13C]glucose. Using conditions of cross-polarization intended to discriminate bound substrate alone, it was possible to detect as little as 250 nmol of substrate added to the membranes containing about 0.5 mumol (approximately 26 mg) of GalP protein. Such high measuring sensitivity was possible from the fluid membranes by virtue of their motional contributions to rapid relaxation recovery of the observed nuclei and due to a high-resolution response that approached the static field inhomogeneity in these experiments. This good spectral resolution showed that the native state of the membranes presents a substrate binding environment with high structural homogeneity. Inhibitors of the GalP protein, cytochalasin B and forskolin, which are specific, and D-galactose, but not L-galactose, prevent or suppress detection of the 13C-labeled glucose substrate, confirming that the observed signal was due to specific interactions with the GalP protein. This specific substrate binding exhibits a preference for the beta-anomer of D-glucose and substrate translocation is determined to be slow, on the 10(-2) s time scale. The work describes a straightforward NMR approach, which achieves high sensitivity, selectivity, and resolution for nuclei associated with complex membrane proteins and which may be combined with other NMR methodologies to yield additional structural information on the binding site for the current transport system without isolating it from its native membrane environment.
Collapse
Affiliation(s)
- P J Spooner
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
127
|
Abstract
Some species of bacteria have low-permeability membrane barriers and are thereby "intrinsically" resistant to many antibiotics; they are selected out in the multitude of antibiotics present in the hospital environment and thus cause many hospital-acquired infections. Some strains of originally antibiotic-susceptible species may also acquire resistance through decreases in the permeability of membrane barriers. Another mechanism for preventing access of drugs to targets is the membrane-associated energy-driven efflux, which plays a major role in drug resistance, especially in combination with the permeation barrier. Recent results indicate the existence of bacterial efflux systems of extremely broad substrate specificity, in many ways reminiscent of the multidrug resistance pump of mammalian cells. One such system seems to play a major role in the intrinsic resistance of Pseudomonas aeruginosa, a common opportunistic pathogen. As the pharmaceutical industry succeeds in producing agents that can overcome specific mechanisms of bacterial resistance, less specific resistance mechanisms such as permeability barriers and multidrug active efflux may become increasingly significant in the clinical setting.
Collapse
Affiliation(s)
- H Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3206
| |
Collapse
|
128
|
Jaskula JC, Letain TE, Roof SK, Skare JT, Postle K. Role of the TonB amino terminus in energy transduction between membranes. J Bacteriol 1994; 176:2326-38. [PMID: 8157601 PMCID: PMC205356 DOI: 10.1128/jb.176.8.2326-2338.1994] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli TonB protein is an energy transducer, coupling cytoplasmic membrane energy to active transport of vitamin B12 and iron-siderophores across the outer membrane. TonB is anchored in the cytoplasmic membrane by its hydrophobic amino terminus, with the remainder occupying the periplasmic space. In this report we establish several functions for the hydrophobic amino terminus of TonB. A G-26-->D substitution in the amino terminus prevents export of TonB, suggesting that the amino terminus contains an export signal for proper localization of TonB within the cell envelope. Substitution of the first membrane-spanning domain of the cytoplasmic membrane protein TetA for the TonB amino terminus eliminates TonB activity without altering TonB export, suggesting that the amino terminus contains sequence-specific information. Detectable TonB cross-linking to ExbB is also prevented, suggesting that the two proteins interact primarily through their transmembrane domains. In vivo cleavage of the amino terminus of TonB carrying an engineered leader peptidase cleavage site eliminates (i) TonB activity, (ii) detectable interaction with a membrane fraction having a density intermediate to those of the cytoplasmic and outer membranes, and (iii) cross-linking to ExbB. In contrast, the amino terminus is not required for cross-linking to other proteins with which TonB can form complexes, including FepA. Additionally, although the amino terminus clearly is a membrane anchor, it is not the only means by which TonB associates with the cytoplasmic membrane. TonB lacking its amino-terminal membrane anchor still remains largely associated with the cytoplasmic membrane.
Collapse
Affiliation(s)
- J C Jaskula
- Department of Microbiology, Washington State University, Pullman 99164-4233
| | | | | | | | | |
Collapse
|
129
|
|
130
|
Krämer R. Functional principles of solute transport systems: concepts and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1185:1-34. [PMID: 7511415 DOI: 10.1016/0005-2728(94)90189-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Krämer
- Institut für Biotechnologie 1, Forschungszentrum Jülich, Germany
| |
Collapse
|
131
|
Saier MH, Tam R, Reizer A, Reizer J. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 1994; 11:841-7. [PMID: 8022262 DOI: 10.1111/j.1365-2958.1994.tb00362.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homology has been established for members of two families of functionally related bacterial membrane proteins. The first family (the resistance/nodulation/cell division (RND) family) includes (i) two metal-resistance efflux pumps in Alcaligenes eutrophus (CzcA and CnrA), (ii) three proteins which function together in nodulation of alfalfa roots by Rhizobium meliloti (NoIGHI), and (iii) a cell division protein in Escherichia coli (EnvD). The second family (the putative membrane fusion protein (MFP) family) includes a nodulation protein (NoIF), a cell division protein (EnvC), and a multidrug resistance transport protein (EmrA). We propose that an MFP functions co-operatively with an RND protein to transport large or hydrophobic molecules across the two membranes of the Gram-negative bacterial cell envelope.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | | | | | |
Collapse
|
132
|
Saier MH. Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 1994; 58:71-93. [PMID: 8177172 PMCID: PMC372954 DOI: 10.1128/mr.58.1.71-93.1994] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three-dimensional structures have been elucidated for very few integral membrane proteins. Computer methods can be used as guides for estimation of solute transport protein structure, function, biogenesis, and evolution. In this paper the application of currently available computer programs to over a dozen distinct families of transport proteins is reviewed. The reliability of sequence-based topological and localization analyses and the importance of sequence and residue conservation to structure and function are evaluated. Evidence concerning the nature and frequency of occurrence of domain shuffling, splicing, fusion, deletion, and duplication during evolution of specific transport protein families is also evaluated. Channel proteins are proposed to be functionally related to carriers. It is argued that energy coupling to transport was a late occurrence, superimposed on preexisting mechanisms of solute facilitation. It is shown that several transport protein families have evolved independently of each other, employing different routes, at different times in evolutionary history, to give topologically similar transmembrane protein complexes. The possible significance of this apparent topological convergence is discussed.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| |
Collapse
|
133
|
Kreusch A, Neubüser A, Schiltz E, Weckesser J, Schulz GE. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 A resolution. Protein Sci 1994; 3:58-63. [PMID: 8142898 PMCID: PMC2142474 DOI: 10.1002/pro.5560030108] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The crystal structure of a membrane channel, homotrimeric porin from Rhodopseudomonas blastica has been determined at 2.0 A resolution by multiple isomorphous replacement and structural refinement. The current model has an R-factor of 16.5% and consists of 289 amino acids, 238 water molecules, and 3 detergent molecules per subunit. The partial protein sequence and subsequently the complete DNA sequence were determined. The general architecture is similar to those of the structurally known porins. As a particular feature there are 3 adjacent binding sites for n-alkyl chains at the molecular 3-fold axis. The side chain arrangement in the channel indicates a transverse electric field across each of the 3 pore eyelets, which may explain the discrimination against nonpolar solutes. Moreover, there are 2 significantly ordered girdles of aromatic residues at the nonpolar/polar borderlines of the interface between protein and membrane. Possibly, these residues shield the polypeptide conformation against adverse membrane fluctuations.
Collapse
Affiliation(s)
- A Kreusch
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
134
|
Abstract
Different families of transport proteins catalyze transmembrane solute translocation, employing different mechanisms and energy sources. Several of these functionally dissimilar proteins nevertheless exhibit similar structural units, consisting of six tightly packed alpha-helices which may comprise all or part of a transmembrane channel. It is now recognized that some of these families arose independently of each other by convergence, while others arose from common precursors by divergence. The former families apparently arose at different times in evolutionary history, in different groups of organisms, employing different routes.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| |
Collapse
|
135
|
|
136
|
Sippel C, McCollum M, Perlmutter D. Bile acid transport by the rat liver canalicular bile acid transport/ecto-ATPase protein is dependent on ATP but not on its own ecto-ATPase activity. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42016-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
137
|
Chapter 21 Periplasm. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
138
|
Fischbarg J, Cheung M, Czegledy F, Li J, Iserovich P, Kuang K, Hubbard J, Garner M, Rosen OM, Golde DW. Evidence that facilitative glucose transporters may fold as beta-barrels. Proc Natl Acad Sci U S A 1993; 90:11658-62. [PMID: 8265604 PMCID: PMC48043 DOI: 10.1073/pnas.90.24.11658] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A widely accepted model for the structure of the facilitative glucose transporters (GLUTs) predicts that they form 12 transmembrane alpha-helices and that the highly conserved sequence Ile-386-Ala-405 in GLUT1 is intracellular. We raised a polyclonal antibody against a synthetic peptide encompassing this conserved sequence and found that antibody treatment increased 2-deoxy-D-glucose (DOG) uptake in Xe-nopus oocytes expressing GLUT1, GLUT2, or GLUT4 only when applied to the extracellular side. This effect was dose dependent and was specifically blocked by competition with the peptide Ile-386-Ala-405; it was due to a decrease in the Km for the transport of DOG. To ascertain GLUT orientation, we raised anti-peptide antibodies against the last 21 and 25 C-terminal amino acids of GLUT1 and GLUT4, respectively, which were previously shown to be intracellular. These antibodies increased DOG uptake when injected into oocytes expressing GLUT1 and GLUT4, but not when added extracellularly. Prompted by the noted discrepancy, we found sequence similarity between GLUTs and porins, two of which are known from crystallography to form 16-stranded transmembrane antiparallel beta-barrels. Analysis of the hydrophobicity, amphiphilicity, and turn propensity of GLUT1 leads us to propose that GLUTs fold as porin-like transmembrane beta-barrels. This model is consistent with the results of the present antibody studies and also with previously published experimental evidence inconsistent with the 12-helix model.
Collapse
Affiliation(s)
- J Fischbarg
- Department of Physiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Klebba PE, Rutz JM, Liu J, Murphy CK. Mechanisms of TonB-catalyzed iron transport through the enteric bacterial cell envelope. J Bioenerg Biomembr 1993; 25:603-11. [PMID: 8144489 DOI: 10.1007/bf00770247] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The recent solution of enteric bacterial porin structure, and new insights into the mechanism by which outer membrane receptor proteins recognize and internalize specific ligands, advocates the re-evaluation of TonB-dependent transport physiology. In this minireview we discuss the potential structural features of siderophore receptors and TonB, and use this analysis to evaluate both existing and new models of energy and signal transduction from the inner membrane to the outer membrane of gram-negative bacteria.
Collapse
Affiliation(s)
- P E Klebba
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226
| | | | | | | |
Collapse
|
140
|
Abstract
TonB protein couples cytoplasmic membrane electrochemical potential to active transport of iron-siderophore complexes and vitamin B12 through high-affinity outer membrane receptors of Gram-negative bacteria. The mechanism of energy transduction remains to be determined, but important concepts have already begun to emerge. Consistent with its function, TonB is anchored in the cytoplasmic membrane by its uncleaved amino terminus while largely occupying the periplasm. Both the connection to the cytoplasmic membrane and the amino acid sequences of the anchor are essential for activity. TonB directly associates with a number of envelope proteins, among them the outer membrane receptors and cytoplasmic membrane protein ExbB. ExbB and TonB interact through their respective transmembrane domains. ExbB is proposed to recycle TonB to an active conformation following energy transduction to the outer membrane. TonB most likely associates with the outer membrane receptors through its carboxy terminus, which is required for function. In contrast, the novel proline-rich region of TonB can be deleted without affecting function. A model that incorporates this information, as well as tempered speculation, is presented.
Collapse
Affiliation(s)
- K Postle
- Department of Microbiology, Washington State University, Pullman 99164-4233
| |
Collapse
|
141
|
Paugam MF, Morin GT, Smith BD. Metal cation:Glucopyranoside co-transport through a liquid organic membrane. Tetrahedron Lett 1993. [DOI: 10.1016/s0040-4039(00)61490-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
142
|
Liu J, Rutz JM, Feix JB, Klebba PE. Permeability properties of a large gated channel within the ferric enterobactin receptor, FepA. Proc Natl Acad Sci U S A 1993; 90:10653-7. [PMID: 7504275 PMCID: PMC47835 DOI: 10.1073/pnas.90.22.10653] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
FepA is an Escherichia coli outer membrane receptor protein for the siderophore ferric enterobactin. Prior studies conducted in vivo suggested that FepA and other TonB-dependent outer membrane proteins transport ligands by a gated-channel mechanism. To corroborate and extend these findings we have determined the permeability properties of the FepA channel in vitro, by measuring the diffusion rates of hydrophilic nonelectrolytes through the FepA channel in liposome swelling experiments. Like porins, the FepA deletion mutant delta RV showed a size-dependent permeability to oligosaccharides, indicating that it forms a nonspecific, hydrophilic pore. Unlike OmpF and other E. coli porins, however, delta RV proteoliposomes transported stachyose (666 Da) and ferrichrome (740 Da). These data, and other uptake results with a series of maltodextrins of increasing size, confirm the existence of a channel domain within FepA that is considerably larger than OmpF-type pores. These results represent a reconstitution of the channel function of a TonB-dependent receptor protein and establish that FepA contains the largest channel that has been characterized in the E. coli outer membrane.
Collapse
Affiliation(s)
- J Liu
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226
| | | | | | | |
Collapse
|
143
|
Murphy TF, Kirkham C, Lesse AJ. The major heat-modifiable outer membrane protein CD is highly conserved among strains of Branhamella catarrhalis. Mol Microbiol 1993; 10:87-97. [PMID: 7968522 DOI: 10.1111/j.1365-2958.1993.tb00906.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The outer membrane of Branhamella catarrhalis contains a major, heat-modifiable outer membrane protein called CD which has epitopes on the surface of the intact bacterium. The gene encoding CD was cloned and expressed in Escherichia coli. The protein migrates in gels as a doublet, indicating that CD is encoded by single gene whose gene product has two stable conformations. The nucleotide sequence of the gene encoding CD was determined and shows homology with the OprF outer membrane protein of Pseudomonas species. The CD protein contains a proline-rich region, which appears to account for its aberrant migration in gels. Restriction fragment-length analysis of 30 isolates of B. catarrhalis with oligonucleotide probes corresponding to sequences in the CD gene produced identical patterns in Southern blot assays. The major heat-modifiable outer membrane protein CD shares homology with the OprF protein and is highly conserved among strains of B. catarrhalis.
Collapse
Affiliation(s)
- T F Murphy
- Division of Infectious Diseases, State University of New York at Buffalo 14215
| | | | | |
Collapse
|
144
|
Abstract
In the discovery of some general principles of energy transduction, lactic acid bacteria have played an important role. In this review, the energy transducing processes of lactic acid bacteria are discussed with the emphasis on the major developments of the past 5 years. This work not only includes the biochemistry of the enzymes and the bioenergetics of the processes, but also the genetics of the genes encoding the energy transducing proteins. The progress in the area of carbohydrate transport and metabolism is presented first. Sugar translocation involving ATP-driven transport, ion-linked cotransport, heterologous exchange and group translocation are discussed. The coupling of precursor uptake to product product excretion and the linkage of antiport mechanisms to the deiminase pathways of lactic acid bacteria is dealt with in the second section. The third topic relates to metabolic energy conservation by chemiosmotic processes. There is increasing evidence that precursor/product exchange in combination with precursor decarboxylation allows bacteria to generate additional metabolic energy. In the final section transport of nutrients and ions as well as mechanisms to excrete undesirable (toxic) compounds from the cells are discussed.
Collapse
Affiliation(s)
- B Poolman
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| |
Collapse
|
145
|
Abstract
Within the class of integral membrane proteins, the bacterial porins display a remarkable resistance to denaturants and proteases. This stability is probably crucial for the formation of highly ordered, three-dimensional crystals. Structural analysis of these crystals has been possible in atomic detail. This analysis has revealed interesting features, such as the aromatic girdles, and has helped to explain several observations, including the porins' ability to discriminate between polar and non-polar solutes. Recent research has thus improved our understanding of the porins in a qualitative fashion.
Collapse
Affiliation(s)
- G E Schulz
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Freiburg, Germany
| |
Collapse
|
146
|
|
147
|
Abstract
Ions crossing biological membranes are described as a concentration of charge flowing through a selective open channel of one conformation and analyzed by a combination of Poisson and Nernst-Planck equations and boundary conditions, called the PNP theory for short. The ion fluxes in this theory interact much as ion fluxes interact in biological channels and mediated transporters, provided the theoretical channel contains permanent charge and has selectivity created by (electro-chemical) resistance at its ends. Interaction occurs because the flux of different ionic species depends on the same electric field. That electric field is a variable, changing with experimental conditions because the screening (i.e., shielding) of the permanent charge within the channel changes with experimental conditions. For example, the screening of charge and the shape of the electric field depend on the concentration of all ionic species on both sides of the channel. As experimental interventions vary the screening, the electric field varies, and thus the flux of each ionic species varies conjointly, and is, in that sense, coupled. Interdependence and interaction are the rule, independence is the exception, in this channel.
Collapse
Affiliation(s)
- D P Chen
- Department of Physiology, Rush Medical College, Chicago, Illinois 60612
| | | |
Collapse
|
148
|
Thorstenson YR, Kuldau GA, Zambryski PC. Subcellular localization of seven VirB proteins of Agrobacterium tumefaciens: implications for the formation of a T-DNA transport structure. J Bacteriol 1993; 175:5233-41. [PMID: 8349563 PMCID: PMC204991 DOI: 10.1128/jb.175.16.5233-5241.1993] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Plant cell transformation by Agrobacterium tumefaciens involves the transfer of a single-stranded DNA-protein complex (T-complex) from the bacterium to the plant cell. One of the least understood and important aspects of this process is how the T-complex exits the bacterium. The eleven virB gene products have been proposed to specify the DNA export channel on the basis of their predicted hydrophobicity. To determine the cellular localization of the VirB proteins, two different cell fractionation methods were employed to separate inner and outer membranes. Seven VirB-specific antibodies were used on Western blots (immunoblots) to detect the proteins in the inner and outer membranes and soluble (containing cytoplasm and periplasm) fractions. VirB5 was in both the inner membrane and cytoplasm. Six of the VirB proteins were detected in the membrane fractions only. Three of these, VirB8, VirB9, and VirB10, were present in both inner and outer membrane fractions regardless of the fractionation method used. Three additional VirB proteins, VirB1, VirB4, and VirB11, were found mainly in the inner membrane fraction by one method and were found in both inner and outer membrane fractions by a second method. These results confirm the membrane localization of seven VirB proteins and strengthen the hypothesis that VirB proteins are involved in the formation of a T-DNA export channel or gate. That most of the VirB proteins analyzed are found in both inner and outer membrane fractions suggest that they form a complex pore structure that spans both membranes, and their relative amounts in the two membrane fractions reflect their differential sensitivity to the experimental conditions.
Collapse
Affiliation(s)
- Y R Thorstenson
- Plant Biology Department, University of California, Berkeley 94720
| | | | | |
Collapse
|
149
|
Betton JM, Martineau P, Saurin W, Hofnung M. Location of tolerated insertions/deletions in the structure of the maltose binding protein. FEBS Lett 1993; 325:34-8. [PMID: 8513890 DOI: 10.1016/0014-5793(93)81409-s] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In a previous study [(1987) J. Mol. Biol. 194, 663-673], we isolated ten insertion/deletion mutants (indels) of the maltose binding protein for which the maltose binding constant was only a little or not at all affected. In this paper, we have localized these mutations in the recently solved three-dimensional structure. Contrary to the general expectation, most of the insertion/deletion modifications occurred within elements of secondary structure. An analysis of the inserted residues for three indels found within alpha helices allowed an interpretation regarding protein structure accommodation to such modifications.
Collapse
Affiliation(s)
- J M Betton
- Département des Biotechnologies, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
150
|
Tam R, Saier MH. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 1993; 57:320-46. [PMID: 8336670 PMCID: PMC372912 DOI: 10.1128/mr.57.2.320-346.1993] [Citation(s) in RCA: 392] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extracellular solute-binding proteins of bacteria serve as chemoreceptors, recognition constituents of transport systems, and initiators of signal transduction pathways. Over 50 sequenced periplasmic solute-binding proteins of gram-negative bacteria and homologous extracytoplasmic lipoproteins of gram-positive bacteria have been analyzed for sequence similarities, and their degrees of relatedness have been determined. Some of these proteins are homologous to cytoplasmic transcriptional regulatory proteins of bacteria; however, with the sole exception of the vitamin B12-binding protein of Escherichia coli, which is homologous to human glutathione peroxidase, they are not demonstrably homologous to any of the several thousand sequenced eukaryotic proteins. Most of these proteins fall into eight distinct clusters as follows. Cluster 1 solute-binding proteins are specific for malto-oligosaccharides, multiple oligosaccharides, glycerol 3-phosphate, and iron. Cluster 2 proteins are specific for galactose, ribose, arabinose, and multiple monosaccharides, and they are homologous to a number of transcriptional regulatory proteins including the lactose, galactose, and fructose repressors of E. coli. Cluster 3 proteins are specific for histidine, lysine-arginine-ornithine, glutamine, octopine, nopaline, and basic amino acids. Cluster 4 proteins are specific for leucine and leucine-isoleucine-valine, and they are homologous to the aliphatic amidase transcriptional repressor, AmiC, of Pseudomonas aeruginosa. Cluster 5 proteins are specific for dipeptides and oligopeptides as well as nickel. Cluster 6 proteins are specific for sulfate, thiosulfate, and possibly phosphate. Cluster 7 proteins are specific for dicarboxylates and tricarboxylates, but these two proteins exhibit insufficient sequence similarity to establish homology. Finally, cluster 8 proteins are specific for iron complexes and possibly vitamin B12. Members of each cluster of binding proteins exhibit greater sequence conservation in their N-terminal domains than in their C-terminal domains. Signature sequences for these eight protein families are presented. The results reveal that binding proteins specific for the same solute from different bacteria are generally more closely related to each other than are binding proteins specific for different solutes from the same organism, although exceptions exist. They also suggest that a requirement for high-affinity solute binding imposes severe structural constraints on a protein. The occurrence of two distinct classes of bacterial cytoplasmic repressor proteins which are homologous to two different clusters of periplasmic binding proteins suggests that the gene-splicing events which allowed functional conversion of these proteins with retention of domain structure have occurred repeatedly during evolutionary history.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Tam
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|