101
|
Jury CP, Toonen RJ. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Proc Biol Sci 2020; 286:20190614. [PMID: 31088274 DOI: 10.1098/rspb.2019.0614] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Coral reefs have great biological and socioeconomic value, but are threatened by ocean acidification, climate change and local human impacts. The capacity for corals to adapt or acclimatize to novel environmental conditions is unknown but fundamental to projected reef futures. The coral reefs of Kāne'ohe Bay, Hawai'i were devastated by anthropogenic insults from the 1930s to 1970s. These reefs experience naturally reduced pH and elevated temperature relative to many other Hawaiian reefs which are not expected to face similar conditions for decades. Despite catastrophic loss in coral cover owing to human disturbance, these reefs recovered under low pH and high temperature within 20 years after sewage input was diverted. We compare the pH and temperature tolerances of three dominant Hawaiian coral species from within Kāne'ohe Bay to conspecifics from a nearby control site and show that corals from Kāne'ohe are far more resistant to acidification and warming. These results show that corals can have different pH and temperature tolerances among habitats and understanding the mechanisms by which coral cover rebounded within two decades under projected future ocean conditions will be critical to management. Together these results indicate that reducing human stressors offers hope for reef resilience and effective conservation over coming decades.
Collapse
Affiliation(s)
- Christopher P Jury
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa , Kāne'ohe, HI , USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa , Kāne'ohe, HI , USA
| |
Collapse
|
102
|
Dalton SJ, Carroll AG, Sampayo E, Roff G, Harrison PL, Entwistle K, Huang Z, Salih A, Diamond SL. Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from El Niño to La Niña. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136951. [PMID: 32014776 DOI: 10.1016/j.scitotenv.2020.136951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
The frequency and intensity of marine heatwaves that result in coral bleaching events have increased over recent decades and led to catastrophic losses of reef-building corals in many regions. The high-latitude coral assemblages at Lord Howe Island, which is a UNESCO listed site is the world southernmost coral community, were exposed to successive thermal anomalies following a fast phase-transition of the record-breaking 2009 to 2010 warm pool El Niño in the Central Pacific to a strong La Niña event in late 2010. The coral community experienced severe and unprecedented consecutive bleaching in both 2010 and 2011. Coral health surveys completed between March 2010 and September 2012 quantified the response and recovery of approximately 43,700 coral colonies to these successive marine heatwaves. In March 2010, coral bleaching ranged from severe, with 99% of colonies bleached at some shallow lagoon sites, to mild at deeper reef slope sites, with only 17% of individuals affected. Significant immediate mortality from thermal stress was evident during the peak of the bleaching event. Overall, species in the genera Pocillopora, Stylophora, Seriatopora and Porites were the most affected, while minimal bleaching and mortality was recorded among members of other coral families (e.g. Acroporidae, Dendrophyllidae & Merulinidae). Surviving corals underwent a subsequent, but much less intense, thermal anomaly in 2011 that led to a disproportionate bleaching response among susceptible taxa. While this observation indicates that the capacity of thermally susceptible high-latitude corals to acclimatize to future ocean warming may be limited, particularly if bleaching events occur annually, our long-term survey data shows that coral cover at most sites recovered to pre-bleaching levels within three years in the absence of further thermal anomalies.
Collapse
Affiliation(s)
- Steven J Dalton
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia.
| | - Andrew G Carroll
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia; National Earth and Marine Observations Branch, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
| | - Eugenia Sampayo
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - George Roff
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Peter L Harrison
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
| | - Kristina Entwistle
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
| | - Zhi Huang
- National Earth and Marine Observations Branch, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
| | - Anya Salih
- Western Sydney University, Confocal Bio-Imaging Facility, Hawkesbury Campus, PO Box 1797, Penrith, NSW 2751, Australia
| | - Sandra L Diamond
- Western Sydney University, School of Science and Health, Hawkesbury Campus, Box 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
103
|
McManus LC, Vasconcelos VV, Levin SA, Thompson DM, Kleypas JA, Castruccio FS, Curchitser EN, Watson JR. Extreme temperature events will drive coral decline in the Coral Triangle. GLOBAL CHANGE BIOLOGY 2020; 26:2120-2133. [PMID: 31883173 DOI: 10.1111/gcb.14972] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 05/12/2023]
Abstract
In light of rapid environmental change, quantifying the contribution of regional- and local-scale drivers of coral persistence is necessary to characterize fully the resilience of coral reef systems. To assess multiscale responses to thermal perturbation of corals in the Coral Triangle (CT), we developed a spatially explicit metacommunity model with coral-algal competition, including seasonal larval dispersal and external spatiotemporal forcing. We tested coral sensitivity in 2,083 reefs across the CT region and surrounding areas under potential future temperature regimes, with and without interannual climate variability, exploring a range of 0.5-2.0°C overall increase in temperature in the system by 2054. We found that among future projections, reef survival probability and mean percent coral cover over time were largely determined by the presence or absence of interannual sea surface temperature (SST) extremes as well as absolute temperature increase. Overall, reefs that experienced SST time series that were filtered to remove interannual variability had approximately double the chance of survival than reefs subjected to unfiltered SST. By the end of the forecast period, the inclusion of thermal anomalies was equivalent to an increase of at least 0.5°C in SST projections without anomalies. Change in percent coral cover varied widely across the region within temperature scenarios, with some reefs experiencing local extinction while others remaining relatively unchanged. Sink strength and current thermal stress threshold were found to be significant drivers of these patterns, highlighting the importance of processes that underlie larval connectivity and bleaching sensitivity in coral networks.
Collapse
Affiliation(s)
- Lisa C McManus
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Vítor V Vasconcelos
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Diane M Thompson
- Department of Geoscience, University of Arizona, Tucson, AZ, USA
| | - Joan A Kleypas
- National Center for Atmospheric Research, Boulder, CO, USA
| | | | - Enrique N Curchitser
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - James R Watson
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
104
|
DeCarlo TM, Harrison HB, Gajdzik L, Alaguarda D, Rodolfo-Metalpa R, D'Olivo J, Liu G, Patalwala D, McCulloch MT. Acclimatization of massive reef-building corals to consecutive heatwaves. Proc Biol Sci 2020; 286:20190235. [PMID: 30836872 PMCID: PMC6458333 DOI: 10.1098/rspb.2019.0235] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reef-building corals typically live close to the upper limits of their thermal tolerance and even small increases in summer water temperatures can lead to bleaching and mortality. Projections of coral reef futures based on forecasts of ocean temperatures indicate that by the end of this century, corals will experience their current thermal thresholds annually, which would lead to the widespread devastation of coral reef ecosystems. Here, we use skeletal cores of long-lived Porites corals collected from 14 reefs across the northern Great Barrier Reef, the Coral Sea, and New Caledonia to evaluate changes in their sensitivity to heat stress since 1815. High-density 'stress bands'-indicative of past bleaching-first appear during a strong pre-industrial El Niño event in 1877 but become significantly more frequent in the late twentieth and early twenty-first centuries in accordance with rising temperatures from anthropogenic global warming. However, the proportion of cores with stress bands declines following successive bleaching events in the twenty-first century despite increasing exposure to heat stress. Our findings demonstrate an increase in the thermal tolerance of reef-building corals and offer a glimmer of hope that at least some coral species can acclimatize fast enough to keep pace with global warming.
Collapse
Affiliation(s)
- Thomas M DeCarlo
- 1 Australian Research Council Centre of Excellence for Coral Reef Studies, Oceans Graduate School, The University of Western Australia , Crawley, Western Australia 6009 , Australia
| | - Hugo B Harrison
- 3 Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University , Townsville, Queensland 4811 , Australia
| | - Laura Gajdzik
- 4 School of Molecular and Life Sciences, TrEnD Laboratory, Curtin University , Western Australia 6102 , Australia
| | - Diego Alaguarda
- 5 Mediterranean Institute of Oceanography, Aix-Marseille University , Campus de Luminy, Marseille 13009 , France
| | | | - Juan D'Olivo
- 1 Australian Research Council Centre of Excellence for Coral Reef Studies, Oceans Graduate School, The University of Western Australia , Crawley, Western Australia 6009 , Australia
| | - Gang Liu
- 7 US National Oceanic and Atmospheric Administration, Coral Reef Watch , College Park, MD 20740 , USA.,8 Earth System Science Interdisciplinary Center/Cooperative Institute for Climate and Satellites-Maryland, University of Maryland , College Park, MD 20740 , USA
| | - Diana Patalwala
- 2 Centre for Microscopy, Characterisation and Analysis, The University of Western Australia , Crawley, Western Australia 6009 , Australia
| | - Malcolm T McCulloch
- 1 Australian Research Council Centre of Excellence for Coral Reef Studies, Oceans Graduate School, The University of Western Australia , Crawley, Western Australia 6009 , Australia
| |
Collapse
|
105
|
Contrasting color loss and restoration in survivors of the 2014–2017 coral bleaching event in the Turks and Caicos Islands. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
AbstractCoral cover throughout the Caribbean region has declined by approximately 80% since the 1970s (Gardner et al. in Ecology 86(1):174–184, 2005) attributed to a combination of environmental and anthropogenic factors, including ocean acidification, rising sea surface temperatures, increased susceptibility to disease, as well as increased frequency and strength of storms, development stress, and increased sediment and nutrient loads. Three Global Bleaching Events (GBE) coincide directly with El Niño warming phases in El Niño-Southern Oscillation cycle (1997–1998, 2009–2010, and 2014–2017). This study focuses the effects of anomalously high sea surface temperatures on Turks and Caicos Islands coral taxa during the 2014–2017 GBE. Interannual and interspecific variability in coral health offshore of South Caicos Island were evaluated between 2012 and 2018 using the CoralWatch citizen science Coral Health Chart method along belt transects at four dive survey sites. The study includes 104 site surveys conducted from 15 October 2012 to 18 July 2018. Coral health was assessed for the 35 principal coral taxa and 5646 individual corals. Data indicates that all coral taxa at the study sites were resilient to the maximum regional thermal stress during the 2014–2017 GBE, with boulder-type corals showing no significant bleaching as a result of the peak thermal stress in late 2015 and plate-type corals responding with a significant (p < 0.05) bleaching signal (i.e., coral color reductions), rebounding to pre-GBE pigmentations within months of the anomalously-high thermal stress. Boulder coral types were significantly healthier in 2017 than in 2014 when using coral color as a health diagnostic.
Collapse
|
106
|
Ainsworth TD, Hurd CL, Gates RD, Boyd PW. How do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes? GLOBAL CHANGE BIOLOGY 2020; 26:343-354. [PMID: 31873988 DOI: 10.1111/gcb.14901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 05/06/2023]
Abstract
Extreme heat wave events are now causing ecosystem degradation across marine ecosystems. The consequences of this heat-induced damage range from the rapid loss of habitat-forming organisms, through to a reduction in the services that ecosystems support, and ultimately to impacts on human health and society. How we tackle the sudden emergence of ecosystem-wide degradation has not yet been addressed in the context of marine heat waves. An examination of recent marine heat waves from around Australia points to the potential important role that respite or refuge from environmental extremes can play in enabling organismal survival. However, most ecological interventions are being devised with a target of mid to late-century implementation, at which time many of the ecosystems, that the interventions are targeted towards, will have already undergone repeated and widespread heat wave induced degradation. Here, our assessment of the merits of proposed ecological interventions, across a spectrum of approaches, to counter marine environmental extremes, reveals a lack preparedness to counter the effects of extreme conditions on marine ecosystems. The ecological influence of these extremes are projected to continue to impact marine ecosystems in the coming years, long before these interventions can be developed. Our assessment reveals that approaches which are technologically ready and likely to be socially acceptable are locally deployable only, whereas those which are scalable-for example to features as large as major reef systems-are not close to being testable, and are unlikely to obtain social licence for deployment. Knowledge of the environmental timescales for survival of extremes, via respite or refuge, inferred from field observations will help test such intervention tools. The growing frequency of extreme events such as marine heat waves increases the urgency to consider mitigation and intervention tools that support organismal and ecosystem survival in the immediate future, while global climate mitigation and/or intervention are formulated.
Collapse
Affiliation(s)
- Tracy D Ainsworth
- Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Ruth D Gates
- Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| |
Collapse
|
107
|
Drury C. Resilience in reef-building corals: The ecological and evolutionary importance of the host response to thermal stress. Mol Ecol 2020; 29:448-465. [PMID: 31845413 DOI: 10.1111/mec.15337] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Coral reefs are under extreme threat due to a number of stressors, but temperature increases due to changing climate are the most severe. Rising ocean temperatures coupled with local extremes lead to extensive bleaching, where the coral-algal symbiosis breaks down and corals may die, compromising the structure and function of reefs. Although the symbiotic nature of the coral colony has historically been a focus of research on coral resilience, the host itself is a foundational component in the response to thermal stress. Fixed effects in the coral host set trait baselines through evolutionary processes, acting on many loci of small effect to create mosaics of thermal tolerance across latitudes and individual coral reefs. These genomic differences can be strongly heritable, producing wide variation among clones of different genotypes or families of a specific larval cross. Phenotypic plasticity is overlaid on these baselines and a growing body of knowledge demonstrates the potential for acclimatization of reef-building corals through a variety of mechanisms that promote resilience and stress tolerance. The long-term persistence of coral reefs will require many of these mechanisms to adjust to warmer temperatures within a generation, bridging the gap to reproductive events that allow recombination of standing diversity and adaptive change. Business-as-usual climate scenarios will probably lead to the loss of some coral populations or species in the future, so the interaction between intragenerational effects and evolutionary pressure is critical for the survival of reefs.
Collapse
|
108
|
Suggett DJ, Smith DJ. Coral bleaching patterns are the outcome of complex biological and environmental networking. GLOBAL CHANGE BIOLOGY 2020; 26:68-79. [PMID: 31618499 DOI: 10.1111/gcb.14871] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/20/2019] [Indexed: 05/26/2023]
Abstract
Continued declines in coral reef health over the past three decades have been punctuated by severe mass coral bleaching-induced mortality events that have grown in intensity and frequency under climate change. Intensive global research efforts have therefore persistently focused on bleaching phenomena to understand where corals bleach, when and why-resulting in a large-yet still somewhat patchy-knowledge base. Particularly catastrophic bleaching-induced coral mortality events in the past 5 years have catalyzed calls for a more diverse set of reef management tools, extending far beyond climate mitigation and reef protection, to also include more aggressive interventions. However, the effectiveness of these various tools now rests on rapidly assimilating our knowledge base of coral bleaching into more integrated frameworks. Here, we consider how the past three decades of intensive coral bleaching research has established the basis for complex biological and environmental networks, which together regulate outcomes of bleaching severity. We discuss how we now have enough scaffold for conceptual biological and environmental frameworks underpinning bleaching susceptibility, but that new tools are urgently required to translate this to an operational system informing-and testing-bleaching outcomes. Specifically, adopting network models that can fully describe and predict metabolic functioning of coral holobionts, and how this functioning is regulated by complex doses and interactions among environmental factors. Identifying knowledge gaps limiting operation of such models is the logical step to immediately guide and prioritize future experiments and observations. We are at a time-critical point where we can implement new capacity to resolve how coral bleaching patterns emerge from complex biological-environmental networks, and so more effectively inform rapidly evolving ecological management and social adaptation frameworks aimed at securing the future of coral reefs.
Collapse
Affiliation(s)
- David J Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Smith
- Coral Reef Research Unit, School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
109
|
Baums IB, Baker AC, Davies SW, Grottoli AG, Kenkel CD, Kitchen SA, Kuffner IB, LaJeunesse TC, Matz MV, Miller MW, Parkinson JE, Shantz AA. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01978. [PMID: 31332879 PMCID: PMC6916196 DOI: 10.1002/eap.1978] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 05/06/2023]
Abstract
Active coral restoration typically involves two interventions: crossing gametes to facilitate sexual larval propagation; and fragmenting, growing, and outplanting adult colonies to enhance asexual propagation. From an evolutionary perspective, the goal of these efforts is to establish self-sustaining, sexually reproducing coral populations that have sufficient genetic and phenotypic variation to adapt to changing environments. Here, we provide concrete guidelines to help restoration practitioners meet this goal for most Caribbean species of interest. To enable the persistence of coral populations exposed to severe selection pressure from many stressors, a mixed provenance strategy is suggested: genetically unique colonies (genets) should be sourced both locally as well as from more distant, environmentally distinct sites. Sourcing three to four genets per reef along environmental gradients should be sufficient to capture a majority of intraspecies genetic diversity. It is best for practitioners to propagate genets with one or more phenotypic traits that are predicted to be valuable in the future, such as low partial mortality, high wound healing rate, high skeletal growth rate, bleaching resilience, infectious disease resilience, and high sexual reproductive output. Some effort should also be reserved for underperforming genets because colonies that grow poorly in nurseries sometimes thrive once returned to the reef and may harbor genetic variants with as yet unrecognized value. Outplants should be clustered in groups of four to six genets to enable successful fertilization upon maturation. Current evidence indicates that translocating genets among distant reefs is unlikely to be problematic from a population genetic perspective but will likely provide substantial adaptive benefits. Similarly, inbreeding depression is not a concern given that current practices only raise first-generation offspring. Thus, proceeding with the proposed management strategies even in the absence of a detailed population genetic analysis of the focal species at sites targeted for restoration is the best course of action. These basic guidelines should help maximize the adaptive potential of reef-building corals facing a rapidly changing environment.
Collapse
Affiliation(s)
- Iliana B. Baums
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Andrew C. Baker
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida33149USA
| | - Sarah W. Davies
- Department of BiologyBoston UniversityBostonMassachusetts02215USA
| | | | - Carly D. Kenkel
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCalifornia90007USA
| | - Sheila A. Kitchen
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Ilsa B. Kuffner
- U.S. Geological Survey600 4th Street S.St. PetersburgFlorida33701USA
| | - Todd C. LaJeunesse
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Mikhail V. Matz
- Department of Integrative BiologyThe University of Texas at AustinAustinTexas78712USA
| | | | - John E. Parkinson
- SECORE InternationalMiamiFlorida33145USA
- Department of Integrative BiologyUniversity of South FloridaTampaFlorida33620USA
| | - Andrew A. Shantz
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| |
Collapse
|
110
|
Watkins HM, Goodwin GP. Reflecting on Sacrifices Made by Past Generations Increases a Sense of Obligation Towards Future Generations. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2019; 46:995-1012. [DOI: 10.1177/0146167219883610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tackling climate change presents an intergenerational dilemma: People must make sacrifices today, to benefit future generations. What causes people to feel an obligation to benefit future generations? Past research has suggested “intergenerational reciprocity” as a potential driver, but this research is quite domain specific, and it is unknown how well it applies to climate change. We explored a novel means of invoking a sense of intergenerational reciprocity: inducing reflection on the sacrifices made by previous generations. Our studies revealed that such reflection predicts and causes a heightened sense of moral obligation towards future generations, mediated by gratitude. However, there are also some downsides (e.g., feelings of unworthiness), and perceptions of obligation do not substantially affect pro-environmental attitudes or motivations. Thus, while reflecting on past generations’ sacrifices can generate a sense of intergenerational obligation, it is limited in the extent to which it can increase pro-environmental concern.
Collapse
|
111
|
Tittensor DP, Beger M, Boerder K, Boyce DG, Cavanagh RD, Cosandey-Godin A, Crespo GO, Dunn DC, Ghiffary W, Grant SM, Hannah L, Halpin PN, Harfoot M, Heaslip SG, Jeffery NW, Kingston N, Lotze HK, McGowan J, McLeod E, McOwen CJ, O’Leary BC, Schiller L, Stanley RRE, Westhead M, Wilson KL, Worm B. Integrating climate adaptation and biodiversity conservation in the global ocean. SCIENCE ADVANCES 2019; 5:eaay9969. [PMID: 31807711 PMCID: PMC6881166 DOI: 10.1126/sciadv.aay9969] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/01/2019] [Indexed: 05/18/2023]
Abstract
The impacts of climate change and the socioecological challenges they present are ubiquitous and increasingly severe. Practical efforts to operationalize climate-responsive design and management in the global network of marine protected areas (MPAs) are required to ensure long-term effectiveness for safeguarding marine biodiversity and ecosystem services. Here, we review progress in integrating climate change adaptation into MPA design and management and provide eight recommendations to expedite this process. Climate-smart management objectives should become the default for all protected areas, and made into an explicit international policy target. Furthermore, incentives to use more dynamic management tools would increase the climate change responsiveness of the MPA network as a whole. Given ongoing negotiations on international conservation targets, now is the ideal time to proactively reform management of the global seascape for the dynamic climate-biodiversity reality.
Collapse
Affiliation(s)
- Derek P. Tittensor
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
- Corresponding author.
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Kristina Boerder
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Daniel G. Boyce
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Guillermo Ortuño Crespo
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Daniel C. Dunn
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, Australia
| | | | | | - Lee Hannah
- The Moore Center for Science, Conservation International, Arlington, VA, USA
| | - Patrick N. Halpin
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Mike Harfoot
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Susan G. Heaslip
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Nicholas W. Jeffery
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Naomi Kingston
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Heike K. Lotze
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Chris J. McOwen
- UN Environment Programme World Conservation Monitoring Centre, Cambridge, UK
| | - Bethan C. O’Leary
- School of Environment and Life Sciences, University of Salford, Manchester, UK
- Department of Environment and Geography, University of York, York, UK
| | - Laurenne Schiller
- Marine Affairs Program, Dalhousie University, Halifax, NS, Canada
- Ocean Wise, Vancouver, BC, Canada
| | - Ryan R. E. Stanley
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Maxine Westhead
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | | | - Boris Worm
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
112
|
Kersting DK, Linares C. Living evidence of a fossil survival strategy raises hope for warming-affected corals. SCIENCE ADVANCES 2019; 5:eaax2950. [PMID: 31633024 PMCID: PMC6785258 DOI: 10.1126/sciadv.aax2950] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Climate change is affecting reef-building corals worldwide, with little hope for recovery. However, coral fossils hint at the existence of environmental stress-triggered survival strategies unreported in extant colonial corals. We document the living evidence and long-term ecological role of such a survival strategy in which isolated polyps from coral colonies affected by warming adopt a transitory resistance phase, in turn expressing a high recovery capacity in dead colony areas. Such processes have been described in fossil corals as rejuvenescence but were previously unknown in extant reef-builder corals. Our results based on 16 years of monitoring show the significance of this process for unexpected recoveries of coral colonies severely affected by warming. These findings provide a link between rejuvenescence in fossil and extant corals and reveal that beyond adaptation and acclimatization processes, modern scleractinian corals show yet undiscovered and highly effective survival strategies that help them withstand and recover from rapid environmental changes.
Collapse
Affiliation(s)
- Diego K. Kersting
- Working Group on Geobiology and Anthropocene Research, Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
113
|
Mamo LT, Benkendorff K, Butcherine P, Coleman MA, Ewere EE, Miranda RJ, Wernberg T, Kelaher BP. Resilience of a harvested gastropod, Turbo militaris, to marine heatwaves. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104769. [PMID: 31431393 DOI: 10.1016/j.marenvres.2019.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Marine heatwaves (MHW) are predicted to occur with increased frequency, duration and intensity in a changing climate, with pervasive ecological and socioeconomic consequences. While there is a growing understanding of the ecological impacts of warming and marine heatwaves, much less is known about how they influence the underlying physiology and health of species, and the nutritional properties of tissue. We evaluated the effects of different heatwave scenarios and ocean warming on the nutritional properties and immune health of the harvested gastropod Turbo militaris. Neither heatwave scenarios nor elevated temperatures had significant impacts on morphometrics, proximate composition or inorganic content of T. militaris. However, an increased moisture content and non-significant trends, such as elevated amount of lipids, and an increased number of hemocytes in the blood of T. militaris in the heatwave treatments were suggestive of mild stress. Overall, our study suggests that T. militaris is resilient to marine heatwaves and warming, although delayed, additive or synergistic stress responses cannot be ruled out. Understanding the possible effects of ocean warming and heatwaves on fisheries species could improve management actions to avoid species impacts, socioeconomic losses and negative effects to ecosystem service provision in a changing climate.
Collapse
Affiliation(s)
- Lea T Mamo
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia
| | - Kirsten Benkendorff
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, 2480, Lismore, NSW, Australia.
| | - Peter Butcherine
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia; Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, 2480, Lismore, NSW, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia; Department of Primary Industries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| | - Endurance E Ewere
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, 2480, Lismore, NSW, Australia
| | - Ricardo J Miranda
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia; Institute of Biological and Health Sciences, Federal University of Alagoas, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-90, Maceió, AL, Brazil
| | - Thomas Wernberg
- UWA Oceans Institute, School of Plant Biology, University of Western Australia, Crawley, 6009, WA, Australia
| | - Brendan P Kelaher
- National Marine Science Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW, 2450, Australia; Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, 2480, Lismore, NSW, Australia
| |
Collapse
|
114
|
Schoepf V, Carrion SA, Pfeifer SM, Naugle M, Dugal L, Bruyn J, McCulloch MT. Stress-resistant corals may not acclimatize to ocean warming but maintain heat tolerance under cooler temperatures. Nat Commun 2019; 10:4031. [PMID: 31530800 PMCID: PMC6748961 DOI: 10.1038/s41467-019-12065-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/13/2019] [Indexed: 11/27/2022] Open
Abstract
Naturally heat-resistant coral populations hold significant potential for facilitating coral reef survival under rapid climate change. However, it remains poorly understood whether they can acclimatize to ocean warming when superimposed on their already thermally-extreme habitats. Furthermore, it is unknown whether they can maintain their heat tolerance upon larval dispersal or translocation to cooler reefs. We test this in a long-term mesocosm experiment using stress-resistant corals from thermally-extreme reefs in NW Australia. We show that these corals have a remarkable ability to maintain their heat tolerance and health despite acclimation to 3-6 °C cooler, more stable temperatures over 9 months. However, they are unable to increase their bleaching thresholds after 6-months acclimation to + 1 °C warming. This apparent rigidity in the thermal thresholds of even stress-resistant corals highlights the increasing vulnerability of corals to ocean warming, but provides a rationale for human-assisted migration to restore cooler, degraded reefs with corals from thermally-extreme reefs.
Collapse
Affiliation(s)
- Verena Schoepf
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Steven A Carrion
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- School of Geosciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, UK
| | - Svenja M Pfeifer
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- Department of Biology, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Melissa Naugle
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Laurence Dugal
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Jennifer Bruyn
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Malcolm T McCulloch
- Oceans Graduate School and UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
115
|
Bible JM, Evans TG, Sanford E. Differences in induced thermotolerance among populations of Olympia oysters. Comp Biochem Physiol A Mol Integr Physiol 2019; 239:110563. [PMID: 31493552 DOI: 10.1016/j.cbpa.2019.110563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 01/24/2023]
Abstract
An organism's ability to cope with thermal stress is an important predictor of survival in a changing climate. One way in which organisms may acclimatize to thermal stress in the short-term is through induced thermotolerance, whereby exposure to a sublethal heat shock enables the organism to subsequently survive what might otherwise be a lethal event. Whether induced thermotolerance is related to basal thermotolerance is not well understood for marine organisms. Furthermore, whether populations often differ in their capacity for induced thermotolerance is also unclear. Here, we tested for differences in basal thermotolerance and induced thermotolerance among six populations of Olympia oysters (Ostrea lurida) from three California estuaries. Oysters were raised under common-garden laboratory conditions for a generation and then exposed to two treatments (control or sublethal heat shock) followed by a spectrum of temperatures that bound the upper critical temperature in order to determine LT50 (temperature at which 50% of the population dies). All populations exhibited induced thermotolerance by increasing their LT50 to a similar maximum temperature when extreme thermal stress was preceded by a sublethal heat shock. However, populations differed in their basal thermotolerance and their plasticity in thermotolerance. Populations with the highest basal thermotolerance were least able to modify upper critical temperature, while the population with the lowest basal thermotolerance exhibited the greatest plasticity in the upper critical temperature. Our results highlight that populations with high basal thermotolerance may be most vulnerable to climate warming because they lack the plasticity required to adjust their upper thermal limits.
Collapse
Affiliation(s)
- Jillian M Bible
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, CA 94923, USA; Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Tyler G Evans
- Department of Biological Sciences, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA
| | - Eric Sanford
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, CA 94923, USA; Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
116
|
Cziesielski MJ, Schmidt‐Roach S, Aranda M. The past, present, and future of coral heat stress studies. Ecol Evol 2019; 9:10055-10066. [PMID: 31534713 PMCID: PMC6745681 DOI: 10.1002/ece3.5576] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
The global loss and degradation of coral reefs, as a result of intensified frequency and severity of bleaching events, is a major concern. Evidence of heat stress affecting corals through loss of symbionts and consequent coral bleaching was first reported in the 1930s. However, it was not until the 1998 major global bleaching event that the urgency for heat stress studies became internationally recognized. Current efforts focus not only on examining the consequences of heat stress on corals but also on finding strategies to potentially improve thermal tolerance and aid coral reefs survival in future climate scenarios. Although initial studies were limited in comparison with modern technological tools, they provided the foundation for many of today's research methods and hypotheses. Technological advancements are providing new research prospects at a rapid pace. Understanding how coral heat stress studies have evolved is important for the critical assessment of their progress. This review summarizes the development of the field to date and assesses avenues for future research.
Collapse
Affiliation(s)
- Maha J. Cziesielski
- Red Sea Research CenterDivision of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Sebastian Schmidt‐Roach
- Red Sea Research CenterDivision of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Manuel Aranda
- Red Sea Research CenterDivision of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
117
|
Leggat WP, Camp EF, Suggett DJ, Heron SF, Fordyce AJ, Gardner S, Deakin L, Turner M, Beeching LJ, Kuzhiumparambil U, Eakin CM, Ainsworth TD. Rapid Coral Decay Is Associated with Marine Heatwave Mortality Events on Reefs. Curr Biol 2019; 29:2723-2730.e4. [DOI: 10.1016/j.cub.2019.06.077] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
|
118
|
Hock K, Doropoulos C, Gorton R, Condie SA, Mumby PJ. Split spawning increases robustness of coral larval supply and inter-reef connectivity. Nat Commun 2019; 10:3463. [PMID: 31371712 PMCID: PMC6671964 DOI: 10.1038/s41467-019-11367-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/28/2019] [Indexed: 02/02/2023] Open
Abstract
Many habitat-building corals undergo mass synchronous spawning events. Yet, despite the enormous amounts of larvae produced, larval dispersal from a single spawning event and the reliability of larval supply are highly dependent on vagaries of ocean currents. However, colonies from the same population will occasionally spawn over successive months. These split spawning events likely help to realign reproduction events to favourable environmental conditions. Here, we show that split spawning may benefit corals by increasing the reliability of larval supply. By modelling the dispersal of coral larvae across Australia's Great Barrier Reef, we find that split spawning increased the diversity of sources and reliability of larval supply the reefs could receive, especially in regions with low and intrinsically variable connectivity. Such increased larval supply might help counteract the expected declines in reproductive success associated with split spawning events.
Collapse
Affiliation(s)
- Karlo Hock
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane, St Lucia, 4067, Australia. .,ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, St Lucia, 4067, Australia.
| | - Christopher Doropoulos
- Oceans & Atmosphere, Commonwealth Scientific and Industrial Research Organisation, St Lucia, 4067, Australia
| | - Rebecca Gorton
- Oceans & Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, 7000, Australia
| | - Scott A Condie
- Oceans & Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, 7000, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, Brisbane, St Lucia, 4067, Australia.,ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, St Lucia, 4067, Australia
| |
Collapse
|
119
|
Hernández-Elizárraga VH, Olguín-López N, Hernández-Matehuala R, Ocharán-Mercado A, Cruz-Hernández A, Guevara-González RG, Caballero-Pérez J, Ibarra-Alvarado C, Sánchez-Rodríguez J, Rojas-Molina A. Comparative Analysis of the Soluble Proteome and the Cytolytic Activity of Unbleached and Bleached Millepora complanata ("Fire Coral") from the Mexican Caribbean. Mar Drugs 2019; 17:E393. [PMID: 31277227 PMCID: PMC6669453 DOI: 10.3390/md17070393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/24/2023] Open
Abstract
Coral bleaching caused by global warming has resulted in massive damage to coral reefs worldwide. Studies addressing the consequences of elevated temperature have focused on organisms of the class Anthozoa, and up to now, there is little information regarding the mechanisms by which reef forming Hydrozoans face thermal stress. In this study, we carried out a comparative analysis of the soluble proteome and the cytolytic activity of unbleached and bleached Millepora complanata ("fire coral") that inhabited reef colonies exposed to the 2015-2016 El Niño-Southern Oscillation in the Mexican Caribbean. A differential proteomic response involving proteins implicated in key cellular processes, such as glycolysis, DNA repair, stress response, calcium homeostasis, exocytosis, and cytoskeleton organization was found in bleached hydrocorals. Four of the proteins, whose levels increased in bleached specimens, displayed sequence similarity to a phospholipase A2, an astacin-like metalloprotease, and two pore forming toxins. However, a protein, which displayed sequence similarity to a calcium-independent phospholipase A2, showed lower levels in bleached cnidarians. Accordingly, the hemolytic effect of the soluble proteome of bleached hydrocorals was significantly higher, whereas the phospholipase A2 activity was significantly reduced. Our results suggest that bleached M. complanata is capable of increasing its toxins production in order to balance the lack of nutrients supplied by its symbionts.
Collapse
Affiliation(s)
- Víctor Hugo Hernández-Elizárraga
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrea Ocharán-Mercado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrés Cruz-Hernández
- Laboratorio de Biología Molecular. Escuela de Agronomía, Universidad de La Salle Bajío, Av. Universidad 15 602, Colonia Lomas del Campestre, C.P. 37150 León, Guanajuato, México
| | - Ramón Gerardo Guevara-González
- C.A Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km. 1, S/N, C.P. 76265 Amazcala, El Marqués, Querétaro, México
| | - Juan Caballero-Pérez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Judith Sánchez-Rodríguez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes S/N, Puerto Morelos, C.P. 77580 Quintana Roo, México
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México.
| |
Collapse
|
120
|
Mellin C, Matthews S, Anthony KRN, Brown SC, Caley MJ, Johns KA, Osborne K, Puotinen M, Thompson A, Wolff NH, Fordham DA, MacNeil MA. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. GLOBAL CHANGE BIOLOGY 2019; 25:2431-2445. [PMID: 30900790 DOI: 10.1111/gcb.14625] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 05/14/2023]
Abstract
In the face of increasing cumulative effects from human and natural disturbances, sustaining coral reefs will require a deeper understanding of the drivers of coral resilience in space and time. Here we develop a high-resolution, spatially explicit model of coral dynamics on Australia's Great Barrier Reef (GBR). Our model accounts for biological, ecological and environmental processes, as well as spatial variation in water quality and the cumulative effects of coral diseases, bleaching, outbreaks of crown-of-thorns starfish (Acanthaster cf. solaris), and tropical cyclones. Our projections reconstruct coral cover trajectories between 1996 and 2017 over a total reef area of 14,780 km2 , predicting a mean annual coral loss of -0.67%/year mostly due to the impact of cyclones, followed by starfish outbreaks and coral bleaching. Coral growth rate was the highest for outer shelf coral communities characterized by digitate and tabulate Acropora spp. and exposed to low seasonal variations in salinity and sea surface temperature, and the lowest for inner-shelf communities exposed to reduced water quality. We show that coral resilience (defined as the net effect of resistance and recovery following disturbance) was negatively related to the frequency of river plume conditions, and to reef accessibility to a lesser extent. Surprisingly, reef resilience was substantially lower within no-take marine protected areas, however this difference was mostly driven by the effect of water quality. Our model provides a new validated, spatially explicit platform for identifying the reefs that face the greatest risk of biodiversity loss, and those that have the highest chances to persist under increasing disturbance regimes.
Collapse
Affiliation(s)
- Camille Mellin
- Australian Institute of Marine Science, Townsville MC, Townsville, Qld, Australia
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel Matthews
- Australian Institute of Marine Science, Townsville MC, Townsville, Qld, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Kenneth R N Anthony
- Australian Institute of Marine Science, Townsville MC, Townsville, Qld, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Stuart C Brown
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - M Julian Caley
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Qld, Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, Brisbane, Qld, Australia
| | - Kerryn A Johns
- Australian Institute of Marine Science, Townsville MC, Townsville, Qld, Australia
| | - Kate Osborne
- Australian Institute of Marine Science, Townsville MC, Townsville, Qld, Australia
| | - Marjetta Puotinen
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA, Australia
| | - Angus Thompson
- Australian Institute of Marine Science, Townsville MC, Townsville, Qld, Australia
| | - Nicholas H Wolff
- Global Science, The Nature Conservancy, Brunswick, Maine
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Damien A Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - M Aaron MacNeil
- Australian Institute of Marine Science, Townsville MC, Townsville, Qld, Australia
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
121
|
Genevier LGC, Jamil T, Raitsos DE, Krokos G, Hoteit I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. GLOBAL CHANGE BIOLOGY 2019; 25:2338-2351. [PMID: 30974020 DOI: 10.1111/gcb.14652] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/21/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susceptible to bleaching, using the Red Sea as a model system. Red Sea corals are exceptionally heat-resistant, yet bleaching events have increased in frequency. By applying a strict definition of MHWs on >30 year satellite-derived sea surface temperature observations (1985-2015), we provide an atlas of MHW hotspots over the Red Sea coral reef zones, which includes all MHWs that caused major coral bleaching. We found that: (a) if tuned to a specific set of conditions, MHWs identify all areas where coral bleaching has previously been reported; (b) those conditions extended farther and occurred more often than bleaching was reported; and (c) an emergent pattern of extreme warming events is evident in the northern Red Sea (since 1998), a region until now thought to be a thermal refuge for corals. We argue that bleaching in the Red Sea may be vastly underrepresented. Additionally, although northern Red Sea corals exhibit remarkably high thermal resistance, the rapidly rising incidence of MHWs of high intensity indicates this region may not remain a thermal refuge much longer. As our regionally tuned MHW algorithm was capable of isolating all extreme warming events that have led to documented coral bleaching in the Red Sea, we propose that this approach could be used to reveal bleaching-prone regions in other data-limited tropical regions. It may thus prove a highly valuable tool for policymakers to optimize the sustainable management of coastal economic zones.
Collapse
Affiliation(s)
- Lily G C Genevier
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Tahira Jamil
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Dionysios E Raitsos
- Remote Sensing Group, Plymouth Marine Laboratory, Plymouth, UK
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Krokos
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ibrahim Hoteit
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
122
|
Page CE, Leggat W, Heron SF, Choukroun SM, Lloyd J, Ainsworth TD. Seeking Resistance in Coral Reef Ecosystems: The Interplay of Biophysical Factors and Bleaching Resistance under a Changing Climate. Bioessays 2019; 41:e1800226. [DOI: 10.1002/bies.201800226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/01/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Charlotte E. Page
- Department of Life Sciences Imperial College London Kensington London SW7 2AZ UK
- School of Environmental and Life Sciences University of Newcastle University Dr Callaghan NSW 2308 Australia
- School of Biological Earth and Environmental Sciences (BEES), UNSW Kensington NSW 2033 Australia
| | - William Leggat
- School of Environmental and Life Sciences University of Newcastle University Dr Callaghan NSW 2308 Australia
| | - Scott F. Heron
- Coral Reef Watch U.S. National Oceanic and Atmospheric Administration College Park MD 20740 USA
- Marine Geophysical Laboratory, Physics Department, College of Science and Engineering James Cook University Townsville QLD 4811 Australia
| | - Severine M. Choukroun
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD 4811 Australia
| | - Jon Lloyd
- Department of Life Sciences Imperial College London Kensington London SW7 2AZ UK
| | - Tracy D. Ainsworth
- School of Biological Earth and Environmental Sciences (BEES), UNSW Kensington NSW 2033 Australia
| |
Collapse
|
123
|
Bennett S, Duarte CM, Marbà N, Wernberg T. Integrating within-species variation in thermal physiology into climate change ecology. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180550. [PMID: 31203756 PMCID: PMC6606463 DOI: 10.1098/rstb.2018.0550] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accurately forecasting the response of global biota to warming is a fundamental challenge for ecology in the Anthropocene. Within-species variation in thermal sensitivity, caused by phenotypic plasticity and local adaptation of thermal limits, is often overlooked in assessments of species responses to warming. Despite this, implicit assumptions of thermal niche conservatism or adaptation and plasticity at the species level permeate the literature with potentially important implications for predictions of warming impacts at the population level. Here we review how these attributes interact with the spatial and temporal context of ocean warming to influence the vulnerability of marine organisms. We identify a broad spectrum of thermal sensitivities among marine organisms, particularly in central and cool-edge populations of species distributions. These are characterized by generally low sensitivity in organisms with conserved thermal niches, to high sensitivity for organisms with locally adapted thermal niches. Important differences in thermal sensitivity among marine taxa suggest that warming could adversely affect benthic primary producers sooner than less vulnerable higher trophic groups. Embracing the spatial, temporal and biological context of within-species variation in thermal physiology helps explain observed impacts of ocean warming and can improve forecasts of climate change vulnerability in marine systems. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.
Collapse
Affiliation(s)
- Scott Bennett
- 1 Global Change Research Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB) , Miquel Marquès 21, 07190 Esporles , Spain
| | - Carlos M Duarte
- 2 King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC) , Thuwal 23955-6900 , Saudi Arabia
| | - Núria Marbà
- 1 Global Change Research Group, Institut Mediterrani d'Estudis Avançats (CSIC-UIB) , Miquel Marquès 21, 07190 Esporles , Spain
| | - Thomas Wernberg
- 3 School of Biological Sciences, UWA Oceans Institute, University of Western Australia , Cnr Fairway and Service Road 4, Crawley, WA 6009 , Australia
| |
Collapse
|
124
|
Licuanan WY, Robles R, Reyes M. Status and recent trends in coral reefs of the Philippines. MARINE POLLUTION BULLETIN 2019; 142:544-550. [PMID: 31232337 DOI: 10.1016/j.marpolbul.2019.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Concern about the condition of Philippine coral reefs has prompted a recent reassessment of the status of the nation's reefs, the results of which are reported here. This paper presents the largest updated dataset on Philippine coral cover and generic diversity. The dataset was obtained from equally-sized sampling stations on fore-reef slopes of fringing reefs in six biogeographic regions using identical methods. A total of 206 stations were surveyed from 2014 to 2017, and another 101 stations were monitored from 2015 to 2018. The weighted average hard coral cover (HCC) was 22.8% (±1.2 SE) and coral generic diversity averaged 14.5 (±0.5 SE). Both were highest in the fully-formed reefs of the Sulu Sea biogeographic region and lowest in the eastern Philippines. Comparisons of findings with those of previous assessments show the continued decline in coral cover over a larger time scale, with the loss of about a third of the reef corals over the last decade. However, no consistent changes were evident in the 101 monitoring stations from 2015 to 2018 despite the global coral bleaching event. An expanded monitoring program, not just one-off assessments, is recommended to improve reef management in the Philippines.
Collapse
Affiliation(s)
- W Y Licuanan
- Br. Alfred Shields FSC Ocean Research Center, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines; Biology Department, College of Science, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines.
| | - R Robles
- Br. Alfred Shields FSC Ocean Research Center, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines; Mathematics and Statistics Department, College of Science, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines
| | - M Reyes
- Br. Alfred Shields FSC Ocean Research Center, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines; The Graduate School, University of Santo Tomas, Thomas Aquinas Research Complex, España Boulevard, Manila 1008, Philippines
| |
Collapse
|
125
|
Morris LA, Voolstra CR, Quigley KM, Bourne DG, Bay LK. Nutrient Availability and Metabolism Affect the Stability of Coral-Symbiodiniaceae Symbioses. Trends Microbiol 2019; 27:678-689. [PMID: 30987816 DOI: 10.1016/j.tim.2019.03.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 01/19/2023]
Abstract
Coral reefs rely upon the highly optimized coral-Symbiodiniaceae symbiosis, making them sensitive to environmental change and susceptible to anthropogenic stress. Coral bleaching is predominantly attributed to photo-oxidative stress, yet nutrient availability and metabolism underpin the stability of symbioses. Recent studies link symbiont proliferation under nutrient enrichment to bleaching; however, the interactions between nutrients and symbiotic stability are nuanced. Here, we demonstrate how bleaching is regulated by the forms and ratios of available nutrients and their impacts on autotrophic carbon metabolism, rather than algal symbiont growth. By extension, historical nutrient conditions mediate host-symbiont compatibility and bleaching tolerance over proximate and evolutionary timescales. Renewed investigations into the coral nutrient metabolism will be required to truly elucidate the cellular mechanisms leading to coral bleaching.
Collapse
Affiliation(s)
- Luke A Morris
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia. https://twitter.com/ReefLuke
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. https://twitter.com/reefgenomics
| | - Kate M Quigley
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia. https://twitter.com/la__cientifica
| | - David G Bourne
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia; College of Science and Engineering, James Cook University, Townsville, Australia
| | - Line K Bay
- AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, Australia; Australian Institute of Marine Science, Townsville, Australia.
| |
Collapse
|
126
|
Predator-Prey Interactions in the Anthropocene: Reconciling Multiple Aspects of Novelty. Trends Ecol Evol 2019; 34:616-627. [PMID: 30902358 DOI: 10.1016/j.tree.2019.02.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 01/05/2023]
Abstract
Ecological novelty, when conditions deviate from a historical baseline, is increasingly common as humans modify habitats and communities across the globe. Our ability to anticipate how novelty changes predator-prey interactions will likely hinge upon the explicit evaluation of multiple forms of novelty, rather than a focus on single forms of novelty (e.g., invasive predators or climate change). We provide a framework to assess how multiple forms of novelty can act, alone or in concert, on components shared by all predator-prey interactions (the predation sequence). Considering how novelty acts throughout the predation sequence could improve our understanding of predator-prey interactions in an increasingly novel world, identify important knowledge gaps, and guide conservation decisions in the Anthropocene.
Collapse
|
127
|
Water quality mediates resilience on the Great Barrier Reef. Nat Ecol Evol 2019; 3:620-627. [PMID: 30858590 DOI: 10.1038/s41559-019-0832-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022]
Abstract
Threats from climate change and other human pressures have led to widespread concern for the future of Australia's Great Barrier Reef (GBR). Resilience of GBR reefs will be determined by their ability to resist disturbances and to recover from coral loss, generating intense interest in management actions that can moderate these processes. Here we quantify the effect of environmental and human drivers on the resilience of southern and central GBR reefs over the past two decades. Using a composite water quality index, we find that while reefs exposed to poor water quality are more resistant to coral bleaching, they recover from disturbance more slowly and are more susceptible to outbreaks of crown-of-thorns starfish and coral disease-with a net negative impact on recovery and long-term hard coral cover. Given these conditions, we find that 6-17% improvement in water quality will be necessary to bring recovery rates in line with projected increases in coral bleaching among contemporary inshore and mid-shelf reefs. However, such reductions are unlikely to buffer projected bleaching effects among outer-shelf GBR reefs dominated by fast-growing, thermally sensitive corals, demonstrating practical limits to local management of the GBR against the effects of global warming.
Collapse
|
128
|
Kubicek A, Breckling B, Hoegh-Guldberg O, Reuter H. Climate change drives trait-shifts in coral reef communities. Sci Rep 2019; 9:3721. [PMID: 30842480 PMCID: PMC6403357 DOI: 10.1038/s41598-019-38962-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023] Open
Abstract
Climate change is expected to have profound, partly unforeseeable effects on the composition of functional traits of complex ecosystems, such as coral reefs, and some ecosystem properties are at risk of disappearing. This study applies a novel spatially explicit, individual-based model to explore three critical life history traits of corals: heat tolerance, competitiveness and growth performance under various environmental settings. Building upon these findings, we test the adaptation potential required by a coral community in order to not only survive but also retain its diversity by the end of this century under different IPCC climate scenarios. Even under the most favourable IPCC scenario (Representative Concentration Pathway, RCP 2.6), model results indicate that shifts in the trait space are likely and coral communities will mainly consist of small numbers of temperature-tolerant and fast-growing species. Species composition of coral communities is likely to be determined by heat tolerance, with competitiveness most likely playing a subordinate role. To sustain ~15% of current coral cover under a 2 °C temperature increase by the end of the century (RCP 4.5), coral systems would have to accommodate temperature increases of 0.1-0.15 °C per decade, assuming that periodic extreme thermal events occurred every 8 years. These required adaptation rates are unprecedented and unlikely, given corals' life-history characteristics.
Collapse
Affiliation(s)
- Andreas Kubicek
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Broder Breckling
- Department Landscape Ecology, University of Vechta, 49364, Vechta, Germany
- University of Bremen, Faculty of Biology and Chemistry, 28359, Bremen, Germany
| | - Ove Hoegh-Guldberg
- Coral Reef Ecosystems Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Global Change Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Hauke Reuter
- Department Theoretical Ecology and Modelling, Leibniz Center for Tropical Marine Research (ZMT), 28359, Bremen, Germany
- University of Bremen, Faculty of Biology and Chemistry, 28359, Bremen, Germany
| |
Collapse
|
129
|
Cartwright R, Venema A, Hernandez V, Wyels C, Cesere J, Cesere D. Fluctuating reproductive rates in Hawaii's humpback whales, Megaptera novaeangliae, reflect recent climate anomalies in the North Pacific. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181463. [PMID: 31032006 PMCID: PMC6458358 DOI: 10.1098/rsos.181463] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/20/2019] [Indexed: 06/01/2023]
Abstract
Alongside changing ocean temperatures and ocean chemistry, anthropogenic climate change is now impacting the fundamental processes that support marine systems. However, where natural climate aberrations mask or amplify the impacts of anthropogenic climate change, identifying key detrimental changes is challenging. In these situations, long-term, systematic field studies allow the consequences of anthropogenically driven climate change to be distinguished from the expected fluctuations in natural resources. In this study, we describe fluctuations in encounter rates for humpback whales, Megaptera novaeangliae, between 2008 and 2018. Encounter rates were assessed during transect surveys of the Au'Au Channel, Maui, Hawaii. Initially, rates increased, tracking projected growth rates for this population segment. Rates reached a peak in 2013, then declined through 2018. Specifically, between 2013 and 2018, mother-calf encounter rates dropped by 76.5%, suggesting a rapid reduction in the reproductive rate of the newly designated Hawaii Distinct Population Segment of humpback whales during this time. As this decline coincided with changes in the Pacific decadal oscillation, the development of the NE Pacific marine heat wave and the evolution of the 2016 El Niño, this may be another example of the impact of this potent trifecta of climatic events within the North Pacific.
Collapse
Affiliation(s)
- R. Cartwright
- The Keiki Kohola Project, Kihei, HI 96753, USA
- Department of Environmental Science and Resource Management, California State University Channel Islands, One University Drive, Camarillo, CA 93012, USA
| | - A. Venema
- The Keiki Kohola Project, Kihei, HI 96753, USA
| | | | - C. Wyels
- The Keiki Kohola Project, Kihei, HI 96753, USA
- Department of Mathematics, California State University Channel Islands, One University Drive, Camarillo, CA 93012, USA
| | - J. Cesere
- The Keiki Kohola Project, Kihei, HI 96753, USA
- Fine Art Photography, Paia, HI 96779, USA
| | - D. Cesere
- The Keiki Kohola Project, Kihei, HI 96753, USA
- Fine Art Photography, Paia, HI 96779, USA
| |
Collapse
|
130
|
Mcleod E, Anthony KRN, Mumby PJ, Maynard J, Beeden R, Graham NAJ, Heron SF, Hoegh-Guldberg O, Jupiter S, MacGowan P, Mangubhai S, Marshall N, Marshall PA, McClanahan TR, Mcleod K, Nyström M, Obura D, Parker B, Possingham HP, Salm RV, Tamelander J. The future of resilience-based management in coral reef ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:291-301. [PMID: 30583103 DOI: 10.1016/j.jenvman.2018.11.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/26/2018] [Accepted: 11/10/2018] [Indexed: 05/12/2023]
Abstract
Resilience underpins the sustainability of both ecological and social systems. Extensive loss of reef corals following recent mass bleaching events have challenged the notion that support of system resilience is a viable reef management strategy. While resilience-based management (RBM) cannot prevent the damaging effects of major disturbances, such as mass bleaching events, it can support natural processes that promote resistance and recovery. Here, we review the potential of RBM to help sustain coral reefs in the 21st century. We explore the scope for supporting resilience through existing management approaches and emerging technologies and discuss their opportunities and limitations in a changing climate. We argue that for RBM to be effective in a changing world, reef management strategies need to involve both existing and new interventions that together reduce stress, support the fitness of populations and species, and help people and economies to adapt to a highly altered ecosystem.
Collapse
Affiliation(s)
| | - Kenneth R N Anthony
- Australian Institute of Marine Science, PMB 3, Townsville, Qld, 4810, Australia; Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Jeffrey Maynard
- SymbioSeas and the Marine Applied Research Center, Wilmington, NC, 28411, United States
| | - Roger Beeden
- Great Barrier Reef Marine Park Authority, Townsville, Qld, 4810, Australia
| | | | - Scott F Heron
- NOAA Coral Reef Watch, NESDIS Center for Satellite Applications and Research, College Park, MD, 20740, USA; ReefSense, Townsville, Qld 4814, Australia; Marine Geophysical Laboratory, Physics Department, College of Science, Technology and Engineering, James Cook University, Townsville, Qld, 4811, Australia
| | - Ove Hoegh-Guldberg
- Global Change Institute, University of Queensland, St Lucia, 4072, Qld, Australia
| | - Stacy Jupiter
- Wildlife Conservation Society, Melanesia Program, Suva, Fiji
| | | | | | - Nadine Marshall
- CSIRO Land and Water and College of Science and Engineering, James Cook University, Townsville, Q4811, Australia
| | - Paul A Marshall
- Centre for Biodiversity and Conservation Science, University of Queensland, St. Lucia, Qld, 4072, Australia; Reef Ecologic, North Ward, Townsville, Qld, 4810, Australia
| | | | - Karen Mcleod
- COMPASS, Oregon State University, Department of Zoology, Corvallis, OR, USA
| | - Magnus Nyström
- Stockholm Resilience Centre, Stockholm University, Stockholm, SE, 10691, Sweden
| | - David Obura
- CORDIO East Africa, Mombasa, Kenya; Global Change Institute, University of Queensland, St Lucia, 4072, Qld, Australia
| | - Britt Parker
- NOAA NIDIS/Cooperative Institute for Research In Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Hugh P Possingham
- The Nature Conservancy, Arlington, VA, 22203, USA; The University of Queensland, Brisbane, 4072, Australia
| | | | | |
Collapse
|
131
|
Recent and future trends in sea surface temperature across the Persian Gulf and Gulf of Oman. PLoS One 2019; 14:e0212790. [PMID: 30817766 PMCID: PMC6394925 DOI: 10.1371/journal.pone.0212790] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/09/2019] [Indexed: 11/19/2022] Open
Abstract
Climate change’s effect on sea surface temperature (SST) at the regional scale vary due to driving forces that include potential changes in ocean circulation and internal climate variability, ice cover, thermal stability, and ocean mixing layer depth. For a better understanding of future effects, it is important to analyze historical changes in SST at regional scales and test prediction techniques. In this study, the variation in SST across the Persian Gulf and Gulf of Oman (PG&GO) during the past four decades was analyzed and predicted to the end of 21st century using a proper orthogonal decomposition (POD) model. As input, daily optimum interpolation SST anomaly (DOISSTA) data, available from the National Oceanic and Atmospheric Administration of the United States, were used. Descriptive analyses and POD results demonstrated a gradually increasing trend in DOISSTA in the PG&GO over the past four decades. The spatial distribution of DOISSTA indicated: (1) that shallow parts of the Persian Gulf have experienced minimum and maximum values of DOISSTA and (2) high variability in DOISSTA in shallow parts of the Persian Gulf, including some parts of southern and northwestern coasts. Prediction of future SST using the POD model revealed the highest warming during summer in the entire PG&GO by 2100 and the lowest warming during fall and winter in the Persian Gulf and Gulf of Oman, respectively. The model indicated that monthly SST in the Persian Gulf may increase by up to 4.3 °C in August by the turn of the century. Similarly, mean annual changes in SST across the PG&GO may increase by about 2.2 °C by 2100.
Collapse
|
132
|
A Likely Ancient Genome Duplication in the Speciose Reef-Building Coral Genus, Acropora. iScience 2019; 13:20-32. [PMID: 30798090 PMCID: PMC6389592 DOI: 10.1016/j.isci.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Whole-genome duplication (WGD) has been recognized as a significant evolutionary force in the origin and diversification of multiple organisms. Acropora, a speciose reef-building coral genus, is suspected to have originated by polyploidy. Yet, there is no genetic evidence to support this hypothesis. Using comprehensive phylogenomic and comparative genomic approaches, we analyzed six Acroporid genomes and found that a WGD event likely occurred ∼31 million years ago in the most recent common ancestor of Acropora, concurrent with a worldwide coral extinction. We found that duplicated genes were highly enriched in gene regulation functions, including those of stress responses. The functional clusters of duplicated genes are related to the divergence of gene expression patterns during development. Some proteinaceous toxins were generated by WGD in Acropora compared with other cnidarian species. Collectively, this study provides evidence for an ancient WGD event in corals, which helps explain the origin and diversification of Acropora. An ancient genome duplication occurred in the most recent common ancestor of Acropora This WGD event likely occurred between 28 and 36 mya in Acropora The WGD event potentially contributes to the origin and diversification of Acropora Duplications of toxic proteins were found in Acropora following the WGD
Collapse
|
133
|
Ross CL, DeCarlo TM, McCulloch MT. Environmental and physiochemical controls on coral calcification along a latitudinal temperature gradient in Western Australia. GLOBAL CHANGE BIOLOGY 2019; 25:431-447. [PMID: 30456772 DOI: 10.1111/gcb.14488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/12/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
The processes that occur at the micro-scale site of calcification are fundamental to understanding the response of coral growth in a changing world. However, our mechanistic understanding of chemical processes driving calcification is still evolving. Here, we report the results of a long-term in situ study of coral calcification rates, photo-physiology, and calcifying fluid (cf) carbonate chemistry (using boron isotopes, elemental systematics, and Raman spectroscopy) for seven species (four genera) of symbiotic corals growing in their natural environments at tropical, subtropical, and temperate locations in Western Australia (latitudinal range of ~11°). We find that changes in net coral calcification rates are primarily driven by pHcf and carbonate ion concentration [ CO 3 2 - ]cf in conjunction with temperature and DICcf . Coral pHcf varies with latitudinal and seasonal changes in temperature and works together with the seasonally varying DICcf to optimize [ CO 3 2 - ]cf at species-dependent levels. Our results indicate that corals shift their pHcf to adapt and/or acclimatize to their localized thermal regimes. This biological response is likely to have critical implications for predicting the future of coral reefs under CO2 -driven warming and acidification.
Collapse
Affiliation(s)
- Claire L Ross
- School of Earth Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Crawley, Western Australia, Australia
| | - Thomas M DeCarlo
- Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Malcolm T McCulloch
- Oceans Institute, The University of Western Australia, Crawley, Western Australia, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Western Australia, Crawley, Western Australia, Australia
- Oceans Graduate School, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
134
|
Montero‐Serra I, Garrabou J, Doak DF, Ledoux J, Linares C. Marine protected areas enhance structural complexity but do not buffer the consequences of ocean warming for an overexploited precious coral. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ignasi Montero‐Serra
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Institut de Recerca de la Biodiversitat (IRBIO) Universitat de Barcelona Barcelona Spain
| | - Joaquim Garrabou
- Institut de Ciències del Mar CSIC Barcelona Spain
- Aix Marseille Université Université de Toulon CNRS, IRD, MIO Marseille France
| | - Daniel F. Doak
- Environmental Studies Program University of Colorado Boulder Colorado
| | - Jean‐Baptiste Ledoux
- Institut de Ciències del Mar CSIC Barcelona Spain
- CIIMAR/CIMAR Centro Interdisciplinar de Investigação Marinha e Ambiental Universidade do Porto Porto Portugal
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Institut de Recerca de la Biodiversitat (IRBIO) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
135
|
Huang C, Leng D, Sun S, Zhang XD. Re-analysis of the coral Acropora digitifera transcriptome reveals a complex lncRNAs-mRNAs interaction network implicated in Symbiodinium infection. BMC Genomics 2019; 20:48. [PMID: 30651068 PMCID: PMC6335708 DOI: 10.1186/s12864-019-5429-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 01/02/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Being critically important to the ecosystem, the stability of coral reefs is directly related to the marine and surrounding terrestrial environments. However, coral reefs are now undergoing massive and accelerating devastation due to bleaching. The fact that the breakdown of symbiosis between coral and the dinoflagellate, zooxanthellae, has been well elucidated as the main cause of bleaching, implying the establishment of symbiosis with zooxanthellae plays a crucial role in maintaining coral survival. However, the relevant molecular and cellular mechanisms have not been well studied yet. In this study, based on the deep RNA-sequencing data derived from Mohamed, A. R. et al., an integrated transcriptome analysis was performed to deeply investigate global transcriptome changes of the coral Acropora digitifera in response to infection by dinoflagellate of the genus Symbiodinium. RESULTS The results revealed that compared to RefTranscriptome_v1.0 (A. digitifera transcriptome assembly v1.0), numerous novel transcripts and isoforms were identified, the Symbiodinium-infected coral larvae at 4 h generated the highest proportion of specific isoforms. Alternative splicing analysis showed that intron retention predominated in all alternative transcripts among six statuses. Additionally, 8117 lncRNAs were predicted via a stringent stepwise filtering pipeline. A complex lncRNAs-mRNAs network including 815 lncRNAs and 6395 mRNAs were established, in which 21 lncRNAs were differentially expressed at 4 h post infection. Functional clustering analysis for those differentially lncRNAs-coexpressed mRNAs demonstrated that several biological processes and pathways related to protein kinase activity, metabolic pathways, mitochondrion, ribosome, etc. were enriched. CONCLUSIONS Our study not only refined A. digitifera transcriptome via identification of novel transcripts and isoforms, but also predicted a high-confidence dataset of lncRNAs. Functional study based on the construction of lncRNAs-mRNAs co-expression network has disclosed a complex lncRNA-mediated regulation in response to Symbiodinium infection exhibited in A. digitifera. Once validated, these lncRNAs could be good potential targets for treatment and prevention of bleaching in coral.
Collapse
Affiliation(s)
- Chen Huang
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Dongliang Leng
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Shixue Sun
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | | |
Collapse
|
136
|
Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME JOURNAL 2018; 13:921-936. [PMID: 30518818 PMCID: PMC6461899 DOI: 10.1038/s41396-018-0323-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/03/2018] [Accepted: 11/17/2018] [Indexed: 12/29/2022]
Abstract
Although the early coral reef-bleaching warning system (NOAA/USA) is established, there is no feasible treatment that can minimize temperature bleaching and/or disease impacts on corals in the field. Here, we present the first attempts to extrapolate the widespread and well-established use of bacterial consortia to protect or improve health in other organisms (e.g., humans and plants) to corals. Manipulation of the coral-associated microbiome was facilitated through addition of a consortium of native (isolated from Pocillopora damicornis and surrounding seawater) putatively beneficial microorganisms for corals (pBMCs), including five Pseudoalteromonas sp., a Halomonas taeanensis and a Cobetia marina-related species strains. The results from a controlled aquarium experiment in two temperature regimes (26 °C and 30 °C) and four treatments (pBMC; pBMC with pathogen challenge - Vibrio coralliilyticus, VC; pathogen challenge, VC; and control) revealed the ability of the pBMC consortium to partially mitigate coral bleaching. Significantly reduced coral-bleaching metrics were observed in pBMC-inoculated corals, in contrast to controls without pBMC addition, especially challenged corals, which displayed strong bleaching signs as indicated by significantly lower photopigment contents and Fv/Fm ratios. The structure of the coral microbiome community also differed between treatments and specific bioindicators were correlated with corals inoculated with pBMC (e.g., Cobetia sp.) or VC (e.g., Ruegeria sp.). Our results indicate that the microbiome in corals can be manipulated to lessen the effect of bleaching, thus helping to alleviate pathogen and temperature stresses, with the addition of BMCs representing a promising novel approach for minimizing coral mortality in the face of increasing environmental impacts.
Collapse
|
137
|
Zubia M, Depetris M, Flores O, Turquet J, Cuet P. Macroalgae as a tool for assessing the ecological status of coral reefs under the Water Framework Directive: A case study on the reef flats of La Réunion (Indian Ocean). MARINE POLLUTION BULLETIN 2018; 137:339-351. [PMID: 30503442 DOI: 10.1016/j.marpolbul.2018.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
The monitoring of macroalgae is required by the Water Framework Directive (WFD) to achieve good ecological status for coastal waters and specific questions arise for tropical ecosystems belonging to the outermost European regions. To assess the suitability of macroalgae as a biological quality indicator for La Réunion reef flats (France), we performed multivariate analyses linking the abundance and composition of macroalgae to water physico-chemistry. Three hydrological groups of stations were identified according to dissolved inorganic nitrogen (DIN) concentrations and DIN/PO4 ratios. Some indicator species were found at the N-enriched stations (Bryopsis pennata, Caulerpa lamourouxii, Chaetomoropha vieillardii, Derbesia sp., Blennothrix lyngbyacea, Sphacelaria tribuloides), and others at the non-impacted stations (Anabaena sp1, Blennothrix glutinosa, Codium arabicum, Neomeris vanbosseae). Another key result was the significant increase in red algal cover at the most N-enriched station. Our findings are discussed in the context of the application of the WFD in the outermost French regions.
Collapse
Affiliation(s)
- Mayalen Zubia
- Université de Polynésie française, UMR-EIO, LabEx CORAIL, BP 6570, 98702 Faa'a, Tahiti, French Polynesia.
| | - Mathieu Depetris
- UMR 9190 MARBEC, IRD, Ifremer, Université Montpellier, CNRS, Station Ifremer, Avenue Jean Monnet, 34200 Sète, France
| | - Olivier Flores
- UMR PVBMT, Université de La Réunion, CIRAD, 7 chemin de l'IRAT, 97410, Saint Pierre, La Réunion, France
| | - Jean Turquet
- HYDROREUNION, c/o CYROI, 2 rue Maxime Rivière, 97490 Sainte-Clotilde, La Réunion, France
| | - Pascale Cuet
- UMR ENTROPIE, Université de La Réunion, LabEx CORAIL,15 avenue René Cassin, CS 92003, 97744 Saint-Denis Cedex 09, La Réunion, France
| |
Collapse
|
138
|
Weekers DP, Zahnow R. Risky facilities: Analysis of illegal recreational fishing in the Great Barrier Reef Marine Park, Australia. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/0004865818804021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
139
|
Mao Y, Economo EP, Satoh N. The Roles of Introgression and Climate Change in the Rise to Dominance of Acropora Corals. Curr Biol 2018; 28:3373-3382.e5. [PMID: 30344117 DOI: 10.1016/j.cub.2018.08.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
Reef-building corals provide the structural basis for one of Earth's most spectacular and diverse-but increasingly threatened-ecosystems. Modern Indo-Pacific reefs are dominated by species of the staghorn coral genus Acropora, but the evolutionary and ecological factors associated with their diversification and rise to dominance are unclear. Recent work on evolutionary radiations has demonstrated the importance of introgression and ecological opportunity in promoting diversification and ecological success. Here, we analyze the genomes of five staghorn coral species to examine the roles of introgression and ecological opportunity in the rise to dominance of Acropora. We found evidence for a history marked by a major introgression event as well as recurrent gene flow across species. In addition, we found that genes with topologies mismatching the species tree are evolving faster, which is suggestive of a role for introgression in spreading adaptive genetic variation. Demographic analysis showed that Acropora lineages profited from climate-driven mass extinctions in the Plio-Pleistocene, indicating that Acropora exploited ecological opportunity opened by a new climatic regime favoring species that could cope with rapid sea-level changes. Collectively, the genomes of reef-building corals have recorded an evolutionary history shaped by introgression and climate change, suggesting that Acropora-among most vulnerable corals to stressors-may be critical for understanding how reefs track the impending rapid sea-level changes of the Anthropocene.
Collapse
Affiliation(s)
- Yafei Mao
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| |
Collapse
|
140
|
Jackson R, Gabric A, Cropp R. Effects of ocean warming and coral bleaching on aerosol emissions in the Great Barrier Reef, Australia. Sci Rep 2018; 8:14048. [PMID: 30232386 PMCID: PMC6145874 DOI: 10.1038/s41598-018-32470-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/07/2018] [Indexed: 01/23/2023] Open
Abstract
It is proposed that emissions of volatile sulfur compounds by coral reefs contribute to the formation of a biologically-derived feedback on sea surface temperature (SST) through the formation of marine biogenic aerosol (MBA). The direction and strength of this feedback remains uncertain and constitutes a fundamental constraint on predicting the ability of corals to cope with future ocean warming. We investigate the effects of elevated SST and irradiance on satellite-derived fine-mode aerosol optical depth (AOD) throughout the Great Barrier Reef, Australia (GBR) over an 18-year time period. AOD is positively correlated with SST and irradiance and increases two-fold during spring and summer with high frequency variability. As the influence of non-biogenic and distant aerosol sources are found to be negligible, the results support recent findings that the 2,300 km stretch of coral reefs can be a substantial source of biogenic aerosol and thus, influence local ocean albedo. Importantly however, a tipping point in the coral stress response is identified, whereby thermal stress reaches a point that exceeds the capacity of corals to influence local atmospheric properties. Beyond this point, corals may become more susceptible to permanent damage with increasing stress, with potential implications for mass coral bleaching events.
Collapse
Affiliation(s)
- Rebecca Jackson
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia.
- Australian Rivers Institute, Griffith University, Gold Coast, 4222, Australia.
| | - Albert Gabric
- Australian Rivers Institute, Griffith University, Gold Coast, 4222, Australia
- School of Environment and Science, Griffith University, Nathan, 4111, Australia
| | - Roger Cropp
- School of Environment and Science, Griffith University, Gold Coast, 4222, Australia
| |
Collapse
|
141
|
How Is Australia Adapting to Climate Change Based on a Systematic Review? SUSTAINABILITY 2018. [DOI: 10.3390/su10093280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We develop and apply a systematic literature review methodology to identify and characterize the ways in which the peer-reviewed literature depicts how climate change adaptation is occurring in Australia. We reviewed the peer-reviewed, English-language literature between January 2005 and January 2018 for examples of documented human adaptation initiatives in Australia. Our results challenge previous assumptions that adaptation actions are not happening in Australia and describes adaptation processes that are underway. For the most part, actions can be described as preliminary or groundwork, with a particular focus on documenting stakeholder perspectives on climate change and attitudes towards adaptation, and modelling or scenario planning in the coastal zone, agriculture, and health sectors. Where concrete adaptations are reported, they are usually in the agricultural sector and are most common in the Murray–Darling Basin, Australia’s food basket. The findings of the review advance our understanding of adaptation to climate change as a process and the need to consider different stages in the process when tracking adaptation.
Collapse
|
142
|
Hernandez-Agreda A, Leggat W, Ainsworth TD. A Comparative Analysis of Microbial DNA Preparation Methods for Use With Massive and Branching Coral Growth Forms. Front Microbiol 2018; 9:2146. [PMID: 30245683 PMCID: PMC6137167 DOI: 10.3389/fmicb.2018.02146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
In the last two decades, over 100 studies have investigated the structure of the coral microbiome. However, as yet there are no standardized methods applied to sample preservation and preparation, with different studies using distinct methods. There have also been several comparisons made of microbiome data generated across different studies, which have not addressed the influence of the methodology employed over each of the microbiome datasets. Here, we assess three different preservation methods; salt saturated dimethyl sulfoxide (DMSO) – EDTA, snap freezing with liquid nitrogen and 4% paraformaldehyde solution, and two different preparation methodologies; bead beating and crushing, that have been applied to study the coral microbiome. We compare the resultant bacterial assemblage data for two coral growth forms, the massive coral Goniastrea edwardsi and the branching coral Isopora palifera. We show that microbiome datasets generated from differing preservation and processing protocols are comparable in composition (presence/absence). Significant discrepancies between preservation and homogenization methods are observed in structure (relative abundance), and in the occurrence and dominance of taxa, with rare (low abundance and low occurrence) phylotypes being the most variable fraction of the microbial community. Finally, we provide evidence to support chemical preservation with DMSO as effective as snap freezing samples for generating reliable and robust microbiome datasets. In conclusion, we recommend where possible a standardized preservation and extraction method be taken up by the field to provide the best possible practices for detailed assessments of symbiotic and conserved bacterial associations.
Collapse
Affiliation(s)
- Alejandra Hernandez-Agreda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - William Leggat
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Tracy D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
143
|
Hutchinson MC, Gaiarsa MP, Stouffer DB. Contemporary Ecological Interactions Improve Models of Past Trait Evolution. Syst Biol 2018; 67:861-872. [PMID: 29471501 DOI: 10.1093/sysbio/syy012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 02/10/2018] [Indexed: 11/12/2022] Open
Abstract
Despite the fact that natural selection underlies both traits and interactions, evolutionary models often neglect that ecological interactions may, and in many cases do, influence the evolution of traits. Herein, we explore the interdependence of ecological interactions and functional traits in the pollination associations of hawkmoths and flowering plants. Specifically, we develop an adaptation of the Ornstein-Uhlenbeck model of trait evolution that allows us to study the influence of plant corolla depth and observed hawkmoth-plant interactions on the evolution of hawkmoth proboscis length. Across diverse modelling scenarios, we find that the inclusion of contemporary interactions can provide a better description of trait evolution than the null expectation. Moreover, we show that the pollination interactions provide more-likely models of hawkmoth trait evolution when interactions are considered at increasingly fine-scale groups of hawkmoths. Finally, we demonstrate how the results of best-fit modeling approaches can implicitly support the association between interactions and trait evolution that our method explicitly examines. In showing that contemporary interactions can provide insight into the historical evolution of hawkmoth proboscis length, we demonstrate the clear utility of incorporating additional ecological information to models designed to study past trait evolution.
Collapse
Affiliation(s)
- Matthew C Hutchinson
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marília P Gaiarsa
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.,Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 11294, 05422-970 São Paulo, Brazil
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
144
|
Pansch C, Scotti M, Barboza FR, Al-Janabi B, Brakel J, Briski E, Bucholz B, Franz M, Ito M, Paiva F, Saha M, Sawall Y, Weinberger F, Wahl M. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. GLOBAL CHANGE BIOLOGY 2018; 24:4357-4367. [PMID: 29682862 DOI: 10.1111/gcb.14282] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/09/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
Collapse
Affiliation(s)
- Christian Pansch
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Marco Scotti
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Francisco R Barboza
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Balsam Al-Janabi
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Janina Brakel
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Elizabeta Briski
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Björn Bucholz
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Markus Franz
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maysa Ito
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Filipa Paiva
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- MARE - Marine and Environmental Sciences Centre, Quinta do Lorde Marina, Caniçal, Madeira Island, Portugal
| | - Mahasweta Saha
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences (BIOS), St. George's, Bermuda
| | - Florian Weinberger
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Martin Wahl
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
145
|
SEAMANCORE: A spatially explicit simulation model for assisting the local MANagement of COral REefs. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
146
|
Morais J, Medeiros APM, Santos BA. Research gaps of coral ecology in a changing world. MARINE ENVIRONMENTAL RESEARCH 2018; 140:243-250. [PMID: 29970251 DOI: 10.1016/j.marenvres.2018.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Coral reefs have long inspired marine ecologists and conservationists around the world due to their ecological and socioeconomic importance. Much knowledge on the anthropogenic impacts on coral species has been accumulated, but relevant research gaps on coral ecology remain underappreciated in human-modified seascapes. In this review we assessed 110 studies on coral responses to five major human disturbances- acidification, climate change, overfishing, pollution and non-regulated tourism -to identify geographic and theoretical gaps in coral ecology and help to guide further researches on the topic. We searched for papers in Web of Science published from 2000 to 2016 and classified them according to the ocean, ecoregion, human threat, level of biological organization, study approach, method of data collection, depth of data collected, and type of coral response. Most studies were carried out in the Indo-Pacific and Caribbean (36.3 and 31.9%, respectively) and used observational approach (60%) with scuba diving (36.3%) to assess the impact of ocean warming (55.4%) on coral communities (58.2%). Only 37 of the 141 global ecoregions that contain coral reefs were studied. All studies were restricted to shallow waters (0.5-27 m depth) and reported negative responses of corals to human disturbance. Our results reinforce the notion that corals are sensitive to anthropogenic changes. They reveal the scarcity of information on coral responses to pollution, tourism, overfishing and acidification, particularly in mesophotic ecosystems (>30 m depth) and in ecoregions outside the Indo-Pacific and Caribbean. Experimental studies at the individual and population levels should be also encouraged.
Collapse
Affiliation(s)
- Juliano Morais
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, Cidade Universitária, Castelo Branco, 58051-900, João Pessoa, PB, Brazil
| | - Aline P M Medeiros
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, Cidade Universitária, Castelo Branco, 58051-900, João Pessoa, PB, Brazil
| | - Bráulio A Santos
- Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Departamento de Sistemática e Ecologia, Cidade Universitária, Castelo Branco, 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
147
|
Ruthrof KX, Breshears DD, Fontaine JB, Froend RH, Matusick G, Kala J, Miller BP, Mitchell PJ, Wilson SK, van Keulen M, Enright NJ, Law DJ, Wernberg T, Hardy GESJ. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci Rep 2018; 8:13094. [PMID: 30166559 PMCID: PMC6117366 DOI: 10.1038/s41598-018-31236-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/10/2018] [Indexed: 01/28/2023] Open
Abstract
Heat waves have profoundly impacted biota globally over the past decade, especially where their ecological impacts are rapid, diverse, and broad-scale. Although usually considered in isolation for either terrestrial or marine ecosystems, heat waves can straddle ecosystems of both types at subcontinental scales, potentially impacting larger areas and taxonomic breadth than previously envisioned. Using climatic and multi-species demographic data collected in Western Australia, we show that a massive heat wave event straddling terrestrial and maritime ecosystems triggered abrupt, synchronous, and multi-trophic ecological disruptions, including mortality, demographic shifts and altered species distributions. Tree die-off and coral bleaching occurred concurrently in response to the heat wave, and were accompanied by terrestrial plant mortality, seagrass and kelp loss, population crash of an endangered terrestrial bird species, plummeting breeding success in marine penguins, and outbreaks of terrestrial wood-boring insects. These multiple taxa and trophic-level impacts spanned >300,000 km2-comparable to the size of California-encompassing one terrestrial Global Biodiversity Hotspot and two marine World Heritage Areas. The subcontinental multi-taxa context documented here reveals that terrestrial and marine biotic responses to heat waves do not occur in isolation, implying that the extent of ecological vulnerability to projected increases in heat waves is underestimated.
Collapse
Affiliation(s)
- Katinka X Ruthrof
- Centre of Excellence for Climate Change, Woodland and Forest Health, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia. .,Kings Park Science, Department of Biodiversity, Conservation and Attractions, 1 Kattidj Close, Kings Park, Western Australia, Australia.
| | - David D Breshears
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States of America.,Department of Ecology and Evolutionary Biology via joint appointment, University of Arizona, Tucson, Arizona, United States of America
| | - Joseph B Fontaine
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Ray H Froend
- Centre for Ecosystem Management, Edith Cowan University, Joondalup, Western Australia, Australia
| | - George Matusick
- Centre of Excellence for Climate Change, Woodland and Forest Health, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Jatin Kala
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Ben P Miller
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, 1 Kattidj Close, Kings Park, Western Australia, Australia.,School of Plant Biology, University of Western Australia, Crawley, Western Australia, Australia
| | | | - Shaun K Wilson
- Department of Biodiversity, Conservation and Attractions, Kensington, Perth, Western Australia, Australia.,Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - Mike van Keulen
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Neal J Enright
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Darin J Law
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States of America
| | - Thomas Wernberg
- Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - Giles E St J Hardy
- Centre of Excellence for Climate Change, Woodland and Forest Health, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
148
|
Barfield SJ, Aglyamova GV, Bay LK, Matz MV. Contrasting effects of
Symbiodinium
identity on coral host transcriptional profiles across latitudes. Mol Ecol 2018; 27:3103-3115. [DOI: 10.1111/mec.14774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Sarah J. Barfield
- Department of Integrative Biology University of Texas at Austin Austin Texas
| | - Galina V. Aglyamova
- Department of Integrative Biology University of Texas at Austin Austin Texas
| | - Line K. Bay
- Australian Institute of Marine Science Townsville QLD Australia
| | - Mikhail V. Matz
- Department of Integrative Biology University of Texas at Austin Austin Texas
| |
Collapse
|
149
|
Abstract
Climate change is killing coral at an unprecedented rate. As immune systems promote homeostasis and survival of adverse conditions I propose we explore coral health in the context of holobiont immunity. Caroline Palmer proposes the concept of coral holobiont damage thresholds to stimulate research into coral health and immunity as tropical reefs are increasingly threatened by climate change. This framework may be used to develop targeted approaches to coral reef restoration, management and conservation.
Collapse
|
150
|
Wolff NH, Mumby PJ, Devlin M, Anthony KRN. Vulnerability of the Great Barrier Reef to climate change and local pressures. GLOBAL CHANGE BIOLOGY 2018; 24:1978-1991. [PMID: 29420869 DOI: 10.1111/gcb.14043] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/23/2017] [Accepted: 12/20/2017] [Indexed: 05/14/2023]
Abstract
Australia's Great Barrier Reef (GBR) is under pressure from a suite of stressors including cyclones, crown-of-thorns starfish (COTS), nutrients from river run-off and warming events that drive mass coral bleaching. Two key questions are: how vulnerable will the GBR be to future environmental scenarios, and to what extent can local management actions lower vulnerability in the face of climate change? To address these questions, we use a simple empirical and mechanistic coral model to explore six scenarios that represent plausible combinations of climate change projections (from four Representative Concentration Pathways, RCPs), cyclones and local stressors. Projections (2017-2050) indicate significant potential for coral recovery in the near-term, relative to current state, followed by climate-driven decline. Under a scenario of unmitigated emissions (RCP8.5) and business-as-usual management of local stressors, mean coral cover on the GBR is predicted to recover over the next decade and then rapidly decline to only 3% by year 2050. In contrast, a scenario of strong carbon mitigation (RCP2.6) and improved water quality, predicts significant coral recovery over the next two decades, followed by a relatively modest climate-driven decline that sustained coral cover above 26% by 2050. In an analysis of the impacts of cumulative stressors on coral cover relative to potential coral cover in the absence of such impacts, we found that GBR-wide reef performance will decline 27%-74% depending on the scenario. Up to 66% of performance loss is attributable to local stressors. The potential for management to reduce vulnerability, measured here as the mean number of years coral cover can be kept above 30%, is spatially variable. Management strategies that alleviate cumulative impacts have the potential to reduce the vulnerability of some midshelf reefs in the central GBR by 83%, but only if combined with strong mitigation of carbon emissions.
Collapse
Affiliation(s)
- Nicholas H Wolff
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
- Global Science, The Nature Conservancy, Brunswick, ME, USA
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, QLD, Australia
| | - Michelle Devlin
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft Laboratory, Lowestoft, Suffolk, UK
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Douglas, QLD, Australia
| | | |
Collapse
|