101
|
Lang S, Nguyen D, Bhadra P, Jung M, Helms V, Zimmermann R. Signal Peptide Features Determining the Substrate Specificities of Targeting and Translocation Components in Human ER Protein Import. Front Physiol 2022; 13:833540. [PMID: 35899032 PMCID: PMC9309488 DOI: 10.3389/fphys.2022.833540] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
In human cells, approximately 30% of all polypeptides enter the secretory pathway at the level of the endoplasmic reticulum (ER). This process involves cleavable amino-terminal signal peptides (SPs) or more or less amino-terminal transmembrane helices (TMHs), which serve as targeting determinants, at the level of the precursor polypeptides and a multitude of cytosolic and ER proteins, which facilitate their ER import. Alone or in combination SPs and TMHs guarantee the initial ER targeting as well as the subsequent membrane integration or translocation. Cytosolic SRP and SR, its receptor in the ER membrane, mediate cotranslational targeting of most nascent precursor polypeptide chains to the polypeptide-conducting Sec61 complex in the ER membrane. Alternatively, fully-synthesized precursor polypeptides and certain nascent precursor polypeptides are targeted to the ER membrane by either the PEX-, SND-, or TRC-pathway. Although these targeting pathways may have overlapping functions, the question arises how relevant this is under cellular conditions and which features of SPs and precursor polypeptides determine preference for a certain pathway. Irrespective of their targeting pathway(s), most precursor polypeptides are integrated into or translocated across the ER membrane via the Sec61 channel. For some precursor polypeptides specific Sec61 interaction partners have to support the gating of the channel to the open state, again raising the question why and when this is the case. Recent progress shed light on the client spectrum and specificities of some auxiliary components, including Sec62/Sec63, TRAM1 protein, and TRAP. To address the question which precursors use a certain pathway or component in intact human cells, i.e., under conditions of fast translation rates and molecular crowding, in the presence of competing precursors, different targeting organelles, and relevant stoichiometries of the involved components, siRNA-mediated depletion of single targeting or transport components in HeLa cells was combined with label-free quantitative proteomics and differential protein abundance analysis. Here, we present a summary of the experimental approach as well as the resulting differential protein abundance analyses and discuss their mechanistic implications in light of the available structural data.
Collapse
Affiliation(s)
- Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Duy Nguyen
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Pratiti Bhadra
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
102
|
Abstract
The three-dimensional organization of biomolecules important for the functioning of all living systems can be determined by cryo-electron tomography imaging under native biological contexts. Cryo-electron tomography is continually expanding and evolving, and the development of new methods that use the latest technology for sample thinning is enabling the visualization of ever larger and more complex biological systems, allowing imaging across scales. Quantitative cryo-electron tomography possesses the capability of visualizing the impact of molecular and environmental perturbations in subcellular structure and function to understand fundamental biological processes. This review provides an overview of current hardware and software developments that allow quantitative cryo-electron tomography studies and their limitations and how overcoming them may allow us to unleash the full power of cryo-electron tomography.
Collapse
Affiliation(s)
- Paula P. Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
103
|
Abstract
We study microvilli of Caenorhabditis elegans larvae and mouse intestinal tissues by combining high-pressure freezing, cryo-focused ion-beam milling, cryo-electron tomography, and subtomogram averaging. We find that many radial nanometer bristles, referred to as nanobristles, project from the lateral surface of nematode and mouse microvilli. The C. elegans nanobristles are 37.5 nm long. We show that nanobristle formation requires a protocadherin family protein, CDH-8, in C. elegans. The loss of nanobristles in cdh-8 mutants slows down animal growth and ectopically increases the number of Y-shaped microvilli, the putative intermediate structures if microvilli split from their tips. Our results reveal a potential role of nanobristles in separating microvilli and suggest that microvilli division may help generate nascent microvilli with uniformity. Microvilli are actin-bundle-supported membrane protrusions essential for absorption, secretion, and sensation. Microvilli defects cause gastrointestinal disorders; however, mechanisms controlling microvilli formation and organization remain unresolved. Here, we study microvilli by vitrifying the Caenorhabditis elegans larvae and mouse intestinal tissues with high-pressure freezing, thinning them with cryo-focused ion-beam milling, followed by cryo-electron tomography and subtomogram averaging. We find that many radial nanometer bristles referred to as nanobristles project from the lateral surface of nematode and mouse microvilli. The C. elegans nanobristles are 37.5 nm long and 4.5 nm wide. Nanobristle formation requires a protocadherin family protein, CDH-8, in C. elegans. The loss of nanobristles in cdh-8 mutants slows down animal growth and ectopically increases the number of Y-shaped microvilli, the putative intermediate structures if microvilli split from tips. Our results reveal a potential role of nanobristles in separating microvilli and suggest that microvilli division may help generate nascent microvilli with uniformity.
Collapse
|
104
|
Mosalaganti S, Obarska-Kosinska A, Siggel M, Taniguchi R, Turoňová B, Zimmerli CE, Buczak K, Schmidt FH, Margiotta E, Mackmull MT, Hagen WJH, Hummer G, Kosinski J, Beck M. AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science 2022; 376:eabm9506. [PMID: 35679397 DOI: 10.1126/science.abm9506] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The eukaryotic nucleus pro-tects the genome and is enclosed by the two membranes of the nuclear envelope. Nuclear pore complexes (NPCs) perforate the nuclear envelope to facilitate nucleocytoplasmic transport. With a molecular weight of ∼120 MDa, the human NPC is one of the larg-est protein complexes. Its ~1000 proteins are taken in multiple copies from a set of about 30 distinct nucleoporins (NUPs). They can be roughly categorized into two classes. Scaf-fold NUPs contain folded domains and form a cylindrical scaffold architecture around a central channel. Intrinsically disordered NUPs line the scaffold and extend into the central channel, where they interact with cargo complexes. The NPC architecture is highly dynamic. It responds to changes in nuclear envelope tension with conforma-tional breathing that manifests in dilation and constriction movements. Elucidating the scaffold architecture, ultimately at atomic resolution, will be important for gaining a more precise understanding of NPC function and dynamics but imposes a substantial chal-lenge for structural biologists. RATIONALE Considerable progress has been made toward this goal by a joint effort in the field. A synergistic combination of complementary approaches has turned out to be critical. In situ structural biology techniques were used to reveal the overall layout of the NPC scaffold that defines the spatial reference for molecular modeling. High-resolution structures of many NUPs were determined in vitro. Proteomic analysis and extensive biochemical work unraveled the interaction network of NUPs. Integra-tive modeling has been used to combine the different types of data, resulting in a rough outline of the NPC scaffold. Previous struc-tural models of the human NPC, however, were patchy and limited in accuracy owing to several challenges: (i) Many of the high-resolution structures of individual NUPs have been solved from distantly related species and, consequently, do not comprehensively cover their human counterparts. (ii) The scaf-fold is interconnected by a set of intrinsically disordered linker NUPs that are not straight-forwardly accessible to common structural biology techniques. (iii) The NPC scaffold intimately embraces the fused inner and outer nuclear membranes in a distinctive topol-ogy and cannot be studied in isolation. (iv) The conformational dynamics of scaffold NUPs limits the resolution achievable in structure determination. RESULTS In this study, we used artificial intelligence (AI)-based prediction to generate an exten-sive repertoire of structural models of human NUPs and their subcomplexes. The resulting models cover various domains and interfaces that so far remained structurally uncharac-terized. Benchmarking against previous and unpublished x-ray and cryo-electron micros-copy structures revealed unprecedented accu-racy. We obtained well-resolved cryo-electron tomographic maps of both the constricted and dilated conformational states of the hu-man NPC. Using integrative modeling, we fit-ted the structural models of individual NUPs into the cryo-electron microscopy maps. We explicitly included several linker NUPs and traced their trajectory through the NPC scaf-fold. We elucidated in great detail how mem-brane-associated and transmembrane NUPs are distributed across the fusion topology of both nuclear membranes. The resulting architectural model increases the structural coverage of the human NPC scaffold by about twofold. We extensively validated our model against both earlier and new experimental data. The completeness of our model has enabled microsecond-long coarse-grained molecular dynamics simulations of the NPC scaffold within an explicit membrane en-vironment and solvent. These simulations reveal that the NPC scaffold prevents the constriction of the otherwise stable double-membrane fusion pore to small diameters in the absence of membrane tension. CONCLUSION Our 70-MDa atomically re-solved model covers >90% of the human NPC scaffold. It captures conforma-tional changes that occur during dilation and constriction. It also reveals the precise anchoring sites for intrinsically disordered NUPs, the identification of which is a prerequisite for a complete and dy-namic model of the NPC. Our study exempli-fies how AI-based structure prediction may accelerate the elucidation of subcellular ar-chitecture at atomic resolution. [Figure: see text].
Collapse
Affiliation(s)
- Shyamal Mosalaganti
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Agnieszka Obarska-Kosinska
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,European Molecular Biology Laboratory Hamburg, 22607 Hamburg, Germany
| | - Marc Siggel
- European Molecular Biology Laboratory Hamburg, 22607 Hamburg, Germany.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Centre for Structural Systems Biology, 22607 Hamburg, Germany
| | - Reiya Taniguchi
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Christian E Zimmerli
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Katarzyna Buczak
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Florian H Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Erica Margiotta
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Marie-Therese Mackmull
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jan Kosinski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,European Molecular Biology Laboratory Hamburg, 22607 Hamburg, Germany.,Centre for Structural Systems Biology, 22607 Hamburg, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
105
|
Peck A, Carter SD, Mai H, Chen S, Burt A, Jensen GJ. Montage electron tomography of vitrified specimens. J Struct Biol 2022; 214:107860. [PMID: 35487464 PMCID: PMC10081539 DOI: 10.1016/j.jsb.2022.107860] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Cryo-electron tomography provides detailed views of macromolecules in situ. However, imaging a large field of view to provide more cellular context requires reducing magnification during data collection, which in turn restricts the resolution. To circumvent this trade-off between field of view and resolution, we have developed a montage data collection scheme that uniformly distributes the dose throughout the specimen. In this approach, sets of slightly overlapping circular tiles are collected at high magnification and stitched to form a composite projection image at each tilt angle. These montage tilt-series are then reconstructed into massive tomograms with a small pixel size but a large field of view. For proof-of-principle, we applied this method to the thin edge of HeLa cells. Thon rings to better than 10 Å were detected in the montaged tilt-series, and diverse cellular features were observed in the resulting tomograms. These results indicate that the additional dose required by this technique is not prohibitive to performing structural analysis to intermediate resolution across a large field of view. We anticipate that montage tomography will prove particularly useful for lamellae, increase the likelihood of imaging rare cellular events, and facilitate visual proteomics.
Collapse
Affiliation(s)
- Ariana Peck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stephen D Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Huanghao Mai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Songye Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alister Burt
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; College of Physical and Mathematical Sciences, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
106
|
Schneider J, Jasnin M. Capturing actin assemblies in cells using in situ cryo-electron tomography. Eur J Cell Biol 2022; 101:151224. [PMID: 35500467 DOI: 10.1016/j.ejcb.2022.151224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Actin contributes to an exceptionally wide range of cellular processes through the assembly and disassembly of highly dynamic and ordered structures. Visualizing these structures in cells can help us understand how the molecular players of the actin machinery work together to produce force-generating systems. In recent years, cryo-electron tomography (cryo-ET) has become the method of choice for structural analysis of the cell interior at the molecular scale. Here we review advances in cryo-ET workflows that have enabled this transformation, especially the automation of sample preparation procedures, data collection, and processing. We discuss new structural analyses of dynamic actin assemblies in cryo-preserved cells, which have provided mechanistic insights into actin assembly and function at the nanoscale. Finally, we highlight the latest visual proteomics studies of actin filaments and their interactors reaching sub-nanometer resolutions in cells.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
107
|
Tatli M, Moraïs S, Tovar-Herrera OE, Bomble YJ, Bayer EA, Medalia O, Mizrahi I. Nanoscale resolution of microbial fiber degradation in action. eLife 2022; 11:76523. [PMID: 35638899 PMCID: PMC9191890 DOI: 10.7554/elife.76523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
The lives of microbes unfold at the micron scale, and their molecular machineries operate at the nanoscale. Their study at these resolutions is key toward achieving a better understanding of their ecology. We focus on cellulose degradation of the canonical Clostridium thermocellum system to comprehend how microbes build and use their cellulosomal machinery at these nanometer scales. Degradation of cellulose, the most abundant organic polymer on Earth, is instrumental to the global carbon cycle. We reveal that bacterial cells form ‘cellulosome capsules’ driven by catalytic product-dependent dynamics, which can increase the rate of hydrolysis. Biosynthesis of this energetically costly machinery and cell growth are decoupled at the single-cell level, hinting at a division-of-labor strategy through phenotypic heterogeneity. This novel observation highlights intrapopulation interactions as key to understanding rates of fiber degradation.
Collapse
Affiliation(s)
- Meltem Tatli
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Sarah Moraïs
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omar E Tovar-Herrera
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Edward A Bayer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zürich, Zurich, Switzerland
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
108
|
Luthey-Schulten Z, Thornburg ZR, Gilbert BR. Integrating cellular and molecular structures and dynamics into whole-cell models. Curr Opin Struct Biol 2022; 75:102392. [PMID: 35623188 DOI: 10.1016/j.sbi.2022.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
Abstract
A complete description of the state of the cell requires knowledge of its size, shape, components, intracellular reactions, and interactions with its environment-all of these as a function of time and cell growth. Adding to this list is the need for theoretical models and simulations that integrate and help to interpret this daunting amount of experimental data. It seems like an overwhelming list of requirements, but progress is being made on many fronts. In this review, we discuss the current challenges and problems in obtaining sufficient information about each aspect of a dynamical whole-cell model (DWCM) for simple and well-studied bacterial systems.
Collapse
Affiliation(s)
- Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA; Center for the Physics of the Living Cell, University of Illinois at Urbana-Champaign, USA.
| | - Zane R Thornburg
- Department of Chemistry, University of Illinois at Urbana-Champaign, USA
| | - Benjamin R Gilbert
- Department of Chemistry, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
109
|
Parteka-Tojek Z, Zhu JJ, Lee B, Jodkowska K, Wang P, Aaron J, Chew TL, Banecki K, Plewczynski D, Ruan Y. Super-resolution visualization of chromatin loop folding in human lymphoblastoid cells using interferometric photoactivated localization microscopy. Sci Rep 2022; 12:8582. [PMID: 35595799 PMCID: PMC9122977 DOI: 10.1038/s41598-022-12568-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional (3D) genome structure plays a fundamental role in gene regulation and cellular functions. Recent studies in 3D genomics inferred the very basic functional chromatin folding structures known as chromatin loops, the long-range chromatin interactions that are mediated by protein factors and dynamically extruded by cohesin. We combined the use of FISH staining of a very short (33 kb) chromatin fragment, interferometric photoactivated localization microscopy (iPALM), and traveling salesman problem-based heuristic loop reconstruction algorithm from an image of the one of the strongest CTCF-mediated chromatin loops in human lymphoblastoid cells. In total, we have generated thirteen good quality images of the target chromatin region with 2-22 nm oligo probe localization precision. We visualized the shape of the single chromatin loops with unprecedented genomic resolution which allowed us to study the structural heterogeneity of chromatin looping. We were able to compare the physical distance maps from all reconstructed image-driven computational models with contact frequencies observed by ChIA-PET and Hi-C genomic-driven methods to examine the concordance between single cell imaging and population based genomic data.
Collapse
Affiliation(s)
- Zofia Parteka-Tojek
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Jacqueline Jufen Zhu
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06030, USA
| | - Byoungkoo Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA
| | - Karolina Jodkowska
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Ping Wang
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Krzysztof Banecki
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Dariusz Plewczynski
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA.
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw, Poland.
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06030, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
110
|
Serwas D, Akamatsu M, Moayed A, Vegesna K, Vasan R, Hill JM, Schöneberg J, Davies KM, Rangamani P, Drubin DG. Mechanistic insights into actin force generation during vesicle formation from cryo-electron tomography. Dev Cell 2022; 57:1132-1145.e5. [PMID: 35504288 PMCID: PMC9165722 DOI: 10.1016/j.devcel.2022.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 01/26/2023]
Abstract
Actin assembly provides force for a multitude of cellular processes. Compared to actin-assembly-based force production during cell migration, relatively little is understood about how actin assembly generates pulling forces for vesicle formation. Here, cryo-electron tomography identified actin filament number, organization, and orientation during clathrin-mediated endocytosis in human SK-MEL-2 cells, showing that force generation is robust despite variance in network organization. Actin dynamics simulations incorporating a measured branch angle indicate that sufficient force to drive membrane internalization is generated through polymerization and that assembly is triggered from ∼4 founding "mother" filaments, consistent with tomography data. Hip1R actin filament anchoring points are present along the entire endocytic invagination, where simulations show that it is key to pulling force generation, and along the neck, where it targets filament growth and makes internalization more robust. Actin organization described here allowed direct translation of structure to mechanism with broad implications for other actin-driven processes.
Collapse
Affiliation(s)
- Daniel Serwas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Amir Moayed
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karthik Vegesna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer M Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Karen M Davies
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
111
|
Waffle Method: A general and flexible approach for improving throughput in FIB-milling. Nat Commun 2022; 13:1857. [PMID: 35387991 PMCID: PMC8987090 DOI: 10.1038/s41467-022-29501-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Cryo-FIB/SEM combined with cryo-ET has emerged from within the field of cryo-EM as the method for obtaining the highest resolution structural information of complex biological samples in-situ in native and non-native environments. However, challenges remain in conventional cryo-FIB/SEM workflows, including milling thick specimens with vitrification issues, specimens with preferred orientation, low-throughput when milling small and/or low concentration specimens, and specimens that distribute poorly across grid squares. Here we present a general approach called the ‘Waffle Method’ which leverages high-pressure freezing to address these challenges. We illustrate the mitigation of these challenges by applying the Waffle Method and cryo-ET to reveal the macrostructure of the polar tube in microsporidian spores in multiple complementary orientations, which was previously not possible due to preferred orientation. We demonstrate the broadness of the Waffle Method by applying it to three additional cellular samples and a single particle sample using a variety of cryo-FIB-milling hardware, with manual and automated approaches. We also present a unique and critical stress-relief gap designed specifically for waffled lamellae. We propose the Waffle Method as a way to achieve many advantages of cryo-liftout on the specimen grid while avoiding the long, challenging, and technically-demanding process required for cryo-liftout. Here the authors describe the Waffle Method, aimed at increasing the throughput of and solves several challenges present in cryo-FIB/SEM sample preparation for cryo-ET analysis — the highest-resolution method for obtaining 3D views of native biological specimens in-situ.
Collapse
|
112
|
Nedozralova H, Basnet N, Ibiricu I, Bodakuntla S, Biertümpfel C, Mizuno N. In situ cryo-electron tomography reveals local cellular machineries for axon branch development. J Biophys Biochem Cytol 2022; 221:213057. [PMID: 35262630 PMCID: PMC8916118 DOI: 10.1083/jcb.202106086] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Neurons are highly polarized cells forming an intricate network of dendrites and axons. They are shaped by the dynamic reorganization of cytoskeleton components and cellular organelles. Axon branching allows the formation of new paths and increases circuit complexity. However, our understanding of branch formation is sparse due to the lack of direct in-depth observations. Using in situ cellular cryo-electron tomography on primary mouse neurons, we directly visualized the remodeling of organelles and cytoskeleton structures at axon branches. Strikingly, branched areas functioned as hotspots concentrating organelles to support dynamic activities. Unaligned actin filaments assembled at the base of premature branches accompanied by filopodia-like protrusions. Microtubules and ER comigrated into preformed branches to support outgrowth together with accumulating compact, ∼500-nm mitochondria and locally clustered ribosomes. We obtained a roadmap of events supporting the hypothesis of local protein synthesis selectively taking place at axon branches, allowing them to serve as unique control hubs for axon development and downstream neural network formation.
Collapse
Affiliation(s)
- Hana Nedozralova
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nirakar Basnet
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Iosune Ibiricu
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Satish Bodakuntla
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
113
|
Patteson AE, Asp ME, Janmey PA. Materials science and mechanosensitivity of living matter. APPLIED PHYSICS REVIEWS 2022; 9:011320. [PMID: 35392267 PMCID: PMC8969880 DOI: 10.1063/5.0071648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Living systems are composed of molecules that are synthesized by cells that use energy sources within their surroundings to create fascinating materials that have mechanical properties optimized for their biological function. Their functionality is a ubiquitous aspect of our lives. We use wood to construct furniture, bacterial colonies to modify the texture of dairy products and other foods, intestines as violin strings, bladders in bagpipes, and so on. The mechanical properties of these biological materials differ from those of other simpler synthetic elastomers, glasses, and crystals. Reproducing their mechanical properties synthetically or from first principles is still often unattainable. The challenge is that biomaterials often exist far from equilibrium, either in a kinetically arrested state or in an energy consuming active state that is not yet possible to reproduce de novo. Also, the design principles that form biological materials often result in nonlinear responses of stress to strain, or force to displacement, and theoretical models to explain these nonlinear effects are in relatively early stages of development compared to the predictive models for rubberlike elastomers or metals. In this Review, we summarize some of the most common and striking mechanical features of biological materials and make comparisons among animal, plant, fungal, and bacterial systems. We also summarize some of the mechanisms by which living systems develop forces that shape biological matter and examine newly discovered mechanisms by which cells sense and respond to the forces they generate themselves, which are resisted by their environment, or that are exerted upon them by their environment. Within this framework, we discuss examples of how physical methods are being applied to cell biology and bioengineering.
Collapse
Affiliation(s)
- Alison E. Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Merrill E. Asp
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Paul A. Janmey
- Institute for Medicine and Engineering and Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia PA, 19104, USA
| |
Collapse
|
114
|
Matsuda A, Mofrad MRK. On the nuclear pore complex and its emerging role in cellular mechanotransduction. APL Bioeng 2022; 6:011504. [PMID: 35308827 PMCID: PMC8916845 DOI: 10.1063/5.0080480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear pore complex (NPC) is a large protein assembly that perforates the nuclear envelope and provides a sole gateway for traffic between the cytoplasm and the nucleus. The NPC controls the nucleocytoplasmic transport by selectively allowing cargoes such as proteins and mRNA to pass through its central channel, thereby playing a vital role in protecting the nuclear component and regulating gene expression and protein synthesis. The selective transport through the NPC originates from its exquisite molecular structure featuring a large scaffold and the intrinsically disordered central channel domain, but the exact mechanism underlying the selective transport remains elusive and is the subject of various, often conflicting, hypotheses. Moreover, recent studies have suggested a new role for the NPC as a mechanosensor, where the NPC changes its channel diameter depending on the nuclear envelope tension, altering the molecular transportability through this nanopore. In this mini-review, we summarize the current understandings of the selective nature of the NPC and discuss its emerging role in cellular mechanotransduction.
Collapse
Affiliation(s)
- Atsushi Matsuda
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
115
|
Vahabikashi A, Adam SA, Medalia O, Goldman RD. Nuclear lamins: Structure and function in mechanobiology. APL Bioeng 2022; 6:011503. [PMID: 35146235 PMCID: PMC8810204 DOI: 10.1063/5.0082656] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Nuclear lamins are type V intermediate filament proteins that polymerize into complex filamentous meshworks at the nuclear periphery and in less structured forms throughout the nucleoplasm. Lamins interact with a wide range of nuclear proteins and are involved in numerous nuclear and cellular functions. Within the nucleus, they play roles in chromatin organization and gene regulation, nuclear shape, size, and mechanics, and the organization and anchorage of nuclear pore complexes. At the whole cell level, they are involved in the organization of the cytoskeleton, cell motility, and mechanotransduction. The expression of different lamin isoforms has been associated with developmental progression, differentiation, and tissue-specific functions. Mutations in lamins and their binding proteins result in over 15 distinct human diseases, referred to as laminopathies. The laminopathies include muscular (e.g., Emery-Dreifuss muscular dystrophy and dilated cardiomyopathy), neurological (e.g., microcephaly), and metabolic (e.g., familial partial lipodystrophy) disorders as well as premature aging diseases (e.g., Hutchinson-Gilford Progeria and Werner syndromes). How lamins contribute to the etiology of laminopathies is still unknown. In this review article, we summarize major recent findings on the structure, organization, and multiple functions of lamins in nuclear and more global cellular processes.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
116
|
Vankadari N, Shepherd DC, Carter SD, Ghosal D. Three-dimensional insights into human enveloped viruses in vitro and in situ. Biochem Soc Trans 2022; 50:95-105. [PMID: 35076655 PMCID: PMC9022983 DOI: 10.1042/bst20210433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
Viruses can be enveloped or non-enveloped, and require a host cell to replicate and package their genomes into new virions to infect new cells. To accomplish this task, viruses hijack the host-cell machinery to facilitate their replication by subverting and manipulating normal host cell function. Enveloped viruses can have severe consequences for human health, causing various diseases such as acquired immunodeficiency syndrome (AIDS), seasonal influenza, COVID-19, and Ebola virus disease. The complex arrangement and pleomorphic architecture of many enveloped viruses pose a challenge for the more widely used structural biology techniques, such as X-ray crystallography. Cryo-electron tomography (cryo-ET), however, is a particularly well-suited tool for overcoming the limitations associated with visualizing the irregular shapes and morphology enveloped viruses possess at macromolecular resolution. The purpose of this review is to explore the latest structural insights that cryo-ET has revealed about enveloped viruses, with particular attention given to their architectures, mechanisms of entry, replication, assembly, maturation and egress during infection. Cryo-ET is unique in its ability to visualize cellular landscapes at 3-5 nanometer resolution. Therefore, it is the most suited technique to study asymmetric elements and structural rearrangements of enveloped viruses during infection in their native cellular context.
Collapse
Affiliation(s)
- Naveen Vankadari
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Doulin C. Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen D. Carter
- Centre for Virus Research, Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, U.K
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
117
|
Calcraft T, Rosenthal PB. Cryogenic electron microscopy approaches that combine images and tilt series. Microscopy (Oxf) 2022; 71:i15-i22. [PMID: 35275182 PMCID: PMC8855521 DOI: 10.1093/jmicro/dfab053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
Abstract
Cryogenic electron microscopy can be widely applied to biological specimens from the molecular to the cellular scale. In single-particle analysis, 3D structures may be obtained in high resolution by averaging 2D images of single particles in random orientations. For pleomorphic specimens, structures may be obtained by recording the tilt series of a single example of the specimen and calculating tomograms. Where many copies of a single structure such as a protein or nucleic acid assembly are present within the tomogram, averaging of the sub-volumes (subtomogram averaging) has been successfully applied. The choice of data collection method for any given specimen may depend on the structural question of interest and is determined by the radiation sensitivity of the specimen. Here, we survey some recent developments on the use of hybrid methods for recording and analysing data from radiation-sensitive biological specimens. These include single-particle reconstruction from 2D images where additional views are recorded at a single tilt angle of the specimen and methods where image tilt series, initially used for tomogram reconstruction, are processed as individual single-particle images. There is a continuum of approaches now available to maximize structural information obtained from the specimen.
Collapse
Affiliation(s)
- Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | |
Collapse
|
118
|
Foster HE, Ventura Santos C, Carter AP. A cryo-ET survey of microtubules and intracellular compartments in mammalian axons. J Cell Biol 2022; 221:e202103154. [PMID: 34878519 PMCID: PMC7612188 DOI: 10.1083/jcb.202103154] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
The neuronal axon is packed with cytoskeletal filaments, membranes, and organelles, many of which move between the cell body and axon tip. Here, we used cryo-electron tomography to survey the internal components of mammalian sensory axons. We determined the polarity of the axonal microtubules (MTs) by combining subtomogram classification and visual inspection, finding MT plus and minus ends are structurally similar. Subtomogram averaging of globular densities in the MT lumen suggests they have a defined structure, which is surprising given they likely contain the disordered protein MAP6. We found the endoplasmic reticulum in axons is tethered to MTs through multiple short linkers. We surveyed membrane-bound cargos and describe unexpected internal features such as granules and broken membranes. In addition, we detected proteinaceous compartments, including numerous virus-like capsid particles. Our observations outline novel features of axonal cargos and MTs, providing a platform for identification of their constituents.
Collapse
|
119
|
Loconte V, Singla J, Li A, Chen JH, Ekman A, McDermott G, Sali A, Le Gros M, White KL, Larabell CA. Soft X-ray tomography to map and quantify organelle interactions at the mesoscale. Structure 2022; 30:510-521.e3. [PMID: 35148829 PMCID: PMC9013509 DOI: 10.1016/j.str.2022.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Inter-organelle interactions are a vital part of normal cellular function; however, these have proven difficult to quantify due to the range of scales encountered in cell biology and the throughput limitations of traditional imaging approaches. Here, we demonstrate that soft X-ray tomography (SXT) can be used to rapidly map ultrastructural reorganization and inter-organelle interactions in intact cells. SXT takes advantage of the naturally occurring, differential X-ray absorption of the carbon-rich compounds in each organelle. Specifically, we use SXT to map the spatiotemporal evolution of insulin vesicles and their co-localization and interaction with mitochondria in pancreatic β cells during insulin secretion and in response to different stimuli. We quantify changes in the morphology, biochemical composition, and relative position of mitochondria and insulin vesicles. These findings highlight the importance of a comprehensive and unbiased mapping at the mesoscale to characterize cell reorganization that would be difficult to detect with other existing methodologies.
Collapse
Affiliation(s)
- Valentina Loconte
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jitin Singla
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Angdi Li
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian-Hua Chen
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Axel Ekman
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gerry McDermott
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Science, Department of Pharmaceutical Chemistry, California Institute of Quantitative Bioscience, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mark Le Gros
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kate L White
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
| | - Carolyn A Larabell
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
120
|
Ni T, Frosio T, Mendonça L, Sheng Y, Clare D, Himes BA, Zhang P. High-resolution in situ structure determination by cryo-electron tomography and subtomogram averaging using emClarity. Nat Protoc 2022; 17:421-444. [PMID: 35022621 PMCID: PMC9251519 DOI: 10.1038/s41596-021-00648-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
Cryo-electron tomography and subtomogram averaging (STA) has developed rapidly in recent years. It provides structures of macromolecular complexes in situ and in cellular context at or below subnanometer resolution and has led to unprecedented insights into the inner working of molecular machines in their native environment, as well as their functional relevant conformations and spatial distribution within biological cells or tissues. Given the tremendous potential of cryo-electron tomography STA in in situ structural cell biology, we previously developed emClarity, a graphics processing unit-accelerated image-processing software that offers STA and classification of macromolecular complexes at high resolution. However, the workflow remains challenging, especially for newcomers to the field. In this protocol, we describe a detailed workflow, processing and parameters associated with each step, from initial tomography tilt-series data to the final 3D density map, with several features unique to emClarity. We use four different samples, including human immunodeficiency virus type 1 Gag assemblies, ribosome and apoferritin, to illustrate the procedure and results of STA and classification. Following the processing steps described in this protocol, along with a comprehensive tutorial and guidelines for troubleshooting and parameter optimization, one can obtain density maps up to 2.8 Å resolution from six tilt series by cryo-electron tomography STA.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas Frosio
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Luiza Mendonça
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Daniel Clare
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Benjamin A Himes
- Howard Hughes Medical Institute, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
121
|
Anton L, Cobb DW, Ho CM. Structural parasitology of the malaria parasite Plasmodium falciparum. Trends Biochem Sci 2022; 47:149-159. [PMID: 34887149 PMCID: PMC11236216 DOI: 10.1016/j.tibs.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
The difficulty of faithfully recapitulating malarial protein complexes in heterologous expression systems has long impeded structural study for much of the Plasmodium falciparum proteome. However, recent advances in single-particle cryo electron microscopy (cryoEM) now enable structure determination at atomic resolution with significantly reduced requirements for both sample quantity and purity. Combined with recent developments in gene editing, these advances open the door to structure determination and structural proteomics of macromolecular complexes enriched directly from P. falciparum parasites. Furthermore, the combination of cryoEM with the rapidly emerging use of in situ cryo electron tomography (cryoET) to directly visualize ultrastructures and protein complexes in the native cellular context will yield exciting new insights into the molecular machinery underpinning malaria parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Leonie Anton
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - David W Cobb
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chi-Min Ho
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
122
|
Elhabashy H, Merino F, Alva V, Kohlbacher O, Lupas AN. Exploring protein-protein interactions at the proteome level. Structure 2022; 30:462-475. [DOI: 10.1016/j.str.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
123
|
Chandra S, Lusk CP. Emerging Connections between Nuclear Pore Complex Homeostasis and ALS. Int J Mol Sci 2022; 23:1329. [PMID: 35163252 PMCID: PMC8835831 DOI: 10.3390/ijms23031329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Developing effective treatments for neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) requires understanding of the underlying pathomechanisms that contribute to the motor neuron loss that defines the disease. As it causes the largest fraction of familial ALS cases, considerable effort has focused on hexanucleotide repeat expansions in the C9ORF72 gene, which encode toxic repeat RNA and dipeptide repeat (DPR) proteins. Both the repeat RNA and DPRs interact with and perturb multiple elements of the nuclear transport machinery, including shuttling nuclear transport receptors, the Ran GTPase and the nucleoporin proteins (nups) that build the nuclear pore complex (NPC). Here, we consider recent work that describes changes to the molecular composition of the NPC in C9ORF72 model and patient neurons in the context of quality control mechanisms that function at the nuclear envelope (NE). For example, changes to NPC structure may be caused by the dysregulation of a conserved NE surveillance pathway mediated by the endosomal sorting complexes required for the transport protein, CHMP7. Thus, these studies are introducing NE and NPC quality control pathways as key elements in a pathological cascade that leads to C9ORF72 ALS, opening entirely new experimental avenues and possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, 295 Congress Ave, New Haven, CT 06520, USA;
| |
Collapse
|
124
|
Akey CW, Singh D, Ouch C, Echeverria I, Nudelman I, Varberg JM, Yu Z, Fang F, Shi Y, Wang J, Salzberg D, Song K, Xu C, Gumbart JC, Suslov S, Unruh J, Jaspersen SL, Chait BT, Sali A, Fernandez-Martinez J, Ludtke SJ, Villa E, Rout MP. Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell 2022; 185:361-378.e25. [PMID: 34982960 PMCID: PMC8928745 DOI: 10.1016/j.cell.2021.12.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Nuclear pore complexes (NPCs) mediate the nucleocytoplasmic transport of macromolecules. Here we provide a structure of the isolated yeast NPC in which the inner ring is resolved by cryo-EM at sub-nanometer resolution to show how flexible connectors tie together different structural and functional layers. These connectors may be targets for phosphorylation and regulated disassembly in cells with an open mitosis. Moreover, some nucleoporin pairs and transport factors have similar interaction motifs, which suggests an evolutionary and mechanistic link between assembly and transport. We provide evidence for three major NPC variants that may foreshadow functional specializations at the nuclear periphery. Cryo-electron tomography extended these studies, providing a model of the in situ NPC with a radially expanded inner ring. Our comprehensive model reveals features of the nuclear basket and central transporter, suggests a role for the lumenal Pom152 ring in restricting dilation, and highlights structural plasticity that may be required for transport.
Collapse
Affiliation(s)
- Christopher W Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| | - Digvijay Singh
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Christna Ouch
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ignacia Echeverria
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, San Francisco, San Francisco, CA 94158, USA
| | - Ilona Nudelman
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | | | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Fei Fang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Daniel Salzberg
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kangkang Song
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sergey Suslov
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA.
| | - Elizabeth Villa
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
125
|
Klykov O, Kopylov M, Carragher B, Heck AJR, Noble AJ, Scheltema RA. Label-free visual proteomics: Coupling MS- and EM-based approaches in structural biology. Mol Cell 2022; 82:285-303. [PMID: 35063097 PMCID: PMC8842845 DOI: 10.1016/j.molcel.2021.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Combining diverse experimental structural and interactomic methods allows for the construction of comprehensible molecular encyclopedias of biological systems. Typically, this involves merging several independent approaches that provide complementary structural and functional information from multiple perspectives and at different resolution ranges. A particularly potent combination lies in coupling structural information from cryoelectron microscopy or tomography (cryo-EM or cryo-ET) with interactomic and structural information from mass spectrometry (MS)-based structural proteomics. Cryo-EM/ET allows for sub-nanometer visualization of biological specimens in purified and near-native states, while MS provides bioanalytical information for proteins and protein complexes without introducing additional labels. Here we highlight recent achievements in protein structure and interactome determination using cryo-EM/ET that benefit from additional MS analysis. We also give our perspective on how combining cryo-EM/ET and MS will continue bridging gaps between molecular and cellular studies by capturing and describing 3D snapshots of proteomes and interactomes.
Collapse
Affiliation(s)
- Oleg Klykov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Mykhailo Kopylov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Bridget Carragher
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands
| | - Alex J Noble
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
126
|
Laporte MH, Klena N, Hamel V, Guichard P. Visualizing the native cellular organization by coupling cryofixation with expansion microscopy (Cryo-ExM). Nat Methods 2022; 19:216-222. [PMID: 35027766 PMCID: PMC8828483 DOI: 10.1038/s41592-021-01356-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Cryofixation has proven to be the gold standard for efficient preservation of native cell ultrastructure compared to chemical fixation, but this approach is not widely used in fluorescence microscopy owing to implementation challenges. Here, we develop Cryo-ExM, a method that preserves native cellular organization by coupling cryofixation with expansion microscopy. This method bypasses artifacts associated with chemical fixation and its simplicity will contribute to its widespread use in super-resolution microscopy.
Collapse
Affiliation(s)
- Marine H Laporte
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Nikolai Klena
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Virginie Hamel
- Department of Cell Biology, University of Geneva, Geneva, Switzerland.
| | - Paul Guichard
- Department of Cell Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
127
|
Abstract
The cytoskeleton is a complex of detergent-insoluble components of the cytoplasm playing critical roles in cell motility, shape generation, and mechanical properties of a cell. Fibrillar polymers-actin filaments, microtubules, and intermediate filaments-are major constituents of the cytoskeleton, which constantly change their organization during cellular activities. The actin cytoskeleton is especially polymorphic, as actin filaments can form multiple higher-order assemblies performing different functions. Structural information about cytoskeleton organization is critical for understanding its functions and mechanisms underlying various forms of cellular activity. Because of the nanometer-scale thickness of cytoskeletal fibers, electron microscopy (EM) is a key tool to determine the structure of the cytoskeleton.This article describes application of rotary shadowing (or platinum replica ) EM (PREM) for visualization of the cytoskeleton . The procedure is applicable to thin cultured cells growing on glass coverslips and consists of detergent extraction (or mechanical "unroofing") of cells to expose their cytoskeleton , chemical fixation to provide stability, ethanol dehydration and critical point drying to preserve three-dimensionality, rotary shadowing with platinum to create contrast, and carbon coating to stabilize replicas. This technique provides easily interpretable three-dimensional images, in which individual cytoskeletal fibers are clearly resolved and individual proteins can be identified by immunogold labeling. More importantly, PREM is easily compatible with live cell imaging, so that one can correlate the dynamics of a cell or its components, e.g., expressed fluorescent proteins, with high-resolution structural organization of the cytoskeleton in the same cell.
Collapse
Affiliation(s)
- Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
128
|
Bragulat-Teixidor H, Hossain MJ, Otsuka S. Visualizing Nuclear Pore Complex Assembly In Situ in Human Cells at Nanometer Resolution by Correlating Live Imaging with Electron Microscopy. Methods Mol Biol 2022; 2502:493-512. [PMID: 35412258 DOI: 10.1007/978-1-0716-2337-4_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In eukaryotic cells that undergo open mitosis, nuclear pore complex assembly proceeds via two distinct pathways: postmitotic and interphase assembly. Studying both assembly processes is challenging because postmitotic assembly is fast, interphase assembly is rare and sporadic, and assembly intermediates in both pathways are very small with a diameter below 100 nm. Here, we present a protocol for studying nuclear pore complex biogenesis in situ in cultured human cells in a spatiotemporally resolved and quantitative manner by combining live imaging with three-dimensional electron microscopy. The method described here can also be applied for studying other cell cycle-associated events with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Helena Bragulat-Teixidor
- Max Perutz Labs, a joint venture of the University of Vienna and the Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - M Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shotaro Otsuka
- Max Perutz Labs, a joint venture of the University of Vienna and the Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
129
|
Affiliation(s)
- Sriram Subramaniam
- University of British Columbia, Vancouver, BC, Canada.
- Gandeeva Therapeutics Inc, Vancouver, BC, Canada.
| | - Gerard J Kleywegt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.
| |
Collapse
|
130
|
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis. Int J Mol Sci 2021; 23:ijms23010007. [PMID: 35008433 PMCID: PMC8745001 DOI: 10.3390/ijms23010007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.
Collapse
|
131
|
Pöge M, Mahamid J, Imanishi SS, Plitzko JM, Palczewski K, Baumeister W. Determinants shaping the nanoscale architecture of the mouse rod outer segment. eLife 2021; 10:e72817. [PMID: 34931611 PMCID: PMC8758146 DOI: 10.7554/elife.72817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
The unique membrane organization of the rod outer segment (ROS), the specialized sensory cilium of rod photoreceptor cells, provides the foundation for phototransduction, the initial step in vision. ROS architecture is characterized by a stack of identically shaped and tightly packed membrane disks loaded with the visual receptor rhodopsin. A wide range of genetic aberrations have been reported to compromise ROS ultrastructure, impairing photoreceptor viability and function. Yet, the structural basis giving rise to the remarkably precise arrangement of ROS membrane stacks and the molecular mechanisms underlying genetically inherited diseases remain elusive. Here, cryo-electron tomography (cryo-ET) performed on native ROS at molecular resolution provides insights into key structural determinants of ROS membrane architecture. Our data confirm the existence of two previously observed molecular connectors/spacers which likely contribute to the nanometer-scale precise stacking of the ROS disks. We further provide evidence that the extreme radius of curvature at the disk rims is enforced by a continuous supramolecular assembly composed of peripherin-2 (PRPH2) and rod outer segment membrane protein 1 (ROM1) oligomers. We suggest that together these molecular assemblies constitute the structural basis of the highly specialized ROS functional architecture. Our Cryo-ET data provide novel quantitative and structural information on the molecular architecture in ROS and substantiate previous results on proposed mechanisms underlying pathologies of certain PRPH2 mutations leading to blindness.
Collapse
Affiliation(s)
- Matthias Pöge
- Max Planck Institute of Biochemistry, Department of Molecular Structural BiologyMartinsriedGermany
| | - Julia Mahamid
- Max Planck Institute of Biochemistry, Department of Molecular Structural BiologyMartinsriedGermany
| | - Sanae S Imanishi
- Eugene and Marilyn Glick Eye Institute and the Department of Ophthalmology, Indiana University School of MedicineyIndianapolisUnited States
| | - Jürgen M Plitzko
- Max Planck Institute of Biochemistry, Department of Molecular Structural BiologyMartinsriedGermany
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, Department of Physiology & Biophysics, Department of Chemistry, Department of Molecular Biology and BiochemistryIrvineUnited States
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Department of Molecular Structural BiologyMartinsriedGermany
| |
Collapse
|
132
|
Loconte V, White KL. The use of soft X-ray tomography to explore mitochondrial structure and function. Mol Metab 2021; 57:101421. [PMID: 34942399 PMCID: PMC8829759 DOI: 10.1016/j.molmet.2021.101421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background Mitochondria are cellular organelles responsible for energy production, and dysregulation of the mitochondrial network is associated with many disease states. To fully characterize the mitochondrial network's structure and function, a three-dimensional whole cell mapping technique is required. Scope of review This review highlights the use of soft X-ray tomography (SXT) as a relatively high-throughput approach to quantify mitochondrial structure and function under multiple cellular conditions. Major conclusions The use of SXT opens the door for mapping cellular rearrangements during critical processes such as insulin secretion, stem cell differentiation, or disease progression. SXT provides unique information such as biochemical compositions or molecular densities of organelles and allows for unbiased, label-free imaging of intact whole cells. Mapping mitochondria in the context of the near-native cellular environment will reveal more information regarding mitochondrial network functions within the cell. Soft X-ray tomography (SXT) generates 3D organelle maps of intact cells. 3D maps reveal the positions of mitochondria and their molecular densities. SXT can be used to quantify and compare organelle contacts between conditions. SXT is unbiased imaging that identifies the contents of subcellular neighborhoods. SXT provides an exciting path for exploring metabolic dysfunction.
Collapse
Affiliation(s)
- Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, CA 94143; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
133
|
Croxford M, Elbaum M, Arigovindan M, Kam Z, Agard D, Villa E, Sedat J. Entropy-regularized deconvolution of cellular cryotransmission electron tomograms. Proc Natl Acad Sci U S A 2021; 118:e2108738118. [PMID: 34876518 PMCID: PMC8685678 DOI: 10.1073/pnas.2108738118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/01/2022] Open
Abstract
Cryo-electron tomography (cryo-ET) allows for the high-resolution visualization of biological macromolecules. However, the technique is limited by a low signal-to-noise ratio (SNR) and variance in contrast at different frequencies, as well as reduced Z resolution. Here, we applied entropy-regularized deconvolution (ER-DC) to cryo-ET data generated from transmission electron microscopy (TEM) and reconstructed using weighted back projection (WBP). We applied deconvolution to several in situ cryo-ET datasets and assessed the results by Fourier analysis and subtomogram analysis (STA).
Collapse
Affiliation(s)
- Matthew Croxford
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 760001, Israel
| | - Muthuvel Arigovindan
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Zvi Kam
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 760001, Israel
| | - David Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Elizabeth Villa
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
- HHMI, University of California San Diego, La Jolla, CA 92093
| | - John Sedat
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158;
| |
Collapse
|
134
|
Perspective: Emerging strategies for determining atomic-resolution structures of macromolecular complexes within cells. J Struct Biol 2021; 214:107827. [PMID: 34915129 PMCID: PMC8978977 DOI: 10.1016/j.jsb.2021.107827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
In principle, electron cryo-tomography (cryo-ET) of thin portions of cells provides high-resolution images of the three-dimensional spatial arrangement of all members of the proteome. In practice, however, radiation damage creates a tension between recording images at many different tilt angles, but at correspondingly reduced exposure levels, versus limiting the number of tilt angles in order to improve the signal-to-noise ratio (SNR). Either way, it is challenging to read the available information out at the level of atomic structure. Here, we first review work that explores the optimal strategy for data collection, which currently seems to favor the use of a limited angular range for tilting the sample or even the use of a single image to record the high-resolution information. Looking then to the future, we point to the alternative of so-called “deconvolution microscopy”, which may be applied to tilt-series or optically-sectioned, focal series data. Recording data as a focal series has the advantage that little or no translational alignment of frames might be needed, and a three-dimensional reconstruction might require only 2/3 the number of images as does standard tomography. We also point to the unexploited potential of phase plates to increase the contrast, and thus to reduce the electron exposure levels while retaining the ability align and merge the data. In turn, using much lower exposures per image could have the advantage that high-resolution information is retained throughout the full data-set, whether recorded as a tilt series or a focal series of images.
Collapse
|
135
|
Zimmerli CE, Allegretti M, Rantos V, Goetz SK, Obarska-Kosinska A, Zagoriy I, Halavatyi A, Hummer G, Mahamid J, Kosinski J, Beck M. Nuclear pores dilate and constrict in cellulo. Science 2021; 374:eabd9776. [PMID: 34762489 DOI: 10.1126/science.abd9776] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Christian E Zimmerli
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany.,Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Matteo Allegretti
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vasileios Rantos
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany.,EMBL Hamburg, 22607 Hamburg, Germany
| | - Sara K Goetz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Agnieszka Obarska-Kosinska
- Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,EMBL Hamburg, 22607 Hamburg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jan Kosinski
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany.,EMBL Hamburg, 22607 Hamburg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
136
|
Intracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgae. Proc Natl Acad Sci U S A 2021; 118:2025670118. [PMID: 34772804 DOI: 10.1073/pnas.2025670118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 11/18/2022] Open
Abstract
Unicellular marine microalgae are responsible for one of the largest carbon sinks on Earth. This is in part due to intracellular formation of calcium carbonate scales termed coccoliths. Traditionally, the influence of changing environmental conditions on this process has been estimated using poorly constrained analogies to crystallization mechanisms in bulk solution, yielding ambiguous predictions. Here, we elucidated the intracellular nanoscale environment of coccolith formation in the model species Pleurochrysis carterae using cryoelectron tomography. By visualizing cells at various stages of the crystallization process, we reconstructed a timeline of coccolith development. The three-dimensional data portray the native-state structural details of coccolith formation, uncovering the crystallization mechanism, and how it is spatially and temporally controlled. Most strikingly, the developing crystals are only tens of nanometers away from delimiting membranes, resulting in a highly confined volume for crystal growth. We calculate that the number of soluble ions that can be found in such a minute volume at any given time point is less than the number needed to allow the growth of a single atomic layer of the crystal and that the uptake of single protons can markedly affect nominal pH values. In such extreme confinement, the crystallization process is expected to depend primarily on the regulation of ion fluxes by the living cell, and nominal ion concentrations, such as pH, become the result, rather than a driver, of the crystallization process. These findings call for a new perspective on coccolith formation that does not rely exclusively on solution chemistry.
Collapse
|
137
|
Structural insights into the interactions of Polycomb Repressive Complex 2 with chromatin. Biochem Soc Trans 2021; 49:2639-2653. [PMID: 34747969 DOI: 10.1042/bst20210450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Polycomb repressive complexes are a family of chromatin modifier enzymes which are critical for regulating gene expression and maintaining cell-type identity. The reversible chemical modifications of histone H3 and H2A by the Polycomb proteins are central to its ability to function as a gene silencer. PRC2 is both a reader and writer of the tri-methylation of histone H3 lysine 27 (H3K27me3) which serves as a marker for transcription repression, and heterochromatin boundaries. Over the last few years, several studies have provided key insights into the mechanisms regulating the recruitment and activation of PRC2 at Polycomb target genes. In this review, we highlight the recent structural studies which have elucidated the roles played by Polycomb cofactor proteins in mediating crosstalk between histone post-translational modifications and the recruitment of PRC2 and the stimulation of PRC2 methyltransferase activity.
Collapse
|
138
|
Shen Q, Wu C, Freniere C, Tripler TN, Xiong Y. Nuclear Import of HIV-1. Viruses 2021; 13:2242. [PMID: 34835048 PMCID: PMC8619967 DOI: 10.3390/v13112242] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The delivery of the HIV-1 genome into the nucleus is an indispensable step in retroviral infection of non-dividing cells, but the mechanism of HIV-1 nuclear import has been a longstanding debate due to controversial experimental evidence. It was commonly believed that the HIV-1 capsid would need to disassemble (uncoat) in the cytosol before nuclear import because the capsid is larger than the central channel of nuclear pore complexes (NPCs); however, increasing evidence demonstrates that intact, or nearly intact, HIV-1 capsid passes through the NPC to enter the nucleus. With the protection of the capsid, the HIV-1 core completes reverse transcription in the nucleus and is translocated to the integration site. Uncoating occurs while, or after, the viral genome is released near the integration site. These independent discoveries reveal a compelling new paradigm of this important step of the HIV-1 life cycle. In this review, we summarize the recent studies related to HIV-1 nuclear import, highlighting the spatial-temporal relationship between the nuclear entry of the virus core, reverse transcription, and capsid uncoating.
Collapse
Affiliation(s)
| | | | | | | | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; (Q.S.); (C.W.); (C.F.); (T.N.T.)
| |
Collapse
|
139
|
Beel AJ, Azubel M, Matteï PJ, Kornberg RD. Structure of mitotic chromosomes. Mol Cell 2021; 81:4369-4376.e3. [PMID: 34520722 DOI: 10.1016/j.molcel.2021.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Chromatin fibers must fold or coil in the process of chromosome condensation. Patterns of coiling have been demonstrated for reconstituted chromatin, but the actual trajectories of fibers in condensed states of chromosomes could not be visualized because of the high density of the material. We have exploited partial decondensation of mitotic chromosomes to reveal their internal structure at sub-nucleosomal resolution by cryo-electron tomography, without the use of stains, fixatives, milling, or sectioning. DNA gyres around nucleosomes were visible, allowing the nucleosomes to be identified and their orientations to be determined. Linker DNA regions were traced, revealing the trajectories of the chromatin fibers. The trajectories were irregular, with almost no evidence of coiling and no short- or long-range order of the chromosomal material. The 146-bp core particle, long known as a product of nuclease digestion, is identified as the native state of the nucleosome, with no regular spacing along the chromatin fibers.
Collapse
Affiliation(s)
- Andrew J Beel
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Maia Azubel
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.
| | - Pierre-Jean Matteï
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
140
|
A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells. Sci Rep 2021; 11:21406. [PMID: 34725450 PMCID: PMC8560947 DOI: 10.1038/s41598-021-00979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
The scanning electron microscope (SEM) has been reassembled into a new type of cryo-electron microscope (cryo-TSEM) by installing a new cryo-transfer holder and anti-contamination trap, which allowed simultaneous acquisition of both transmission images (STEM images) and surface images (SEM images) in the frozen state. The ultimate temperatures of the holder and the trap reached − 190 °C and − 210 °C, respectively, by applying a liquid nitrogen slush. The STEM images at 30 kV were comparable to, or superior to, the images acquired with conventional transmission electron microscope (100 kV TEM) in contrast and sharpness. The unroofing method was used to observe membrane cytoskeletons instead of the frozen section and the FIB methods. Deep sublimation of ice surrounding unroofed cells by regulating temperature enabled to emerge intracellular fine structures in thick frozen cells. Hence, fine structures in the vicinity of the cell membrane such as the cytoskeleton, polyribosome chains and endoplasmic reticulum (ER) became visible. The ER was distributed as a wide, flat structure beneath the cell membrane, forming a large spatial network with tubular ER.
Collapse
|
141
|
Vasquez CG, de la Serna EL, Dunn AR. How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion. J Cell Sci 2021; 134:272658. [PMID: 34714332 DOI: 10.1242/jcs.248757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
Collapse
Affiliation(s)
- Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
142
|
|
143
|
Hoffmann PC, Giandomenico SL, Ganeva I, Wozny MR, Sutcliffe M, Lancaster MA, Kukulski W. Electron cryo-tomography reveals the subcellular architecture of growing axons in human brain organoids. eLife 2021; 10:e70269. [PMID: 34698018 PMCID: PMC8547956 DOI: 10.7554/elife.70269] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
During brain development, axons must extend over great distances in a relatively short amount of time. How the subcellular architecture of the growing axon sustains the requirements for such rapid build-up of cellular constituents has remained elusive. Human axons have been particularly poorly accessible to imaging at high resolution in a near-native context. Here, we present a method that combines cryo-correlative light microscopy and electron tomography with human cerebral organoid technology to visualize growing axon tracts. Our data reveal a wealth of structural details on the arrangement of macromolecules, cytoskeletal components, and organelles in elongating axon shafts. In particular, the intricate shape of the endoplasmic reticulum is consistent with its role in fulfilling the high demand for lipid biosynthesis to support growth. Furthermore, the scarcity of ribosomes within the growing shaft suggests limited translational competence during expansion of this compartment. These findings establish our approach as a powerful resource for investigating the ultrastructure of defined neuronal compartments.
Collapse
Affiliation(s)
- Patrick C Hoffmann
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | | | - Iva Ganeva
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Michael R Wozny
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Magdalena Sutcliffe
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
| | - Wanda Kukulski
- MRC Laboratory of Molecular Biology, Francis Crick AvenueCambridgeUnited Kingdom
- Institute of Biochemistry and Molecular Medicine, University of BernBernSwitzerland
| |
Collapse
|
144
|
Abstract
Cryo-electron tomography has stepped fully into the spotlight. Enthusiasm is high. Fortunately for us, this is an exciting time to be a cryotomographer, but there is still a way to go before declaring victory. Despite its potential, cryo-electron tomography possesses many inherent challenges. How do we image through thick cell samples, and possibly even tissue? How do we identify a protein of interest amidst the noisy, crowded environment of the cytoplasm? How do we target specific moments of a dynamic cellular process for tomographic imaging? In this review, we cover the history of cryo-electron tomography and how it came to be, roughly speaking, as well as the many approaches that have been developed to overcome its intrinsic limitations.
Collapse
Affiliation(s)
- Ryan K. Hylton
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Matthew T. Swulius
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
145
|
Bäuerlein FJB, Baumeister W. Towards Visual Proteomics at High Resolution. J Mol Biol 2021; 433:167187. [PMID: 34384780 DOI: 10.1016/j.jmb.2021.167187] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Traditionally, structural biologists approach the complexity of cellular proteomes in a reductionist manner. Proteomes are fractionated, their molecular components purified and studied one-by-one using the experimental methods for structure determination at their disposal. Visual proteomics aims at obtaining a holistic picture of cellular proteomes by studying them in situ, ideally in unperturbed cellular environments. The method that enables doing this at highest resolution is cryo-electron tomography. It allows to visualize cellular landscapes with molecular resolution generating maps or atlases revealing the interaction networks which underlie cellular functions in health and in disease states. Current implementations of cryo ET do not yet realize the full potential of the method in terms of resolution and interpretability. To this end, further improvements in technology and methodology are needed. This review describes the state of the art as well as measures which we expect will help overcoming current limitations.
Collapse
Affiliation(s)
- Felix J B Bäuerlein
- Max-Planck-Institute of Biochemistry, Department for Molecular Structural Biology, Am Klopferspitz 18, 82152 Planegg, Germany; Georg-August-University, Institute for Neuropathology, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Wolfgang Baumeister
- Max-Planck-Institute of Biochemistry, Department for Molecular Structural Biology, Am Klopferspitz 18, 82152 Planegg, Germany.
| |
Collapse
|
146
|
Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks. Cells 2021; 10:cells10081960. [PMID: 34440729 PMCID: PMC8394331 DOI: 10.3390/cells10081960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.
Collapse
|
147
|
Structural evidence for extracellular silica formation by diatoms. Nat Commun 2021; 12:4639. [PMID: 34330922 PMCID: PMC8324917 DOI: 10.1038/s41467-021-24944-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/01/2021] [Indexed: 11/08/2022] Open
Abstract
The silica cell wall of diatoms, a widespread group of unicellular microalgae, is an exquisite example for the ability of organisms to finely sculpt minerals under strict biological control. The prevailing paradigm for diatom silicification is that this is invariably an intracellular process, occurring inside specialized silica deposition vesicles that are responsible for silica precipitation and morphogenesis. Here, we study the formation of long silicified extensions that characterize many diatom species. We use cryo-electron tomography to image silica formation in situ, in 3D, and at a nanometer-scale resolution. Remarkably, our data suggest that, contradictory to the ruling paradigm, these intricate structures form outside the cytoplasm. In addition, the formation of these silica extensions is halted at low silicon concentrations that still support the formation of other cell wall elements, further alluding to a different silicification mechanism. The identification of this unconventional strategy expands the suite of mechanisms that diatoms use for silicification.
Collapse
|
148
|
Quistgaard EM, Nissen JD, Hansen S, Nissen P. Mind the Gap: Molecular Architecture of the Axon Initial Segment - From Fold Prediction to a Mechanistic Model of Function? J Mol Biol 2021; 433:167176. [PMID: 34303720 DOI: 10.1016/j.jmb.2021.167176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
The axon initial segment (AIS) is a distinct neuronal domain, which is responsible for initiating action potentials, and therefore of key importance to neuronal signaling. To determine how it functions, it is necessary to establish which proteins reside there, how they are organized, and what the dynamic features are. Great strides have been made in recent years, and it is now clear that several AIS cytoskeletal and membrane proteins interact to form a higher-order periodic structure. Here we briefly describe AIS function, protein composition and molecular architecture, and discuss perspectives for future structural characterization, and if structure predictions will be able to model complex higher-order assemblies.
Collapse
Affiliation(s)
- Esben M Quistgaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Josephine Dannersø Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Sean Hansen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Poul Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark.
| |
Collapse
|
149
|
Evolution and diversification of the nuclear pore complex. Biochem Soc Trans 2021; 49:1601-1619. [PMID: 34282823 PMCID: PMC8421043 DOI: 10.1042/bst20200570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
The nuclear pore complex (NPC) is responsible for transport between the cytoplasm and nucleoplasm and one of the more intricate structures of eukaryotic cells. Typically composed of over 300 polypeptides, the NPC shares evolutionary origins with endo-membrane and intraflagellar transport system complexes. The modern NPC was fully established by the time of the last eukaryotic common ancestor and, hence, prior to eukaryote diversification. Despite the complexity, the NPC structure is surprisingly flexible with considerable variation between lineages. Here, we review diversification of the NPC in major taxa in view of recent advances in genomic and structural characterisation of plant, protist and nucleomorph NPCs and discuss the implications for NPC evolution. Furthermore, we highlight these changes in the context of mRNA export and consider how this process may have influenced NPC diversity. We reveal the NPC as a platform for continual evolution and adaptation.
Collapse
|
150
|
Burbaum L, Schneider J, Scholze S, Böttcher RT, Baumeister W, Schwille P, Plitzko JM, Jasnin M. Molecular-scale visualization of sarcomere contraction within native cardiomyocytes. Nat Commun 2021; 12:4086. [PMID: 34215727 PMCID: PMC8253822 DOI: 10.1038/s41467-021-24049-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcomeres, the basic contractile units of striated muscle, produce the forces driving muscular contraction through cross-bridge interactions between actin-containing thin filaments and myosin II-based thick filaments. Until now, direct visualization of the molecular architecture underlying sarcomere contractility has remained elusive. Here, we use in situ cryo-electron tomography to unveil sarcomere contraction in frozen-hydrated neonatal rat cardiomyocytes. We show that the hexagonal lattice of the thick filaments is already established at the neonatal stage, with an excess of thin filaments outside the trigonal positions. Structural assessment of actin polarity by subtomogram averaging reveals that thin filaments in the fully activated state form overlapping arrays of opposite polarity in the center of the sarcomere. Our approach provides direct evidence for thin filament sliding during muscle contraction and may serve as a basis for structural understanding of thin filament activation and actomyosin interactions inside unperturbed cellular environments.
Collapse
Affiliation(s)
- Laura Burbaum
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sarah Scholze
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|