101
|
Yu X, Liu Z, Sun X. Single-cell and spatial multi-omics in the plant sciences: Technical advances, applications, and perspectives. PLANT COMMUNICATIONS 2023; 4:100508. [PMID: 36540021 DOI: 10.1016/j.xplc.2022.100508] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
Plants contain a large number of cell types and exhibit complex regulatory mechanisms. Studies at the single-cell level have gradually become more common in plant science. Single-cell transcriptomics, spatial transcriptomics, and spatial metabolomics techniques have been combined to analyze plant development. These techniques have been used to study the transcriptomes and metabolomes of plant tissues at the single-cell level, enabling the systematic investigation of gene expression and metabolism in specific tissues and cell types during defined developmental stages. In this review, we present an overview of significant breakthroughs in spatial multi-omics in plants, and we discuss how these approaches may soon play essential roles in plant research.
Collapse
Affiliation(s)
- Xiaole Yu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, P.R. China.
| |
Collapse
|
102
|
Alldred MJ, Ginsberg SD. Microisolation of Spatially Characterized Single Populations of Neurons for RNA Sequencing from Mouse and Postmortem Human Brain Tissues. J Clin Med 2023; 12:3304. [PMID: 37176744 PMCID: PMC10179294 DOI: 10.3390/jcm12093304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Single-cell and single-population RNA sequencing (RNA-seq) is a rapidly evolving new field of intense investigation. Recent studies indicate unique transcriptomic profiles are derived based on the spatial localization of neurons within circuits and regions. Individual neuronal subtypes can have vastly different transcriptomic fingerprints, well beyond the basic excitatory neuron and inhibitory neuron designations. To study single-population gene expression profiles of spatially characterized neurons, we have developed a methodology combining laser capture microdissection (LCM), RNA purification of single populations of neurons, and subsequent library preparation for downstream applications, including RNA-seq. LCM provides the benefit of isolating single neurons characterized by morphology or via transmitter-identified and/or receptor immunoreactivity and enables spatial localization within the sample. We utilize unfixed human postmortem and mouse brain tissue that is frozen to preserve RNA quality in order to isolate the desired neurons of interest. Microisolated neurons are then pooled for RNA purification utilizing as few as 250 individual neurons from a tissue section, precluding extraneous nonspecific tissue contaminants. Library preparation is performed from picogram RNA quantities extracted from LCM-captured neurons. Single-population RNA-seq analysis demonstrates that microisolated neurons from both postmortem human and mouse brain tissues are viable for transcriptomic profiling, including differential gene expression assessment and bioinformatic pathway inquiry.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
103
|
Pregizer S, Vreven T, Mathur M, Robinson LN. Multi-omic single cell sequencing: Overview and opportunities for kidney disease therapeutic development. Front Mol Biosci 2023; 10:1176856. [PMID: 37091871 PMCID: PMC10113659 DOI: 10.3389/fmolb.2023.1176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Single cell sequencing technologies have rapidly advanced in the last decade and are increasingly applied to gain unprecedented insights by deconstructing complex biology to its fundamental unit, the individual cell. First developed for measurement of gene expression, single cell sequencing approaches have evolved to allow simultaneous profiling of multiple additional features, including chromatin accessibility within the nucleus and protein expression at the cell surface. These multi-omic approaches can now further be applied to cells in situ, capturing the spatial context within which their biology occurs. To extract insights from these complex datasets, new computational tools have facilitated the integration of information across different data types and the use of machine learning approaches. Here, we summarize current experimental and computational methods for generation and integration of single cell multi-omic datasets. We focus on opportunities for multi-omic single cell sequencing to augment therapeutic development for kidney disease, including applications for biomarkers, disease stratification and target identification.
Collapse
|
104
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
105
|
Krassnitzer M, Boisvert B, Beiersdorf J, Harkany T, Keimpema E. Resident Astrocytes can Limit Injury to Developing Hippocampal Neurons upon THC Exposure. Neurochem Res 2023; 48:1242-1253. [PMID: 36482034 PMCID: PMC10030412 DOI: 10.1007/s11064-022-03836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Cannabis legalization prompted the dilemma if plant-derived recreational drugs can have therapeutic potential and, consequently, how to address their regulation and safe distribution. In parallel, the steady worldwide decriminalization of cannabis and the enhanced content of its main psychoactive compound Δ9-tetrahydrocannabinol (THC), exposes populations to increasing amounts of cannabis and THC across all ages. While adverse effects of cannabis during critical stages of fetal neurodevelopment are investigated, these studies center on neurons alone. Thus, a gap of knowledge exists on how intercellular interactions between neighboring cell types, particularly astrocytes and neurons, could modify THC action. Here, we combine transcriptome analysis, transgenic models, high resolution microscopy and live cell imaging to demonstrate that hippocampal astrocytes accumulate in the strata radiatum and lacunosum moleculare of the CA1 subfield, containing particularly sensitive neurons to stressors, upon long term postnatal THC exposure in vivo. As this altered distribution is not dependent on cell proliferation, we propose that resident astrocytes accumulate in select areas to protect pyramidal neurons and their neurite extensions from pathological damage. Indeed, we could recapitulate the neuroprotective effect of astrocytes in vitro, as their physical presence significantly reduced the death of primary hippocampal neurons upon THC exposure (> 5 µM). Even so, astrocytes are also affected by a reduced metabolic readiness to stressors, as reflected by a downregulation of mitochondrial proteins. Thus, we find that astrocytes exert protective functions on local neurons during THC exposure, even though their mitochondrial electron transport chain is disrupted.
Collapse
Affiliation(s)
- Maria Krassnitzer
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Brooke Boisvert
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Beiersdorf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, Solna, Sweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
106
|
Chang C, Zuo H, Li Y. Recent advances in deciphering hippocampus complexity using single-cell transcriptomics. Neurobiol Dis 2023; 179:106062. [PMID: 36878328 DOI: 10.1016/j.nbd.2023.106062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq) technologies have emerged as revolutionary and powerful tools, which have helped in achieving significant progress in biomedical research over the last decade. scRNA-seq and snRNA-seq resolve heterogeneous cell populations from different tissues and help reveal the function and dynamics at the single-cell level. The hippocampus is an essential component for cognitive functions, including learning, memory, and emotion regulation. However, the molecular mechanisms underlying the activity of hippocampus have not been fully elucidated. The development of scRNA-seq and snRNA-seq technologies provides strong support for attaining an in-depth understanding of hippocampal cell types and gene expression regulation from the single-cell transcriptome profiling perspective. This review summarizes the applications of scRNA-seq and snRNA-seq in the hippocampus to further expand our knowledge of the molecular mechanisms related to hippocampal development, health, and diseases.
Collapse
Affiliation(s)
- Chenxu Chang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongyan Zuo
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yang Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
107
|
Gao Y, Syed M, Zhao X. Mechanisms underlying the effect of voluntary running on adult hippocampal neurogenesis. Hippocampus 2023; 33:373-390. [PMID: 36892196 PMCID: PMC10566571 DOI: 10.1002/hipo.23520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Adult hippocampal neurogenesis is important for preserving learning and memory-related cognitive functions. Physical exercise, especially voluntary running, is one of the strongest stimuli to promote neurogenesis and has beneficial effects on cognitive functions. Voluntary running promotes exit of neural stem cells (NSCs) from the quiescent stage, proliferation of NSCs and progenitors, survival of newborn cells, morphological development of immature neuron, and integration of new neurons into the hippocampal circuitry. However, the detailed mechanisms driving these changes remain unclear. In this review, we will summarize current knowledge with respect to molecular mechanisms underlying voluntary running-induced neurogenesis, highlighting recent genome-wide gene expression analyses. In addition, we will discuss new approaches and future directions for dissecting the complex cellular mechanisms driving change in adult-born new neurons in response to physical exercise.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Moosa Syed
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
108
|
Wang M, Zhuo L, Ma W, Wu Q, Zhuo Y, Wang X. AllenDigger, a Tool for Spatial Expression Data Visualization, Spatial Heterogeneity Delineation, and Single-Cell Registration Based on the Allen Brain Atlas. J Phys Chem A 2023; 127:2864-2872. [PMID: 36926884 PMCID: PMC10068737 DOI: 10.1021/acs.jpca.3c00145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Spatial transcriptomics can be used to capture cellular spatial organization and has facilitated new insights into different biological contexts, including developmental biology, cancer, and neuroscience. However, its wide application is still hindered by its technical challenges and immature data analysis methods. Allen Brain Atlas (ABA) provides a great source for spatial gene expression throughout the mouse brain at various developmental stages with in situ hybridization image data. To the best of our knowledge, the portal developed to access spatial expression data is not very useful to biologists. Here, we developed a toolkit to collect and preprocess expression data from the ABA and allow a friendlier query to visualize the spatial distribution of genes of interest, characterize the spatial heterogeneity of the brain, and register cells from single-cell transcriptomics data to fine anatomical brain regions via machine learning methods with high accuracy. AllenDigger will be very helpful to the community in precise spatial gene expression queries and add extra spatial information to further interpret the scRNA-seq data in a cost-effective manner.
Collapse
Affiliation(s)
- Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Changping Laboratory, Beijing 102206, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangchen Zhuo
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenji Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Changping Laboratory, Beijing 102206, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Changping Laboratory, Beijing 102206, China
| |
Collapse
|
109
|
Jiang X, Luo D, Fern Ndez E, Yang J, Li H, Jin KW, Zhan Y, Yao B, Bedi S, Xiao G, Zhan X, Li Q, Xie Y. Spatial Transcriptomics Arena (STAr): an Integrated Platform for Spatial Transcriptomics Methodology Research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532127. [PMID: 36945650 PMCID: PMC10028992 DOI: 10.1101/2023.03.10.532127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
The emerging field of spatially resolved transcriptomics (SRT) has revolutionized biomedical research. SRT quantifies expression levels at different spatial locations, providing a new and powerful tool to interrogate novel biological insights. An essential question in the analysis of SRT data is to identify spatially variable (SV) genes; the expression levels of such genes have spatial variation across different tissues. SV genes usually play an important role in underlying biological mechanisms and tissue heterogeneity. Currently, several computational methods have been developed to detect such genes; however, there is a lack of unbiased assessment of these approaches to guide researchers in selecting the appropriate methods for their specific biomedical applications. In addition, it is difficult for researchers to implement different existing methods for either biological study or methodology development. Furthermore, currently available public SRT datasets are scattered across different websites and preprocessed in different ways, posing additional obstacles for quantitative researchers developing computational methods for SRT data analysis. To address these challenges, we designed Spatial Transcriptomics Arena (STAr), an open platform comprising 193 curated datasets from seven technologies, seven statistical methods, and analysis results. This resource allows users to retrieve high-quality datasets, apply or develop spatial gene detection methods, as well as browse and compare spatial gene analysis results. It also enables researchers to comprehensively evaluate SRT methodology research in both simulated and real datasets. Altogether, STAr is an integrated research resource intended to promote reproducible research and accelerate rigorous methodology development, which can eventually lead to an improved understanding of biological processes and diseases. STAr can be accessed at https://lce.biohpc.swmed.edu/star/ .
Collapse
|
110
|
Single cell molecular alterations reveal target cells and pathways of conditioned fear memory. Brain Res 2023; 1807:148309. [PMID: 36870465 DOI: 10.1016/j.brainres.2023.148309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVES Recent evidence indicates that hippocampus is important for conditioned fear memory (CFM). Though few studies consider the roles of various cell types' contribution to such a process, as well as the accompanying transcriptome changes during this process. The purpose of this study was to explore the transcriptional regulatory genes and the targeted cells that are altered by CFM reconsolidation. METHODS A fear conditioning experiment was established on adult male C57 mice, after day 3 tone-cued CFM reconsolidation test, hippocampus cells were dissociated. Using single cell RNA sequencing (scRNA-seq) technique, alterations of transcriptional genes expression were detected and cell cluster analysis were performed and compared with those in sham group. RESULTS Seven non-neuronal and eight neuronal cell clusters (including four known neurons and four newly identified neuronal subtypes) has been explored. Among them, CA subtype 1 has characteristic gene markers of Ttr and Ptgds, which is speculated to be the outcome of acute stress and promotes the production of CFM. The results of KEGG pathway enrichment indicate the differences in the expression of certain molecular protein functional subunits in long-term potentiation (LTP) pathway between two types of neurons (DG and CA1) and astrocytes, thus providing a new transcriptional perspective for the role of hippocampus in the CFM reconsolidation. More importantly, the correlation between the reconsolidation of CFM and neurodegenerative diseases-linked genes is substantiated by the results from cell-cell interactions and KEGG pathway enrichment. Further analysis shows that the reconsolidation of CFM inhibits the risk-factor genes App and ApoE in Alzheimer's Disease (AD) and activates the protective gene Lrp1. CONCLUSIONS This study reports the transcriptional genes expression changes of hippocampal cells driven by CFM, which confirm the involvement of LTP pathway and suggest the possibility of CFM-like behavior in preventing AD. However, the current research is limited to normal C57 mice, and further studies on AD model mice are needed to prove this preliminary conclusion.
Collapse
|
111
|
Tang Q, Godschall E, Brennan CD, Zhang Q, Abraham-Fan RJ, Williams SP, Güngül TB, Onoharigho R, Buyukaksakal A, Salinas R, Olivieri JJ, Deppmann CD, Campbell JN, Podyma B, Güler AD. A leptin-responsive hypothalamic circuit inputs to the circadian feeding network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529901. [PMID: 36865258 PMCID: PMC9980144 DOI: 10.1101/2023.02.24.529901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Salient cues, such as the rising sun or the availability of food, play a crucial role in entraining biological clocks, allowing for effective behavioral adaptation and ultimately, survival. While the light-dependent entrainment of the central circadian pacemaker (suprachiasmatic nucleus, SCN) is relatively well defined, the molecular and neural mechanisms underlying entrainment associated with food availability remains elusive. Using single nucleus RNA sequencing during scheduled feeding (SF), we identified a leptin receptor (LepR) expressing neuron population in the dorsomedial hypothalamus (DMH) that upregulates circadian entrainment genes and exhibits rhythmic calcium activity prior to an anticipated meal. We found that disrupting DMHLepR neuron activity had a profound impact on both molecular and behavioral food entrainment. Specifically, silencing DMHLepR neurons, mis-timed exogenous leptin administration, or mis-timed chemogenetic stimulation of these neurons all interfered with the development of food entrainment. In a state of energy abundance, repetitive activation of DMHLepR neurons led to the partitioning of a secondary bout of circadian locomotor activity that was in phase with the stimulation and dependent on an intact SCN. Lastly, we discovered that a subpopulation of DMHLepR neurons project to the SCN with the capacity to influence the phase of the circadian clock. This leptin regulated circuit serves as a point of integration between the metabolic and circadian systems, facilitating the anticipation of meal times.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Elizabeth Godschall
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Charles D. Brennan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Qi Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Sydney P. Williams
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Taha Buğra Güngül
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Roberta Onoharigho
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Aleyna Buyukaksakal
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Ricardo Salinas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Joey J. Olivieri
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22904, USA
- Department Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Brandon Podyma
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
112
|
Zhang L, He CH, Coffey S, Yin D, Hsu IU, Su C, Ye Y, Zhang C, Spurrier J, Nicholson L, Rothlin CV, Ghosh S, Gopal PP, Hafler DA, Zhao H, Strittmatter SM. Single-cell transcriptomic atlas of Alzheimer's disease middle temporal gyrus reveals region, cell type and sex specificity of gene expression with novel genetic risk for MERTK in female. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.18.23286037. [PMID: 36865305 PMCID: PMC9980267 DOI: 10.1101/2023.02.18.23286037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Alzheimer's disease, the most common age-related neurodegenerative disease, is closely associated with both amyloid-ß plaque and neuroinflammation. Two thirds of Alzheimer's disease patients are females and they have a higher disease risk. Moreover, women with Alzheimer's disease have more extensive brain histological changes than men along with more severe cognitive symptoms and neurodegeneration. To identify how sex difference induces structural brain changes, we performed unbiased massively parallel single nucleus RNA sequencing on Alzheimer's disease and control brains focusing on the middle temporal gyrus, a brain region strongly affected by the disease but not previously studied with these methods. We identified a subpopulation of selectively vulnerable layer 2/3 excitatory neurons that that were RORB-negative and CDH9-expressing. This vulnerability differs from that reported for other brain regions, but there was no detectable difference between male and female patterns in middle temporal gyrus samples. Disease-associated, but sex-independent, reactive astrocyte signatures were also present. In clear contrast, the microglia signatures of diseased brains differed between males and females. Combining single cell transcriptomic data with results from genome-wide association studies (GWAS), we identified MERTK genetic variation as a risk factor for Alzheimer's disease selectively in females. Taken together, our single cell dataset revealed a unique cellular-level view of sex-specific transcriptional changes in Alzheimer's disease, illuminating GWAS identification of sex-specific Alzheimer's risk genes. These data serve as a rich resource for interrogation of the molecular and cellular basis of Alzheimer's disease.
Collapse
|
113
|
Single-cell RNA-sequencing identifies disease-associated oligodendrocytes in male APP NL-G-F and 5XFAD mice. Nat Commun 2023; 14:802. [PMID: 36781874 PMCID: PMC9925742 DOI: 10.1038/s41467-023-36519-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Alzheimer's disease (AD) is associated with progressive neuronal degeneration as amyloid-beta (Aβ) and tau proteins accumulate in the brain. Glial cells were recently reported to play an important role in the development of AD. However, little is known about the role of oligodendrocytes in AD pathogenesis. Here, we describe a disease-associated subpopulation of oligodendrocytes that is present during progression of AD-like pathology in the male AppNL-G-F and male 5xFAD AD mouse brains and in postmortem AD human brains using single-cell RNA sequencing analysis. Aberrant Erk1/2 signaling was found to be associated with the activation of disease-associated oligodendrocytes (DAOs) in male AppNL-G-F mouse brains. Notably, inhibition of Erk1/2 signaling in DAOs rescued impaired axonal myelination and ameliorated Aβ-associated pathologies and cognitive decline in the male AppNL-G-F AD mouse model.
Collapse
|
114
|
Salta E, Lazarov O, Fitzsimons CP, Tanzi R, Lucassen PJ, Choi SH. Adult hippocampal neurogenesis in Alzheimer's disease: A roadmap to clinical relevance. Cell Stem Cell 2023; 30:120-136. [PMID: 36736288 PMCID: PMC10082636 DOI: 10.1016/j.stem.2023.01.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Adult hippocampal neurogenesis (AHN) drops sharply during early stages of Alzheimer's disease (AD), via unknown mechanisms, and correlates with cognitive status in AD patients. Understanding AHN regulation in AD could provide a framework for innovative pharmacological interventions. We here combine molecular, behavioral, and clinical data and critically discuss the multicellular complexity of the AHN niche in relation to AD pathophysiology. We further present a roadmap toward a better understanding of the role of AHN in AD by probing the promises and caveats of the latest technological advancements in the field and addressing the conceptual and methodological challenges ahead.
Collapse
Affiliation(s)
- Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 808 S Wood St., Chicago, IL 60612, USA
| | - Carlos P Fitzsimons
- Brain Plasticity group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, McCance Center for Brain Health, 114 16th Street, Boston, MA 02129, USA.
| | - Paul J Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands; Center for Urban Mental Health, University of Amsterdam, Kruislaan 404, 1098 SM, Amsterdam, The Netherlands.
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, McCance Center for Brain Health, 114 16th Street, Boston, MA 02129, USA.
| |
Collapse
|
115
|
Wang JQ, Gao MY, Gao R, Zhao KH, Zhang Y, Li X. Oligodendrocyte lineage cells: Advances in development, disease, and heterogeneity. J Neurochem 2023; 164:468-480. [PMID: 36415921 DOI: 10.1111/jnc.15728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) originate in the ventricular zone (VZ) of the brain and spinal cord, and their primary function is to differentiate into oligodendrocytes (OLs). Studies have shown that OPCs and OLs are pathologically and physiologically heterogeneous. Previous transcriptome analyses used Bulk RNA-seq, which compares average gene expression in cells and does not allow for heterogeneity. In recent years, the development of single-cell sequencing (scRNA-seq) and single-cell nuclear sequencing (snRNA-seq) has allowed us to study an individual cell. In this review, sc/snRNA-seq was used to study the different subpopulations of OL lineage cells, their developmental trajectories, and their applications in related diseases. These techniques can distinguish different subpopulations of cells, and identify differentially expressed genes in particular cell types under certain conditions, such as treatment or disease. It is of great significance to the study of the occurrence, prevention, and treatment of various diseases.
Collapse
Affiliation(s)
- Jia-Qi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Meng-Yuan Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ke-Han Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
116
|
Chen P, Guo Z, Zhou B. Insight into the role of adult hippocampal neurogenesis in aging and Alzheimer's disease. Ageing Res Rev 2023; 84:101828. [PMID: 36549424 DOI: 10.1016/j.arr.2022.101828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and seriously affects the quality of life of the elderly. Neurodegeneration is closely related to hippocampal dysfunction in AD patients. The hippocampus is key to creating new memories and is also one of the first areas of the brain to deteriorate with age. Mammalian neurogenesis occurs mainly in the hippocampus. Recent studies have confirmed that neurogenesis in the hippocampus is sustainable but decreases with age, which seriously affects the learning and memory function of AD patients. At present, our understanding of neurogenesis is still relatively shallow, especially pertaining to the influence and role of neurogenesis during aging and cognitive deficits in AD patients. Interestingly, many recent studies have described the characteristics of neurogenesis in animal models. This article reviews the progress of neurogenesis research in the context of aging and AD to provide new insights into neurogenesis.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - ZhiLei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, Hubei, China.
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
117
|
Murdock MH, Tsai LH. Insights into Alzheimer's disease from single-cell genomic approaches. Nat Neurosci 2023; 26:181-195. [PMID: 36593328 PMCID: PMC10155598 DOI: 10.1038/s41593-022-01222-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/28/2022] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is an age-related disease pathologically defined by the deposition of amyloid plaques and neurofibrillary tangles in the brain parenchyma. Single-cell profiling has shown that Alzheimer's dementia involves the complex interplay of virtually every major brain cell type. Here, we highlight cell-type-specific molecular perturbations in AD. We discuss how genomic information from single cells expands existing paradigms of AD pathogenesis and highlight new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Mitchell H Murdock
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
118
|
Huang T, Xiao Y, Zhang Y, Ge Y, Gao J. Combination of single-nucleus and bulk RNA-seq reveals the molecular mechanism of thalamus haemorrhage-induced central poststroke pain. Front Immunol 2023; 14:1174008. [PMID: 37153564 PMCID: PMC10157064 DOI: 10.3389/fimmu.2023.1174008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Central poststroke pain (CPSP) induced by thalamic haemorrhage (TH) can be continuous or intermittent and is accompanied by paresthesia, which seriously affects patient quality of life. Advanced insights into CPSP mechanisms and therapeutic strategies require a deeper understanding of the molecular processes of the thalamus. Here, using single-nucleus RNA sequencing (snRNA-seq), we sequenced the transcriptomes of 32332 brain cells, which revealed a total of four major cell types within the four thalamic samples from mice. Compared with the control group, the experimental group possessed the higher sensitivity to mechanical, thermal, and cold stimuli, and increased microglia numbers and decreased neuron numbers. We analysed a collection of differentially expressed genes and neuronal marker genes obtained from bulk RNA sequencing (bulk RNA-seq) data and found that Apoe, Abca1, and Hexb were key genes verified by immunofluorescence (IF). Immune infiltration analysis found that these key genes were closely related to macrophages, T cells, related chemokines, immune stimulators and receptors. Gene Ontology (GO) enrichment analysis also showed that the key genes were enriched in biological processes such as protein export from nucleus and protein sumoylation. In summary, using large-scale snRNA-seq, we have defined the transcriptional and cellular diversity in the brain after TH. Our identification of discrete cell types and differentially expressed genes within the thalamus can facilitate the development of new CPSP therapeutics.
Collapse
Affiliation(s)
- Tianfeng Huang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yinggang Xiao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yali Ge
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Ju Gao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Yangzhou Key Laboratory of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| |
Collapse
|
119
|
Kurki SN, Uvarov P, Pospelov AS, Trontti K, Hübner AK, Srinivasan R, Watanabe M, Hovatta I, Hübner CA, Kaila K, Virtanen MA. Expression patterns of NKCC1 in neurons and non-neuronal cells during cortico-hippocampal development. Cereb Cortex 2022; 33:5906-5923. [PMID: 36573432 PMCID: PMC10183754 DOI: 10.1093/cercor/bhac470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
The Na-K-2Cl cotransporter NKCC1 is widely expressed in cells within and outside the brain. However, our understanding of its roles in brain functions throughout development, as well as in neuropsychiatric and neurological disorders, has been severely hindered by the lack of reliable data on its developmental and (sub)cellular expression patterns. We provide here the first properly controlled analysis of NKCC1 protein expression in various cell types of the mouse brain using custom-made antibodies and an NKCC1 knock-out validated immunohistochemical procedure, with parallel data based on advanced mRNA approaches. NKCC1 protein and mRNA are expressed at remarkably high levels in oligodendrocytes. In immature neurons, NKCC1 protein was located in the somata, whereas in adult neurons, only NKCC1 mRNA could be clearly detected. NKCC1 immunoreactivity is also seen in microglia, astrocytes, developing pericytes, and in progenitor cells of the dentate gyrus. Finally, a differential expression of NKCC1 splice variants was observed, with NKCC1a predominating in non-neuronal cells and NKCC1b in neurons. Taken together, our data provide a cellular basis for understanding NKCC1 functions in the brain and enable the identification of major limitations and promises in the development of neuron-targeting NKCC1-blockers.
Collapse
Affiliation(s)
- Samu N Kurki
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Pavel Uvarov
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Alexey S Pospelov
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Kalevi Trontti
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
- University of Helsinki SleepWell Research Program, Faculty of Medicine, , 00014 Helsinki , Finland
- University of Helsinki Department of Psychology and Logopedics, , 00014 Helsinki , Finland
| | - Antje K Hübner
- Jena University Hospital, Friedrich Schiller Universität Institute of Human Genetics, , 07747 Jena , Germany
| | - Rakenduvadhana Srinivasan
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Masahiko Watanabe
- Hokkaido University Department of Anatomy, Faculty of Medicine, , Sapporo 060–8638 , Japan
| | - Iiris Hovatta
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
- University of Helsinki SleepWell Research Program, Faculty of Medicine, , 00014 Helsinki , Finland
- University of Helsinki Department of Psychology and Logopedics, , 00014 Helsinki , Finland
| | - Christian A Hübner
- Jena University Hospital, Friedrich Schiller Universität Institute of Human Genetics, , 07747 Jena , Germany
| | - Kai Kaila
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Mari A Virtanen
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| |
Collapse
|
120
|
Mendoza ML, Quigley LD, Dunham T, Volk LJ. KIBRA regulates activity-induced AMPA receptor expression and synaptic plasticity in an age-dependent manner. iScience 2022; 25:105623. [PMID: 36465112 PMCID: PMC9713372 DOI: 10.1016/j.isci.2022.105623] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
A growing body of human literature implicates KIBRA in memory and neurodevelopmental disorders. Memory and the cellular substrates supporting adaptive cognition change across development. Using an inducible KIBRA knockout mouse, we demonstrate that adult-onset deletion of KIBRA in forebrain neurons impairs long-term spatial memory and long-term potentiation (LTP). These LTP deficits correlate with adult-selective decreases in extrasynaptic AMPA receptors under basal conditions, and we identify a role for KIBRA in LTP-induced AMPAR upregulation. In contrast, juvenile-onset deletion of KIBRA in forebrain neurons did not affect LTP and had minimal effects on basal AMPAR expression. LTP did not increase AMPAR protein expression in juvenile WT mice, providing a potential explanation for juvenile resilience to KIBRA deletion. These data suggest that KIBRA serves a unique role in adult hippocampal function through regulation of basal and activity-dependent AMPAR proteostasis that supports synaptic plasticity.
Collapse
Affiliation(s)
- Matthew L. Mendoza
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lilyana D. Quigley
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas Dunham
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lenora J. Volk
- Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’ Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
121
|
Liu CY, Chen HH. Large-Scale Single-Nucleus RNA Sequencing Compatible with Complex Archived Samples. Methods Mol Biol 2022; 2560:333-346. [PMID: 36481908 DOI: 10.1007/978-1-0716-2651-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptome profiling at single-cell resolution allows us to identify and assess functional cell types and cellular states, including those within degenerating ocular tissues in retinitis pigmentosa. The technology is particularly valuable when studying tissues with high cellular heterogeneity, or when specific cell types are of interest. In this chapter, we introduce a detailed protocol of a medium-throughput single-nucleus RNA sequencing technique that utilizes frozen tissue as input sample. This protocol can be executed by any researcher with basic training in molecular biology techniques. With this protocol, a single experimenter can easily process two samples per day up to cDNA amplification, and library preparations can be done in batches of 8. Routinely we can obtain ~20 K nuclei per eye from 3 to 4 library preparations.
Collapse
Affiliation(s)
- Chao-Yu Liu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu-Hsin Chen
- Department of Biomarker Discovery OMNI, Genentech , South San Francisco, CA, United States.
| |
Collapse
|
122
|
Pohl ST, Prada ML, Espinet E, Jurkowska R. Practical Considerations for Complex Tissue Dissociation for Single-Cell Transcriptomics. Methods Mol Biol 2022; 2584:371-387. [PMID: 36495461 DOI: 10.1007/978-1-0716-2756-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell and single-nucleus RNA sequencing have revolutionized biomedical research, allowing analysis of complex tissues, identification of novel cell types, and mapping of development as well as disease states. Successful application of this technology critically relies on the dissociation of solid organs and tissues into high-quality single-cell (or nuclei) suspensions.In this chapter, we examine several key aspects of the tissue handling workflow that need to be considered when establishing an efficient tissue processing protocol for single-cell RNA sequencing (scRNA-seq). These include tissue collection, transport, and storage, as well as the choice of the dissociation conditions. We emphasize the importance of the tissue quality check and discuss the advantages (and potential limitations) of tissue cryopreservation. We provide practical tips and considerations on each of the steps of the processing workflow, and comment on how to maximize cell viability and integrity, which are critical for obtaining high-quality single-cell transcriptomic data.
Collapse
Affiliation(s)
- Stephanie T Pohl
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK
| | - Maria Llamazares Prada
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ) and Translational Lung Research Center, Heidelberg, Germany
| | - Elisa Espinet
- Anatomy Unit, Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | | |
Collapse
|
123
|
Carazo-Arias E, Nguyen PT, Kass M, Jee HJ, Nautiyal KM, Magalong V, Coie L, Andreu V, Gergues MM, Khalil H, Akil H, Arcego DM, Meaney M, Anacker C, Samuels BA, Pintar JE, Morozova I, Kalachikov S, Hen R. Contribution of the Opioid System to the Antidepressant Effects of Fluoxetine. Biol Psychiatry 2022; 92:952-963. [PMID: 35977861 PMCID: PMC10426813 DOI: 10.1016/j.biopsych.2022.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors such as fluoxetine have a limited treatment efficacy. The mechanism by which some patients respond to fluoxetine while others do not remains poorly understood, limiting treatment effectiveness. We have found the opioid system to be involved in the responsiveness to fluoxetine treatment in a mouse model for anxiety- and depressive-like behavior. METHODS We analyzed gene expression changes in the dentate gyrus of mice chronically treated with corticosterone and fluoxetine. After identifying a subset of genes of interest, we studied their expression patterns in relation to treatment responsiveness. We further characterized their expression through in situ hybridization and the analysis of a single-cell RNA sequencing dataset. Finally, we behaviorally tested mu and delta opioid receptor knockout mice in the novelty suppressed feeding test and the forced swim test after chronic corticosterone and fluoxetine treatment. RESULTS Chronic fluoxetine treatment upregulates proenkephalin expression in the dentate gyrus, and this upregulation is associated with treatment responsiveness. The expression of several of the most significantly upregulated genes, including proenkephalin, is localized to an anatomically and transcriptionally specialized subgroup of mature granule cells in the dentate gyrus. We have also found that the delta opioid receptor contributes to some, but not all, of the behavioral effects of fluoxetine. CONCLUSIONS These data indicate that the opioid system is involved in the antidepressant effects of fluoxetine, and this effect may be mediated through the upregulation of proenkephalin in a subpopulation of mature granule cells.
Collapse
Affiliation(s)
- Elena Carazo-Arias
- Department of Biological Sciences, Columbia University, New York State Psychiatric Institute, New York, New York; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Phi T Nguyen
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, New York; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Marley Kass
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, New York; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Hyun Jung Jee
- Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Katherine M Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Valerie Magalong
- Program in Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Lilian Coie
- Department of Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York
| | - Valentine Andreu
- Department of Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York
| | - Mark M Gergues
- Department of Psychology, Rutgers University, New Brunswick, New Jersey
| | - Huzefa Khalil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Danusa Mar Arcego
- Department of Psychiatry, Faculty of Medicine, Douglas Hospital Research Centre, McGill University, Montreal, Québec, Canada
| | - Michael Meaney
- Department of Psychiatry, Faculty of Medicine, Douglas Hospital Research Centre, McGill University, Montreal, Québec, Canada; Sackler Program for Epigenetics and Psychobiology, Douglas Hospital Research Centre, McGill University, Montreal, Québec, Canada; Singapore Institute for Clinical Sciences, Singapore
| | - Christoph Anacker
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, New York
| | | | - John E Pintar
- Department of Neuroscience & Cell Biology, Rutgers University, New Brunswick, New Jersey
| | - Irina Morozova
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York State Psychiatric Institute, New York, New York; Department of Chemical Engineering, Columbia University, New York State Psychiatric Institute, New York, New York
| | - Sergey Kalachikov
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York State Psychiatric Institute, New York, New York; Department of Chemical Engineering, Columbia University, New York State Psychiatric Institute, New York, New York; Data Science Institute, Columbia University, New York State Psychiatric Institute, New York, New York
| | - Rene Hen
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, New York; Department of Neuroscience, Columbia University, New York State Psychiatric Institute, New York, New York; Department of Pharmacology, Columbia University, New York State Psychiatric Institute, New York, New York; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
124
|
Ramos SI, Mussa ZM, Falk EN, Pai B, Giotti B, Allette K, Cai P, Dekio F, Sebra R, Beaumont KG, Tsankov AM, Tsankova NM. An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics. Nat Commun 2022; 13:7671. [PMID: 36509746 PMCID: PMC9744747 DOI: 10.1038/s41467-022-34975-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Late prenatal development of the human neocortex encompasses a critical period of gliogenesis and cortical expansion. However, systematic single-cell analyses to resolve cellular diversity and gliogenic lineages of the third trimester are lacking. Here, we present a comprehensive single-nucleus RNA sequencing atlas of over 200,000 nuclei derived from the proliferative germinal matrix and laminating cortical plate of 15 prenatal, non-pathological postmortem samples from 17 to 41 gestational weeks, and 3 adult controls. This dataset captures prenatal gliogenesis with high temporal resolution and is provided as a resource for further interrogation. Our computational analysis resolves greater complexity of glial progenitors, including transient glial intermediate progenitor cell (gIPC) and nascent astrocyte populations in the third trimester of human gestation. We use lineage trajectory and RNA velocity inference to further characterize specific gIPC subpopulations preceding both oligodendrocyte (gIPC-O) and astrocyte (gIPC-A) lineage differentiation. We infer unique transcriptional drivers and biological pathways associated with each developmental state, validate gIPC-A and gIPC-O presence within the human germinal matrix and cortical plate in situ, and demonstrate gIPC states being recapitulated across adult and pediatric glioblastoma tumors.
Collapse
Affiliation(s)
- Susana I Ramos
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zarmeen M Mussa
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elisa N Falk
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Balagopal Pai
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peiwen Cai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fumiko Dekio
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nadejda M Tsankova
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
125
|
Cervantes-Pérez SA, Thibivillliers S, Tennant S, Libault M. Review: Challenges and perspectives in applying single nuclei RNA-seq technology in plant biology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111486. [PMID: 36202294 DOI: 10.1016/j.plantsci.2022.111486] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Plant single-cell RNA-seq technology quantifies the abundance of plant transcripts at a single-cell resolution. Deciphering the transcriptomes of each plant cell, their regulation during plant cell development, and their response to environmental stresses will support the functional study of genes, the establishment of precise transcriptional programs, the prediction of more accurate gene regulatory networks, and, in the long term, the design of de novo gene pathways to enhance selected crop traits. In this review, we will discuss the opportunities, challenges, and problems, and share tentative solutions associated with the generation and analysis of plant single-cell transcriptomes. We will discuss the benefit and limitations of using plant protoplasts vs. nuclei to conduct single-cell RNA-seq experiments on various plant species and organs, the functional annotation of plant cell types based on their transcriptomic profile, the characterization of the dynamic regulation of the plant genes during cell development or in response to environmental stress, the need to characterize and integrate additional layers of -omics datasets to capture new molecular modalities at the single-cell level and reveal their causalities, the deposition and access to single-cell datasets, and the accessibility of this technology to plant scientists.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | - Sandra Thibivillliers
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA; Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA; Single Cell Genomics Core Facility, University of Nebraska-Lincoln, NE 68588, USA
| | - Sutton Tennant
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA
| | - Marc Libault
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68503, USA; Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA; Single Cell Genomics Core Facility, University of Nebraska-Lincoln, NE 68588, USA.
| |
Collapse
|
126
|
Microfluidics-based single cell analysis: From transcriptomics to spatiotemporal multi-omics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
127
|
Lund JB, Lindberg EL, Maatz H, Pottbaecker F, Hübner N, Lippert C. AntiSplodge: a neural-network-based RNA-profile deconvolution pipeline designed for spatial transcriptomics. NAR Genom Bioinform 2022; 4:lqac073. [PMID: 36225530 PMCID: PMC9549785 DOI: 10.1093/nargab/lqac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
With the current surge of spatial transcriptomics (ST) studies, researchers are exploring the deep interactive cell-play directly in tissues, in situ. However, with the current technologies, measurements consist of mRNA transcript profiles of mixed origin. Recently, applications have been proposed to tackle the deconvolution process, to gain knowledge about which cell types (SC) are found within. This is usually done by incorporating metrics from single-cell (SC) RNA, from similar tissues. Yet, most existing tools are cumbersome, and we found them hard to integrate and properly utilize. Therefore, we present AntiSplodge, a simple feed-forward neural-network-based pipeline designed to effective deconvolute ST profiles by utilizing synthetic ST profiles derived from real-life SC datasets. AntiSplodge is designed to be easy, fast and intuitive while still being lightweight. To demonstrate AntiSplodge, we deconvolute the human heart and verify correctness across time points. We further deconvolute the mouse brain, where spot patterns correctly follow that of the underlying tissue. In particular, for the hippocampus from where the cells originate. Furthermore, AntiSplodge demonstrates top of the line performance when compared to current state-of-the-art tools. Software availability: https://github.com/HealthML/AntiSplodge/.
Collapse
Affiliation(s)
- Jesper B Lund
- Digital Health & Machine Learning Research Group, Hasso Plattner Institut for Digital Engineering, Potsdam, Germany
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Fabian Pottbaecker
- Digital Health & Machine Learning Research Group, Hasso Plattner Institut for Digital Engineering, Potsdam, Germany
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charite, Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Lippert
- Digital Health & Machine Learning Research Group, Hasso Plattner Institut for Digital Engineering, Potsdam, Germany
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
128
|
Li X, Yu H, Zhang B, Li L, Chen W, Yu Q, Huang X, Ke X, Wang Y, Jing W, Du H, Li H, Zhang T, Liu L, Zhu LQ, Lu Y. Molecularly defined and functionally distinct cholinergic subnetworks. Neuron 2022; 110:3774-3788.e7. [PMID: 36130594 DOI: 10.1016/j.neuron.2022.08.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Cholinergic neurons in the medial septum (MS) constitute a major source of cholinergic input to the forebrain and modulate diverse functions, including sensory processing, memory, and attention. Most studies to date have treated cholinergic neurons as a single population; as such, the organizational principles underling their functional diversity remain unknown. Here, we identified two subsets (D28K+ versus D28K-) of cholinergic neurons that are topographically segregated in mice, Macaca fascicularis, and humans. These cholinergic subpopulations possess unique electrophysiological signatures, express mutually exclusive marker genes (kcnh1 and aifm3 versus cacna1h and gga3), and make differential connections with physiologically distinct neuronal classes in the hippocampus to form two structurally defined and functionally distinct circuits. Gain- and loss-of-function studies on these circuits revealed their differential roles in modulation of anxiety-like behavior and spatial memory. These results provide a molecular and circuitry-based theory for how cholinergic neurons contribute to their diverse behavioral functions.
Collapse
Affiliation(s)
- Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyan Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bing Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lanfang Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenting Chen
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Quntao Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian Huang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Ke
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Jing
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongmei Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling-Qiang Zhu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
129
|
Yayon N, Amsalem O, Zorbaz T, Yakov O, Dubnov S, Winek K, Dudai A, Adam G, Schmidtner AK, Tessier‐Lavigne M, Renier N, Habib N, Segev I, London M, Soreq H. High-throughput morphometric and transcriptomic profiling uncovers composition of naïve and sensory-deprived cortical cholinergic VIP/CHAT neurons. EMBO J 2022; 42:e110565. [PMID: 36377476 PMCID: PMC9811618 DOI: 10.15252/embj.2021110565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Cortical neuronal networks control cognitive output, but their composition and modulation remain elusive. Here, we studied the morphological and transcriptional diversity of cortical cholinergic VIP/ChAT interneurons (VChIs), a sparse population with a largely unknown function. We focused on VChIs from the whole barrel cortex and developed a high-throughput automated reconstruction framework, termed PopRec, to characterize hundreds of VChIs from each mouse in an unbiased manner, while preserving 3D cortical coordinates in multiple cleared mouse brains, accumulating thousands of cells. We identified two fundamentally distinct morphological types of VChIs, bipolar and multipolar that differ in their cortical distribution and general morphological features. Following mild unilateral whisker deprivation on postnatal day seven, we found after three weeks both ipsi- and contralateral dendritic arborization differences and modified cortical depth and distribution patterns in the barrel fields alone. To seek the transcriptomic drivers, we developed NuNeX, a method for isolating nuclei from fixed tissues, to explore sorted VChIs. This highlighted differentially expressed neuronal structural transcripts, altered exitatory innervation pathways and established Elmo1 as a key regulator of morphology following deprivation.
Collapse
Affiliation(s)
- Nadav Yayon
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,The Department of Biological Chemistry, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | - Oren Amsalem
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,The Department of Neurobiology, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | - Tamara Zorbaz
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,The Department of Biological Chemistry, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,Biochemistry and Organic Analytical Chemistry UnitThe Institute of Medical Research and Occupational HealthZagrebCroatia
| | - Or Yakov
- The Department of Biological Chemistry, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | - Serafima Dubnov
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,The Department of Biological Chemistry, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | - Katarzyna Winek
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,The Department of Biological Chemistry, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | - Amir Dudai
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,The Department of Neurobiology, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | - Gil Adam
- The Department of Biological Chemistry, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | - Anna K Schmidtner
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | | | - Nicolas Renier
- Sorbonne Université, Paris Brain Institute ‐ ICM, INSERM, CNRS, AP‐HP, Hôpital de la Pitié SalpêtrièreParisFrance
| | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,The Department of Neurobiology, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,The Department of Neurobiology, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | - Michael London
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,The Department of Neurobiology, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael,The Department of Biological Chemistry, The Life Sciences InstituteThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
130
|
Tissue dissociation for single-cell and single-nuclei RNA sequencing for low amounts of input material. Front Zool 2022; 19:27. [DOI: 10.1186/s12983-022-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Recent technological advances opened the opportunity to simultaneously study gene expression for thousands of individual cells on a genome-wide scale. The experimental accessibility of such single-cell RNA sequencing (scRNAseq) approaches allowed gaining insights into the cell type composition of heterogeneous tissue samples of animal model systems and emerging models alike. A major prerequisite for a successful application of the method is the dissociation of complex tissues into individual cells, which often requires large amounts of input material and harsh mechanical, chemical and temperature conditions. However, the availability of tissue material may be limited for small animals, specific organs, certain developmental stages or if samples need to be acquired from collected specimens. Therefore, we evaluated different dissociation protocols to obtain single cells from small tissue samples of Drosophila melanogaster eye-antennal imaginal discs.
Results
We show that a combination of mechanical and chemical dissociation resulted in sufficient high-quality cells. As an alternative, we tested protocols for the isolation of single nuclei, which turned out to be highly efficient for fresh and frozen tissue samples. Eventually, we performed scRNAseq and single-nuclei RNA sequencing (snRNAseq) to show that the best protocols for both methods successfully identified relevant cell types. At the same time, snRNAseq resulted in less artificial gene expression that is caused by rather harsh dissociation conditions needed to obtain single cells for scRNAseq. A direct comparison of scRNAseq and snRNAseq data revealed that both datasets share biologically relevant genes among the most variable genes, and we showed differences in the relative contribution of the two approaches to identified cell types.
Conclusion
We present two dissociation protocols that allow isolating single cells and single nuclei, respectively, from low input material. Both protocols resulted in extraction of high-quality RNA for subsequent scRNAseq or snRNAseq applications. If tissue availability is limited, we recommend the snRNAseq procedure of fresh or frozen tissue samples as it is perfectly suited to obtain thorough insights into cellular diversity of complex tissue.
Collapse
|
131
|
Keeler AB, Van Deusen AL, Gadani IC, Williams CM, Goggin SM, Hirt AK, Vradenburgh SA, Fread KI, Puleo EA, Jin L, Calhan OY, Deppmann CD, Zunder ER. A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry. Nat Neurosci 2022; 25:1543-1558. [PMID: 36303068 PMCID: PMC10691656 DOI: 10.1038/s41593-022-01181-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
Precisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter replicates collected daily from embryonic day 11.5 to postnatal day 4. Measuring nearly 3 million cells, we quantified 30 molecularly distinct somatosensory glial and 41 distinct neuronal states across all timepoints. Analysis of differentiation trajectories revealed rare cells that co-express two or more Trk receptors and over-express stem cell markers, suggesting that these neurotrophic factor receptors play a role in cell fate specification. Comparison to previous RNA-based studies identified substantial differences between many protein-mRNA pairs, demonstrating the importance of protein-level measurements to identify functional cell states. Overall, this study demonstrates that mass cytometry is a high-throughput, scalable platform to rapidly phenotype somatosensory tissues.
Collapse
Affiliation(s)
- Austin B Keeler
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
| | - Amy L Van Deusen
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Irene C Gadani
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Corey M Williams
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sarah M Goggin
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Ashley K Hirt
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
| | - Shayla A Vradenburgh
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Kristen I Fread
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Emily A Puleo
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Lucy Jin
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
| | - O Yipkin Calhan
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA
| | - Christopher D Deppmann
- Department of Biology, College of Arts and Sciences, Charlottesville, VA, USA.
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Program in Fundamental Neuroscience, College of Arts and Sciences, Charlottesville, VA, USA.
| | - Eli R Zunder
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Program in Fundamental Neuroscience, College of Arts and Sciences, Charlottesville, VA, USA.
| |
Collapse
|
132
|
Cuevas-Diaz Duran R, González-Orozco JC, Velasco I, Wu JQ. Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases. Front Cell Dev Biol 2022; 10:884748. [PMID: 36353512 PMCID: PMC9637968 DOI: 10.3389/fcell.2022.884748] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/06/2022] [Indexed: 08/10/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide and there are currently no cures. Two types of common neurodegenerative diseases are Alzheimer's (AD) and Parkinson's disease (PD). Single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq) have become powerful tools to elucidate the inherent complexity and dynamics of the central nervous system at cellular resolution. This technology has allowed the identification of cell types and states, providing new insights into cellular susceptibilities and molecular mechanisms underlying neurodegenerative conditions. Exciting research using high throughput scRNA-seq and snRNA-seq technologies to study AD and PD is emerging. Herein we review the recent progress in understanding these neurodegenerative diseases using these state-of-the-art technologies. We discuss the fundamental principles and implications of single-cell sequencing of the human brain. Moreover, we review some examples of the computational and analytical tools required to interpret the extensive amount of data generated from these assays. We conclude by highlighting challenges and limitations in the application of these technologies in the study of AD and PD.
Collapse
Affiliation(s)
| | | | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
133
|
Glielmo A, Macocco I, Doimo D, Carli M, Zeni C, Wild R, d'Errico M, Rodriguez A, Laio A. DADApy: Distance-based analysis of data-manifolds in Python. PATTERNS (NEW YORK, N.Y.) 2022; 3:100589. [PMID: 36277821 PMCID: PMC9583186 DOI: 10.1016/j.patter.2022.100589] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/24/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
DADApy is a Python software package for analyzing and characterizing high-dimensional data manifolds. It provides methods for estimating the intrinsic dimension and the probability density, for performing density-based clustering, and for comparing different distance metrics. We review the main functionalities of the package and exemplify its usage in a synthetic dataset and in a real-world application. DADApy is freely available under the open-source Apache 2.0 license.
Collapse
Affiliation(s)
- Aldo Glielmo
- International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy
- Banca d'Italia, Italy
| | - Iuri Macocco
- International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy
| | - Diego Doimo
- International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy
| | - Matteo Carli
- International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy
| | - Claudio Zeni
- International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy
| | - Romina Wild
- International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy
| | - Maria d'Errico
- Functional Genomics Center, ETH Zurich/UZH, Winterthurerstrasse 190, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment, Amphipole 1015, Lausanne, Switzerland
| | - Alex Rodriguez
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, Italy
| | - Alessandro Laio
- International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, Italy
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, Italy
| |
Collapse
|
134
|
Zhang MJ, Hou K, Dey KK, Sakaue S, Jagadeesh KA, Weinand K, Taychameekiatchai A, Rao P, Pisco AO, Zou J, Wang B, Gandal M, Raychaudhuri S, Pasaniuc B, Price AL. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat Genet 2022; 54:1572-1580. [PMID: 36050550 PMCID: PMC9891382 DOI: 10.1038/s41588-022-01167-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/19/2022] [Indexed: 02/03/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) provides unique insights into the pathology and cellular origin of disease. We introduce single-cell disease relevance score (scDRS), an approach that links scRNA-seq with polygenic disease risk at single-cell resolution, independent of annotated cell types. scDRS identifies cells exhibiting excess expression across disease-associated genes implicated by genome-wide association studies (GWASs). We applied scDRS to 74 diseases/traits and 1.3 million single-cell gene-expression profiles across 31 tissues/organs. Cell-type-level results broadly recapitulated known cell-type-disease associations. Individual-cell-level results identified subpopulations of disease-associated cells not captured by existing cell-type labels, including T cell subpopulations associated with inflammatory bowel disease, partially characterized by their effector-like states; neuron subpopulations associated with schizophrenia, partially characterized by their spatial locations; and hepatocyte subpopulations associated with triglyceride levels, partially characterized by their higher ploidy levels. Genes whose expression was correlated with the scDRS score across cells (reflecting coexpression with GWAS disease-associated genes) were strongly enriched for gold-standard drug target and Mendelian disease genes.
Collapse
Affiliation(s)
- Martin Jinye Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Kushal K Dey
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Saori Sakaue
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Karthik A Jagadeesh
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kathryn Weinand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aris Taychameekiatchai
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Poorvi Rao
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | | | - James Zou
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, USA
- Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA
| | - Bruce Wang
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Gandal
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Soumya Raychaudhuri
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
135
|
Di L, Liu B, Lyu Y, Zhao S, Pang Y, Zhang C, Wang J, Qi H, Shen J, Huang Y. Rapid and sensitive single-cell RNA sequencing with SHERRY2. BMC Biol 2022; 20:213. [PMID: 36175891 PMCID: PMC9522537 DOI: 10.1186/s12915-022-01416-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prevalent single-cell transcriptomic profiling (scRNA-seq) methods are mainly based on the synthesis and enrichment of full-length double-stranded complementary DNA. These approaches are challenging to generate accurate quantification of transcripts when their abundance is low or their full-length amplifications are difficult. RESULTS Based on our previous finding that Tn5 transposase can directly cut-and-tag DNA/RNA hetero-duplexes, we present SHERRY2, a specifically optimized protocol for scRNA-seq without second-strand cDNA synthesis. SHERRY2 is free of pre-amplification and eliminates the sequence-dependent bias. In comparison with other widely used scRNA-seq methods, SHERRY2 exhibits significantly higher sensitivity and accuracy even for single nuclei. Besides, SHERRY2 is simple and robust and can be easily scaled up to high-throughput experiments. When testing single lymphocytes and neuron nuclei, SHERRY2 not only obtained accurate countings of transcription factors and long non-coding RNAs, but also provided bias-free results that enriched genes in specific cellular components or functions, which outperformed other protocols. With a few thousand cells sequenced by SHERRY2, we confirmed the expression and dynamics of Myc in different cell types of germinal centers, which were previously only revealed by gene-specific amplification methods. CONCLUSIONS SHERRY2 is able to provide high sensitivity, high accuracy, and high throughput for those applications that require a high number of genes identified in each cell. It can reveal the subtle transcriptomic difference between cells and facilitate important biological discoveries.
Collapse
Affiliation(s)
- Lin Di
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.,Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China.,School of Life Sciences, Peking University, Beijing, 100871, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, 528107, China
| | - Bo Liu
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, 100871, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100871, China
| | - Yuzhu Lyu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Shihui Zhao
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, 100871, China
| | - Yuhong Pang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jianbin Wang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
| | - Hai Qi
- Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, 100871, China. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100871, China.
| | - Jie Shen
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China. .,Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, 528107, China. .,College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
136
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
137
|
Almeida D, Turecki G. Profiling cell-type specific gene expression in post-mortem human brain samples through laser capture microdissection. Methods 2022; 207:3-10. [PMID: 36064002 DOI: 10.1016/j.ymeth.2022.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The transcriptome of a cell constitutes an essential piece of cellular identity and contributes to the multifaceted complexity and heterogeneity of cell-types within the mammalian brain. Thus, while a wealth of studies have investigated transcriptomic alterations underlying the pathophysiology of diseases of the brain, their use of bulk-tissue homogenates makes it difficult to tease apart whether observed differences are explained by disease state or cellular composition. Cell-type-specific enrichment strategies are, therefore, crucial in the context of gene expression profiling. Laser capture microdissection (LCM) is one such strategy that allows for the capture of specific cell-types, or regions of interest, under microscopic visualization. In this review, we focus on using LCM for cell-type specific gene expression profiling in post-mortem human brain samples. We begin with a discussion of various LCM systems, followed by a walk-through of each step in the LCM to gene expression profiling workflow and a description of some of the limitations associated with LCM. Throughout the review, we highlight important considerations when using LCM with post-mortem human brain samples. Whenever applicable, commercially available kits that have proven successful in the context of LCM with post-mortem human brain samples are described.
Collapse
Affiliation(s)
- Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC, Canada, H4H 1R3
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC, Canada, H4H 1R3; Department of Psychiatry, McGill University, Montreal, QC, Canada, H3A 1A1.
| |
Collapse
|
138
|
Lust K, Maynard A, Gomes T, Fleck JS, Camp JG, Tanaka EM, Treutlein B. Single-cell analyses of axolotl telencephalon organization, neurogenesis, and regeneration. Science 2022; 377:eabp9262. [PMID: 36048956 DOI: 10.1126/science.abp9262] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Salamanders are tetrapod models to study brain organization and regeneration; however, the identity and evolutionary conservation of brain cell types are largely unknown. We delineated the cell populations in the axolotl telencephalon during homeostasis and regeneration using single-cell genomic profiling. We identified glutamatergic neurons with similarities to amniote neurons of hippocampus, dorsal and lateral cortex, and conserved γ-aminobutyric acid-releasing (GABAergic) neuron classes. We inferred transcriptional dynamics and gene regulatory relationships of postembryonic, region-specific neurogenesis and unraveled conserved differentiation signatures. After brain injury, ependymoglia activate an injury-specific state before reestablishing lost neuron populations and axonal connections. Together, our analyses yield insights into the organization, evolution, and regeneration of a tetrapod nervous system.
Collapse
Affiliation(s)
- Katharina Lust
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Ashley Maynard
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Jonas Simon Fleck
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - J Gray Camp
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Elly M Tanaka
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| |
Collapse
|
139
|
Park SHE, Ortiz AK, Konopka G. Corticogenesis across species at single-cell resolution. Dev Neurobiol 2022; 82:517-532. [PMID: 35932776 PMCID: PMC9481703 DOI: 10.1002/dneu.22896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
Abstract
The neocortex (or pallium) consists of diverse cell types that are organized in a highly species-specific manner under strict spatiotemporal control during development. Many of the cell types are present transiently throughout development but contribute to permanent species-specific cortical features that are acquired through evolution. Therefore, capturing cell type-specific biological information has always been an important quest in the field of neurodevelopment. The progress in achieving fine cellular resolution has been slow due to technical challenges. However, with recent advancements in single-cell and multi-omics technologies, many laboratories have begun to successfully interrogate cellular and molecular mechanisms driving corticogenesis at single-cell resolution. In this review, we provide summarized results from many primary publications and several in-depth review articles that utilize or address single-cell genomics techniques to understand important topics, such as cellular and molecular mechanisms governing cortical progenitor proliferation, cell lineage progression, neuronal specification, and arealization, across multiple gyrencephalic (i.e., human and non-human primates) and lissencephalic species (i.e., mouse, reptiles, and songbirds). We also examine findings from recent studies involving epigenomic and posttranscriptional regulation of corticogenesis. In the discussion section, we provide our insights on the challenges the field currently faces as well as promising future applications of single cell technologies.
Collapse
Affiliation(s)
- Seon Hye E Park
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ana K Ortiz
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
140
|
Blum JA, Gitler AD. Singling out motor neurons in the age of single-cell transcriptomics. Trends Genet 2022; 38:904-919. [PMID: 35487823 PMCID: PMC9378604 DOI: 10.1016/j.tig.2022.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023]
Abstract
Motor neurons are a remarkably powerful cell type in the central nervous system. They innervate and control the contraction of virtually every muscle in the body and their dysfunction underlies numerous neuromuscular diseases. Some motor neurons seem resistant to degeneration whereas others are vulnerable. The intrinsic heterogeneity of motor neurons in adult organisms has remained elusive. The development of high-throughput single-cell transcriptomics has changed the paradigm, empowering rapid isolation and profiling of motor neuron nuclei, revealing remarkable transcriptional diversity within the skeletal and autonomic nervous systems. Here, we discuss emerging technologies for defining motor neuron heterogeneity in the adult motor system as well as implications for disease and spinal cord injury. We establish a roadmap for future applications of emerging techniques - such as epigenetic profiling, spatial RNA sequencing, and single-cell somatic mutational profiling to adult motor neurons, which will revolutionize our understanding of the healthy and degenerating adult motor system.
Collapse
Affiliation(s)
- Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, USA.
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
141
|
Akiyama-Oda Y, Akaiwa T, Oda H. Reconstruction of the Global Polarity of an Early Spider Embryo by Single-Cell and Single-Nucleus Transcriptome Analysis. Front Cell Dev Biol 2022; 10:933220. [PMID: 35938158 PMCID: PMC9353575 DOI: 10.3389/fcell.2022.933220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 01/07/2023] Open
Abstract
Patterning along an axis of polarity is a fundamental step in the development of a multicellular animal embryo. In the cellular field of an early spider embryo, Hedgehog signaling operates to specify a "fuzzy" French-flag-like pattern along the primary axis, which is related to the future anterior-posterior (A-P) axis. However, details regarding the generation and development of a diversity of cell states based on the embryo polarity are not known. To address this issue, we applied single-cell RNA sequencing to the early spider embryo consisting of approximately 2,000 cells. Our results confirmed that this technique successfully detected 3 cell populations corresponding to the germ layers and some transient cell states. We showed that the data from dissociated cells had sufficient information for reconstruction of a correct global A-P polarity of the presumptive ectoderm, without clear segregation of specific cell states. This outcome is explained by the varied but differentially overlapping expression of Hedgehog-signal target genes and newly identified marker genes. We also showed that the data resources generated by the transcriptome analysis are applicable to a genome-wide search for genes whose expression is spatially regulated, based on the detection of pattern similarity. Furthermore, we performed single-nucleus RNA sequencing, which was more powerful in detecting emerging cell states. The single-cell and single-nucleus transcriptome techniques will help investigate the pattern-forming processes in the spider model system in an unbiased, comprehensive manner. We provided web-based resources of these transcriptome datasets for future studies of pattern formation and cell differentiation.
Collapse
Affiliation(s)
- Yasuko Akiyama-Oda
- JT Biohistory Research Hall, Takatsuki, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takanori Akaiwa
- JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
142
|
Hammelman J, Patel T, Closser M, Wichterle H, Gifford D. Ranking reprogramming factors for cell differentiation. Nat Methods 2022; 19:812-822. [PMID: 35710610 PMCID: PMC10460539 DOI: 10.1038/s41592-022-01522-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Transcription factor over-expression is a proven method for reprogramming cells to a desired cell type for regenerative medicine and therapeutic discovery. However, a general method for the identification of reprogramming factors to create an arbitrary cell type is an open problem. Here we examine the success rate of methods and data for differentiation by testing the ability of nine computational methods (CellNet, GarNet, EBseq, AME, DREME, HOMER, KMAC, diffTF and DeepAccess) to discover and rank candidate factors for eight target cell types with known reprogramming solutions. We compare methods that use gene expression, biological networks and chromatin accessibility data, and comprehensively test parameter and preprocessing of input data to optimize performance. We find the best factor identification methods can identify an average of 50-60% of reprogramming factors within the top ten candidates, and methods that use chromatin accessibility perform the best. Among the chromatin accessibility methods, complex methods DeepAccess and diffTF have higher correlation with the ranked significance of transcription factor candidates within reprogramming protocols for differentiation. We provide evidence that AME and diffTF are optimal methods for transcription factor recovery that will allow for systematic prioritization of transcription factor candidates to aid in the design of new reprogramming protocols.
Collapse
Affiliation(s)
- Jennifer Hammelman
- Computational and Systems Biology, MIT, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | - Tulsi Patel
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Closser
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - David Gifford
- Computational and Systems Biology, MIT, Cambridge, MA, USA.
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.
| |
Collapse
|
143
|
Pan Y, Cao W, Mu Y, Zhu Q. Microfluidics Facilitates the Development of Single-Cell RNA Sequencing. BIOSENSORS 2022; 12:bios12070450. [PMID: 35884253 PMCID: PMC9312765 DOI: 10.3390/bios12070450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) technology provides a powerful tool for understanding complex biosystems at the single-cell and single-molecule level. The past decade has been a golden period for the development of single-cell sequencing, with scRNA-seq undergoing a tremendous leap in sensitivity and throughput. The application of droplet- and microwell-based microfluidics in scRNA-seq has contributed greatly to improving sequencing throughput. This review introduces the history of development and important technical factors of scRNA-seq. We mainly focus on the role of microfluidics in facilitating the development of scRNA-seq technology. To end, we discuss the future directions for scRNA-seq.
Collapse
Affiliation(s)
- Yating Pan
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.P.); (W.C.)
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenjian Cao
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.P.); (W.C.)
| | - Ying Mu
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.P.); (W.C.)
- Correspondence: (Y.M.); (Q.Z.); Tel.: +86-88208383 (Y.M.); +86-88208383 (Q.Z.)
| | - Qiangyuan Zhu
- Research Center for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China; (Y.P.); (W.C.)
- Huzhou Institute of Zhejiang University, Huzhou 313002, China
- Correspondence: (Y.M.); (Q.Z.); Tel.: +86-88208383 (Y.M.); +86-88208383 (Q.Z.)
| |
Collapse
|
144
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
145
|
Kim HB, Lu Y, Oh SC, Morris J, Miyashiro K, Kim J, Eberwine J, Sul JY. Astrocyte ethanol exposure reveals persistent and defined calcium response subtypes and associated gene signatures. J Biol Chem 2022; 298:102147. [PMID: 35716779 PMCID: PMC9293641 DOI: 10.1016/j.jbc.2022.102147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/26/2022] Open
Abstract
Astrocytes play a critical role in brain function, but their contribution during ethanol (EtOH) consumption remains largely understudied. In light of recent findings on the heterogeneity of astrocyte physiology and gene expression, an approach with the ability to identify subtypes and capture this heterogeneity is necessary. Here, we combined measurements of calcium signaling and gene expression to define EtOH-induced astrocyte subtypes. In the absence of a demonstrated EtOH receptor, EtOH is believed to have effects on the function of many receptors and downstream biological cascades that underlie calcium responsiveness. This mechanism of EtOH-induced calcium signaling is unknown and this study provides the first step in understanding the characteristics of cells displaying these observed responses. To characterize underlying astrocyte subtypes, we assessed the correlation between calcium signaling and astrocyte gene expression signature in response to EtOH. We found that various EtOH doses increased intracellular calcium levels in a subset of astrocytes, distinguishing three cellular response types and one nonresponsive subtype as categorized by response waveform properties. Furthermore, single-cell RNA-seq analysis of astrocytes from the different response types identified type-enriched discriminatory gene expression signatures. Combining single-cell calcium responses and gene expression analysis identified specific astrocyte subgroups among astrocyte populations defined by their response to EtOH. This result provides a basis for identifying the relationship between astrocyte susceptibility to EtOH and corresponding measurable markers of calcium signaling and gene expression, which will be useful to investigate potential subgroup-specific influences of astrocytes on the physiology and pathology of EtOH exposure in the brain.
Collapse
Affiliation(s)
- Hyun-Bum Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Youtao Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seonkyung C Oh
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacqueline Morris
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Miyashiro
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA; PENN Program in Single Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Eberwine
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; PENN Program in Single Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jai-Yoon Sul
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; PENN Program in Single Cell Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
146
|
Coverdell TC, Abraham-Fan RJ, Wu C, Abbott SBG, Campbell JN. Genetic encoding of an esophageal motor circuit. Cell Rep 2022; 39:110962. [PMID: 35705034 PMCID: PMC9255432 DOI: 10.1016/j.celrep.2022.110962] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
Motor control of the striated esophagus originates in the nucleus ambiguus (nAmb), a vagal motor nucleus that also contains upper airway motor neurons and parasympathetic preganglionic neurons for the heart and lungs. We disambiguate nAmb neurons based on their genome-wide expression profiles, efferent circuitry, and ability to control esophageal muscles. Our single-cell RNA sequencing analysis predicts three molecularly distinct nAmb neuron subtypes and annotates them by subtype-specific marker genes: Crhr2, Vipr2, and Adcyap1. Mapping the axon projections of the nAmb neuron subtypes reveals that Crhr2nAmb neurons innervate the esophagus, raising the possibility that they control esophageal muscle function. Accordingly, focal optogenetic stimulation of cholinergic Crhr2+ fibers in the esophagus results in contractions. Activating Crhr2nAmb neurons has no effect on heart rate, a key parasympathetic function of the nAmb, whereas activating all of the nAmb neurons robustly suppresses heart rate. Together, these results reveal a genetically defined circuit for motor control of the esophagus. Primary motor neurons for the esophagus reside in the nucleus ambiguus (nAmb) of the hindbrain, but little is known about their molecular identity. Coverdell et al. find that the nAmb comprises three molecularly and anatomically distinct neuron subtypes, one of which selectively innervates and can contract esophageal muscle.
Collapse
Affiliation(s)
- Tatiana C Coverdell
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA 22903, USA; Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | | | - Chen Wu
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - John N Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
147
|
Expression of Trace Amine-Associated Receptors in the Murine and Human Hippocampus Based on Public Transcriptomic Data. Cells 2022; 11:cells11111813. [PMID: 35681508 PMCID: PMC9180029 DOI: 10.3390/cells11111813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Hippocampus is one of the neurogenic zones where adult neurogenesis takes place. This process is quite complex and has a multicomponent regulation. A family of G protein-coupled trace amine-associated receptors (TAARs) was discovered only in 2001, and most of them (TAAR2-TAAR9) were primarily considered olfactory. Recent studies have shown, however, that they are also expressed in the mouse brain, particularly in limbic formations, and can play a role in the regulation of emotional behaviors. The observations in knockout mice indicate that at least two members of the family, TAAR2 and TAAR5, have an impact on the regulation of adult neurogenesis. In the present study, we analyzed the expression of TAARs in the murine and human hippocampus using public RNAseq datasets. Our results indicate a low but detectable level of certain TAARs expression in the hippocampal cells in selected high-quality transcriptomic datasets from both mouse and human samples. At the same time, we observed the difference between humans, where TAAR6 expression was the highest, and murine samples, where TAAR1, TAAR2, TAAR3, TAAR4 and TAAR5 are more pronouncedly expressed. These observations provide further support to the data gained in knockout mice, indicating a role of TAARs in the regulation of adult neurogenesis in the hippocampus.
Collapse
|
148
|
Neumann M, Xu X, Smaczniak C, Schumacher J, Yan W, Blüthgen N, Greb T, Jönsson H, Traas J, Kaufmann K, Muino JM. A 3D gene expression atlas of the floral meristem based on spatial reconstruction of single nucleus RNA sequencing data. Nat Commun 2022; 13:2838. [PMID: 35595749 PMCID: PMC9122980 DOI: 10.1038/s41467-022-30177-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular heterogeneity in growth and differentiation results in organ patterning. Single-cell transcriptomics allows characterization of gene expression heterogeneity in developing organs at unprecedented resolution. However, the original physical location of the cell is lost during this methodology. To recover the original location of cells in the developing organ is essential to link gene activity with cellular identity and function in plants. Here, we propose a method to reconstruct genome-wide gene expression patterns of individual cells in a 3D flower meristem by combining single-nuclei RNA-seq with microcopy-based 3D spatial reconstruction. By this, gene expression differences among meristematic domains giving rise to different tissue and organ types can be determined. As a proof of principle, the method is used to trace the initiation of vascular identity within the floral meristem. Our work demonstrates the power of spatially reconstructed single cell transcriptome atlases to understand plant morphogenesis. The floral meristem 3D gene expression atlas can be accessed at http://threed-flower-meristem.herokuapp.com. Single-cell transcriptomics allows gene expression heterogeneity to be assessed at cellular resolution but the original location of each cell is unknown. Here the authors combine single nuclei RNA-seq with 3D spatial reconstruction of floral meristems to link gene activities with morphology.
Collapse
Affiliation(s)
- Manuel Neumann
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Cezary Smaczniak
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Julia Schumacher
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Wenhao Yan
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Thomas Greb
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Jan Traas
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364, Lyon, France
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Jose M Muino
- Systems Biology of Gene Regulation, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany.
| |
Collapse
|
149
|
Kalinina A, Lagace D. Single-Cell and Single-Nucleus RNAseq Analysis of Adult Neurogenesis. Cells 2022; 11:1633. [PMID: 35626670 PMCID: PMC9139993 DOI: 10.3390/cells11101633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
The complexity of adult neurogenesis is becoming increasingly apparent as we learn more about cellular heterogeneity and diversity of the neurogenic lineages and stem cell niches within the adult brain. This complexity has been unraveled in part due to single-cell and single-nucleus RNA sequencing (sc-RNAseq and sn-RNAseq) studies that have focused on adult neurogenesis. This review summarizes 33 published studies in the field of adult neurogenesis that have used sc- or sn-RNAseq methods to answer questions about the three main regions that host adult neural stem cells (NSCs): the subventricular zone (SVZ), the dentate gyrus (DG) of the hippocampus, and the hypothalamus. The review explores the similarities and differences in methodology between these studies and provides an overview of how these studies have advanced the field and expanded possibilities for the future.
Collapse
Affiliation(s)
| | - Diane Lagace
- Neuroscience Program, Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
150
|
Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, Slyper M, Wang J, Van Wittenberghe N, Rouhana JM, Waldman J, Ashenberg O, Lek M, Dionne D, Win TS, Cuoco MS, Kuksenko O, Tsankov AM, Branton PA, Marshall JL, Greka A, Getz G, Segrè AV, Aguet F, Rozenblatt-Rosen O, Ardlie KG, Regev A. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 2022; 376:eabl4290. [PMID: 35549429 PMCID: PMC9383269 DOI: 10.1126/science.abl4290] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding gene function and regulation in homeostasis and disease requires knowledge of the cellular and tissue contexts in which genes are expressed. Here, we applied four single-nucleus RNA sequencing methods to eight diverse, archived, frozen tissue types from 16 donors and 25 samples, generating a cross-tissue atlas of 209,126 nuclei profiles, which we integrated across tissues, donors, and laboratory methods with a conditional variational autoencoder. Using the resulting cross-tissue atlas, we highlight shared and tissue-specific features of tissue-resident cell populations; identify cell types that might contribute to neuromuscular, metabolic, and immune components of monogenic diseases and the biological processes involved in their pathology; and determine cell types and gene modules that might underlie disease mechanisms for complex traits analyzed by genome-wide association studies.
Collapse
Affiliation(s)
- Gökcen Eraslan
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eugene Drokhlyansky
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shankara Anand
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evgenij Fiskin
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiali Wang
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - John M. Rouhana
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thet Su Win
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michael S. Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olena Kuksenko
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Philip A. Branton
- The Joint Pathology Center Gynecologic/Breast Pathology, Silver Spring, MD 20910, USA
| | | | - Anna Greka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ayellet V. Segrè
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - François Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|