101
|
Gamage DG, Melikov K, Munoz-Tello P, Wherley TJ, Focke LC, Leikina E, Huffman E, Diao J, Kojetin DJ, Prasad V, Chernomordik LV, Millay DP. Phosphatidylserine orchestrates Myomerger membrane insertions to drive myoblast fusion. Proc Natl Acad Sci U S A 2022; 119:e2202490119. [PMID: 36095199 PMCID: PMC9499509 DOI: 10.1073/pnas.2202490119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Muscle cell fusion is a multistep process where the final step of the reaction drives progression beyond early hemifusion events to complete fusion. This step requires activity of the muscle-specific fusogen Myomerger, a single-pass transmembrane protein containing 84 amino acids with an ectodomain that includes two α-helices. Previous studies have demonstrated that Myomerger acts by destabilizing membranes through generation of elastic stresses in the outer leaflet of the plasma membrane. An obvious question is how such destabilizing activity might be regulated to avoid membrane and cellular damage, and how the two juxtaposed helices cooperate in fusion. Using cellular fusion assays and in vitro liposome assays, we report that the two helices possess unique characteristics, both of which are needed for full activity of the protein. We demonstrate that externalized phosphatidylserine (PS), a lipid previously implicated in myoblast fusion, has a determinant role in the regulation of Myomerger activity. The membrane-proximal, amphipathic Helix-1 is normally disordered and its α-helical structure is induced by PS, making membrane interactions more efficacious. The distal, more hydrophobic Helix-2 is intrinsically ordered, possesses an ability to insert into membranes, and augments the membrane-stressing effects of Helix-1. These data reveal that Myomerger fusogenic activity is an exquisitely orchestrated event involving its two ectodomain helices, which are controlled by membrane lipid composition, providing an explanation as to how its membrane-stressing activity is spatially and temporally regulated during the final step of myoblast fusion.
Collapse
Affiliation(s)
- Dilani G. Gamage
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, University of Florida (UF) Scripps Biomedical Research, Jupiter, FL 33458
| | - Tanner J. Wherley
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Leah C. Focke
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Evgenia Leikina
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Elliana Huffman
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, University of Florida (UF) Scripps Biomedical Research, Jupiter, FL 33458
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458
| | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
102
|
Li M, Liu G, Jin X, Guo H, Setrerrahmane S, Xu X, Li T, Lin Y, Xu H. Micropeptide MIAC inhibits the tumor progression by interacting with AQP2 and inhibiting EREG/EGFR signaling in renal cell carcinoma. Mol Cancer 2022; 21:181. [PMID: 36117171 PMCID: PMC9484220 DOI: 10.1186/s12943-022-01654-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although, micropeptides encoded by non-coding RNA have been shown to have an important role in a variety of tumors processes, there have been no reports on micropeptide in renal cell carcinoma (RCC). Based on the micropeptide MIAC (micropeptide inhibiting actin cytoskeleton) discovered and named in the previous work, this study screened its tumor spectrum, and explored its mechanism of action and potential diagnosis and treatment value in the occurrence and development of renal carcinoma. METHODS The clinical significance of MIAC in RCC was explored by bioinformatics analysis through high-throughput RNA-seq data from 530 patients with kidney renal clear cell carcinoma (KIRC) in the TCGA database, and the detection of clinical samples of 70 cases of kidney cancer. In vitro and in vivo experiments to determine the role of MIAC in renal carcinoma cell growth and metastasis; High-throughput transcriptomics, western blotting, immunoprecipitation, molecular docking, affinity experiments, and Streptavidin pulldown experiments identify MIAC direct binding protein and key regulatory pathways. RESULTS The analysis of 600 renal carcinoma samples from different sources revealed that the expression level of MIAC is significantly decreased, and corelated with the prognosis and clinical stage of tumors in patients with renal carcinoma. Overexpression of MIAC in renal carcinoma cells can significantly inhibit the proliferation and migration ability, promote apoptosis of renal carcinoma cells, and affect the distribution of cells at various stages. After knocking down MIAC, the trend is reversed. In vivo experiments have found that MIAC overexpression inhibit the growth and metastasis of RCC, while the synthetized MIAC peptides can significantly inhibit the occurrence and development of RCC in vitro and in vivo. Further mechanistic studies have demonstrated that MIAC directly bind to AQP2 protein, inhibit EREG/EGFR expression and activate downstream pathways PI3K/AKT and MAPK to achieve anti-tumor effects. CONCLUSIONS This study revealed for the first time the tumor suppressor potential of the lncRNA-encoded micropeptide MIAC in RCC, which inhibits the activation of the EREG/EGFR signaling pathway by direct binding to AQP2 protein, thereby inhibiting renal carcinoma progression and metastasis. This result emphasizes that the micropeptide MIAC can provide a new strategy for the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangxiang Liu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xinrong Jin
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | | | - Xindi Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
| | - Tiantian Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunfei Lin
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China. .,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
103
|
Temporal Expression of Myogenic Regulatory Genes in Different Chicken Breeds during Embryonic Development. Int J Mol Sci 2022; 23:ijms231710115. [PMID: 36077516 PMCID: PMC9456251 DOI: 10.3390/ijms231710115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The basic units of skeletal muscle in all vertebrates are multinucleate myofibers, which are formed from the fusion of mononuclear myoblasts during the embryonic period. In order to understand the regulation of embryonic muscle development, we selected four chicken breeds, namely, Cornish (CN), White Plymouth Rock (WPR), White Leghorn (WL), and Beijing-You Chicken (BYC), for evaluation of their temporal expression patterns of known key regulatory genes (Myomaker, MYOD, and MSTN) during pectoral muscle (PM) and thigh muscle (TM) development. The highest expression level of Myomaker occurred from embryonic days E13 to E15 for all breeds, indicating that it was the crucial stage of myoblast fusion. Interestingly, the fast-growing CN showed the highest gene expression level of Myomaker during the crucial stage. The MYOD gene expression at D1 was much higher, implying that MYOD might have an important role after hatching. Histomorphology of PM and TM suggested that the myofibers was largely complete at E17, which was speculated to have occurred because of the expression increase in MSTN and the expression decrease in Myomaker. Our research contributes to lay a foundation for the study of myofiber development during the embryonic period in different chicken breeds.
Collapse
|
104
|
Zhang H, Shang R, Kim K, Zheng W, Johnson CJ, Sun L, Niu X, Liu L, Zhou J, Liu L, Zhang Z, Uyeno TA, Pei J, Fissette SD, Green SA, Samudra SP, Wen J, Zhang J, Eggenschwiler JT, Menke DB, Bronner ME, Grishin NV, Li W, Ye K, Zhang Y, Stolfi A, Bi P. Evolution of a chordate-specific mechanism for myoblast fusion. SCIENCE ADVANCES 2022; 8:eadd2696. [PMID: 36054355 PMCID: PMC10848958 DOI: 10.1126/sciadv.add2696] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Vertebrate myoblast fusion allows for multinucleated muscle fibers to compound the size and strength of mononucleated cells, but the evolution of this important process is unknown. We investigated the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here, we report that Myomaker likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while Myomixer appears to have evolved de novo in early vertebrates. Functional tests revealed a complex evolutionary history of myoblast fusion. A prevertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Evolutionary comparisons between vertebrate and nonvertebrate Myomaker revealed key structural and mechanistic insights into myoblast fusion. Thus, our findings suggest an evolutionary model of chordate fusogens and illustrate how new genes shape the emergence of novel morphogenetic traits and mechanisms.
Collapse
Affiliation(s)
- Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Lei Sun
- The Fifth People’s Hospital of Shanghai, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Niu
- Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, USA
| | - Liang Liu
- Department of Statistics, University of Georgia, Athens, GA, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Jingqi Zhou
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Lingshu Liu
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Zheng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | | | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Skye D. Fissette
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Stephen A. Green
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Junfei Wen
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Jianli Zhang
- College of Engineering, University of Georgia, Athens, GA, USA
| | | | | | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nick V. Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
105
|
Zhang J, Wen H, Qi X, Zhang Y, Dong X, Zhang K, Zhang M, Li J, Li Y. Morphological and Molecular Responses of Lateolabrax maculatus Skeletal Muscle Cells to Different Temperatures. Int J Mol Sci 2022; 23:ijms23179812. [PMID: 36077203 PMCID: PMC9456278 DOI: 10.3390/ijms23179812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Temperature strongly modulates muscle development and growth in ectothermic teleosts; however, the underlying mechanisms remain largely unknown. In this study, primary cultures of skeletal muscle cells of Lateolabrax maculatus were conducted and reared at different temperatures (21, 25, and 28 °C) in both the proliferation and differentiation stages. CCK-8, EdU, wound scratch and nuclear fusion index assays revealed that the proliferation, myogenic differentiation, and migration processes of skeletal muscle cells were significantly accelerated as the temperature raises. Based on the GO, GSEA, and WGCNA, higher temperature (28 °C) induced genes involved in HSF1 activation, DNA replication, and ECM organization processes at the proliferation stage, as well as HSF1 activation, calcium activity regulation, myogenic differentiation, and myoblast fusion, and sarcomere assembly processes at the differentiation stage. In contrast, lower temperature (21 °C) increased the expression levels of genes associated with DNA damage, DNA repair and apoptosis processes at the proliferation stage, and cytokine signaling and neutrophil degranulation processes at the differentiation stage. Additionally, we screened several hub genes regulating myogenesis processes. Our results could facilitate the understanding of the regulatory mechanism of temperature on fish skeletal muscle growth and further contribute to utilizing rational management strategies and promoting organism growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun Li
- Correspondence: ; Tel.: +86-0532-82-031-792
| |
Collapse
|
106
|
Mendieta-Serrano MA, Dhar S, Ng BH, Narayanan R, Lee JJY, Ong HT, Toh PJY, Röllin A, Roy S, Saunders TE. Slow muscles guide fast myocyte fusion to ensure robust myotome formation despite the high spatiotemporal stochasticity of fusion events. Dev Cell 2022; 57:2095-2110.e5. [PMID: 36027918 DOI: 10.1016/j.devcel.2022.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Skeletal myogenesis is dynamic, and it involves cell-shape changes together with cell fusion and rearrangements. However, the final muscle arrangement is highly organized with striated fibers. By combining live imaging with quantitative analyses, we dissected fast-twitch myocyte fusion within the zebrafish myotome in toto. We found a strong mediolateral bias in fusion timing; however, at a cellular scale, there was heterogeneity in cell shape and the relationship between initial position of fast myocytes and resulting fusion partners. We show that the expression of the fusogen myomaker is permissive, but not instructive, in determining the spatiotemporal fusion pattern. Rather, we observed a close coordination between slow muscle rearrangements and fast myocyte fusion. In mutants that lack slow fibers, the spatiotemporal fusion pattern is substantially noisier. We propose a model in which slow muscles guide fast myocytes by funneling them close together, enhancing fusion probability. Thus, despite fusion being highly stochastic, a robust myotome structure emerges at the tissue scale.
Collapse
Affiliation(s)
| | - Sunandan Dhar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Boon Heng Ng
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Rachna Narayanan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Jorge J Y Lee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Adrian Röllin
- Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Department of Paediatrics, National University of Singapore, Singapore 119228, Singapore.
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
107
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
108
|
Chothani SP, Adami E, Widjaja AA, Langley SR, Viswanathan S, Pua CJ, Zhihao NT, Harmston N, D'Agostino G, Whiffin N, Mao W, Ouyang JF, Lim WW, Lim S, Lee CQE, Grubman A, Chen J, Kovalik JP, Tryggvason K, Polo JM, Ho L, Cook SA, Rackham OJL, Schafer S. A high-resolution map of human RNA translation. Mol Cell 2022; 82:2885-2899.e8. [PMID: 35841888 DOI: 10.1016/j.molcel.2022.06.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.
Collapse
Affiliation(s)
- Sonia P Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Eleonora Adami
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anissa A Widjaja
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Sivakumar Viswanathan
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Chee Jian Pua
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Nevin Tham Zhihao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Giuseppe D'Agostino
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore 308232, Singapore
| | - Nicola Whiffin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Wang Mao
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - John F Ouyang
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Wei Wen Lim
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Shiqi Lim
- National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore
| | - Cheryl Q E Lee
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - J P Kovalik
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Karl Tryggvason
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Lena Ho
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Stuart A Cook
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore; London Institute of Medical Sciences, London W12 ONN, UK
| | - Owen J L Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; School of Biological Sciences, University of Southampton, Southampton, UK.
| | - Sebastian Schafer
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore; National Heart Research Institute Singapore (NHRIS), National Heart Centre Singapore, Singapore 169609, Singapore.
| |
Collapse
|
109
|
Vicente-García C, Hernández-Camacho JD, Carvajal JJ. Regulation of myogenic gene expression. Exp Cell Res 2022; 419:113299. [DOI: 10.1016/j.yexcr.2022.113299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/22/2022]
|
110
|
Abstract
Despite the evolutionary loss of tissue regenerative potential, robust skeletal muscle repair processes are largely retained even in higher vertebrates. In mammals, the skeletal muscle regeneration program is driven by resident stem cells termed satellite cells, guided by the coordinated activity of multiple intrinsic and extrinsic factors and other cell types. A thorough understanding of muscle repair mechanisms is crucial not only for combating skeletal myopathies, but for its prospective aid in devising therapeutic strategies to endow regenerative potential on otherwise regeneration-deficient organs. In this review, we discuss skeletal muscle regeneration from an evolutionary perspective, summarize the current knowledge of cellular and molecular mechanisms, and highlight novel paradigms of muscle repair revealed by explorations of the recent decade.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| |
Collapse
|
111
|
Luo Z, Shi J, Pandey P, Ruan ZR, Sevdali M, Bu Y, Lu Y, Du S, Chen EH. The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Dev Cell 2022; 57:1582-1597.e6. [PMID: 35709765 PMCID: PMC10180866 DOI: 10.1016/j.devcel.2022.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
Myoblast fusion is an indispensable process in skeletal muscle development and regeneration. Studies in Drosophila led to the discovery of the asymmetric fusogenic synapse, in which one cell invades its fusion partner with actin-propelled membrane protrusions to promote fusion. However, the timing and sites of vertebrate myoblast fusion remain elusive. Here, we show that fusion between zebrafish fast muscle cells is mediated by an F-actin-enriched invasive structure. Two cell adhesion molecules, Jam2a and Jam3b, are associated with the actin structure, with Jam2a being the major organizer. The Arp2/3 actin nucleation-promoting factors, WAVE and WASP-but not the bipartite fusogenic proteins, Myomaker or Myomixer-promote the formation of the invasive structure. Moreover, the convergence of fusogen-containing microdomains and the invasive protrusions is a prerequisite for cell membrane fusion. Thus, our study provides unprecedented insights into the cellular architecture and molecular determinants of the asymmetric fusogenic synapse in an intact vertebrate animal.
Collapse
Affiliation(s)
- Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhi-Rong Ruan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Sevdali
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Bu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
112
|
Fukada SI, Higashimoto T, Kaneshige A. Differences in muscle satellite cell dynamics during muscle hypertrophy and regeneration. Skelet Muscle 2022; 12:17. [PMID: 35794679 PMCID: PMC9258228 DOI: 10.1186/s13395-022-00300-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle homeostasis and function are ensured by orchestrated cellular interactions among several types of cells. A noticeable aspect of skeletal muscle biology is the drastic cell-cell communication changes that occur in multiple scenarios. The process of recovering from an injury, which is known as regeneration, has been relatively well investigated. However, the cellular interplay that occurs in response to mechanical loading, such as during resistance training, is poorly understood compared to regeneration. During muscle regeneration, muscle satellite cells (MuSCs) rebuild multinuclear myofibers through a stepwise process of proliferation, differentiation, fusion, and maturation, whereas during mechanical loading-dependent muscle hypertrophy, MuSCs do not undergo such stepwise processes (except in rare injuries) because the nuclei of MuSCs become directly incorporated into the mature myonuclei. In this review, six specific examples of such differences in MuSC dynamics between regeneration and hypertrophy processes are discussed.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Tatsuyoshi Higashimoto
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Akihiro Kaneshige
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
113
|
Yang JH, Chang MW, Tsitsipatis D, Yang X, Martindale J, Munk R, Cheng A, Izydore E, Pandey PR, Piao Y, Mazan-Mamczarz K, De S, Abdelmohsen K, Gorospe M. LncRNA OIP5-AS1-directed miR-7 degradation promotes MYMX production during human myogenesis. Nucleic Acids Res 2022; 50:7115-7133. [PMID: 35736212 PMCID: PMC9262585 DOI: 10.1093/nar/gkac524] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) modulate gene expression programs in physiology and disease. Here, we report a noncoding RNA regulatory network that modulates myoblast fusion into multinucleated myotubes, a process that occurs during muscle development and muscle regeneration after injury. In early stages of human myogenesis, the levels of lncRNA OIP5-AS1 increased, while the levels of miR-7 decreased. Moreover, OIP5-AS1 bound and induced miR-7 decay via target RNA-directed miRNA decay; accordingly, loss of OIP5-AS1 attenuated, while antagonizing miR-7 accelerated, myotube formation. We found that the OIP5-AS1-mediated miR-7 degradation promoted myoblast fusion, as it derepressed the miR-7 target MYMX mRNA, which encodes the fusogenic protein myomixer (MYMX). Remarkably, an oligonucleotide site blocker interfered with the OIP5-AS1-directed miR-7 degradation, allowing miR-7 to accumulate, lowering MYMX production and suppressing myotube formation. These results highlight a mechanism whereby lncRNA OIP5-AS1-mediated miR-7 decay promotes myotube formation by stimulating a myogenic fusion program.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Correspondence may also be addressed to Jen-Hao Yang. Tel: +1 410 454 8392;
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Aiwu Cheng
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Elizabeth Izydore
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- To whom correspondence should be addressed. Tel: +1 410 454 8412;
| |
Collapse
|
114
|
Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell 2022; 82:2252-2266. [PMID: 35714586 DOI: 10.1016/j.molcel.2022.05.027] [Citation(s) in RCA: 334] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
Although some long noncoding (lnc)RNAs are known since the 1950s, the past 25 years have uncovered myriad lncRNAs with diverse sequences, structures, and functions. The advent of high-throughput and sensitive technologies has further uncovered the vast heterogeneity of lncRNA-interacting molecules and patterns of expressed lncRNAs. We propose a unifying functional theme for the expansive family of lncRNAs. At an elementary level, the genomic program of gene expression is elicited via canonical transcription and post-transcriptional mRNA assembly, turnover, and translation. Building upon this regulation, an epigenomic program refines the basic genomic control by modifying chromatin architecture as well as DNA and RNA chemistry. Superimposed over the genomic and epigenomic programs, lncRNAs create an additional regulatory dimension: by interacting with the proteins and nucleic acids that regulate gene expression in the nucleus and cytoplasm, lncRNAs help establish robust, nimble, and specific transcriptional and post-transcriptional control. We describe our present understanding of lncRNA-coordinated control of protein programs and cell fate and discuss challenges and opportunities as we embark on the next 25 years of lncRNA discovery.
Collapse
|
115
|
Millay DP. Regulation of the myoblast fusion reaction for muscle development, regeneration, and adaptations. Exp Cell Res 2022; 415:113134. [PMID: 35367215 PMCID: PMC9058940 DOI: 10.1016/j.yexcr.2022.113134] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022]
Abstract
Fusion of plasma membranes is essential for skeletal muscle development, regeneration, exercise-induced adaptations, and results in a cell that contains hundreds to thousands of nuclei within a shared cytoplasm. The differentiation process in myocytes culminates in their fusion to form a new myofiber or fusion to an existing myofiber thereby contributing more synthetic material to the syncytium. The choice for two cells to fuse and become one could be a dangerous event if the two cells are not committed to an allied function. Thus, fusion events are highly regulated with positive and negative factors to fine-tune the process, and requires muscle-specific fusogens (Myomaker and Myomerger) as well as general cellular machinery to achieve the union of membranes. While a unified vertebrate myoblast fusion pathway is not yet established, recent discoveries should make this pursuit attainable. Not only does myocyte fusion impact the normal biology of skeletal muscle, but new evidence indicates dysregulation of the process impacts pathologies of skeletal muscle. Here, I will highlight the molecular players and biochemical mechanisms that drive fusion events in muscle, and discuss how this key myogenic process impacts skeletal muscle diseases.
Collapse
Affiliation(s)
- Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
116
|
Ramirez-Martinez A, Zhang Y, van den Boogaard MJ, McAnally JR, Rodriguez-Caycedo C, Chai AC, Chemello F, Massink MP, Cuppen I, Elferink MG, van Es RJ, Janssen NG, Walraven-van Oijen LP, Liu N, Bassel-Duby R, van Jaarsveld RH, Olson EN. Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. J Clin Invest 2022; 132:e159002. [PMID: 35642635 PMCID: PMC9151691 DOI: 10.1172/jci159002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle fibers contain hundreds of nuclei, which increase the overall transcriptional activity of the tissue and perform specialized functions. Multinucleation occurs through myoblast fusion, mediated by the muscle fusogens Myomaker (MYMK) and Myomixer (MYMX). We describe a human pedigree harboring a recessive truncating variant of the MYMX gene that eliminates an evolutionarily conserved extracellular hydrophobic domain of MYMX, thereby impairing fusogenic activity. Homozygosity of this human variant resulted in a spectrum of abnormalities that mimicked the clinical presentation of Carey-Fineman-Ziter syndrome (CFZS), caused by hypomorphic MYMK variants. Myoblasts generated from patient-derived induced pluripotent stem cells displayed defective fusion, and mice bearing the human MYMX variant died perinatally due to muscle abnormalities. In vitro assays showed that the human MYMX variant conferred minimal cell-cell fusogenicity, which could be restored with CRISPR/Cas9-mediated base editing, thus providing therapeutic potential for this disorder. Our findings identify MYMX as a recessive, monogenic human disease gene involved in CFZS, and provide new insights into the contribution of myoblast fusion to neuromuscular diseases.
Collapse
Affiliation(s)
- Andres Ramirez-Martinez
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yichi Zhang
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - John R. McAnally
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cristina Rodriguez-Caycedo
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andreas C. Chai
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Francesco Chemello
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Robert J.J. van Es
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nard G. Janssen
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Ning Liu
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Eric N. Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
117
|
Xie C, Wang FY, Sang Y, Chen B, Huang JH, He FJ, Li H, Zhu Y, Liu X, Zhuang SM, Fang JH. Mitochondrial micropeptide STMP1 enhances mitochondrial fission to promote tumor metastasis. Cancer Res 2022; 82:2431-2443. [PMID: 35544764 DOI: 10.1158/0008-5472.can-21-3910] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Micropeptides are a recently discovered class of molecules that play vital roles in various cellular processes, including differentiation, proliferation, and apoptosis. Here, we sought to identify cancer-associated micropeptides and to uncover their mechanistic functions. A micropeptide named short trans-membrane protein 1 (STMP1) that localizes at the inner mitochondrial membrane was identified to be upregulated in various cancer types and associated with metastasis and recurrence of hepatocellular carcinoma. Both gain- and loss-of-function studies revealed that STMP1 increased dynamin-related protein 1 (DRP1) activation to promote mitochondrial fission and enhanced migration of tumor cells. STMP1 silencing inhibited in vivo tumor metastasis in xenograft mouse models. Overexpression of STMP1 led to redistribution of mitochondria to the leading edge of cells and enhanced lamellipodia formation. Treatment with a DRP1 inhibitor abrogated the promotive effect of STMP1 on mitochondrial fission, lamellipodia formation, and tumor cell migration in vitro and metastasis in vivo. Furthermore, STMP1 interacted with myosin heavy chain 9 (MYH9), the subunit of non-muscle myosin II, and silencing MYH9 abrogated STMP1-induced DRP1 activation, mitochondrial fission, and cell migration. Collectively, this study identifies STMP1 as a critical regulator of metastasis and a novel unit of the mitochondrial fission protein machinery, providing a potential therapeutic target for treating metastases.
Collapse
Affiliation(s)
- Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng-Yi Wang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ye Sang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Bin Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jia-Hui Huang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng-Jun He
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hui Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, P.R. China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
118
|
Cancer-related micropeptides encoded by ncRNAs: Promising drug targets and prognostic biomarkers. Cancer Lett 2022; 547:215723. [DOI: 10.1016/j.canlet.2022.215723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
|
119
|
Generation of Cancer Stem/Initiating Cells by Cell-Cell Fusion. Int J Mol Sci 2022; 23:ijms23094514. [PMID: 35562905 PMCID: PMC9101717 DOI: 10.3390/ijms23094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
CS/ICs have raised great expectations in cancer research and therapy, as eradication of this key cancer cell type is expected to lead to a complete cure. Unfortunately, the biology of CS/ICs is rather complex, since no common CS/IC marker has yet been identified. Certain surface markers or ALDH1 expression can be used for detection, but some studies indicated that cancer cells exhibit a certain plasticity, so CS/ICs can also arise from non-CS/ICs. Another problem is intratumoral heterogeneity, from which it can be inferred that different CS/IC subclones must be present in the tumor. Cell–cell fusion between cancer cells and normal cells, such as macrophages and stem cells, has been associated with the generation of tumor hybrids that can exhibit novel properties, such as an enhanced metastatic capacity and even CS/IC properties. Moreover, cell–cell fusion is a complex process in which parental chromosomes are mixed and randomly distributed among daughter cells, resulting in multiple, unique tumor hybrids. These, if they have CS/IC properties, may contribute to the heterogeneity of the CS/IC pool. In this review, we will discuss whether cell–cell fusion could also lead to the origin of different CS/ICs that may expand the overall CS/IC pool in a primary tumor.
Collapse
|
120
|
Zhang Z, Li Y, Yuan W, Wang Z, Wan C. Proteomic-driven identification of short open reading frame-encoded peptides. Proteomics 2022; 22:e2100312. [PMID: 35384297 DOI: 10.1002/pmic.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence has shown that a large number of short open reading frames (sORFs) also have the ability to encode proteins. The discovery of sORFs opens up a new research area, leading to the identification and functional study of sORF encoded peptides (SEPs) at the omics level. Besides bioinformatics prediction and ribosomal profiling, mass spectrometry (MS) has become a significant tool as it directly detects the sequence of SEPs. Though MS-based proteomics methods have proved to be effective for qualitative and quantitative analysis of SEPs, the detection of SEPs is still a great challenge due to their low abundance and short sequence. To illustrate the progress in method development, we described and discussed the main steps of large-scale proteomics identification of SEPs, including SEP extraction and enrichment, MS detection, data processing and quality control, quantification, and function prediction and validation methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Yujie Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Wenqian Yuan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| |
Collapse
|
121
|
Zhang J, Guan M, Zhou X, Berry K, He X, Lu QR. Long Noncoding RNAs in CNS Myelination and Disease. Neuroscientist 2022; 29:287-301. [PMID: 35373640 DOI: 10.1177/10738584221083919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myelination by oligodendrocytes is crucial for neuronal survival and function, and defects in myelination or failure in myelin repair can lead to axonal degeneration and various neurological diseases. At present, the factors that promote myelination and overcome the remyelination block in demyelinating diseases are poorly defined. Although the roles of protein-coding genes in oligodendrocyte differentiation have been extensively studied, the majority of the mammalian genome is transcribed into noncoding RNAs, and the functions of these molecules in myelination are poorly characterized. Long noncoding RNAs (lncRNAs) regulate transcription at multiple levels, providing spatiotemporal control and robustness for cell type-specific gene expression and physiological functions. lncRNAs have been shown to regulate neural cell-type specification, differentiation, and maintenance of cell identity, and dysregulation of lncRNA function has been shown to contribute to neurological diseases. In this review, we discuss recent advances in our understanding of the functions of lncRNAs in oligodendrocyte development and myelination as well their roles in neurological diseases and brain tumorigenesis. A more systematic characterization of lncRNA functional networks will be instrumental for a better understanding of CNS myelination, myelin disorders, and myelin repair.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Menglong Guan
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xianyao Zhou
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuelian He
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
122
|
The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol 2022; 32:243-258. [PMID: 34844857 PMCID: PMC8934435 DOI: 10.1016/j.tcb.2021.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Omics-based technologies have revolutionized our understanding of the coding potential of the genome. In particular, these studies revealed widespread unannotated open reading frames (ORFs) throughout genomes and that these regions have the potential to encode novel functional (micro-)proteins and/or hold regulatory roles. However, despite their genomic prevalence, relatively few of these noncanonical ORFs have been functionally characterized, likely in part due to their under-recognition by the broader scientific community. The few that have been investigated in detail have demonstrated their essentiality in critical and divergent biological processes. As such, here we aim to discuss recent advances in understanding the diversity of noncanonical ORFs and their roles, as well as detail biologically important examples within the context of the mammalian genome.
Collapse
|
123
|
Satoh F, Sugiura A, Tashiro J, Hosaka YZ, Warita K. Chondroitin sulfate E downregulates N-cadherin and suppresses myotube formation. J Vet Med Sci 2022; 84:494-501. [PMID: 35173094 PMCID: PMC9096049 DOI: 10.1292/jvms.21-0662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Myogenesis, the formation of muscle fibers, is affected by certain glycoproteins,
including chondroitin sulfate (CS), which are involved in various cellular processes. We
aimed to investigate the mechanism underlying CS-E-induced suppression of myotube
formation using the myoblast cell line C2C12. Differentiated cells treated with 0.1 mg/ml
CS-E for nine days showed multinucleated and rounded myotubes with myosin heavy chain
positivity. No difference was found between the CS-E-treated group with rounded myotubes
and CS (−) controls with elongated myotubes in the levels of phospho-cofilin, a protein
involved in the dynamics of actin cytoskeleton. Interestingly, N-cadherin, which is
involved in the gene expression of myoblast fusion factors (myomaker and myomixer), was
significantly downregulated at both the mRNA and protein levels following CS-E treatment.
These results suggest that N-cadherin downregulation is one of the mechanisms underlying
the CS-E-induced suppression of myotube formation.
Collapse
Affiliation(s)
- Fumi Satoh
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University
| | - Akihiro Sugiura
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University
| | - Jiro Tashiro
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University
| | - Yoshinao Z Hosaka
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University
| |
Collapse
|
124
|
Bonilauri B, Dallagiovanna B. Microproteins in skeletal muscle: hidden keys in muscle physiology. J Cachexia Sarcopenia Muscle 2022; 13:100-113. [PMID: 34850602 PMCID: PMC8818594 DOI: 10.1002/jcsm.12866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Recent advances in the transcriptomics, translatomics, and proteomics have led us to the exciting new world of functional endogenous microproteins. These microproteins have a small size and are derived from small open reading frames (smORFs) of RNAs previously annotated as non-coding (e.g. lncRNAs and circRNAs) as well as from untranslated regions and canonical mRNAs. The presence of these microproteins reveals a much larger translatable portion of the genome, shifting previously defined dogmas and paradigms. These findings affect our view of organisms as a whole, including skeletal muscle tissue. Emerging evidence demonstrates that several smORF-derived microproteins play crucial roles during muscle development (myogenesis), maintenance, and regeneration, as well as lipid and glucose metabolism and skeletal muscle bioenergetics. These microproteins are also involved in processes including physical activity capacity, cellular stress, and muscular-related diseases (i.e. myopathy, cachexia, atrophy, and muscle wasting). Given the role of these small proteins as important key regulators of several skeletal muscle processes, there are rich prospects for the discovery of new microproteins and possible therapies using synthetic microproteins.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells (LABCET)Carlos Chagas Institute ‐ Fiocruz‐PRCuritibaParanáBrazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET)Carlos Chagas Institute ‐ Fiocruz‐PRCuritibaParanáBrazil
| |
Collapse
|
125
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
126
|
Zhang H, Ma H, Yang X, Fan L, Tian S, Niu R, Yan M, Zheng M, Zhang S. Cell Fusion-Related Proteins and Signaling Pathways, and Their Roles in the Development and Progression of Cancer. Front Cell Dev Biol 2022; 9:809668. [PMID: 35178400 PMCID: PMC8846309 DOI: 10.3389/fcell.2021.809668] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
Cell fusion is involved in many physiological and pathological processes, including gamete binding, and cancer development. The basic processes of cell fusion include membrane fusion, cytoplasmic mixing, and nuclear fusion. Cell fusion is regulated by different proteins and signaling pathways. Syncytin-1, syncytin-2, glial cell missing 1, galectin-1 and other proteins (annexins, myomaker, myomerger etc.) involved in cell fusion via the cyclic adenosine-dependent protein kinase A, mitogen-activated protein kinase, wingless/integrase-1, and c-Jun N-terminal kinase signaling pathways. In the progression of malignant tumors, cell fusion is essential during the organ-specific metastasis, epithelial-mesenchymal transformation, the formation of cancer stem cells (CSCs), cancer angiogenesis and cancer immunity. In addition, diploid cells can be induced to form polyploid giant cancer cells (PGCCs) via cell fusion under many kinds of stimuli, including cobalt chloride, chemotherapy, radiotherapy, and traditional Chinese medicine. PGCCs have CSC-like properties, and the daughter cells derived from PGCCs have a mesenchymal phenotype and exhibit strong migration, invasion, and proliferation abilities. Therefore, exploring the molecular mechanisms of cell fusion can enable us better understand the development of malignant tumors. In this review, the basic process of cell fusion and its significance in cancer is discussed.
Collapse
Affiliation(s)
- Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Ma
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shiwu Zhang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
127
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. Amphioxus muscle transcriptomes reveal vertebrate-like myoblast fusion genes and a highly conserved role of insulin signalling in the metabolism of muscle. BMC Genomics 2022; 23:93. [PMID: 35105312 PMCID: PMC8805411 DOI: 10.1186/s12864-021-08222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - Clara Coll-Lladó
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
128
|
The cardiac-enriched microprotein mitolamban regulates mitochondrial respiratory complex assembly and function in mice. Proc Natl Acad Sci U S A 2022; 119:2120476119. [PMID: 35101990 PMCID: PMC8833175 DOI: 10.1073/pnas.2120476119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Microproteins are a growing class of versatile small proteins previously overlooked by standard gene annotation methods due to their small size. Here we characterize mitolamban as a cardiac-enriched inner mitochondrial membrane–localized microprotein, which interacts with complex III of the electron transport chain and contributes to complex III assembly and function. Mitolamban gene deletion in mice leads to a reduction in complex III activity and metabolic perturbations in the heart that are consistent with complex III deficiency, as well as altered complex III assembly into respiratory supercomplexes. These findings define a functional role for mitolamban in the heart and highlight the importance of microproteins in regulating mitochondrial function and cardiomyocyte biology. Emerging evidence indicates that a subset of RNA molecules annotated as noncoding contain short open reading frames that code for small functional proteins called microproteins, which have largely been overlooked due to their small size. To search for cardiac-expressed microproteins, we used a comparative genomics approach and identified mitolamban (Mtlbn) as a highly conserved 47-amino acid transmembrane protein that is abundantly expressed in the heart. Mtlbn localizes specifically to the inner mitochondrial membrane where it interacts with subunits of complex III of the electron transport chain and with mitochondrial respiratory supercomplexes. Genetic deletion of Mtlbn in mice altered complex III assembly dynamics and reduced complex III activity. Unbiased metabolomic analysis of heart tissue from Mtlbn knockout mice further revealed an altered metabolite profile consistent with deficiencies in complex III activity. Cardiac-specific Mtlbn overexpression in transgenic (TG) mice induced cardiomyopathy with histological, biochemical, and ultrastructural pathologic features that contributed to premature death. Metabolomic analysis and biochemical studies indicated that hearts from Mtlbn TG mice exhibited increased oxidative stress and mitochondrial dysfunction. These findings reveal Mtlbn as a cardiac-expressed inner mitochondrial membrane microprotein that contributes to mitochondrial electron transport chain activity through direct association with complex III and the regulation of its assembly and function.
Collapse
|
129
|
Magnesium Homeostasis in Myogenic Differentiation-A Focus on the Regulation of TRPM7, MagT1 and SLC41A1 Transporters. Int J Mol Sci 2022; 23:ijms23031658. [PMID: 35163580 PMCID: PMC8836031 DOI: 10.3390/ijms23031658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Magnesium (Mg) is essential for skeletal muscle health, but little is known about the modulation of Mg and its transporters in myogenic differentiation. Here, we show in C2C12 murine myoblasts that Mg concentration fluctuates during their differentiation to myotubes, declining early in the process and reverting to basal levels once the cells are differentiated. The level of the Mg transporter MagT1 decreases at early time points and is restored at the end of the process, suggesting a possible role in the regulation of intracellular Mg concentration. In contrast, TRPM7 is rapidly downregulated and remains undetectable in myotubes. The reduced amounts of TRPM7 and MagT1 are due to autophagy, one of the proteolytic systems activated during myogenesis and essential for the membrane fusion process. Moreover, we investigated the levels of SLC41A1, which increase once cells are differentiated, mainly through transcriptional regulation. In conclusion, myogenesis is associated with alterations of Mg homeostasis finely tuned through the modulation of MagT1, TRPM7 and SLC41A1.
Collapse
|
130
|
Drosophila melanogaster: A Model System to Study Distinct Genetic Programs in Myoblast Fusion. Cells 2022; 11:cells11030321. [PMID: 35159130 PMCID: PMC8834112 DOI: 10.3390/cells11030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/25/2022] Open
Abstract
Muscle fibers are multinucleated cells that arise during embryogenesis through the fusion of mononucleated myoblasts. Myoblast fusion is a lifelong process that is crucial for the growth and regeneration of muscles. Understanding the molecular mechanism of myoblast fusion may open the way for novel therapies in muscle wasting and weakness. Recent reports in Drosophila and mammals have provided new mechanistic insights into myoblast fusion. In Drosophila, muscle formation occurs twice: during embryogenesis and metamorphosis. A fundamental feature is the formation of a cell–cell communication structure that brings the apposing membranes into close proximity and recruits possible fusogenic proteins. However, genetic studies suggest that myoblast fusion in Drosophila is not a uniform process. The complexity of the players involved in myoblast fusion can be modulated depending on the type of muscle that is formed. In this review, we introduce the different types of multinucleated muscles that form during Drosophila development and provide an overview in advances that have been made to understand the mechanism of myoblast fusion. Finally, we will discuss conceptual frameworks in cell–cell fusion in Drosophila and mammals.
Collapse
|
131
|
Esteves de Lima J, Blavet C, Bonnin MA, Hirsinger E, Havis E, Relaix F, Duprez D. TMEM8C-mediated fusion is regionalized and regulated by NOTCH signalling during foetal myogenesis. Development 2022; 149:274065. [PMID: 35005776 DOI: 10.1242/dev.199928] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
The location and regulation of fusion events within skeletal muscles during development remain unknown. Using the fusion marker myomaker (Mymk), named TMEM8C in chicken, as a readout of fusion, we identified a co-segregation of TMEM8C-positive cells and MYOG-positive cells in single-cell RNA-sequencing datasets of limbs from chicken embryos. We found that TMEM8C transcripts, MYOG transcripts and the fusion-competent MYOG-positive cells were preferentially regionalized in central regions of foetal muscles. We also identified a similar regionalization for the gene encoding the NOTCH ligand JAG2 along with an absence of NOTCH activity in TMEM8C+ fusion-competent myocytes. NOTCH function in myoblast fusion had not been addressed so far. We analysed the consequences of NOTCH inhibition for TMEM8C expression and myoblast fusion during foetal myogenesis in chicken embryos. NOTCH inhibition increased myoblast fusion and TMEM8C expression and released the transcriptional repressor HEYL from the TMEM8C regulatory regions. These results identify a regionalization of TMEM8C-dependent fusion and a molecular mechanism underlying the fusion-inhibiting effect of NOTCH in foetal myogenesis. The modulation of NOTCH activity in the fusion zone could regulate the flux of fusion events.
Collapse
Affiliation(s)
- Joana Esteves de Lima
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France.,Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010 Creteil, France
| | - Cédrine Blavet
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Estelle Hirsinger
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Emmanuelle Havis
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010 Creteil, France
| | - Delphine Duprez
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| |
Collapse
|
132
|
Chen L, Yang Y, Zhang Y, Li K, Cai H, Wang H, Zhao Q. The Small Open Reading Frame-Encoded Peptides: Advances in Methodologies and Functional Studies. Chembiochem 2021; 23:e202100534. [PMID: 34862721 DOI: 10.1002/cbic.202100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Indexed: 11/07/2022]
Abstract
Small open reading frames (sORFs) are an important class of genes with less than 100 codons. They were historically annotated as noncoding or even junk sequences. In recent years, accumulating evidence suggests that sORFs could encode a considerable number of polypeptides, many of which play important roles in both physiology and disease pathology. However, it has been technically challenging to directly detect sORF-encoded peptides (SEPs). Here, we discuss the latest advances in methodologies for identifying SEPs with mass spectrometry, as well as the progress on functional studies of SEPs.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Kecheng Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510623, P. R. China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, P. R. China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
133
|
Choi HK, Kim CH, Lee SN, Kim TH, Oh BK. Nano-sized graphene oxide coated nanopillars on microgroove polymer arrays that enhance skeletal muscle cell differentiation. NANO CONVERGENCE 2021; 8:40. [PMID: 34862954 PMCID: PMC8643291 DOI: 10.1186/s40580-021-00291-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 05/04/2023]
Abstract
The degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (< 10 nm) was found to be the most effective not only for coating the surface of the NM structure but also for enhancing the cell adhesion and spreading on the fabricated substrates. Remarkably, owing to the micro-sized line patterns that guide cellular morphology to an elongated shape and because of the presence of sGO-modified nanostructures, mouse myoblast cells (C2C12) were efficiently differentiated into skeletal muscle cells on the hybrid patterns, based on the myosin heavy chain expression levels. Therefore, the developed sGO coated polymeric hybrid pattern arrays can serve as a potential platform for rapid and highly efficient in vitro muscle cell generation.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04170, South Korea
| | - Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Korea
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Korea.
| | - Byung-Keun Oh
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04170, South Korea.
| |
Collapse
|
134
|
Dittmar T, Weiler J, Luo T, Hass R. Cell-Cell Fusion Mediated by Viruses and HERV-Derived Fusogens in Cancer Initiation and Progression. Cancers (Basel) 2021; 13:5363. [PMID: 34771528 PMCID: PMC8582398 DOI: 10.3390/cancers13215363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is a well-known, but still scarcely understood biological phenomenon, which might play a role in cancer initiation, progression and formation of metastases. Although the merging of two (cancer) cells appears simple, the entire process is highly complex, energy-dependent and tightly regulated. Among cell fusion-inducing and -regulating factors, so-called fusogens have been identified as a specific type of proteins that are indispensable for overcoming fusion-associated energetic barriers and final merging of plasma membranes. About 8% of the human genome is of retroviral origin and some well-known fusogens, such as syncytin-1, are expressed by human (cancer) cells. Likewise, enveloped viruses can enable and facilitate cell fusion due to evolutionarily optimized fusogens, and are also capable to induce bi- and multinucleation underlining their fusion capacity. Moreover, multinucleated giant cancer cells have been found in tumors derived from oncogenic viruses. Accordingly, a potential correlation between viruses and fusogens of human endogenous retroviral origin in cancer cell fusion will be summarized in this review.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Julian Weiler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
135
|
Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol 2021; 23:204-226. [PMID: 34663964 DOI: 10.1038/s41580-021-00421-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Skeletal muscle contains a designated population of adult stem cells, called satellite cells, which are generally quiescent. In homeostasis, satellite cells proliferate only sporadically and usually by asymmetric cell division to replace myofibres damaged by daily activity and maintain the stem cell pool. However, satellite cells can also be robustly activated upon tissue injury, after which they undergo symmetric divisions to generate new stem cells and numerous proliferating myoblasts that later differentiate to muscle cells (myocytes) to rebuild the muscle fibre, thereby supporting skeletal muscle regeneration. Recent discoveries show that satellite cells have a great degree of population heterogeneity, and that their cell fate choices during the regeneration process are dictated by both intrinsic and extrinsic mechanisms. Extrinsic cues come largely from communication with the numerous distinct stromal cell types in their niche, creating a dynamically interactive microenvironment. This Review discusses the role and regulation of satellite cells in skeletal muscle homeostasis and regeneration. In particular, we highlight the cell-intrinsic control of quiescence versus activation, the importance of satellite cell-niche communication, and deregulation of these mechanisms associated with ageing. The increasing understanding of how satellite cells are regulated will help to advance muscle regeneration and rejuvenation therapies.
Collapse
|
136
|
Hammers DW, Hart CC, Matheny MK, Heimsath EG, Lee YI, Hammer JA, Cheney RE, Sweeney HL. Filopodia powered by class x myosin promote fusion of mammalian myoblasts. eLife 2021; 10:e72419. [PMID: 34519272 PMCID: PMC8500716 DOI: 10.7554/elife.72419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle fibers are multinucleated cellular giants formed by the fusion of mononuclear myoblasts. Several molecules involved in myoblast fusion have been discovered, and finger-like projections coincident with myoblast fusion have also been implicated in the fusion process. The role of these cellular projections in muscle cell fusion was investigated herein. We demonstrate that these projections are filopodia generated by class X myosin (Myo10), an unconventional myosin motor protein specialized for filopodia. We further show that Myo10 is highly expressed by differentiating myoblasts, and Myo10 ablation inhibits both filopodia formation and myoblast fusion in vitro. In vivo, Myo10 labels regenerating muscle fibers associated with Duchenne muscular dystrophy and acute muscle injury. In mice, conditional loss of Myo10 from muscle-resident stem cells, known as satellite cells, severely impairs postnatal muscle regeneration. Furthermore, the muscle fusion proteins Myomaker and Myomixer are detected in myoblast filopodia. These data demonstrate that Myo10-driven filopodia facilitate multinucleated mammalian muscle formation.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Fusion
- Cell Line
- Cell Proliferation
- Disease Models, Animal
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Muscle Development
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/pathology
- Myosins/genetics
- Myosins/metabolism
- Pseudopodia/genetics
- Pseudopodia/metabolism
- Regeneration
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Time Factors
- Mice
Collapse
Affiliation(s)
- David W Hammers
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - Cora C Hart
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - Michael K Matheny
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - Ernest G Heimsath
- Department of Cell Biology & Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of MedicineChapel HillUnited States
| | - Young il Lee
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood InstituteBethesdaUnited States
| | - Richard E Cheney
- Department of Cell Biology & Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of MedicineChapel HillUnited States
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| |
Collapse
|
137
|
Shen X, Liu Z, Wang C, Xu F, Zhang J, Li M, Lei Y, Wang A, Bi C, Zhu G. Inhibition of Postn Rescues Myogenesis Defects in Myotonic Dystrophy Type 1 Myoblast Model. Front Cell Dev Biol 2021; 9:710112. [PMID: 34490258 PMCID: PMC8417118 DOI: 10.3389/fcell.2021.710112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disease caused by expanded CTG repeats in the 3' untranslated region (3'UTR) of the DMPK gene. The myogenesis process is defective in DM1, which is closely associated with progressive muscle weakness and wasting. Despite many proposed explanations for the myogenesis defects in DM1, the underlying mechanism and the involvement of the extracellular microenvironment remained unknown. Here, we constructed a DM1 myoblast cell model and reproduced the myogenesis defects. By RNA sequencing (RNA-seq), we discovered that periostin (Postn) was the most significantly upregulated gene in DM1 myogenesis compared with normal controls. This difference in Postn was confirmed by real-time quantitative PCR (RT-qPCR) and western blotting. Moreover, Postn was found to be significantly upregulated in skeletal muscle and myoblasts of DM1 patients. Next, we knocked down Postn using a short hairpin RNA (shRNA) in DM1 myoblast cells and found that the myogenesis defects in the DM1 group were successfully rescued, as evidenced by increases in the myotube area, the fusion index, and the expression of myogenesis regulatory genes. Similarly, Postn knockdown in normal myoblast cells enhanced myogenesis. As POSTN is a secreted protein, we treated the DM1 myoblast cells with a POSTN-neutralizing antibody and found that DM1 myogenesis defects were successfully rescued by POSTN neutralization. We also tested the myogenic ability of myoblasts in the skeletal muscle injury mouse model and found that Postn knockdown improved the myogenic ability of DM1 myoblasts. The activity of the TGF-β/Smad3 pathway was upregulated during DM1 myogenesis but repressed when inhibiting Postn with a Postn shRNA or a POSTN-neutralizing antibody, which suggested that the TGF-β/Smad3 pathway might mediate the function of Postn in DM1 myogenesis. These results suggest that Postn is a potential therapeutical target for the treatment of myogenesis defects in DM1.
Collapse
Affiliation(s)
- Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Feng Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jingyi Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yang Lei
- Wuhu Center for Disease Control and Prevention, Wuhu, China
| | - Ao Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chao Bi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
138
|
Chen R, Lei S, She Y, Zhou S, Shi H, Li C, Jiang T. Lnc-GD2H Promotes Proliferation by Forming a Feedback Loop With c-Myc and Enhances Differentiation Through Interacting With NACA to Upregulate Myog in C2C12 Myoblasts. Front Cell Dev Biol 2021; 9:671857. [PMID: 34490239 PMCID: PMC8416608 DOI: 10.3389/fcell.2021.671857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022] Open
Abstract
In the present study, the roles of a novel long non-coding RNA (lncRNA), lnc-GD2H, in promoting C2C12 myoblast proliferation and differentiation and muscle regeneration were investigated by quantitative polymerase chain reaction, western blotting, Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine (EdU), immunofluorescence staining, luciferase reporter, mass spectrometry, pulldown, chromatin immunoprecipitation, RNA immunoprecipitation assay, wound healing assays, and cardiotoxin (CTX)-induced muscle injury assays. It was observed that lnc-GD2H promoted myoblast proliferation as evidenced by the enhancement of the proliferation markers c-Myc, CDK2, CDK4, and CDK6, percentage of EdU-positive cells, and rate of cell survival during C2C12 myoblast proliferation. Additional experiments confirmed that c-Myc bound to the lnc-GD2H promoter and regulated its transcription. lnc-GD2H promoted cell differentiation with enhanced MyHC immunostaining as well as increased expression of the myogenic marker genes myogenin (Myog), Mef2a, and Mef2c during myoblast differentiation. Additional assays indicated that lnc-GD2H interacted with NACA which plays a role of transcriptional regulation in myoblast differentiation, and the enrichment of NACA at the Myog promoter was impaired by lnc-GD2H. Furthermore, inhibition of lnc-GD2H impaired muscle regeneration after CTX-induced injury in mice. lnc-GD2H facilitated the expression of proliferating marker genes and formed a feedback loop with c-Myc during myoblast proliferation. In differentiating myoblasts, lnc-GD2H interacted with NACA to relieve the inhibitory effect of NACA on Myog, facilitating Myog expression to promote differentiation. The results provide evidence for the role of lncRNAs in muscle regeneration and are useful for developing novel therapeutic targets for muscle disorders.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
139
|
Hass R, von der Ohe J, Dittmar T. Hybrid Formation and Fusion of Cancer Cells In Vitro and In Vivo. Cancers (Basel) 2021; 13:4496. [PMID: 34503305 PMCID: PMC8431460 DOI: 10.3390/cancers13174496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of cancer hybrid cells by intra-tumoral cell fusion opens new avenues for tumor plasticity to develop cancer stem cells with altered properties, to escape from immune surveillance, to change metastatic behavior, and to broaden drug responsiveness/resistance. Genomic instability and chromosomal rearrangements in bi- or multinucleated aneuploid cancer hybrid cells contribute to these new functions. However, the significance of cell fusion in tumorigenesis is controversial with respect to the low frequency of cancer cell fusion events and a clonal advantage of surviving cancer hybrid cells following a post-hybrid selection process. This review highlights alternative processes of cancer hybrid cell development such as entosis, emperipolesis, cannibalism, therapy-induced polyploidization/endoreduplication, horizontal or lateral gene transfer, and focusses on the predominant mechanisms of cell fusion. Based upon new properties of cancer hybrid cells the arising clinical consequences of the subsequent tumor heterogeneity after cancer cell fusion represent a major therapeutic challenge.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Dittmar
- Institute of Immunology, Center of Biomedical Education and Research (ZABF), Witten/Herdecke University, 58448 Witten, Germany
| |
Collapse
|
140
|
Ng DCH, Ho UY, Grounds MD. Cilia, Centrosomes and Skeletal Muscle. Int J Mol Sci 2021; 22:9605. [PMID: 34502512 PMCID: PMC8431768 DOI: 10.3390/ijms22179605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are non-motile, cell cycle-associated organelles that can be found on most vertebrate cell types. Comprised of microtubule bundles organised into an axoneme and anchored by a mature centriole or basal body, primary cilia are dynamic signalling platforms that are intimately involved in cellular responses to their extracellular milieu. Defects in ciliogenesis or dysfunction in cilia signalling underlie a host of developmental disorders collectively referred to as ciliopathies, reinforcing important roles for cilia in human health. Whilst primary cilia have long been recognised to be present in striated muscle, their role in muscle is not well understood. However, recent studies indicate important contributions, particularly in skeletal muscle, that have to date remained underappreciated. Here, we explore recent revelations that the sensory and signalling functions of cilia on muscle progenitors regulate cell cycle progression, trigger differentiation and maintain a commitment to myogenesis. Cilia disassembly is initiated during myoblast fusion. However, the remnants of primary cilia persist in multi-nucleated myotubes, and we discuss their potential role in late-stage differentiation and myofiber formation. Reciprocal interactions between cilia and the extracellular matrix (ECM) microenvironment described for other tissues may also inform on parallel interactions in skeletal muscle. We also discuss emerging evidence that cilia on fibroblasts/fibro-adipogenic progenitors and myofibroblasts may influence cell fate in both a cell autonomous and non-autonomous manner with critical consequences for skeletal muscle ageing and repair in response to injury and disease. This review addresses the enigmatic but emerging role of primary cilia in satellite cells in myoblasts and myofibers during myogenesis, as well as the wider tissue microenvironment required for skeletal muscle formation and homeostasis.
Collapse
Affiliation(s)
- Dominic C. H. Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Uda Y. Ho
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Miranda D. Grounds
- School of Human Sciences, Faculty of Medicine, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
141
|
Genome-Wide Association Study Based on Random Regression Model Reveals Candidate Genes Associated with Longitudinal Data in Chinese Simmental Beef Cattle. Animals (Basel) 2021; 11:ani11092524. [PMID: 34573489 PMCID: PMC8470172 DOI: 10.3390/ani11092524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Genome-wide association study (GWAS) has become the main approach for detecting functional genes that affects complex traits. For growth traits, the conventional GWAS method can only deal with the single-record traits observed at specific time points, rather than the longitudinal traits measured at multiple time points. Previous studies have reported the random regression model (RRM) for longitudinal data could overcome the limitation of the traditional GWAS model. Here, we present an association analysis based on RRM (GWAS-RRM) for 808 Chinese Simmental beef cattle at four stages of age. Ultimately, 37 significant single-nucleotide polymorphisms (SNPs) and several important candidate genes were screened to be associated with the body weight. Enrichment analysis showed these genes were significantly enriched in the signaling transduction pathway and lipid metabolism. This study not only offers a further understanding of the genetic basis for growth traits in beef cattle, but also provides a robust analytics tool for longitudinal traits in various species. Abstract Body weight (BW) is an important longitudinal trait that directly described the growth gain of bovine in production. However, previous genome-wide association study (GWAS) mainly focused on the single-record traits, with less attention paid to longitudinal traits. Compared with traditional GWAS models, the association studies based on the random regression model (GWAS-RRM) have better performance in the control of the false positive rate through considering time-stage effects. In this study, the BW trait data were collected from 808 Chinese Simmental beef cattle aged 0, 6, 12, and 18 months, then we performed a GWAS-RRM to fit the time-varied SNP effect. The results showed a total of 37 significant SNPs were associated with BW. Gene functional annotation and enrichment analysis indicated FGF4, ANGPT4, PLA2G4A, and ITGA5 were promising candidate genes for BW. Moreover, these genes were significantly enriched in the signaling transduction pathway and lipid metabolism. These findings will provide prior molecular information for bovine gene-based selection, as well as facilitate the extensive application of GWAS-RRM in domestic animals.
Collapse
|
142
|
Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis. PLoS Genet 2021; 17:e1009729. [PMID: 34370738 PMCID: PMC8376015 DOI: 10.1371/journal.pgen.1009729] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
Muscle precursor cells known as myoblasts are essential for muscle development and regeneration. Notch signaling is an ancient intercellular communication mechanism that plays prominent roles in controlling the myogenic program of myoblasts. Currently whether and how the myogenic cues feedback to refine Notch activities in these cells are largely unknown. Here, by mouse and human gene gain/loss-of-function studies, we report that MyoD directly turns on the expression of Notch-ligand gene Dll1 which activates Notch pathway to prevent precautious differentiation in neighboring myoblasts, while autonomously inhibits Notch to facilitate a myogenic program in Dll1 expressing cells. Mechanistically, we studied cis-regulatory DNA motifs underlying the MyoD-Dll1-Notch axis in vivo by characterizing myogenesis of a novel E-box deficient mouse model, as well as in human cells through CRISPR-mediated interference. These results uncovered the crucial transcriptional mechanism that mediates the reciprocal controls of Notch and myogenesis.
Collapse
|
143
|
Zheng H, Talukder A, Li X, Hu H. A systematic evaluation of the computational tools for lncRNA identification. Brief Bioinform 2021; 22:6343529. [PMID: 34368833 DOI: 10.1093/bib/bbab285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
The computational identification of long non-coding RNAs (lncRNAs) is important to study lncRNAs and their functions. Despite the existence of many computation tools for lncRNA identification, to our knowledge, there is no systematic evaluation of these tools on common datasets and no consensus regarding their performance and the importance of the features used. To fill this gap, in this study, we assessed the performance of 17 tools on several common datasets. We also investigated the importance of the features used by the tools. We found that the deep learning-based tools have the best performance in terms of identifying lncRNAs, and the peptide features do not contribute much to the tool accuracy. Moreover, when the transcripts in a cell type were considered, the performance of all tools significantly dropped, and the deep learning-based tools were no longer as good as other tools. Our study will serve as an excellent starting point for selecting tools and features for lncRNA identification.
Collapse
Affiliation(s)
- Hansi Zheng
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Amlan Talukder
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Xiaoman Li
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, USA
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
144
|
Kong X, Wang X, Li M, Song W, Huang K, Zhang F, Zhang Q, Qi J, He Y. Establishment of myoblast cell line and identification of key genes regulating myoblast differentiation in a marine teleost, Sebastes schlegelii. Gene 2021; 802:145869. [PMID: 34352298 DOI: 10.1016/j.gene.2021.145869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 01/06/2023]
Abstract
Skeletal myoblasts are activated satellite cells capable of proliferation and differentiation. Studies on mammalian myoblast differentiation and myogenesis could be carried out in vitro thanks to the availability of mouse myoblast cell line C2C12. Lacking of muscle cell line hinders the studies of teleost fish myogenesis. Here, we established a continuous skeletal muscle cell line from juvenile rockfish (Sebastes schlegelii) muscle using explant method and subcultured more than 50 passages for over 150 days. Stable expression of myoblast-specific marker, MyoD (myoblast determination protein) and the potential of differentiation into multi-nucleated skeletal myotubes upon induction suggested the cell line were predominately composed of myoblasts. Transcriptome analysis revealed a total of 4375 genes differentially expressed at four time points after the switch to differentiation medium, which were mainly involved in proliferation and differentiation of myoblasts. KIF22 (kinesin family member 22) and POLA1 (DNA polymerase alpha 1) were identified as the key genes involved in fish myoblast proliferation whereas MYL3 (myosin light chain 3) and TNNT2 (troponin T2) were determined as the crucial genes responsible for differentiation. In all, the continuous myoblasts cultured in this study provided a cell platform for future studies on marine fish myoblast differentiation and myogenesis. The molecular process of myoblast differentiation revealed in this study will open a window into the understanding of indeterminate muscle growth of large teleost.
Collapse
Affiliation(s)
- Xiangfu Kong
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuangang Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Moli Li
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weihao Song
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Kejia Huang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fengyan Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Quanqi Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Jie Qi
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yan He
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
145
|
McCormack NM, Villalón E, Viollet C, Soltis AR, Dalgard CL, Lorson CL, Burnett BG. Survival motor neuron deficiency slows myoblast fusion through reduced myomaker and myomixer expression. J Cachexia Sarcopenia Muscle 2021; 12:1098-1116. [PMID: 34115448 PMCID: PMC8350220 DOI: 10.1002/jcsm.12740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy is an inherited neurodegenerative disease caused by insufficient levels of the survival motor neuron (SMN) protein. Recently approved treatments aimed at increasing SMN protein levels have dramatically improved patient survival and have altered the disease landscape. While restoring SMN levels slows motor neuron loss, many patients continue to have smaller muscles and do not achieve normal motor milestones. While timing of treatment is important, it remains unclear why SMN restoration is insufficient to fully restore muscle size and function. We and others have shown that SMN-deficient muscle precursor cells fail to efficiently fuse into myotubes. However, the role of SMN in myoblast fusion is not known. METHODS In this study, we show that SMN-deficient myoblasts readily fuse with wild-type myoblasts, demonstrating fusion competency. Conditioned media from wild type differentiating myoblasts do not rescue the fusion deficit of SMN-deficient cells, suggesting that compromised fusion may primarily be a result of altered membrane dynamics at the cell surface. Transcriptome profiling of skeletal muscle from SMN-deficient mice revealed altered expression of cell surface fusion molecules. Finally, using cell and mouse models, we investigate if myoblast fusion can be rescued in SMN-deficient myoblast and improve the muscle pathology in SMA mice. RESULTS We found reduced expression of the muscle fusion proteins myomaker (P = 0.0060) and myomixer (P = 0.0051) in the muscle of SMA mice. Suppressing SMN expression in C2C12 myoblast cells reduces expression of myomaker (35% reduction; P < 0.0001) and myomixer, also known as myomerger and minion, (30% reduction; P < 0.0001) and restoring SMN levels only partially restores myomaker and myomixer expression. Ectopic expression of myomixer improves myofibre number (55% increase; P = 0.0006) and motor function (35% decrease in righting time; P = 0.0089) in SMA model mice and enhances motor function (82% decrease in righting time; P < 0.0001) and extends survival (28% increase; P < 0.01) when administered in combination with an antisense oligonucleotide that increases SMN protein levels. CONCLUSIONS Here, we identified reduced expression of muscle fusion proteins as a key factor in the fusion deficits of SMN-deficient myoblasts. This discovery provides a novel target to improve SMA muscle pathology and motor function, which in combination with SMN increasing therapy could enhance clinical outcomes for SMA patients.
Collapse
Affiliation(s)
- Nikki M McCormack
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Eric Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Coralie Viollet
- Collaborative Health Initiative Research Program, Uniformed Services University of the Heath Sciences, Bethesda, MD, USA
| | - Anthony R Soltis
- Collaborative Health Initiative Research Program, Uniformed Services University of the Heath Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA.,Collaborative Health Initiative Research Program, Uniformed Services University of the Heath Sciences, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, USA
| |
Collapse
|
146
|
Andjus S, Morillon A, Wery M. From Yeast to Mammals, the Nonsense-Mediated mRNA Decay as a Master Regulator of Long Non-Coding RNAs Functional Trajectory. Noncoding RNA 2021; 7:ncrna7030044. [PMID: 34449682 PMCID: PMC8395947 DOI: 10.3390/ncrna7030044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
The Nonsense-Mediated mRNA Decay (NMD) has been classically viewed as a translation-dependent RNA surveillance pathway degrading aberrant mRNAs containing premature stop codons. However, it is now clear that mRNA quality control represents only one face of the multiple functions of NMD. Indeed, NMD also regulates the physiological expression of normal mRNAs, and more surprisingly, of long non-coding (lnc)RNAs. Here, we review the different mechanisms of NMD activation in yeast and mammals, and we discuss the molecular bases of the NMD sensitivity of lncRNAs, considering the functional roles of NMD and of translation in the metabolism of these transcripts. In this regard, we describe several examples of functional micropeptides produced from lncRNAs. We propose that translation and NMD provide potent means to regulate the expression of lncRNAs, which might be critical for the cell to respond to environmental changes.
Collapse
Affiliation(s)
- Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France;
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| |
Collapse
|
147
|
Zhao S, Meng J, Luan Y. LncRNA-Encoded Short Peptides Identification Using Feature Subset Recombination and Ensemble Learning. Interdiscip Sci 2021; 14:101-112. [PMID: 34304369 DOI: 10.1007/s12539-021-00464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/28/2022]
Abstract
Long non-coding RNA (lncRNA), which is a type of non-coding RNA, was reported to contain short open reading frames (sORFs). SORFs-encoded short peptides (SEPs) have been demonstrated to play a crucial role in regulating the biological processes such as growth, development, and resistance response. The identification of SEPs is vital to further understanding their function. However, there is still a lack of methods for identifying SEPs effectively and rapidly. In this study, a novel method for lncRNA-encoded short peptides identification based on feature subset recombination and ensemble learning, lncPepid, is developed. lncPepid transforms the data of Zea mays and Arabidopsis thaliana into hybrid features from two aspects including sequence composition and physicochemical properties separately. It optimizes hybrid features by proposing a novel weighted iteration-based feature selection method to recombine a stable subset that characterizes SEPs effectively. Different classification models with different optimized features are constructed and tested separately. The outputs of the optimal models are integrated for ensemble classification to improve efficiency. Experimental results manifest that the geometric mean of sensitivity and specificity of lncPepid is about 70% on the identification of functional SEPs derived from multiple species. It is an effective and rapid method for the identification of lncRNA-encoded short peptides. This study can be extended to the research on SEPs from other species and have crucial implications for further findings and studies of functional genomics.
Collapse
Affiliation(s)
- Siyuan Zhao
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
148
|
Sharma T, Robinson DCL, Witwicka H, Dilworth FJ, Imbalzano AN. The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation. Nucleic Acids Res 2021; 49:8060-8077. [PMID: 34289068 PMCID: PMC8373147 DOI: 10.1093/nar/gkab617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration is mediated by myoblasts that undergo epigenomic changes to establish the gene expression program of differentiated myofibers. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors to establish the epigenome of differentiated myofibers. Bromodomains bind to acetylated lysines on histone N-terminal tails and other proteins. The mutually exclusive ATPases of mSWI/SNF complexes, BRG1 and BRM, contain bromodomains with undefined functional importance in skeletal muscle differentiation. Pharmacological inhibition of mSWI/SNF bromodomain function using the small molecule PFI-3 reduced differentiation in cell culture and in vivo through decreased myogenic gene expression, while increasing cell cycle-related gene expression and the number of cells remaining in the cell cycle. Comparative gene expression analysis with data from myoblasts depleted of BRG1 or BRM showed that bromodomain function was required for a subset of BRG1- and BRM-dependent gene expression. Reduced binding of BRG1 and BRM after PFI-3 treatment showed that the bromodomain is required for stable chromatin binding at target gene promoters to alter gene expression. Our findings demonstrate that mSWI/SNF ATPase bromodomains permit stable binding of the mSWI/SNF ATPases to promoters required for cell cycle exit and establishment of muscle-specific gene expression.
Collapse
Affiliation(s)
- Tapan Sharma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel C L Robinson
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hanna Witwicka
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
149
|
Abstract
Fertilization is a multistep process that culminates in the fusion of sperm and egg, thus marking the beginning of a new organism in sexually reproducing species. Despite its importance for reproduction, the molecular mechanisms that regulate this singular event, particularly sperm-egg fusion, have remained mysterious for many decades. Here, we summarize our current molecular understanding of sperm-egg interaction, focusing mainly on mammalian fertilization. Given the fundamental importance of sperm-egg fusion yet the lack of knowledge of this process in vertebrates, we discuss hallmarks and emerging themes of cell fusion by drawing from well-studied examples such as viral entry, placenta formation, and muscle development. We conclude by identifying open questions and exciting avenues for future studies in gamete fusion. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria E Deneke
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| |
Collapse
|
150
|
Guerra-Almeida D, Tschoeke DA, da-Fonseca RN. Understanding small ORF diversity through a comprehensive transcription feature classification. DNA Res 2021; 28:6317669. [PMID: 34240112 PMCID: PMC8435553 DOI: 10.1093/dnares/dsab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Small open reading frames (small ORFs/sORFs/smORFs) are potentially coding sequences smaller than 100 codons that have historically been considered junk DNA by gene prediction software and in annotation screening; however, the advent of next-generation sequencing has contributed to the deeper investigation of junk DNA regions and their transcription products, resulting in the emergence of smORFs as a new focus of interest in systems biology. Several smORF peptides were recently reported in noncanonical mRNAs as new players in numerous biological contexts; however, their relevance is still overlooked in coding potential analysis. Hence, this review proposes a smORF classification based on transcriptional features, discussing the most promising approaches to investigate smORFs based on their different characteristics. First, smORFs were divided into nonexpressed (intergenic) and expressed (genic) smORFs. Second, genic smORFs were classified as smORFs located in noncoding RNAs (ncRNAs) or canonical mRNAs. Finally, smORFs in ncRNAs were further subdivided into sequences located in small or long RNAs, whereas smORFs located in canonical mRNAs were subdivided into several specific classes depending on their localization along the gene. We hope that this review provides new insights into large-scale annotations and reinforces the role of smORFs as essential components of a hidden coding DNA world.
Collapse
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Antonio Tschoeke
- Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes- da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|