101
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
102
|
Wang X, Zhu Z. A Mendelian randomization analysis reveals the multifaceted role of the skin microbiota in liver cancer. Front Microbiol 2024; 15:1422132. [PMID: 39113845 PMCID: PMC11303314 DOI: 10.3389/fmicb.2024.1422132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC, or hepatic cancer, HC) and cholangiocarcinoma (CCA, or hepatic bile duct cancer, HBDC) are two major types of primary liver cancer (PLC). Previous studies have suggested that microbiota can either act as risk factors or preventive factors in PLC. However, no study has reported the relationship between skin microbiota and PLC. Therefore, we conducted a two-sample Mendelian randomization (MR) study to assess the causality between skin microbiota and PLC. Methods Data from the genome-wide association study (GWAS) on skin microbiota were collected. The GWAS summary data of GCST90018803 (HBDC) and GCST90018858 (HC) were utilized in the discovery and verification phases, respectively. The inverse variance weighted (IVW) method was utilized as the principal method in our MR study. The MR-Egger intercept test, Cochran's Q-test, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and leave-one-out analysis were conducted to identify the heterogeneity and pleiotropy. Results The results showed that Veillonella (unc.) plays a protective role in HBDC, while the family Neisseriaceae has a positive association with HBDC risk. The class Betaproteobacteria, Veillonella (unc.), and the phylum Bacillota (Firmicutes) play a protective role in HC. Staphylococcus epidermidis, Corynebacterium (unc.), the family Neisseriaceae, and Pasteurellaceae sp. were associated with an increased risk of HC. Conclusion This study provided new evidence regarding the association between skin microbiota and PLC, suggesting that skin microbiota plays a role in PLC progression. Skin microbiota could be a novel and effective way for PLC diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zexin Zhu
- Department of Surgical Oncology, The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
103
|
Weis AM, Matthews OJ, Mulvey MA, Round JL. Draft genome of a human-derived pks+ E. coli that caused spontaneous disseminated infection in a mouse. Microbiol Resour Announc 2024; 13:e0038724. [PMID: 38832767 PMCID: PMC11256781 DOI: 10.1128/mra.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
We present the draft genome of a novel human-derived Escherichia coli strain isolated from a healthy control human microbiota that, when put into a mouse, spontaneously disseminated from the gut to the kidneys.
Collapse
Affiliation(s)
- Allison M. Weis
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - O’Connor J. Matthews
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A. Mulvey
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - June L. Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
104
|
Wang X, Zhang Q, Xu R, Li X, Hong Z. Research progress on the correlation between intestinal flora and colorectal cancer. Front Oncol 2024; 14:1416806. [PMID: 39087025 PMCID: PMC11288818 DOI: 10.3389/fonc.2024.1416806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies in the world. With the rapid pace of life and changes in diet structure, the incidence and mortality of CRC increase year by year posing a serious threat to human health. As the most complex and largest microecosystem in the human body, intestinal microecology is closely related to CRC. It is an important factor that affects and participates in the occurrence and development of CRC. Advances in next-generation sequencing technology and metagenomics have provided new insights into the ecology of gut microbes. It also helps to link intestinal flora with CRC, and the relationship between intestinal flora and CRC can be continuously understood from different levels. This paper summarizes the relationship between intestinal flora and CRC and its potential role in the diagnosis of CRC providing evidence for early screening and treatment of CRC.
Collapse
Affiliation(s)
- Xinyu Wang
- The Health Management Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qian Zhang
- Department of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Rongxuan Xu
- Department of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaofeng Li
- Department of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Zhijun Hong
- The Health Management Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
105
|
Oliero M, Alaoui AA, McCartney C, Santos MM. Colorectal cancer and inulin supplementation: the good, the bad, and the unhelpful. Gastroenterol Rep (Oxf) 2024; 12:goae058. [PMID: 38984069 PMCID: PMC11231048 DOI: 10.1093/gastro/goae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
The prebiotic inulin has been vaunted for its potential to reduce the risk of colorectal cancer. Inulin fermentation resulting in the production of short-chain fatty acids, primarily butyrate, has been reported to be associated with properties that are beneficial for gut health and has led to an increased consumption of inulin in the Western population through processed food and over-the-counter dietary supplements. However, in clinical trials, there is limited evidence of the efficacy of inulin in preventing colorectal cancer. Moreover, recent data suggest that improper inulin consumption may even be harmful for gastro-intestinal health under certain circumstances. The main objective of this review is to provide insight into the beneficial and potentially detrimental effects of inulin supplementation in the context of colorectal cancer prevention and enhancement of treatment efficacy.
Collapse
Affiliation(s)
- Manon Oliero
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ahmed Amine Alaoui
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claire McCartney
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuela M Santos
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
106
|
Siguenza N, Brevi A, Zhang JT, Pabani A, Bhushan A, Das M, Ding Y, Hasty J, Ghosh P, Zarrinpar A. Engineered bacterial therapeutics for detecting and treating CRC. Trends Cancer 2024; 10:588-597. [PMID: 38693003 PMCID: PMC11392429 DOI: 10.1016/j.trecan.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Despite an overall decrease in occurrence, colorectal cancer (CRC) remains the third most common cause of cancer deaths in the USA. Detection of CRC is difficult in high-risk groups, including those with genetic predispositions, with disease traits, or from certain demographics. There is emerging interest in using engineered bacteria to identify early CRC development, monitor changes in the adenoma and CRC microenvironment, and prevent cancer progression. Novel genetic circuits for cancer therapeutics or functions to enhance existing treatment modalities have been tested and verified in vitro and in vivo. Inclusion of biocontainment measures would prepare strains to meet therapeutic standards. Thus, engineered bacteria present an opportunity for detection and treatment of CRC lesions in a highly sensitive and specific manner.
Collapse
Affiliation(s)
- Nicole Siguenza
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Arianna Brevi
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Joanna T Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Arman Pabani
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA, USA; Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Amir Zarrinpar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA, USA; Jennifer Moreno Department of Veterans Affairs, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
107
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
108
|
Oliero M, Cuisiniere T, Ajayi AS, Gerkins C, Hajjar R, Fragoso G, Calvé A, Vennin Rendos H, Mathieu-Denoncourt A, Dagbert F, De Broux É, Loungnarath R, Schwenter F, Sebajang H, Ratelle R, Wassef R, Richard C, Duperthuy M, Gravel AE, Vincent AT, Santos MM. Putrescine Supplementation Limits the Expansion of pks+ Escherichia coli and Tumor Development in the Colon. CANCER RESEARCH COMMUNICATIONS 2024; 4:1777-1792. [PMID: 38934090 PMCID: PMC11261243 DOI: 10.1158/2767-9764.crc-23-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Escherichia coli that harbor the polyketide synthase (pks) genomic island produce colibactin and are associated with sporadic colorectal cancer development. Given the considerable prevalence of pks+ bacteria in healthy individuals, we sought to identify strategies to limit the growth and expansion of pks+ E. coli. We found that culture supernatants of the probiotic strain E. coli Nissle 1917 were able to inhibit the growth of the murine pathogenic strain pks+ E. coli NC101 (EcNC101). We performed a nontargeted analysis of the metabolome in supernatants from several E. coli strains and identified putrescine as a potential postbiotic capable of suppressing EcNC101 growth in vitro. The effect of putrescine supplementation was then evaluated in the azoxymethane/dextran sulfate sodium mouse model of colorectal cancer in mice colonized with EcNC101. Putrescine supplementation inhibited the growth of pks+ E. coli, reduced the number and size of colonic tumors, and downmodulated the release of inflammatory cytokines in the colonic lumen. Additionally, putrescine supplementation led to shifts in the composition and function of gut microbiota, characterized by an increase in the Firmicutes/Bacteroidetes ratio and enhanced acetate production. The effect of putrescine was further confirmed in vitro using a pks+ E. coli strain isolated from a patient with colorectal cancer. These results suggest that probiotic-derived metabolites can be used as an alternative to live bacteria in individuals at risk of developing colorectal cancer due to the presence of pks+ bacteria in their colon. SIGNIFICANCE Putrescine supplementation inhibits the growth of cancer-promoting bacteria in the gut, lowers inflammation, and reduces colon cancer development. The consumption of healthy foods rich in putrescine may be a potential prophylactic approach for individuals at risk of developing colorectal cancer due to the presence of pks+ bacteria in their colon.
Collapse
Affiliation(s)
- Manon Oliero
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Thibault Cuisiniere
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Ayodeji S. Ajayi
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Claire Gerkins
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Roy Hajjar
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, Canada.
| | - Gabriela Fragoso
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Hervé Vennin Rendos
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
| | - Annabelle Mathieu-Denoncourt
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Canada.
| | - François Dagbert
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Éric De Broux
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Rasmy Loungnarath
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Frank Schwenter
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Herawaty Sebajang
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Richard Ratelle
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Ramses Wassef
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Carole Richard
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montréal, Canada.
- Digestive Surgery Service, Department of Surgery, Centre hospitalier de l’Université de Montréal (CHUM), Montréal, Canada.
| | - Marylise Duperthuy
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Canada.
| | - Andrée E. Gravel
- Drug Discovery Platform, Research Institute McGill University Health Centre, Montreal, Canada.
| | - Antony T. Vincent
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, Canada.
- Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, Canada.
| | - Manuela M. Santos
- Nutrition and Microbiome Laboratory, Institut du cancer de Montréal, Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada.
| |
Collapse
|
109
|
Che S, Yan Z, Feng Y, Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience 2024; 27:109893. [PMID: 38799560 PMCID: PMC11126819 DOI: 10.1016/j.isci.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Recent advances in cancer research have unveiled a significant yet previously underappreciated aspect of oncology: the presence and role of intratumoral microbiota. These microbial residents, encompassing bacteria, fungi, and viruses within tumor tissues, have been found to exert considerable influence on tumor development, progression, and the efficacy of therapeutic interventions. This review aims to synthesize these groundbreaking discoveries, providing an integrated overview of the identification, characterization, and functional roles of intratumoral microbiota in cancer biology. We focus on elucidating the complex interactions between these microorganisms and the tumor microenvironment, highlighting their potential as novel biomarkers and therapeutic targets. The purpose of this review is to offer a comprehensive understanding of the microbial dimension in cancer, paving the way for innovative approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Zhiyong Yan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| |
Collapse
|
110
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
111
|
Lv C, Abdullah M, Chen W, Zhou N, Cheng Z, Chen Y, Li M, Simpson KW, Elsaadi A, Zhu Y, Lipkin SM, Chang YF. Genomic characterization of Escherichia coli harbor a polyketide synthase ( pks ) island associated with colorectal cancer (CRC) development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599199. [PMID: 38948848 PMCID: PMC11212869 DOI: 10.1101/2024.06.16.599199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The E. coli strain harboring the polyketide synthase ( Pks) island encodes the genotoxin colibactin, a secondary metabolite reported to have severe implications for human health and for the progression of colorectal cancer. The present study involved whole-genome-wide comparison and phylogenetic analysis of pks harboring E. coli isolates to gain insight into the distribution and evolution of these organism. Fifteen E. coli strains isolated from patients with ulcerative colitis were sequenced, 13 of which harbored pks islands. In addition, 2,654 genomes from the public database were also screened for pks harboring E. coli genomes, 158 of which were pks -positive isolates. Whole-genome-wide comparison and phylogenetic analysis revealed that 171 (158+13) pks -positive isolates belonged to phylogroup B2, and most of the isolates associated to sequence types ST73 and ST95. One isolate from an ulcerative colitis (UC) patient was of the sequence type ST8303. The maximum likelihood tree based on the core genome of pks -positive isolates revealed horizontal gene transfer across sequence types and serotypes. Virulome and resistome analyses revealed the preponderance of virulence genes and a reduced number of antimicrobial genes in Pks -positive isolates. This study strongly contributes to understanding the evolution of pks islands in E. coli .
Collapse
|
112
|
Burgos-Molina AM, Téllez Santana T, Redondo M, Bravo Romero MJ. The Crucial Role of Inflammation and the Immune System in Colorectal Cancer Carcinogenesis: A Comprehensive Perspective. Int J Mol Sci 2024; 25:6188. [PMID: 38892375 PMCID: PMC11172443 DOI: 10.3390/ijms25116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic inflammation drives the growth of colorectal cancer through the dysregulation of molecular pathways within the immune system. Infiltration of immune cells, such as macrophages, into tumoral regions results in the release of proinflammatory cytokines (IL-6; IL-17; TNF-α), fostering tumor proliferation, survival, and invasion. Tumors employ various mechanisms to evade immune surveillance, effectively 'cloaking' themselves from detection and subsequent attack. A comprehensive understanding of these intricate molecular interactions is paramount for advancing novel strategies aimed at modulating the immune response against cancer.
Collapse
Affiliation(s)
- Antonio Manuel Burgos-Molina
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| | - Teresa Téllez Santana
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
| | - Maximino Redondo
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
- Research Network on Chronic Diseases, Primary Care, and Health Promotion (RICAPPS), Carlos III Health Institute (Instituto de Salud Carlos III), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
- Málaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28, 29010 Málaga, Spain
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain
| | - María José Bravo Romero
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain; (A.M.B.-M.); (T.T.S.); (M.J.B.R.)
| |
Collapse
|
113
|
Luo P, Gao D, Zhang Q. Genetic causal relationship between gut microbiota and basal cell carcinoma: A two-sample mendelian randomization study. Skin Res Technol 2024; 30:e13804. [PMID: 38895789 PMCID: PMC11187847 DOI: 10.1111/srt.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Research has previously established connections between the intestinal microbiome and the progression of some cancers. However, there is a noticeable gap in the literature in regard to using Mendelian randomisation (MR) to delve into potential causal relationships between the gut microbiota (GM) and basal cell carcinoma (BCC). Therefore, the purpose of our study was to use MR to explore the causal relationship between four kinds of GM (Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae) and BCC. METHODS We used genome-wide association study (GWAS) data and MR to explore the causal relationship between four kinds of GM and BCC. This study primarily employed the random effect inverse variance weighted (IVW) model for analysis, as complemented by additional methods including the simple mode, weighted median, weighted mode and MR‒Egger methods. We used heterogeneity and horizontal multiplicity to judge the reliability of each analysis. MR-PRESSO was mainly used to detect and correct outliers. RESULTS The random-effects IVW results showed that Bacteroides (OR = 0.936, 95% CI = 0.787-1.113, p = 0.455), Streptococcus (OR = 0.974, 95% CI = 0.875-1.083, p = 0.629), Proteobacteria (OR = 1.113, 95% CI = 0.977-1.267, p = 0.106) and Lachnospiraceae (OR = 1.027, 95% CI = 0.899-1.173, p = 0.688) had no genetic causal relationship with BCC. All analyses revealed no horizontal pleiotropy, heterogeneity or outliers. CONCLUSION We found that Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae do not increase the incidence of BCC at the genetic level, which provides new insight for the study of GM and BCC.
Collapse
Affiliation(s)
- Pan Luo
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dejin Gao
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingguo Zhang
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
114
|
Rahman S, Lu E, Patel RK, Tsikitis VL, Martindale RG. Colorectal Disease and the Gut Microbiome: What a Surgeon Needs to Know. Surg Clin North Am 2024; 104:647-656. [PMID: 38677827 DOI: 10.1016/j.suc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The gut microbiome is defined as the microorganisms that reside within the gastrointestinal tract and produce a variety of metabolites that impact human health. These microbes play an intricate role in human health, and an imbalance in the gut microbiome, termed gut dysbiosis, has been implicated in the development of varying diseases. The purpose of this review is to highlight what is known about the microbiome and its impact on colorectal cancer, inflammatory bowel disease, constipation, Clostridioides difficile infection, the impact of bowel prep, and anastomotic leaks.
Collapse
Affiliation(s)
- Shahrose Rahman
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA.
| | - Ethan Lu
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| | - Ranish K Patel
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| | - Vassiliki Liana Tsikitis
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| | - Robert G Martindale
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| |
Collapse
|
115
|
Sadeghi M, Mestivier D, Sobhani I. Contribution of pks+ Escherichia coli ( E. coli) to Colon Carcinogenesis. Microorganisms 2024; 12:1111. [PMID: 38930493 PMCID: PMC11205849 DOI: 10.3390/microorganisms12061111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health concern, ranking second in mortality and third in frequency among cancers worldwide. While only a small fraction of CRC cases can be attributed to inherited genetic mutations, the majority arise sporadically due to somatic mutations. Emerging evidence reveals gut microbiota dysbiosis to be a contributing factor, wherein polyketide synthase-positive Escherichia coli (pks+ E. coli) plays a pivotal role in CRC pathogenesis. pks+ bacteria produce colibactin, a genotoxic protein that causes deleterious effects on DNA within host colonocytes. In this review, we examine the role of the gut microbiota in colon carcinogenesis, elucidating how colibactin-producer bacteria induce DNA damage, promote genomic instability, disrupt the gut epithelial barrier, induce mucosal inflammation, modulate host immune responses, and influence cell cycle dynamics. Collectively, these actions foster a microenvironment conducive to tumor initiation and progression. Understanding the mechanisms underlying pks+ bacteria-mediated CRC development may pave the way for mass screening, early detection of tumors, and therapeutic strategies such as microbiota modulation, bacteria-targeted therapy, checkpoint inhibition of colibactin production and immunomodulatory pathways.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Denis Mestivier
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
| | - Iradj Sobhani
- EA7375–EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers, Paris East Créteil University (UPEC), 94010 Créteil, France;
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, 94010 Créteil, France
| |
Collapse
|
116
|
Mruk-Mazurkiewicz H, Kulaszyńska M, Czarnecka W, Podkówka A, Ekstedt N, Zawodny P, Wierzbicka-Woś A, Marlicz W, Skupin B, Stachowska E, Łoniewski I, Skonieczna-Żydecka K. Insights into the Mechanisms of Action of Akkermansia muciniphila in the Treatment of Non-Communicable Diseases. Nutrients 2024; 16:1695. [PMID: 38892628 PMCID: PMC11174979 DOI: 10.3390/nu16111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut-brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies.
Collapse
Affiliation(s)
- Honorata Mruk-Mazurkiewicz
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Natalia Ekstedt
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Piotr Zawodny
- Medical Center Zawodny Clinic, Ku Słońcu 58, 71-047 Szczecin, Poland;
| | | | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej, 71-252 Szczecin, Poland
| | - Błażej Skupin
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| |
Collapse
|
117
|
Sayed IM, Vo DT, Alcantara J, Inouye KM, Pranadinata RF, Luo L, Boland CR, Goyal NP, Kuo DJ, Huang SC, Sahoo D, Ghosh P, Das S. Molecular Signatures for Microbe-Associated Colorectal Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595902. [PMID: 38853996 PMCID: PMC11160670 DOI: 10.1101/2024.05.26.595902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Genetic factors and microbial imbalances play crucial roles in colorectal cancers (CRCs), yet the impact of infections on cancer initiation remains poorly understood. While bioinformatic approaches offer valuable insights, the rising incidence of CRCs creates a pressing need to precisely identify early CRC events. We constructed a network model to identify continuum states during CRC initiation spanning normal colonic tissue to pre-cancer lesions (adenomatous polyps) and examined the influence of microbes and host genetics. Methods A Boolean network was built using a publicly available transcriptomic dataset from healthy and adenoma affected patients to identify an invariant Microbe-Associated Colorectal Cancer Signature (MACS). We focused on Fusobacterium nucleatum ( Fn ), a CRC-associated microbe, as a model bacterium. MACS-associated genes and proteins were validated by RT-qPCR, RNA seq, ELISA, IF and IHCs in tissues and colon-derived organoids from genetically predisposed mice ( CPC-APC Min+/- ) and patients (FAP, Lynch Syndrome, PJS, and JPS). Results The MACS that is upregulated in adenomas consists of four core genes/proteins: CLDN2/Claudin-2 (leakiness), LGR5/leucine-rich repeat-containing receptor (stemness), CEMIP/cell migration-inducing and hyaluronan-binding protein (epithelial-mesenchymal transition) and IL8/Interleukin-8 (inflammation). MACS was induced upon Fn infection, but not in response to infection with other enteric bacteria or probiotics. MACS induction upon Fn infection was higher in CPC-APC Min+/- organoids compared to WT controls. The degree of MACS expression in the patient-derived organoids (PDOs) generally corresponded with the known lifetime risk of CRCs. Conclusions Computational prediction followed by validation in the organoid-based disease model identified the early events in CRC initiation. MACS reveals that the CRC-associated microbes induce a greater risk in the genetically predisposed hosts, suggesting its potential use for risk prediction and targeted cancer prevention.
Collapse
|
118
|
Shen H, Zhang C, Li S, Liang Y, Lee LT, Aggarwal N, Wun KS, Liu J, Nadarajan SP, Weng C, Ling H, Tay JK, Wang DY, Yao SQ, Hwang IY, Lee YS, Chang MW. Prodrug-conjugated tumor-seeking commensals for targeted cancer therapy. Nat Commun 2024; 15:4343. [PMID: 38773197 PMCID: PMC11109227 DOI: 10.1038/s41467-024-48661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Prodrugs have been explored as an alternative to conventional chemotherapy; however, their target specificity remains limited. The tumor microenvironment harbors a range of microorganisms that potentially serve as tumor-targeting vectors for delivering prodrugs. In this study, we harness bacteria-cancer interactions native to the tumor microbiome to achieve high target specificity for prodrug delivery. We identify an oral commensal strain of Lactobacillus plantarum with an intrinsic cancer-binding mechanism and engineer the strain to enable the surface loading of anticancer prodrugs, with nasopharyngeal carcinoma (NPC) as a model cancer. The engineered commensals show specific binding to NPC via OppA-mediated recognition of surface heparan sulfate, and the loaded prodrugs are activated by tumor-associated biosignals to release SN-38, a chemotherapy compound, near NPC. In vitro experiments demonstrate that the prodrug-loaded microbes significantly increase the potency of SN-38 against NPC cell lines, up to 10-fold. In a mouse xenograft model, intravenous injection of the engineered L. plantarum leads to bacterial colonization in NPC tumors and a 67% inhibition in tumor growth, enhancing the efficacy of SN-38 by 54%.
Collapse
Affiliation(s)
- Haosheng Shen
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Changyu Zhang
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shengjie Li
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuanmei Liang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Ting Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Kwok Soon Wun
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Saravanan Prabhu Nadarajan
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng Weng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Wilmar International Limited, Singapore, Singapore
| | - Joshua K Tay
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Food, Chemical and Biotechnology, Singapore Institute of Technology, Singapore, Singapore.
| | - Yung Seng Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National Centre for Engineering Biology (NCEB), Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
119
|
Profir M, Roşu OA, Creţoiu SM, Gaspar BS. Friend or Foe: Exploring the Relationship between the Gut Microbiota and the Pathogenesis and Treatment of Digestive Cancers. Microorganisms 2024; 12:955. [PMID: 38792785 PMCID: PMC11124004 DOI: 10.3390/microorganisms12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Digestive cancers are among the leading causes of cancer death in the world. However, the mechanisms of cancer development and progression are not fully understood. Accumulating evidence in recent years pointing to the bidirectional interactions between gut dysbiosis and the development of a specific type of gastrointestinal cancer is shedding light on the importance of this "unseen organ"-the microbiota. This review focuses on the local role of the gut microbiota imbalance in different digestive tract organs and annexes related to the carcinogenic mechanisms. Microbiota modulation, either by probiotic administration or by dietary changes, plays an important role in the future therapies of various digestive cancers.
Collapse
Affiliation(s)
- Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
120
|
Masheghati F, Asgharzadeh MR, Jafari A, Masoudi N, Maleki-Kakelar H. The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Life Sci 2024; 344:122529. [PMID: 38490297 DOI: 10.1016/j.lfs.2024.122529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
The gut microbiome plays a significant role in developing colorectal cancer (CRC). The gut microbiome usually acts as a protective barrier against harmful pathogens and infections in the intestine, while also regulating inflammation by affecting the human immune system. The gut microbiota and probiotics play a role not only in intestinal inflammation associated with tumor formation but also in regulating anti-cancer immune response. As a result, they associated with tumor progression and the effectiveness of anti-cancer therapies. Research indicates that gut microbiota and probiotics can be used as biomarkers to predict the impact of immunotherapy and enhance its efficacy in treating CRC by regulating it. This review examines the importance of gut microbiota and probiotics in the development and progression of CRC, as well as their synergistic impact on anti-cancer treatments.
Collapse
Affiliation(s)
- Forough Masheghati
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Naser Masoudi
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of General Surgery, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
121
|
Jiang C, Zhou Q, Yi K, Yuan Y, Xie X. Colorectal cancer initiation: Understanding early-stage disease for intervention. Cancer Lett 2024; 589:216831. [PMID: 38574882 DOI: 10.1016/j.canlet.2024.216831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
How tumors arise or the cause of precancerous lesions is a fundamental question in cancer biology. It is generally accepted that tumors originate from normal cells that undergo uncontrolled proliferation owing to genetic alterations. At the onset of adenoma formation, cancer driver mutations confer clonal growth advantage, enabling mutant cells to outcompete and eliminate the surrounding healthy cells. Hence, the development of precancerous lesions is not only attributed to the expansion of pre-malignant clones, but also relies on the relative fitness of mutated cells compared to the neighboring cells. Colorectal cancer (CRC) is an excellent model to investigate cancer origin as it follows a stereotypical process from mutant cell hyperplasia to adenoma formation and progression. Here, we review the evolving understanding of colonic tumor development, focusing on how cell intrinsic and extrinsic factors impact cell competition and the "clone war" between cancer-initiating cells and normal stem cells. We also discuss the promises and limitations of targeting cell competitiveness in cancer prevention and early intervention. The field of tumor initiation is currently in its infancy, elucidating the adenoma origin is crucial for designing effective prevention strategies and early treatments before cancer becomes incurable.
Collapse
Affiliation(s)
- Chao Jiang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China
| | - Qiujing Zhou
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Ke Yi
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Xin Xie
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China; Department of Medical Oncology, Cancer Institute and Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
122
|
Lee J, Menon N, Lim CT. Dissecting Gut-Microbial Community Interactions using a Gut Microbiome-on-a-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302113. [PMID: 38414327 PMCID: PMC11132043 DOI: 10.1002/advs.202302113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Indexed: 02/29/2024]
Abstract
While the human gut microbiota has a significant impact on gut health and disease, understanding of the roles of gut microbes, interactions, and collective impact of gut microbes on various aspects of human gut health is limited by the lack of suitable in vitro model system that can accurately replicate gut-like environment and enable the close visualization on causal and mechanistic relationships between microbial constitutents and the gut. , In this study, we present a scalable Gut Microbiome-on-a-Chip (GMoC) with great imaging capability and scalability, providing a physiologically relevant dynamic gut-microbes interfaces. This chip features a reproducible 3D stratified gut epithelium derived from Caco-2 cells (µGut), mimicking key intestinal architecture, functions, and cellular complexity, providing a physiolocially relevant gut environment for microbes residing in the gut. Incorporating tumorigenic bacteria, enterotoxigenic Bacteroides fragilis (ETBF), into the GMoC enable the observation of pathogenic behaviors of ETBF, leading to µGut disruption and pro-tumorigenic signaling activations. Pre-treating the µGut with a beneficial gut microbe Lactobacillus spp., effectively prevent ETBF-mediated gut pathogenesis, preserving the healthy state of the µGut through competition-mediated colonization resistance. The GMoC holds potential as a valuable tool for exploring unknown roles of gut microbes in microbe-induced pathogenesis and microbe-based therapeutic development.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech)National University of SingaporeSingapore117599Singapore
| | - Nishanth Menon
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech)National University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
| |
Collapse
|
123
|
Zhou X, Sun H, Ren J, Yan G, Yang L, Zhang H, Lu H, Li X, Makino T, Yin F, Li J, Wang X. Mineral crude drug mirabilite (Mangxiao) inhibits the occurrence of colorectal cancer by regulating the Lactobacillus-bile acid-intestinal farnesoid X receptor axis based on multiomics integration analysis. MedComm (Beijing) 2024; 5:e556. [PMID: 38665997 PMCID: PMC11043829 DOI: 10.1002/mco2.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Mineral crude drug has revolutionized the treatment landscape in precision oncology niche that leads to the improvement in therapeutic efficiency on various tumor subtypes. Mangxiao (MX), a mineral crude drug in traditional Chinese medicine, has been used for treating gastrointestinal diseases for thousands of years. However, the action mechanisms are still ambiguous. Here, we attempt to explore inhibitory roles and associated pharmacological mechanisms of MX upon colorectal cancer (CRC) in APCMin/+ male mice by integrating metabolomics, 16S rDNA sequencing analyses, and metagenomic-based microbiota analysis. We found that MX can significantly inhibit the occurrence of CRC through the regulation of the dysregulated gut microbe metabolism. Furthermore, the correlation analysis of metabolomes and 16S rDNA revealed that MX could restore the disorders of gut microbes by specifically enriching the abundance of Lactobacilli to improve bile acid metabolism, which further activated the farnesoid X receptor (FXR) in CRC mice, then the improvement of gut dysbiosis could inhibit the development of CRC. Collectively, our effort confirmed MX has the capacity to intervene the development of CRC and further discovered that it targets Lactobacillus-bile acid-intestinal FXR axis, which can be regarded as a candidate medicine for future drug discovery and development against CRC.
Collapse
Affiliation(s)
- Xiaohang Zhou
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese MedicineNational Chinmedomics Research CenterNational TCM Key Laboratory of Serum PharmacochemistryMetabolomics LaboratoryDepartment of Pharmaceutical AnalysisHeilongjiang University of Chinese MedicineHarbinChina
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese MedicineNational Chinmedomics Research CenterNational TCM Key Laboratory of Serum PharmacochemistryMetabolomics LaboratoryDepartment of Pharmaceutical AnalysisHeilongjiang University of Chinese MedicineHarbinChina
| | - Junling Ren
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese MedicineNational Chinmedomics Research CenterNational TCM Key Laboratory of Serum PharmacochemistryMetabolomics LaboratoryDepartment of Pharmaceutical AnalysisHeilongjiang University of Chinese MedicineHarbinChina
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese MedicineNational Chinmedomics Research CenterNational TCM Key Laboratory of Serum PharmacochemistryMetabolomics LaboratoryDepartment of Pharmaceutical AnalysisHeilongjiang University of Chinese MedicineHarbinChina
| | - Le Yang
- State Key Laboratory of Dampness SyndromeThe Second Affiliated Hospital Guangzhou University of Chinese MedicineGuangzhouChina
| | - Honglian Zhang
- Department of Traditional Chinese Medicine, Pharmacy CollegeQiqihar Medical UniversityQiqiharChina
| | - Haitao Lu
- Hong Kong Traditional Chinese Medicine Phenome Research Centre, School of Chinese MedicineHong Kong Baptist UniversityHong KongChina
- State Key Laboratory of Environmental and Biological AnalysisHong Kong Baptist UniversityHong KongChina
| | - Xinghua Li
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese MedicineNational Chinmedomics Research CenterNational TCM Key Laboratory of Serum PharmacochemistryMetabolomics LaboratoryDepartment of Pharmaceutical AnalysisHeilongjiang University of Chinese MedicineHarbinChina
| | - Toshiaki Makino
- Department of PharmacognosyGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese MedicineNational Chinmedomics Research CenterNational TCM Key Laboratory of Serum PharmacochemistryMetabolomics LaboratoryDepartment of Pharmaceutical AnalysisHeilongjiang University of Chinese MedicineHarbinChina
| | - Jing Li
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese MedicineNational Chinmedomics Research CenterNational TCM Key Laboratory of Serum PharmacochemistryMetabolomics LaboratoryDepartment of Pharmaceutical AnalysisHeilongjiang University of Chinese MedicineHarbinChina
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese MedicineNational Chinmedomics Research CenterNational TCM Key Laboratory of Serum PharmacochemistryMetabolomics LaboratoryDepartment of Pharmaceutical AnalysisHeilongjiang University of Chinese MedicineHarbinChina
- State Key Laboratory of Dampness SyndromeThe Second Affiliated Hospital Guangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
124
|
Wei X, Wang F, Tan P, Huang H, Wang Z, Xie J, Wang L, Liu D, Hu Z. The interactions between traditional Chinese medicine and gut microbiota in cancers: Current status and future perspectives. Pharmacol Res 2024; 203:107148. [PMID: 38522760 DOI: 10.1016/j.phrs.2024.107148] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The gut microbiota, known as the "forgotten organ" and "human second genome," comprises a complex microecosystem. It significantly influences the development of various tumors, including colorectal, liver, stomach, breast, and lung cancers, through both direct and indirect mechanisms. These mechanisms include the "gut-liver" axis, the "lung-intestine" axis, and interactions with the immune system. The intestinal flora exhibits dual roles in cancer, both promoting and suppressing its progression. Traditional Chinese medicine (TCM) can alter cancer progression by regulating the intestinal flora. It modifies the intestinal flora's composition and structure, along with the levels of endogenous metabolites, thus affecting the intestinal barrier, immune system, and overall body metabolism. These actions contribute to TCM's significant antitumor effects. Moreover, the gut microbiota metabolizes TCM components, enhancing their antitumor properties. Therefore, exploring the interaction between TCM and the intestinal flora offers a novel perspective in understanding TCM's antitumor mechanisms. This paper succinctly reviews the association between gut flora and the development of tumors, including colorectal, liver, gastric, breast, and lung cancers. It further examines current research on the interaction between TCM and intestinal flora, with a focus on its antitumor efficacy. It identifies limitations in existing studies and suggests recommendations, providing insights into antitumor drug research and exploring TCM's antitumor effectiveness. Additionally, this paper aims to guide future research on TCM and the gut microbiota in antitumor studies.
Collapse
Affiliation(s)
- Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
125
|
Zhang J, Wang P, Wang J, Wei X, Wang M. Unveiling intratumoral microbiota: An emerging force for colorectal cancer diagnosis and therapy. Pharmacol Res 2024; 203:107185. [PMID: 38615875 DOI: 10.1016/j.phrs.2024.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Microbes, including bacteria, viruses, fungi, and other eukaryotic organisms, are commonly present in multiple organs of the human body and contribute significantly to both physiological and pathological processes. Nowadays, the development of sequencing technology has revealed the presence and composition of the intratumoral microbiota, which includes Fusobacterium, Bifidobacteria, and Bacteroides, and has shed light on the significant involvement in the progression of colorectal cancer (CRC). Here, we summarized the current understanding of the intratumoral microbiota in CRC and outline the potential translational and clinical applications in the diagnosis, prevention, and treatment of CRC. We focused on reviewing the development of microbial therapies targeting the intratumoral microbiota to improve the efficacy and safety of chemotherapy and immunotherapy for CRC and to identify biomarkers for the diagnosis and prognosis of CRC. Finally, we emphasized the obstacles and potential solutions to translating the knowledge of the intratumoral microbiota into clinical practice.
Collapse
Affiliation(s)
- Jinjing Zhang
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China
| | - Penghui Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China
| | - Jiafeng Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaojie Wei
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China.
| | - Mengchuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
126
|
Ahmad A, Mahmood N, Raza MA, Mushtaq Z, Saeed F, Afzaal M, Hussain M, Amjad HW, Al-Awadi HM. Gut microbiota and their derivatives in the progression of colorectal cancer: Mechanisms of action, genome and epigenome contributions. Heliyon 2024; 10:e29495. [PMID: 38655310 PMCID: PMC11035079 DOI: 10.1016/j.heliyon.2024.e29495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Gut microbiota interacts with host epithelial cells and regulates many physiological functions such as genetics, epigenetics, metabolism of nutrients, and immune functions. Dietary factors may also be involved in the etiology of colorectal cancer (CRC), especially when an unhealthy diet is consumed with excess calorie intake and bad practices like smoking or consuming a great deal of alcohol. Bacteria including Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis (ETBF), and Escherichia coli (E. coli) actively participate in the carcinogenesis of CRC. Gastrointestinal tract with chronic inflammation and immunocompromised patients are at high risk for CRC progression. Further, the gut microbiota is also involved in Geno-toxicity by producing toxins like colibactin and cytolethal distending toxin (CDT) which cause damage to double-stranded DNA. Specific microRNAs can act as either tumor suppressors or oncogenes depending on the cellular environment in which they are expressed. The current review mainly highlights the role of gut microbiota in CRC, the mechanisms of several factors in carcinogenesis, and the role of particular microbes in colorectal neoplasia.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nasir Mahmood
- Department of Zoology, University of Central Punjab Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zarina Mushtaq
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiz Wasiqe Amjad
- International Medical School, Jinggangshan University, Ji'an, Jiangxi, China
| | | |
Collapse
|
127
|
Zhang F, Wang S, Yang S, Ma F, Gao H. Recent progress in nanomaterials for bacteria-related tumor therapy. Biomater Sci 2024; 12:1965-1980. [PMID: 38454904 DOI: 10.1039/d3bm01952g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Many studies suggest that tumor microbiome closely relates to the oncogenesis and anti-tumor responses in multiple cancer types (e.g., colorectal cancer (CRC), breast cancer, lung cancer and pancreatic cancer), thereby raising an emerging research area of bacteria-related tumor therapy. Nanomaterials have long been used for both cancer and bacterial infection treatment, holding great potential for bacteria-related tumor therapy. In this review, we summarized recent progress in nanomaterials for bacteria-related tumor therapy. We focus on the types and mechanisms of pathogenic bacteria in the development and promotion of cancers and emphasize how nanomaterials work. We also briefly discuss the design principles and challenges of nanomaterials for bacteria-related tumor therapy. We hope this review can provide some insights into this emerging and rapidly growing research area.
Collapse
Affiliation(s)
- Fuping Zhang
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shuyu Wang
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shuo Yang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Feihe Ma
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Hui Gao
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
128
|
Thomas CE, Georgeson P, Qu C, Steinfelder RS, Buchanan DD, Song M, Harrison TA, Um CY, Hullar MA, Jenkins MA, Guelpen BV, Lynch BM, Melaku YA, Huyghe JR, Aglago EK, Berndt SI, Boardman LA, Campbell PT, Cao Y, Chan AT, Drew DA, Figueiredo JC, French AJ, Giannakis M, Goode EL, Gruber SB, Gsur A, Gunter MJ, Hoffmeister M, Hsu L, Huang WY, Moreno V, Murphy N, Newcomb PA, Newton CC, Nowak JA, Obón-Santacana M, Ogino S, Sun W, Toland AE, Trinh QM, Ugai T, Zaidi SH, Peters U, Phipps AI. Epidemiologic Factors in Relation to Colorectal Cancer Risk and Survival by Genotoxic Colibactin Mutational Signature. Cancer Epidemiol Biomarkers Prev 2024; 33:534-546. [PMID: 38252034 PMCID: PMC10990777 DOI: 10.1158/1055-9965.epi-23-0600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The genotoxin colibactin causes a tumor single-base substitution (SBS) mutational signature, SBS88. It is unknown whether epidemiologic factors' association with colorectal cancer risk and survival differs by SBS88. METHODS Within the Genetic Epidemiology of Colorectal Cancer Consortium and Colon Cancer Family Registry, we measured SBS88 in 4,308 microsatellite stable/microsatellite instability low tumors. Associations of epidemiologic factors with colorectal cancer risk by SBS88 were assessed using multinomial regression (N = 4,308 cases, 14,192 controls; cohort-only cases N = 1,911), and with colorectal cancer-specific survival using Cox proportional hazards regression (N = 3,465 cases). RESULTS 392 (9%) tumors were SBS88 positive. Among all cases, the highest quartile of fruit intake was associated with lower risk of SBS88-positive colorectal cancer than SBS88-negative colorectal cancer [odds ratio (OR) = 0.53, 95% confidence interval (CI) 0.37-0.76; OR = 0.75, 95% CI 0.66-0.85, respectively, Pheterogeneity = 0.047]. Among cohort studies, associations of body mass index (BMI), alcohol, and fruit intake with colorectal cancer risk differed by SBS88. BMI ≥30 kg/m2 was associated with worse colorectal cancer-specific survival among those SBS88-positive [hazard ratio (HR) = 3.40, 95% CI 1.47-7.84], but not among those SBS88-negative (HR = 0.97, 95% CI 0.78-1.21, Pheterogeneity = 0.066). CONCLUSIONS Most epidemiologic factors did not differ by SBS88 for colorectal cancer risk or survival. Higher BMI may be associated with worse colorectal cancer-specific survival among those SBS88-positive; however, validation is needed in samples with whole-genome or whole-exome sequencing available. IMPACT This study highlights the importance of identification of tumor phenotypes related to colorectal cancer and understanding potential heterogeneity for risk and survival.
Collapse
Affiliation(s)
- Claire E Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia
- University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Meredith A Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Brigid M Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Yohannes Adama Melaku
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- FHMRI Sleep, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa A Boardman
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew T Chan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - David A Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amy J French
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ellen L Goode
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research and Center for Precision Medicine, City of Hope National Medical Center, Duarte CA, USA
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Victor Moreno
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat,08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Christina C Newton
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat,08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
129
|
Abstract
Colorectal cancer (CRC) is a substantial source of global morbidity and mortality in dire need of improved prevention and treatment strategies. As our understanding of CRC grows, it is becoming increasingly evident that the gut microbiota, consisting of trillions of microorganisms in direct interface with the colon, plays a substantial role in CRC development and progression. Understanding the roles that individual microorganisms and complex microbial communities play in CRC pathogenesis, along with their attendant mechanisms, will help yield novel preventive and therapeutic interventions for CRC. In this Review, we discuss recent evidence concerning global perturbations of the gut microbiota in CRC, associations of specific microorganisms with CRC, the underlying mechanisms by which microorganisms potentially drive CRC development and the roles of complex microbial communities in CRC pathogenesis. While our understanding of the relationship between the microbiota and CRC has improved in recent years, our findings highlight substantial gaps in current research that need to be filled before this knowledge can be used to the benefit of patients.
Collapse
Affiliation(s)
- Maxwell T White
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
130
|
Zepeda-Rivera M, Minot SS, Bouzek H, Wu H, Blanco-Míguez A, Manghi P, Jones DS, LaCourse KD, Wu Y, McMahon EF, Park SN, Lim YK, Kempchinsky AG, Willis AD, Cotton SL, Yost SC, Sicinska E, Kook JK, Dewhirst FE, Segata N, Bullman S, Johnston CD. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 2024; 628:424-432. [PMID: 38509359 PMCID: PMC11006615 DOI: 10.1038/s41586-024-07182-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024]
Abstract
Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.
Collapse
Affiliation(s)
- Martha Zepeda-Rivera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Samuel S Minot
- Data Core, Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Heather Bouzek
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hanrui Wu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aitor Blanco-Míguez
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Dakota S Jones
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Ying Wu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elsa F McMahon
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yun K Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | | | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | - Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Floyd E Dewhirst
- Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
131
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
132
|
Zhang X, Li J, Lan X, Li J. Cell‐free DNA‐associated multi‐feature applications in cancer diagnosis and treatment. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 01/03/2025]
Abstract
AbstractMalignant tumours pose significant challenges in terms of high morbidity and mortality rates, primarily due to the lack of large‐scale applicable screening methods and efficient treatment strategies. However, the development of liquid biopsies, particularly circulating cell‐free DNA (cfDNA), offers promising solutions characterised by their non‐invasiveness and cost‐effectiveness, providing comprehensive tumour information on a global scale. The release of cfDNA is predominantly associated with cell death and turnover, while its elimination occurs through nuclease digestion, renal excretion into the urine and uptake by the liver and spleen. Extensive research into the biological properties of cfDNA has led to the identification of novel applications, including non‐invasive cancer screening, cancer subtype classification, tissue‐of‐origin detection and monitoring of treatment efficacy. Additionally, emerging fields such as methylation‐omics, fragment‐omics and nucleosome‐omics show immense potential as tissue‐ and disease‐specific markers. Therefore, this review aims to comprehensively introduce the latest detection techniques of cfDNA, along with detailed information on its characteristics and applications, providing valuable insights for cancer diagnosis and monitoring, which will assist us in purposefully enhancing relevant features for a more comprehensive application in clinical practice.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
| | - Jingwei Li
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
| | - Xun Lan
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- MOE Key Laboratory of Bioinformatics Tsinghua University Beijing China
- Tsinghua‐Peking Joint Center for Life Sciences Tsinghua University Beijing China
| | - Jie Li
- Department of Basic Medical Sciences School of Medicine Tsinghua University Beijing China
- Academy of Biomedical Engineering Kunming Medical University Kunming China
| |
Collapse
|
133
|
Li L, Chandra V, McAllister F. Tumor-resident microbes: the new kids on the microenvironment block. Trends Cancer 2024; 10:347-355. [PMID: 38388213 PMCID: PMC11006566 DOI: 10.1016/j.trecan.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 02/24/2024]
Abstract
Tumor-resident microbes (TRM) are an integral component of the tumor microenvironment (TME). TRM can influence tumor growth, distant dissemination, and response to therapies by interfering with molecular pathways in tumor cells as well as with other components of the TME. Novel technologies are improving the identification and visualization of cell type-specific microbes in the TME. The mechanisms that mediate the role of TRM at the primary tumors and metastatic sites are being elucidated. This knowledge is providing novel perspectives for targeting microbes or using microbial interventions for cancer interception or therapy.
Collapse
Affiliation(s)
- Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
134
|
Jia W, Shen X, Guo Z, Cheng X, Zhao R. The future of cancer vaccines against colorectal cancer. Expert Opin Biol Ther 2024; 24:269-284. [PMID: 38644655 DOI: 10.1080/14712598.2024.2341744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second most lethal malignancy worldwide. Immune checkpoint inhibitors (ICIs) benefit only 15% of patients with mismatch repair-deficient/microsatellite instability (dMMR/MSI) CRC. The majority of patients are not suitable due to insufficient immune infiltration. Cancer vaccines are a potential approach for inducing tumor-specific immunity within the solid tumor microenvironment. AREA COVERED In this review, we have provided an overview of the current progress in CRC vaccines over the past three years and briefly depict promising directions for further exploration. EXPERT OPINION Cancer vaccines are certainly a promising field for the antitumor treatment against CRC. Compared to monotherapy, cancer vaccines are more appropriate as adjuvants to standard treatment, especially in combination with ICI blockade, for microsatellite stable patients. Improved vaccine construction requires neoantigens with sufficient immunogenicity, satisfactory HLA-binding affinity, and an ideal delivery platform with perfect lymph node retention and minimal off-target effects. Prophylactic vaccines that potentially prevent CRC carcinogenesis are also worth investigating. The exploration of appropriate biomarkers for cancer vaccines may benefit prognostic prediction analysis and therapeutic response prediction in patients with CRC. Although many challenges remain, CRC vaccines represent an exciting area of research that may become an effective addition to current guidelines.
Collapse
Affiliation(s)
- Wenqing Jia
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaonan Shen
- Department of Gastroenterology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichao Guo
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Cheng
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Zhao
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
135
|
Wu D, Guan YX, Li CH, Zheng Q, Yin ZJ, Wang H, Liu NN. "Nutrient-fungi-host" tripartite interaction in cancer progression. IMETA 2024; 3:e170. [PMID: 38882486 PMCID: PMC11170973 DOI: 10.1002/imt2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 06/18/2024]
Abstract
The human microbiome exhibits a profound connection with the cancer development, progression, and therapeutic response, with particular emphasis on its components of the mycobiome, which are still in the early stages of research. In this review, we comprehensively summarize cancer-related symbiotic and pathogenic fungal genera. The intricate mechanisms through which fungi impact cancer as an integral member of both gut and tissue-resident microbiomes are further discussed. In addition, we shed light on the pivotal physiological roles of various nutrients, including cholesterol, carbohydrates, proteins and minerals, in facilitating the growth, reproduction, and invasive pathogenesis of the fungi. While our exploration of the interplay between nutrients and cancer, mediated by the mycobiome, is ongoing, the current findings have yet to yield conclusive results. Thus, delving into the relationship between nutrients and fungal pathogenesis in cancer development and progression would provide valuable insights into anticancer therapy and foster precision nutrition and individualized treatments that target fungi from bench to bedside.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yun-Xuan Guan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chen-Hao Li
- Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Quan Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zuo-Jing Yin
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
136
|
Yu X, Li W, Li Z, Wu Q, Sun S. Influence of Microbiota on Tumor Immunotherapy. Int J Biol Sci 2024; 20:2264-2294. [PMID: 38617537 PMCID: PMC11008264 DOI: 10.7150/ijbs.91771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
The role of the microbiome in immunotherapy has recently garnered substantial attention, with molecular studies and clinical trials providing emerging evidence on the pivotal influence of the microbiota in enhancing therapeutic outcomes via immune response modulation. However, the impact of microbial communities can considerably vary across individuals and different immunotherapeutic approaches, posing prominent challenges in harnessing their potential. In this comprehensive review, we outline the current research applications in tumor immunotherapy and delve into the possible mechanisms through which immune function is influenced by microbial communities in various body sites, encompassing those in the gut, extraintestinal barrier, and intratumoral environment. Furthermore, we discuss the effects of diverse microbiome-based strategies, including probiotics, prebiotics, fecal microbiota transplantation, and the targeted modulation of specific microbial taxa, and antibiotic treatments on cancer immunotherapy. All these strategies potentially have a profound impact on immunotherapy and pave the way for personalized therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, P. R. China
| | - Zhi Li
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
137
|
Liu J, Qu Y, Li YY, Xu YL, Yan YF, Qin H. Exploring prognostic microbiota markers in patients with endometrial carcinoma: Intratumoral insights. Heliyon 2024; 10:e27879. [PMID: 38515713 PMCID: PMC10955307 DOI: 10.1016/j.heliyon.2024.e27879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Endometrial cancer, a leading gynecological malignancy, is profoundly influenced by the uterine microbiota, a key factor in disease prognosis and treatment. Our study underscores the distinct microbial compositions in endometrial cancer compared to adjacent non-cancerous tissues, revealing a dominant presence of p_Actinobacteria in cancerous tissues as opposed to p_Firmicutes in surrounding areas. Through comprehensive analysis, we identified 485 unique microorganisms in cancer tissues, 26 of which correlate with patient prognosis. Employing univariate Cox regression and LASSO regression analyses, we devised a microbial risk scoring model, effectively stratifying patients into high and low-risk categories, thereby providing predictive insights into their overall survival. We further developed a nomogram that incorporates the microbial risk score along with age, grade, and clinical stage, significantly enhancing the accuracy of our clinical prediction model for endometrial cancer. Moreover, our study delves into the differential immune landscapes of high-risk and low-risk patients. The low-risk group displayed a higher prevalence of activated B cells and increased T cell co-stimulation, indicative of a robust immune response. Conversely, high-risk patients showed elevated tumor immune dysfunction and exclusion scores, suggesting less favorable outcomes in immunotherapy. Notably, the efficacy of IPS-CTLA4 and PD1/PD-L1/PD-L2 blockers was substantially higher in the low-risk group, pointing to a more responsive immunotherapeutic approach. In summary, our research elucidates the unique microbial patterns in endometrial cancer and adjacent tissues, and establishes both a microbial risk score model and a clinical prediction nomogram. These findings highlight the potential of uterine microbiota as a biomarker for customizing treatment strategies, enabling precise interventions for high-risk patients while preventing overtreatment in low-risk cases. This study emphasizes the microbiota's role in tailoring immunotherapy, offering a novel perspective in the treatment and prognosis of endometrial cancer. Significantly, our study's expansive sample analysis from the TCGA-UCEC cohort, employing linear discriminant analysis effect size methodology, not only validates but also enhances our understanding of the microbiota's role in endometrial cancer, paving the way for novel diagnostic and therapeutic approaches in its management.
Collapse
Affiliation(s)
- Jie Liu
- Department of Medical Records, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yi Qu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang-Yang Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Lan Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
138
|
Swanton C, Bernard E, Abbosh C, André F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, Elliott C, Erez A, Evan G, Febbraio MA, Hidalgo A, Jamal-Hanjani M, Joyce JA, Kaiser M, Lamia K, Locasale JW, Loi S, Malanchi I, Merad M, Musgrave K, Patel KJ, Quezada S, Wargo JA, Weeraratna A, White E, Winkler F, Wood JN, Vousden KH, Hanahan D. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024; 187:1589-1616. [PMID: 38552609 PMCID: PMC12077170 DOI: 10.1016/j.cell.2024.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.
Collapse
Affiliation(s)
- Charles Swanton
- The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Elsa Bernard
- The Francis Crick Institute, London, UK; INSERM U981, Gustave Roussy, Villejuif, France
| | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; Paris Saclay University, Kremlin-Bicetre, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gerard Evan
- The Francis Crick Institute, London, UK; Kings College London, London, UK
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrés Hidalgo
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA; Area of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Katja Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Department of Medical Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Miriam Merad
- Department of immunology and immunotherapy, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn Musgrave
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK; Department of Haematology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sergio Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Jennifer A Wargo
- Department of Surgical Oncology, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashani Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | | | - Douglas Hanahan
- Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
139
|
Garvey M. Intestinal Dysbiosis: Microbial Imbalance Impacts on Colorectal Cancer Initiation, Progression and Disease Mitigation. Biomedicines 2024; 12:740. [PMID: 38672096 PMCID: PMC11048178 DOI: 10.3390/biomedicines12040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The human gastrointestinal tract houses a diverse range of microbial species that play an integral part in many biological functions. Several preclinical studies using germ-free mice models have demonstrated that the gut microbiome profoundly influences carcinogenesis and progression. Colorectal cancer appears to be associated with microbial dysbiosis involving certain bacterial species, including F. nucleatum, pks+ E. coli, and B. fragilis, with virome commensals also disrupted in patients. A dysbiosis toward these pro-carcinogenic species increases significantly in CRC patients, with reduced numbers of the preventative species Clostridium butyicum, Roseburia, and Bifidobacterium evident. There is also a correlation between Clostridium infection and CRC. F. nucleatum, in particular, is strongly associated with CRC where it is associated with therapeutic resistance and poor outcomes in patients. The carcinogenic mode of action of pathogenic bacteria in CRC is a result of genotoxicity, epigenetic alterations, ROS generation, and pro-inflammatory activity. The aim of this review is to discuss the microbial species and their impact on colorectal cancer in terms of disease initiation, progression, and metastasis. The potential of anticancer peptides as anticancer agents or adjuvants is also discussed, as novel treatment options are required to combat the high levels of resistance to current pharmaceutical options.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
140
|
de Souza JB, de Almeida Campos LA, Palácio SB, Brelaz-de-Castro MCA, Cavalcanti IMF. Prevalence and implications of pKs-positive Escherichia coli in colorectal cancer. Life Sci 2024; 341:122462. [PMID: 38281542 DOI: 10.1016/j.lfs.2024.122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health concern, necessitating continuous investigation into its etiology and potential risk factors. Recent research has shed light on the potential role of pKs-positive Escherichia coli (pKs + E. coli) and colibactin in the development and progression of CRC. Therefore, this review aimed to provide an updated analysis of the prevalence and implications of pKs + E. coli in colorectal cancer. We conducted a literature review search in major scientific databases to identify relevant studies exploring the association between pKs + E. coli and CRC. The search strategy included studies published up to the present date, and articles were carefully selected based on predefined inclusion criteria. Thus, the present study encompasses scientific evidence from clinical and epidemiological studies supporting the presence of pKs + E. coli in CRC patients, demonstrating a consistent and significant association in multiple studies. Furthermore, we highlighted the potential mechanisms by which colibactin may promote tumorigenesis and cancer progression within the colorectal mucosa, including the production of genotoxic virulence factors. Additionally, we explored current diagnostic methods for detecting pKs + E. coli in clinical settings, emphasizing the importance of accurate identification. Moreover, we discussed future strategies that could utilize the presence of this strain as a biomarker for CRC diagnosis and treatment. In conclusion, this review consolidated existing evidence on the prevalence and implications of pKs + E. coli in colorectal cancer. The findings underscore the importance of further research to elucidate the precise mechanisms linking this strain to CRC pathogenesis and to explore its potential as a therapeutic target or diagnostic marker. Ultimately, a better understanding of the role of pKs + E. coli in CRC may pave the way for innovative strategies in CRC management and patient care.
Collapse
Affiliation(s)
| | | | - Sarah Brandão Palácio
- Research, development and innovation subdivision (SDPI) of Chemical-Pharmaceutical Laboratory of Aeronautics (LAQFA), Rio de Janeiro, RJ, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
141
|
Imanbayev N, Iztleuov Y, Bekmukhambetov Y, Abdelazim IA, Donayeva A, Amanzholkyzy A, Aigul Z, Aigerim I, Aslan Y. Colorectal cancer and microbiota: systematic review. PRZEGLAD GASTROENTEROLOGICZNY 2024; 16:380-396. [PMID: 39810864 PMCID: PMC11726231 DOI: 10.5114/pg.2024.136228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2025]
Abstract
Introduction The gut microbiome maintains the mucus membrane barrier's integrity, and it is modulated by the host's immune system. Aim To detect the effect of microbiota modulation using probiotics, prebiotics, symbiotics, and natural changes on colorectal cancers (CRCs). Methods A PubMed search was conducted to retrieve the original and in vivo articles published in English language from 2010 until 2021 containing the following keywords: 1) CRCs, 2) CRCs treatment (i.e. surgical, chemotherapy, radiotherapy and/or immunotherapy), and 3) microbiota probiotic(s), prebiotic(s), symbiotic(s), dysbiosis and/or nutritional treatment. A total of 198 PubMed records/articles were initially identified. 108 articles were excluded at the initial screening, and another 29 articles were excluded after reviewing the abstracts, and finally 61 studies were analysed for this systematic review. Results The gut microbiota metabolites and (SCFAs) short-chain fatty acids (i.e. acetate and butyrate) have a protective effect against CRCs. SCFAs reduce the inflammatory cytokines, inhibit colonocyte proliferation, and promote malignant cell apoptosis. Butyrate maintains the integrity of the mucus membrane barrier and reduces intestinal mucosal inflammation. Reduced butyric acid level and increased inflammatory cytokines were observed after reduced Bacteroides fragilis and Bacteroides vulgatus species in the colon. Akkermansia muciniphila bacterium decreased in patients with CRCs. Conclusions Prebiotics (i.e. inulin and resistant starch, SCFAs producers) and consumption of unprocessed plant products are useful for developing and maintaining healthy gut microbiota. The pro-, pre- and/or symbiotics may be useful when carefully selected for CRC patients, to restore beneficial gut microbiota and support treatment efficacy.
Collapse
Affiliation(s)
- Nauryzbay Imanbayev
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Yerbolat Iztleuov
- Department of Radiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Yerbol Bekmukhambetov
- Association of Individual Entrepreneurs and Legal Entities, National Chamber of Health, Astana, Kazakhstan
| | - Ibrahim A. Abdelazim
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ainur Donayeva
- Department of Normal Physiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Ainur Amanzholkyzy
- Department of Normal Physiology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Zhumasheva Aigul
- Department of Pathomorphology, Medical Centre of West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Imanbayeva Aigerim
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Yergaliyev Aslan
- Department of General Surgery, Medical Centre of West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
142
|
Joo JE, Chu YL, Georgeson P, Walker R, Mahmood K, Clendenning M, Meyers AL, Como J, Joseland S, Preston SG, Diepenhorst N, Toner J, Ingle DJ, Sherry NL, Metz A, Lynch BM, Milne RL, Southey MC, Hopper JL, Win AK, Macrae FA, Winship IM, Rosty C, Jenkins MA, Buchanan DD. Intratumoral presence of the genotoxic gut bacteria pks + E. coli, Enterotoxigenic Bacteroides fragilis, and Fusobacterium nucleatum and their association with clinicopathological and molecular features of colorectal cancer. Br J Cancer 2024; 130:728-740. [PMID: 38200234 PMCID: PMC10912205 DOI: 10.1038/s41416-023-02554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND This study aimed to investigate clinicopathological and molecular tumour features associated with intratumoral pks+ Escherichia coli (pks+E.coli+), pks+E.coli- (non-E.coli bacteria harbouring the pks island), Enterotoxigenic Bacteroides fragilis (ETBF) and Fusobacterium nucleatum (F. nucleatum). METHODS We screened 1697 tumour-derived DNA samples from the Australasian Colorectal Cancer Family Registry, Melbourne Collaborative Cohort Study and the ANGELS study using targeted PCR. RESULTS Pks+E.coli+ was associated with male sex (P < 0.01) and APC:c.835-8 A > G somatic mutation (P = 0.03). The association between pks+E.coli+ and APC:c.835-8 A > G was specific to early-onset CRCs (diagnosed<45years, P = 0.02). The APC:c.835-A > G was not associated with pks+E.coli- (P = 0.36). F. nucleatum was associated with DNA mismatch repair deficiency (MMRd), BRAF:c.1799T>A p.V600E mutation, CpG island methylator phenotype, proximal tumour location, and high levels of tumour infiltrating lymphocytes (Ps < 0.01). In the stratified analysis by MMRd subgroups, F. nucleatum was associated with Lynch syndrome, MLH1 methylated and double MMR somatic mutated MMRd subgroups (Ps < 0.01). CONCLUSION Intratumoral pks+E.coli+ but not pks+E.coli- are associated with CRCs harbouring the APC:c.835-8 A > G somatic mutation, suggesting that this mutation is specifically related to DNA damage from colibactin-producing E.coli exposures. F. nucleatum was associated with both hereditary and sporadic MMRd subtypes, suggesting the MMRd tumour microenvironment is important for F. nucleatum colonisation irrespective of its cause.
Collapse
Affiliation(s)
- Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Yen Lin Chu
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Aaron L Meyers
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Susan G Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Natalie Diepenhorst
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Julie Toner
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Danielle J Ingle
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Norelle L Sherry
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Andrew Metz
- Endoscopy Unit, Department of Gastroenterology and Hepatology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Brigid M Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Finlay A Macrae
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
- University of Queensland, Brisbane, QLD, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, VIC, Australia.
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia.
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|
143
|
Rifkin SB, Sze MA, Tuck K, Koeppe E, Stoffel EM, Schloss PD. Gut Microbiome Composition in Lynch Syndrome With and Without History of Colorectal Neoplasia and Non-Lynch Controls. J Gastrointest Cancer 2024; 55:207-218. [PMID: 37310549 DOI: 10.1007/s12029-023-00925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND While Lynch syndrome (LS) is a highly penetrant colorectal cancer (CRC) syndrome, there is considerable variation in penetrance; few studies have investigated the association between microbiome and CRC risk in LS. We analyzed the microbiome composition among individuals with LS with and without personal history of colorectal neoplasia (CRN) and non-LS controls. METHODS We sequenced the V4 region of the 16S rRNA gene from the stool of 46 individuals with LS and 53 individuals without LS. We characterized within community and in between community microbiome variation, compared taxon abundance, and built machine learning models to investigate the differences in microbiome. RESULTS There was no difference within or between community variations among LS groups, but there was a statistically significant difference in both within and between community variation comparing LS to non-LS. Streptococcus and Actinomyces were differentially enriched in LS-CRC compared to LS-without CRN. There were numerous differences in taxa abundance comparing LS to non-LS; notably, Veillonella was enriched and Faecalibacterium and Romboutsia were depleted in LS. Finally, machine learning models classifying LS from non-LS controls and LS-CRC from LS-without CRN performed moderately well. CONCLUSIONS Differences in microbiome composition between LS and non-LS may suggest a microbiome pattern unique to LS formed by underlying differences in epithelial biology and immunology. We found specific taxa differences among LS groups, which may be due to underlying anatomy. Larger prospective studies following for CRN diagnosis and microbiome composition changes are needed to determine if microbiome composition contributes to CRN development in patients with LS.
Collapse
Affiliation(s)
- S B Rifkin
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Division of Gastroenterology and Hepatology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| | - M A Sze
- Department of Immunology and Microbiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K Tuck
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - E Koeppe
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology and Hepatology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - E M Stoffel
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology and Hepatology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - P D Schloss
- Department of Immunology and Microbiology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
144
|
Zhou L, Zheng L, Xu B, Ye Z, Li D, Wang W. Clinical efficacy of metformin in familial adenomatous polyposis and the effect of intestinal flora. Orphanet J Rare Dis 2024; 19:88. [PMID: 38403687 PMCID: PMC10895836 DOI: 10.1186/s13023-024-03064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND AND AIMS Metformin has been reported to inhibit the occurrence and development of colorectal cancer (CRC) by mediating changes in intestinal flora. Studies have also indicated that the occurence of familial adenomatous polyposis (FAP) may also be associated with changes in the intestinal flora. Therefore, we investigated the efficacy and safety of metformin in treating FAP and the association with intestinal flora. RESULTS Compared with the baseline, the mean number and load of polyps in the areas of nanocarbon labeling and postoperative residuals in the test group were lower than those in the placebo group, while the diversity of intestinal flora species was increased. At the genus level, the relative abundance of g_Ruminococcus in the test group was lower than that at baseline, whereas the relative abundance of g_Lactobacillus was higher. These changes were statistically significant (P < 0.05). CONCLUSION One-year metformin therapy for FAP is safe and effective, potentially mediated by modulating the intestinal flora. This study provides new insights and strategies for preventing adenomatous polyp carcinogenesis in FAP and explores possible preventive action.
Collapse
Affiliation(s)
- Linxin Zhou
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Linfu Zheng
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Binbin Xu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Zhou Ye
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Dazhou Li
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China.
| | - Wen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350025, China.
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China.
- Oriental Hospital Affiliated to Xiamen University, No. 156 Xierhuan North Road, Fuzhou, 350025, China.
| |
Collapse
|
145
|
Sogari A, Rovera E, Grasso G, Mariella E, Reilly NM, Lamba S, Mauri G, Durinikova E, Vitiello PP, Lorenzato A, Avolio M, Piumatti E, Bonoldi E, Aquilano MC, Arena S, Sartore-Bianchi A, Siena S, Trusolino L, Donalisio M, Russo M, Di Nicolantonio F, Lembo D, Bardelli A. Tolerance to colibactin correlates with homologous recombination proficiency and resistance to irinotecan in colorectal cancer cells. Cell Rep Med 2024; 5:101376. [PMID: 38228147 PMCID: PMC10897517 DOI: 10.1016/j.xcrm.2023.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
The bacterial genotoxin colibactin promotes colorectal cancer (CRC) tumorigenesis, but systematic assessment of its impact on DNA repair is lacking, and its effect on response to DNA-damaging chemotherapeutics is unknown. We find that CRC cell lines display differential response to colibactin on the basis of homologous recombination (HR) proficiency. Sensitivity to colibactin is induced by inhibition of ATM, which regulates DNA double-strand break repair, and blunted by HR reconstitution. Conversely, CRC cells chronically infected with colibactin develop a tolerant phenotype characterized by restored HR activity. Notably, sensitivity to colibactin correlates with response to irinotecan active metabolite SN38, in both cell lines and patient-derived organoids. Moreover, CRC cells that acquire colibactin tolerance develop cross-resistance to SN38, and a trend toward poorer response to irinotecan is observed in a retrospective cohort of CRCs harboring colibactin genomic island. Our results shed insight into colibactin activity and provide translational evidence on its chemoresistance-promoting role in CRC.
Collapse
Affiliation(s)
- Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Emanuele Rovera
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Gaia Grasso
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Elisa Mariella
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Simona Lamba
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Pietro Paolo Vitiello
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Annalisa Lorenzato
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marco Avolio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Eleonora Piumatti
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Emanuela Bonoldi
- Department of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Sabrina Arena
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Torino, 10060 Candiolo, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Division of Clinical Research and Innovation, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Torino, 10060 Candiolo, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Torino, 10060 Candiolo, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy.
| |
Collapse
|
146
|
Jones J, Shi Q, Nath RR, Brito IL. Keystone pathobionts associated with colorectal cancer promote oncogenic reprograming. PLoS One 2024; 19:e0297897. [PMID: 38363784 PMCID: PMC10871517 DOI: 10.1371/journal.pone.0297897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/12/2024] [Indexed: 02/18/2024] Open
Abstract
Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.
Collapse
Affiliation(s)
- Josh Jones
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Qiaojuan Shi
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Rahul R. Nath
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Ilana L. Brito
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
147
|
González A, Fullaondo A, Odriozola A. Techniques, procedures, and applications in microbiome analysis. ADVANCES IN GENETICS 2024; 111:81-115. [PMID: 38908906 DOI: 10.1016/bs.adgen.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microbiota is a complex community of microorganisms living in a defined environment. Until the 20th century, knowledge of microbiota was partial, as the techniques available for their characterization were primarily based on bacteriological culture. In the last twenty years, the development of DNA sequencing technologies, multi-omics, and bioinformatics has expanded our understanding of microorganisms. We have moved from mainly considering them isolated disease-causing agents to recognizing the microbiota as an essential component of host biology. These techniques have shown that the microbiome plays essential roles in various host phenotypes, influencing development, physiology, reproduction, and evolution. This chapter provides researchers with a summary of the primary concepts, sample collection, experimental techniques, and bioinformatics analysis commonly used in microbiome research. The main features, applications in microbiome studies, and their advantages and limitations are included in each section.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
148
|
Sadeghi M, Mestivier D, Carbonnelle E, Benamouzig R, Khazaie K, Sobhani I. Loss of symbiotic and increase of virulent bacteria through microbial networks in Lynch syndrome colon carcinogenesis. Front Oncol 2024; 13:1313735. [PMID: 38375206 PMCID: PMC10876293 DOI: 10.3389/fonc.2023.1313735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
Purpose Through a pilot study, we performed whole gut metagenomic analysis in 17 Lynch syndrome (LS) families, including colorectal cancer (CRC) patients and their healthy first-degree relatives. In a second asymptomatic LS cohort (n=150) undergoing colonoscopy-screening program, individuals with early precancerous lesions were compared to those with a normal colonoscopy. Since bacteria are organized into different networks within the microbiota, we compared related network structures in patients and controls. Experimental design Fecal prokaryote DNA was extracted prior to colonoscopy for whole metagenome (n=34, pilot study) or 16s rRNA sequencing (validation study). We characterized bacteria taxonomy using Diamond/MEGAN6 and DADA2 pipelines and performed differential abundances using Shaman website. We constructed networks using SparCC inference tools and validated the construction's accuracy by performing qPCR on selected bacteria. Results Significant differences in bacterial communities in LS-CRC patients were identified, with an enrichment of virulent bacteria and a depletion of symbionts compared to their first-degree relatives. Bacteria taxa in LS asymptomatic individuals with colonic precancerous lesions (n=79) were significantly different compared to healthy individuals (n=71). The main bacterial network structures, constructed based on bacteria-bacteria correlations in CRC (pilot study) and in asymptomatic precancerous patients (validation-study), showed a different pattern than in controls. It was characterized by virulent/symbiotic co-exclusion in both studies and illustrated (validation study) by a higher Escherichia/Bifidobacterium ratio, as assessed by qPCR. Conclusion Enhanced fecal virulent/symbiotic bacteria ratios influence bacterial network structures. As an early event in colon carcinogenesis, these ratios can be used to identify asymptomatic LS individual with a higher risk of CRC.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
| | - Denis Mestivier
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
| | - Etienne Carbonnelle
- Bacteriology, Virology, Hygiene Laboratory, Assistance Publique–Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | - Robert Benamouzig
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Avicenne Hospital, Bobigny, France
| | | | - Iradj Sobhani
- EA7375 –EC2M3: Early detection of Colonic Cancer by using Microbial & Molecular Markers Paris East Créteil University (UPEC), Créteil, France
- Department of Gastroenterology, Assistance Publique–Hôpitaux de Paris (APHP), Henri Mondor Hospital, Créteil, France
| |
Collapse
|
149
|
Addington E, Sandalli S, Roe AJ. Current understandings of colibactin regulation. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001427. [PMID: 38314762 PMCID: PMC10924459 DOI: 10.1099/mic.0.001427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
The biosynthetic machinery for the production of colibactin is encoded by 19 genes (clbA - S) within the pks pathogenicity island harboured by many E. coli of the B2-phylogroup. Colibactin is a potent genotoxic metabolite which causes DNA-damage and which has potential roles in microbial competition and fitness of pks+ bacteria. Colibactin has also been strongly implicated in the development of colorectal cancer. Given the genotoxicity of colibactin and the metabolic cost of its synthesis, the regulatory system governing the clb cluster is accordingly highly complex, and many of the mechanisms remain to be elucidated. In this review we summarise the current understanding of regulation of colibactin biosynthesis by internal molecular components and how these factors are modulated by signals from the external environment.
Collapse
Affiliation(s)
- Emily Addington
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Sofia Sandalli
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Andrew J. Roe
- School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| |
Collapse
|
150
|
Johnston CD, Bullman S. Bacteria-derived L-lactate fuels cervical cancer chemoradiotherapy resistance. Trends Cancer 2024; 10:97-99. [PMID: 38242824 DOI: 10.1016/j.trecan.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Accumulating studies have demonstrated the presence of viable and metabolically active bacterial communities within a range of solid tumor types. However, the precise mechanisms by which these microbes modulate their infected tumor niches or impact patient responses to cancer treatments remain to be elucidated. Recently, Colbert et al. revealed that L-lactate produced by intratumoral Lactobacillus iners reprograms metabolic capabilities of cervical tumors to support chemoradiotherapy resistance. This finding has implications for many solid cancer types.
Collapse
Affiliation(s)
- Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|