101
|
Nishikawa K, Noguchi T, Kikuchi S, Maruyama T, Araki Y, Yotsu-Yamashita M, Morimoto Y. Tetrodotoxin Framework Construction from Linear Substrates Utilizing a Hg(OTf)2-Catalyzed Cycloisomerization Reaction: Synthesis of the Unnatural Analogue 11-nor-6,7,8-Trideoxytetrodotoxin. Org Lett 2021; 23:1703-1708. [DOI: 10.1021/acs.orglett.1c00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Keisuke Nishikawa
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Takayuki Noguchi
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Seiho Kikuchi
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Takahiro Maruyama
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Yusuke Araki
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Yoshiki Morimoto
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, Osaka 558-8585, Japan
| |
Collapse
|
102
|
Gao S, Yan N. Structural Basis of the Modulation of the Voltage‐Gated Calcium Ion Channel Ca
v
1.1 by Dihydropyridine Compounds**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuai Gao
- Department of Molecular Biology Princeton University Princeton NJ 08544 USA
| | - Nieng Yan
- Department of Molecular Biology Princeton University Princeton NJ 08544 USA
| |
Collapse
|
103
|
Gao S, Yan N. Structural Basis of the Modulation of the Voltage-Gated Calcium Ion Channel Ca v 1.1 by Dihydropyridine Compounds*. Angew Chem Int Ed Engl 2021; 60:3131-3137. [PMID: 33125829 PMCID: PMC7898392 DOI: 10.1002/anie.202011793] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2020] [Indexed: 12/29/2022]
Abstract
1,4-Dihydropyridines (DHP), the most commonly used antihypertensives, function by inhibiting the L-type voltage-gated Ca2+ (Cav ) channels. DHP compounds exhibit chirality-specific antagonistic or agonistic effects. The structure of rabbit Cav 1.1 bound to an achiral drug nifedipine reveals the general binding mode for DHP drugs, but the molecular basis for chiral specificity remained elusive. Herein, we report five cryo-EM structures of nanodisc-embedded Cav 1.1 in the presence of the bestselling drug amlodipine, a DHP antagonist (R)-(+)-Bay K8644, and a titration of its agonistic enantiomer (S)-(-)-Bay K8644 at resolutions of 2.9-3.4 Å. The amlodipine-bound structure reveals the molecular basis for the high efficacy of the drug. All structures with the addition of the Bay K8644 enantiomers exhibit similar inactivated conformations, suggesting that (S)-(-)-Bay K8644, when acting as an agonist, is insufficient to lock the activated state of the channel for a prolonged duration.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/chemistry
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/metabolism
- Amlodipine/chemistry
- Amlodipine/metabolism
- Binding Sites
- Calcium Channel Agonists/chemistry
- Calcium Channel Agonists/metabolism
- Calcium Channel Blockers/chemistry
- Calcium Channel Blockers/metabolism
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/metabolism
- Cryoelectron Microscopy
- Dihydropyridines/chemistry
- Dihydropyridines/metabolism
- Molecular Dynamics Simulation
- Nanostructures/chemistry
- Protein Structure, Tertiary
- Stereoisomerism
Collapse
Affiliation(s)
- Shuai Gao
- Department of Molecular BiologyPrinceton UniversityPrincetonNJ08544USA
| | - Nieng Yan
- Department of Molecular BiologyPrinceton UniversityPrincetonNJ08544USA
| |
Collapse
|
104
|
Sodium ion channels as potential therapeutic targets for cancer metastasis. Drug Discov Today 2021; 26:1136-1147. [PMID: 33545383 DOI: 10.1016/j.drudis.2021.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Is it possible to develop drugs for the treatment of a specific type of metastatic cancer by targeting sodium ion channels?
Collapse
|
105
|
Cardoso FC, Castro J, Grundy L, Schober G, Garcia-Caraballo S, Zhao T, Herzig V, King GF, Brierley SM, Lewis RJ. A spider-venom peptide with multitarget activity on sodium and calcium channels alleviates chronic visceral pain in a model of irritable bowel syndrome. Pain 2021; 162:569-581. [PMID: 32826759 DOI: 10.1097/j.pain.0000000000002041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT Chronic pain is a serious debilitating condition that affects ∼20% of the world's population. Currently available drugs fail to produce effective pain relief in many patients and have dose-limiting side effects. Several voltage-gated sodium (NaV) and calcium (CaV) channels are implicated in the etiology of chronic pain, particularly NaV1.1, NaV1.3, NaV1.7-NaV1.9, CaV2.2, and CaV3.2. Numerous NaV and CaV modulators have been described, but with few exceptions, they display poor potency and/or selectivity for pain-related channel subtypes. Here, we report the discovery and characterization of 2 novel tarantula-venom peptides (Tap1a and Tap2a) isolated from Theraphosa apophysis venom that modulate the activity of both NaV and CaV3 channels. Tap1a and Tap2a inhibited on-target NaV and CaV3 channels at nanomolar to micromolar concentrations and displayed moderate off-target selectivity for NaV1.6 and weak affinity for NaV1.4 and NaV1.5. The most potent inhibitor, Tap1a, nearly ablated neuronal mechanosensitivity in afferent fibers innervating the colon and the bladder, with in vivo intracolonic administration reversing colonic mechanical hypersensitivity in a mouse model of irritable bowel syndrome. These findings suggest that targeting a specific combination of NaV and CaV3 subtypes provides a novel route for treatment of chronic visceral pain.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Tianjiao Zhao
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Volker Herzig
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Glenn F King
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
106
|
Sula A, Hollingworth D, Ng LCT, Larmore M, DeCaen PG, Wallace BA. A tamoxifen receptor within a voltage-gated sodium channel. Mol Cell 2021; 81:1160-1169.e5. [PMID: 33503406 PMCID: PMC7980221 DOI: 10.1016/j.molcel.2020.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Voltage-gated sodium channels are targets for many analgesic and antiepileptic drugs whose therapeutic mechanisms and binding sites have been well characterized. We describe the identification of a previously unidentified receptor site within the NavMs voltage-gated sodium channel. Tamoxifen, an estrogen receptor modulator, and its primary and secondary metabolic products bind at the intracellular exit of the channel, which is a site that is distinct from other previously characterized sodium channel drug sites. These compounds inhibit NavMs and human sodium channels with similar potencies and prevent sodium conductance by delaying channel recovery from the inactivated state. This study therefore not only describes the structure and pharmacology of a site that could be leveraged for the development of new drugs for the treatment of sodium channelopathies but may also have important implications for off-target health effects of this widely used therapeutic drug.
Collapse
Affiliation(s)
- Altin Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - David Hollingworth
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Leo C T Ng
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Megan Larmore
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul G DeCaen
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
107
|
Eagles DA, Chow CY, King GF. Fifteen years of Na
V
1.7 channels as an analgesic target: Why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br J Pharmacol 2020; 179:3592-3611. [DOI: 10.1111/bph.15327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- David A. Eagles
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Glenn F. King
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| |
Collapse
|
108
|
Wang L, Lin L, Wang H, Duan W, Li F, Zhang K, Cao P, Yuchi Z, Wu S. Two classic mutations in the linker-helix IIL45 and segment IIS6 of Apolygus lucorum sodium channel confer pyrethroid resistance. PEST MANAGEMENT SCIENCE 2020; 76:3954-3964. [PMID: 32506650 DOI: 10.1002/ps.5944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pyrethroids are classified as type I and type II for distinct symptomology. Voltage-gated sodium channel is a primary target of pyrethroids. Mutations of the insect sodium channel have been identified to result in resistance to pyrethroids. Double mutation (L1002 F/M906 I) was detected in field-strain of Apolygus lucorum (Meyer-Dür). Although, it was illuminated the function of the same position mutation in other pests, it is necessary to demonstrate the role in A. lucorum . RESULTS In this study, we examined the effects of mutations on channel gating and pyrethroid sensitivity in Xenopus oocytes. L1002 F, M906 I and L1002 F/M906 I all shifted the voltage dependence of activation in the depolarizing direction. L1002 F, M906 I and L1002 F/M906 I all reduced the amplitude of tail currents induced by type I (bifenthrin and permethrin) and type II (λ-cyhalothrin and deltamethrin). The double mutation, L1002 F/M906 I, reduced integral channel modification by 10-fold compared with the L1002 F and M906 I mutations alone, respectively. Computational analysis based on the model of dual pyrethroid receptors, the two resistance mutations, L1002 F and M906 I are facing two opposite sides of this newly identified pocket. Both mutations affect the optimal binding of the ligands by changing the shape of the pocket but in different ways. CONCLUSION Our results illustrate the distinct effect of mutations on pyrethroids. It is predicted with computer modeling that these mutations allosterically affect pyrethroid binding. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Likui Wang
- Hainan University, Ministry of Education, Haikou, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Hao Wang
- Hainan University, Ministry of Education, Haikou, China
| | - Wenbo Duan
- Hainan University, Ministry of Education, Haikou, China
| | - Fen Li
- Hainan University, Ministry of Education, Haikou, China
| | - Kun Zhang
- Hainan University, Ministry of Education, Haikou, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shaoying Wu
- Hainan University, Ministry of Education, Haikou, China
| |
Collapse
|
109
|
Li T, Wu K, Yue Z, Wang Y, Zhang F, Shen H. Structural Basis for the Modulation of Human KCNQ4 by Small-Molecule Drugs. Mol Cell 2020; 81:25-37.e4. [PMID: 33238160 DOI: 10.1016/j.molcel.2020.10.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Among the five KCNQ channels, also known as the Kv7 voltage-gated potassium (Kv) channels, KCNQ2-KCNQ5 control neuronal excitability. Dysfunctions of KCNQ2-KCNQ5 are associated with neurological disorders such as epilepsy, deafness, and neuropathic pain. Here, we report the cryoelectron microscopy (cryo-EM) structures of human KCNQ4 and its complexes with the opener retigabine or the blocker linopirdine at overall resolutions of 2.5, 3.1, and 3.3 Å, respectively. In all structures, a phosphatidylinositol 4,5-bisphosphate (PIP2) molecule inserts its head group into a cavity within each voltage-sensing domain (VSD), revealing an unobserved binding mode for PIP2. Retigabine nestles in each fenestration, inducing local shifts. Instead of staying within the central pore, linopirdine resides in a cytosolic cavity underneath the inner gate. Electrophysiological analyses of various mutants corroborated the structural observations. Our studies reveal the molecular basis for the modulatory mechanism of neuronal KCNQ channels and provide a framework for structure-facilitated drug discovery targeting these important channels.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Kun Wu
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhenlei Yue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yifei Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Fan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Huaizong Shen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
110
|
Xie J, Ke M, Xu L, Lin S, Huang J, Zhang J, Yang F, Wu J, Yan Z. Structure of the human sodium leak channel NALCN in complex with FAM155A. Nat Commun 2020; 11:5831. [PMID: 33203861 PMCID: PMC7672056 DOI: 10.1038/s41467-020-19667-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
NALCN, a sodium leak channel expressed mainly in the central nervous system, is responsible for the resting Na+ permeability that controls neuronal excitability. Dysfunctions of the NALCN channelosome, NALCN with several auxiliary subunits, are associated with a variety of human diseases. Here, we report the cryo-EM structure of human NALCN in complex with FAM155A at an overall resolution of 3.1 angstroms. FAM155A forms extensive interactions with the extracellular loops of NALCN that may help stabilize NALCN in the membrane. A Na+ ion-binding site, reminiscent of a Ca2+ binding site in Cav channels, is identified in the unique EEKE selectivity filter. Despite its 'leaky' nature, the channel is closed and the intracellular gate is sealed by S6I, II-III linker and III-IV linker. Our study establishes the molecular basis of Na+ permeation and voltage sensitivity, and provides important clues to the mechanistic understanding of NALCN regulation and NALCN channelosome-related diseases.
Collapse
Affiliation(s)
- Jiongfang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Meng Ke
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Lizhen Xu
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Shiyi Lin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jin Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jiabei Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
111
|
Whitelaw BL, Cooke IR, Finn J, da Fonseca RR, Ritschard EA, Gilbert MTP, Simakov O, Strugnell JM. Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss. Gigascience 2020; 9:giaa120. [PMID: 33175168 PMCID: PMC7656900 DOI: 10.1093/gigascience/giaa120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 10/06/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cephalopods represent a rich system for investigating the genetic basis underlying organismal novelties. This diverse group of specialized predators has evolved many adaptations including proteinaceous venom. Of particular interest is the blue-ringed octopus genus (Hapalochlaena), which are the only octopods known to store large quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland. FINDINGS To reveal genomic correlates of organismal novelties, we conducted a comparative study of 3 octopod genomes, including the Southern blue-ringed octopus (Hapalochlaena maculosa). We present the genome of this species and reveal highly dynamic evolutionary patterns at both non-coding and coding organizational levels. Gene family expansions previously reported in Octopus bimaculoides (e.g., zinc finger and cadherins, both associated with neural functions), as well as formation of novel gene families, dominate the genomic landscape in all octopods. Examination of tissue-specific genes in the posterior salivary gland revealed that expression was dominated by serine proteases in non-tetrodotoxin-bearing octopods, while this family was a minor component in H. maculosa. Moreover, voltage-gated sodium channels in H. maculosa contain a resistance mutation found in pufferfish and garter snakes, which is exclusive to the genus. Analysis of the posterior salivary gland microbiome revealed a diverse array of bacterial species, including genera that can produce tetrodotoxin, suggestive of a possible production source. CONCLUSIONS We present the first tetrodotoxin-bearing octopod genome H. maculosa, which displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other recently published cephalopod genomes, represents a valuable resource from which future work could advance our understanding of the evolution of genomic novelty in this family.
Collapse
Affiliation(s)
- Brooke L Whitelaw
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Dr, Douglas QLD 4811 , Australia
- Sciences, Museum Victoria, 11 Nicholson St, Carlton, Victoria 3053, Australia
| | - Ira R Cooke
- College of Public Health, Medical and Vet Sciences, James Cook University,1 James Cook Dr, Douglas QLD 4811 , Australia
- La Trobe Institute of Molecular Science, La Trobe University, Plenty Rd &, Kingsbury Dr, Bundoora, Melbourne, Victoria 3086, Australia
| | - Julian Finn
- Sciences, Museum Victoria, 11 Nicholson St, Carlton, Victoria 3053, Australia
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate (CMEC), GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Elena A Ritschard
- Department of Neurosciences and Developmental Biology, University of Vienna,Universitätsring 1, 1010 Wien, Vienna, Austria
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - M T P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna,Universitätsring 1, 1010 Wien, Vienna, Austria
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Dr, Douglas QLD 4811 , Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Plenty Rd &, Kingsbury Dr, Bundoora, Melbourne, Victoria 3086, Australia
| |
Collapse
|
112
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
113
|
Toffano AA, Chiarot G, Zamuner S, Marchi M, Salvi E, Waxman SG, Faber CG, Lauria G, Giacometti A, Simeoni M. Computational pipeline to probe NaV1.7 gain-of-function variants in neuropathic painful syndromes. Sci Rep 2020; 10:17930. [PMID: 33087732 PMCID: PMC7578092 DOI: 10.1038/s41598-020-74591-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 01/09/2023] Open
Abstract
Applications of machine learning and graph theory techniques to neuroscience have witnessed an increased interest in the last decade due to the large data availability and unprecedented technology developments. Their employment to investigate the effect of mutational changes in genes encoding for proteins modulating the membrane of excitable cells, whose biological correlates are assessed at electrophysiological level, could provide useful predictive clues. We apply this concept to the analysis of variants in sodium channel NaV1.7 subunit found in patients with chronic painful syndromes, by the implementation of a dedicated computational pipeline empowering different and complementary techniques including homology modeling, network theory, and machine learning. By testing three templates of different origin and sequence identities, we provide an optimal condition for its use. Our findings reveal the usefulness of our computational pipeline in supporting the selection of candidates for cell electrophysiology assay and with potential clinical applications.
Collapse
Affiliation(s)
- Alberto A Toffano
- Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca' Foscari Venezia, Venezia-Mestre, Italy
| | - Giacomo Chiarot
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Universitá Ca' Foscari Venezia, Venezia-Mestre, Italy
| | - Stefano Zamuner
- Laboratory of Statistical Biophysics, Institute of Physics, School of Basic Sciences, Ècole Polytechnique Fèdèrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System and Yale Medical School, West Haven, USA
| | - Catharina G Faber
- MHeNs school for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Achille Giacometti
- Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca' Foscari Venezia, Venezia-Mestre, Italy.,European Centre for Living Technology (ECLT), Venice, Italy
| | - Marta Simeoni
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Universitá Ca' Foscari Venezia, Venezia-Mestre, Italy. .,European Centre for Living Technology (ECLT), Venice, Italy.
| |
Collapse
|
114
|
Peschel A, Cardoso FC, Walker AA, Durek T, Stone MRL, Braga Emidio N, Dawson PE, Muttenthaler M, King GF. Two for the Price of One: Heterobivalent Ligand Design Targeting Two Binding Sites on Voltage-Gated Sodium Channels Slows Ligand Dissociation and Enhances Potency. J Med Chem 2020; 63:12773-12785. [PMID: 33078946 PMCID: PMC7667638 DOI: 10.1021/acs.jmedchem.0c01107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Voltage-gated
sodium (NaV) channels are pore-forming
transmembrane proteins that play essential roles in excitable cells,
and they are key targets for antiepileptic, antiarrhythmic, and analgesic
drugs. We implemented a heterobivalent design strategy to modulate
the potency, selectivity, and binding kinetics of NaV channel
ligands. We conjugated μ-conotoxin KIIIA, which occludes the
pore of the NaV channels, to an analogue of huwentoxin-IV,
a spider-venom peptide that allosterically modulates channel gating.
Bioorthogonal hydrazide and copper-assisted azide–alkyne cycloaddition
conjugation chemistries were employed to generate heterobivalent ligands
using polyethylene glycol linkers spanning 40–120 Å. The
ligand with an 80 Å linker had the most pronounced bivalent effects,
with a significantly slower dissociation rate and 4–24-fold
higher potency compared to those of the monovalent peptides for the
human NaV1.4 channel. This study highlights the power of
heterobivalent ligand design and expands the repertoire of pharmacological
probes for exploring the function of NaV channels.
Collapse
Affiliation(s)
- Alicia Peschel
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - M Rhia L Stone
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
115
|
Wu M, Lander GC. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Curr Opin Struct Biol 2020; 64:9-16. [PMID: 32599507 PMCID: PMC7666008 DOI: 10.1016/j.sbi.2020.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 12/26/2022]
Abstract
For decades, high-resolution structural studies of biological macromolecules with masses of <200kDa by cryo-EM single-particle analysis were considered infeasible. It was not until several years after the advent of direct detectors that the overlooked potential of cryo-EM for studying small complexes was first realized. Subsequent advances in sample preparation, imaging, and data processing algorithms have improved our ability to visualize small biological targets. In the past two years alone, nearly two hundred high-resolution structures have been determined of small (<200kDa) macromolecules, the smallest being approximately 39kDa in molecular weight. Here we summarize some salient lessons and strategies for cryo-EM studies of small biological complexes, and also consider future prospects for routine structure determination.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
116
|
Kudo Y, Hanifin CT, Kotaki Y, Yotsu-Yamashita M. Structures of N-Hydroxy-Type Tetrodotoxin Analogues and Bicyclic Guanidinium Compounds Found in Toxic Newts. JOURNAL OF NATURAL PRODUCTS 2020; 83:2706-2717. [PMID: 32896120 DOI: 10.1021/acs.jnatprod.0c00623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biosynthesis of tetrodotoxin (TTX, 1), a potent neurotoxin widely distributed in marine and terrestrial metazoans, remains unresolved. A significant issue has been identifying intermediates and shunt products associated with the biosynthetic pathway of TTX. We investigated TTX biosynthesis by screening and identifying new TTX-related compounds from Cynops ensicauda popei and Taricha granulosa. Mass spectrometry (MS)-guided screening identified two new N-hydroxy TTX analogues in newts: 1-hydroxy-8-epiTTX (2) and 1-hydroxy-8-epi-5,11-dideoxyTTX (3, previously reported as 1-hydroxy-5,11-dideoxyTTX). We prepared a new analogue, 8-epi-5,11-dideoxyTTX (4), from 3 via N-OH reduction and confirmed the presence of 4 in T. granulosa using hydrophilic interaction liquid chromatography (HILIC)-LCMS. The presence of 8-epi-type TTX analogues in both Cynops and Taricha supports a branched biosynthetic pathway of terrestrial TTX, which produces 6- and 8-epimers. In addition, new bicyclic guanidinium compounds Tgr-238 (5) and Tgr-240 (6) were identified as putative shunt products of our proposed TTX biosynthesis pathway. A structural analysis of Cep-228A (7), another bicyclic compound, was performed using NMR. Based on the structures of 5-7 and their analogues, we propose a model of the shunt and metabolic pathways of the terrestrial TTX biosynthesis.
Collapse
Affiliation(s)
- Yuta Kudo
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Charles T Hanifin
- Department of Biology, Utah State University, Uintah Basin Campus, 320 N. Aggie Boulevard (2000 W.), Vernal, Utah 84078, United States
| | - Yuichi Kotaki
- Fukushima College, 1-1 Chigoike Miyashiro, Fukushima 960-0181, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
117
|
Yoder N, Jalali-Yazdi F, Noreng S, Houser A, Baconguis I, Gouaux E. Light-coupled cryo-plunger for time-resolved cryo-EM. J Struct Biol 2020; 212:107624. [PMID: 32950604 DOI: 10.1016/j.jsb.2020.107624] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022]
Abstract
Proteins are dynamic molecules that can undergo rapid conformational rearrangements in response to stimuli. These structural changes are often critical to protein function, and thus elucidating time-dependent conformational landscapes has been a long-standing goal of structural biology. To harness the power of single particle cryo-EM methods to enable 'time-resolved' structure determination, we have developed a light-coupled cryo-plunger that pairs flash-photolysis of caged ligands with rapid sample vitrification. The 'flash-plunger' consists of a high-power ultraviolet LED coupled with focusing optics and a motorized linear actuator, enabling the user to immobilize protein targets in vitreous ice within a programmable time window - as short as tens of milliseconds - after stimulus delivery. The flash-plunger is a simple, inexpensive and flexible tool to explore short-lived conformational states previously unobtainable by conventional sample preparation methods.
Collapse
Affiliation(s)
- Nate Yoder
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Farzad Jalali-Yazdi
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sigrid Noreng
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexandra Houser
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Isabelle Baconguis
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
118
|
Pajouhesh H, Beckley JT, Delwig A, Hajare HS, Luu G, Monteleone D, Zhou X, Ligutti J, Amagasu S, Moyer BD, Yeomans DC, Du Bois J, Mulcahy JV. Discovery of a selective, state-independent inhibitor of Na V1.7 by modification of guanidinium toxins. Sci Rep 2020; 10:14791. [PMID: 32908170 PMCID: PMC7481244 DOI: 10.1038/s41598-020-71135-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.
Collapse
Affiliation(s)
- H Pajouhesh
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J T Beckley
- SiteOne Therapeutics, Bozeman, MT, 59715, USA
| | - A Delwig
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - H S Hajare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - G Luu
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - D Monteleone
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - X Zhou
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J Ligutti
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - S Amagasu
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - B D Moyer
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - D C Yeomans
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - J V Mulcahy
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA.
| |
Collapse
|
119
|
Robles-Gómez E, Benítez-Villalobos F, Soriano-García M, Antúnez-Argüelles E. Non-peptide molecules in the pedicellariae of Toxopneustes roseus. Toxicon 2020; 184:143-151. [DOI: 10.1016/j.toxicon.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022]
|
120
|
Gallo A, Boni R, Tosti E. Neurobiological activity of conotoxins via sodium channel modulation. Toxicon 2020; 187:47-56. [PMID: 32877656 DOI: 10.1016/j.toxicon.2020.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 08/22/2020] [Indexed: 01/02/2023]
Abstract
Conotoxins (CnTX) are bioactive peptides produced by marine molluscs belonging to Conus genus. The biochemical structure of these venomous peptides is characterized by a low number of amino acids linked with disulfide bonds formed by a high degree of post-translational modifications and glycosylation steps which increase the diversity and rate of evolution of these molecules. CnTX different isoforms are known to target ion channels and, in particular, voltage-gated sodium (Na+) channels (Nav channels). These are transmembrane proteins fundamental in excitable cells for generating the depolarization of plasma membrane potential known as action potential which propagates electrical signals in muscles and nerves for physiological functions. Disorders in Nav channel activity have been shown to induce neurological pathologies and pain states. Here, we describe the current knowledge of CnTX isoform modulation of the Nav channel activity, the mechanism of action and the potential therapeutic use of these toxins in counteracting neurological dysfunctions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Raffele Boni
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy.
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
121
|
Structure of the human sodium leak channel NALCN. Nature 2020; 587:313-318. [DOI: 10.1038/s41586-020-2570-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/02/2020] [Indexed: 01/17/2023]
|
122
|
Glazer AM, Wada Y, Li B, Muhammad A, Kalash OR, O'Neill MJ, Shields T, Hall L, Short L, Blair MA, Kroncke BM, Capra JA, Roden DM. High-Throughput Reclassification of SCN5A Variants. Am J Hum Genet 2020; 107:111-123. [PMID: 32533946 PMCID: PMC7332654 DOI: 10.1016/j.ajhg.2020.05.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Partial or complete loss-of-function variants in SCN5A are the most common genetic cause of the arrhythmia disorder Brugada syndrome (BrS1). However, the pathogenicity of SCN5A variants is often unknown or disputed; 80% of the 1,390 SCN5A missense variants observed in at least one individual to date are variants of uncertain significance (VUSs). The designation of VUS is a barrier to the use of sequence data in clinical care. We selected 83 variants: 10 previously studied control variants, 10 suspected benign variants, and 63 suspected Brugada syndrome-associated variants, selected on the basis of their frequency in the general population and in individuals with Brugada syndrome. We used high-throughput automated patch clamping to study the function of the 83 variants, with the goal of reclassifying variants with functional data. The ten previously studied controls had functional properties concordant with published manual patch clamp data. All 10 suspected benign variants had wild-type-like function. 22 suspected BrS variants had loss of channel function (<10% normalized peak current) and 22 variants had partial loss of function (10%-50% normalized peak current). The previously unstudied variants were initially classified as likely benign (n = 2), likely pathogenic (n = 10), or VUSs (n = 61). After the patch clamp studies, 16 variants were benign/likely benign, 45 were pathogenic/likely pathogenic, and only 12 were still VUSs. Structural modeling identified likely mechanisms for loss of function including altered thermostability and disruptions to alpha helices, disulfide bonds, or the permeation pore. High-throughput patch clamping enabled reclassification of the majority of tested VUSs in SCN5A.
Collapse
Affiliation(s)
- Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuko Wada
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bian Li
- Department of Biological Sciences, Center for Structural Biology, and Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Ayesha Muhammad
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Olivia R Kalash
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew J O'Neill
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tiffany Shields
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lynn Hall
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laura Short
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marcia A Blair
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brett M Kroncke
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John A Capra
- Department of Biological Sciences, Center for Structural Biology, and Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
123
|
Cao Z, Liu L, Hu G, Bian Y, Li H, Wang J, Zhou Y. Interplay of hydrophobic and hydrophilic interactions in sequence-dependent cell penetration of spontaneous membrane-translocating peptides revealed by bias-exchange metadynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183402. [PMID: 32569587 DOI: 10.1016/j.bbamem.2020.183402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022]
Abstract
Spontaneous Membrane Translocating Peptides (SMTPs) can translocate silently across the bilayer and, thus, have the best potential to improve the delivery of therapeutic molecules to cells without toxicity. However, how their translocation mechanisms are affected by a specific peptide sequence remains poorly understood. Here, bias-exchange metadynamics simulations were employed to investigate the translocation mechanisms of five SMTPs with the same composition of amino acids (LLRLR, LRLLR, LLLRR, RLLLR, and LRLRL). Simulation results yield sequence-dependent free energy barrier using the FESs along the z-directional distance. An in-depth analysis of sequence-dependent interactions in different regions of the bilayers indicates that the free-energy barrier height of a specific sequence is resulted from the accessibility balance of isolated or clustered hydrophobic residues (L) and hydrophilic residues (R) that leads to different levels of resistance for moving of a peptide into the hydrophobic center of the membrane. At the maximal of the free-energy barrier, all peptides have a conformation parallel to the membrane surface with the barrier height determined by their affinity to the hydrophobic region. The appropriate bilayer perturbation and GDM+ pairing are beneficial for peptide translocation. These results provide an improved microscopic understanding of how peptide sequence influences the translocation efficiency and mechanism.
Collapse
Affiliation(s)
- Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; College of Information Management, Dezhou University, Dezhou 253023, China.
| | - Guodong Hu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Yunqiang Bian
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Haiyan Li
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China.
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Yaoqi Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; Institute for Glycomics, School of Information and Communication Technology, Griffith University, Parklands Dr, Southport, QLD 4222, Australia.
| |
Collapse
|
124
|
Rupasinghe DB, Herzig V, Vetter I, Dekan Z, Gilchrist J, Bosmans F, Alewood PF, Lewis RJ, King GF. Mutational analysis of ProTx-I and the novel venom peptide Pe1b provide insight into residues responsible for selective inhibition of the analgesic drug target Na V1.7. Biochem Pharmacol 2020; 181:114080. [PMID: 32511987 DOI: 10.1016/j.bcp.2020.114080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
Abstract
Management of chronic pain presents a major challenge, since many currently available treatments lack efficacy and have problems such as addiction and tolerance. Loss of function mutations in the SCN9A gene lead to a congenital inability to feel pain, with no other sensory deficits aside from anosmia. SCN9A encodes the voltage-gated sodium (NaV) channel 1.7 (NaV1.7), which has been identified as a primary pain target. However, in developing NaV1.7-targeted analgesics, extreme care must to be taken to avoid off-target activity on other NaV subtypes that are critical for survival. Since spider venoms are an excellent source of NaV channel modulators, we screened a panel of spider venoms to identify selective NaV1.7 inhibitors. This led to identification of two novel NaV modulating venom peptides (β/μ-theraphotoxin-Pe1a and β/μ-theraphotoxin-Pe1b (Pe1b) from the arboreal tarantula Phormingochilus everetti. A third peptide isolated from the tarantula Bumba pulcherrimaklaasi was identical to the well-known ProTx-I (β/ω-theraphotoxin-Tp1a) from the tarantula Thrixopelma pruriens. A tethered toxin (t-toxin)-based alanine scanning strategy was used to determine the NaV1.7 pharmacophore of ProTx-I. We designed several ProTx-I and Pe1b analogues, and tested them for activity and NaV channel subtype selectivity. Several analogues had improved potency against NaV1.7, and altered specificity against other NaV channels. These analogues provide a foundation for development of Pe1b as a lead molecule for therapeutic inhibition of NaV1.7.
Collapse
Affiliation(s)
- Darshani B Rupasinghe
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4105, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - John Gilchrist
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
125
|
Chen G, Jia Z, Wang L, Hu T. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). ENVIRONMENTAL RESEARCH 2020; 185:109432. [PMID: 32247151 DOI: 10.1016/j.envres.2020.109432] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
As a type of cyanobacterial toxins, saxitoxin (STX) is receiving great interest due to its increasing presence in waterbodies. However, the underlying mechanism of STX-induced adverse effect is poorly understood. Here, we examined the developmental toxicity and molecular mechanism induced by STX using zebrafish embryos as an animal model. The embryonic toxicity induced by STX was demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, abnormalities in embryo morphology as well as defects in angiogenesis and common cardinal vein remodeling. STX induced embryonic DNA damage and cell apoptosis, which would be alleviated by antioxidant N-acetyl-L-cysteine. Additionally, STX significantly increased reactive oxygen species level, catalase activity and malondialdehyde content and decreased the activity of superoxide dismutase and glutathione content. STX also promoted the expression of vascular development-related genes DLL4 and VEGFC, and inhibited VEGFA expression. Furthermore, STX altered the transcriptional regulation of apoptosis-related genes (BAX, BCL-2, P53 and CASPASE 3). Taken together, STX induced adverse effect on development of zebrafish embryos, which might be associated with oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Zimu Jia
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
126
|
Chow CY, Absalom N, Biggs K, King GF, Ma L. Venom-derived modulators of epilepsy-related ion channels. Biochem Pharmacol 2020; 181:114043. [PMID: 32445870 DOI: 10.1016/j.bcp.2020.114043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Epilepsy is characterised by spontaneous recurrent seizures that are caused by an imbalance between neuronal excitability and inhibition. Since ion channels play fundamental roles in the generation and propagation of action potentials as well as neurotransmitter release at a subset of excitatory and inhibitory synapses, their dysfunction has been linked to a wide variety of epilepsies. Indeed, these unique proteins are the major biological targets for antiepileptic drugs. Selective targeting of a specific ion channel subtype remains challenging for small molecules, due to the high level of homology among members of the same channel family. As a consequence, there is a growing trend to target ion channels with biologics. Venoms are the best known natural source of ion channel modulators, and venom peptides are increasingly recognised as potential therapeutics due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Here we describe the major ion channel families involved in the pathogenesis of various types of epilepsy, including voltage-gated Na+, K+, Ca2+ channels, Cys-loop receptors, ionotropic glutamate receptors and P2X receptors, and currently available venom-derived peptides that target these channel proteins. Although only a small number of venom peptides have successfully progressed to the clinic, there is reason to be optimistic about their development as antiepileptic drugs, notwithstanding the challenges associated with development of any class of peptide drug.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathan Absalom
- Brain and Mind Centre, School of Pharmacy, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kimberley Biggs
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
127
|
Raposo MIC, Gomes MTSR, Botelho MJ, Rudnitskaya A. Paralytic Shellfish Toxins (PST)-Transforming Enzymes: A Review. Toxins (Basel) 2020; 12:E344. [PMID: 32456077 PMCID: PMC7290730 DOI: 10.3390/toxins12050344] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 01/13/2023] Open
Abstract
Paralytic shellfish toxins (PSTs) are a group of toxins that cause paralytic shellfish poisoning through blockage of voltage-gated sodium channels. PSTs are produced by prokaryotic freshwater cyanobacteria and eukaryotic marine dinoflagellates. Proliferation of toxic algae species can lead to harmful algal blooms, during which seafood accumulate high levels of PSTs, posing a health threat to consumers. The existence of PST-transforming enzymes was first remarked due to the divergence of PST profiles and concentrations between contaminated bivalves and toxigenic organisms. Later, several enzymes involved in PST transformation, synthesis and elimination have been identified. The knowledge of PST-transforming enzymes is necessary for understanding the processes of toxin accumulation and depuration in mollusk bivalves. Furthermore, PST-transforming enzymes facilitate the obtainment of pure analogues of toxins as in natural sources they are present in a mixture. Pure compounds are of interest for the development of drug candidates and as analytical reference materials. PST-transforming enzymes can also be employed for the development of analytical tools for toxin detection. This review summarizes the PST-transforming enzymes identified so far in living organisms from bacteria to humans, with special emphasis on bivalves, cyanobacteria and dinoflagellates, and discusses enzymes' biological functions and potential practical applications.
Collapse
Affiliation(s)
- Mariana I. C. Raposo
- CESAM and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (M.I.C.R.); (M.T.S.R.G.)
| | - Maria Teresa S. R. Gomes
- CESAM and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (M.I.C.R.); (M.T.S.R.G.)
| | - Maria João Botelho
- Portuguese Institute for the Sea and Atmosphere, 1449-006 Lisbon, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal
| | - Alisa Rudnitskaya
- CESAM and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (M.I.C.R.); (M.T.S.R.G.)
| |
Collapse
|
128
|
Robertson MJ, van Zundert GCP, Borrelli K, Skiniotis G. GemSpot: A Pipeline for Robust Modeling of Ligands into Cryo-EM Maps. Structure 2020; 28:707-716.e3. [PMID: 32413291 DOI: 10.1016/j.str.2020.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/13/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
Producing an accurate atomic model of biomolecule-ligand interactions from maps generated by cryoelectron microscopy (cryo-EM) often presents challenges inherent to the methodology and the dynamic nature of ligand binding. Here, we present GemSpot, an automated pipeline of computational chemistry methods that take into account EM map potentials, quantum mechanics energy calculations, and water molecule site prediction to generate candidate poses and provide a measure of the degree of confidence. The pipeline is validated through several published cryo-EM structures of complexes in different resolution ranges and various types of ligands. In all cases, at least one identified pose produced both excellent interactions with the target and agreement with the map. GemSpot will be valuable for the robust identification of ligand poses and drug discovery efforts through cryo-EM.
Collapse
Affiliation(s)
- Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
129
|
Zhu A, Aierken A, Yao Z, Vu S, Tian Y, Zheng J, Yang S, Yang F. A centipede toxin causes rapid desensitization of nociceptor TRPV1 ion channel. Toxicon 2020; 178:41-49. [PMID: 32097697 DOI: 10.1016/j.toxicon.2020.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
The nociceptive transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor for multiple painful stimuli, hence actively pursued as a target for analgesic drugs. We identified a small peptide toxin RhTx2 from the Chinese red-headed centipede that strongly modulates TRPV1 activities. RhTx2, a 31-amino-acid peptide, is similar to a TRPV1-activating toxin RhTx we have previously discovered but with four extra amino acids at the N terminus. We observed that, like RhTx, RhTx2 activated TRPV1, but RhTx2 rapidly desensitized the channel upon prolonged exposure. Desensitization was achieved by reducing both the open probability and the single-channel conductance. RhTx2 is not only a tool to study the desensitization mechanism of TRPV1, but also a promising starting molecule for developing novel analgesics.
Collapse
Affiliation(s)
- Aiqin Zhu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China; Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Aerziguli Aierken
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Zhihao Yao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
| | - Simon Vu
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, 95616, USA
| | - Yuhua Tian
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China.
| | - Jie Zheng
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, 95616, USA.
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China.
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
130
|
Denomme N, Lukowski AL, Hull JM, Jameson MB, Bouza AA, Narayan ARH, Isom LL. The voltage-gated sodium channel inhibitor, 4,9-anhydrotetrodotoxin, blocks human Na v1.1 in addition to Na v1.6. Neurosci Lett 2020; 724:134853. [PMID: 32114117 PMCID: PMC7096269 DOI: 10.1016/j.neulet.2020.134853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 11/23/2022]
Abstract
Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in neurons. The human genome includes ten human VGSC α-subunit genes, SCN(X)A, encoding Nav1.1-1.9 plus Nax. To understand the unique role that each VGSC plays in normal and pathophysiological function in neural networks, compounds with high affinity and selectivity for specific VGSC subtypes are required. Toward that goal, a structural analog of the VGSC pore blocker tetrodotoxin, 4,9-anhydrotetrodotoxin (4,9-ah-TTX), has been reported to be more selective in blocking Na+ current mediated by Nav1.6 than other TTX-sensitive VGSCs, including Nav1.2, Nav1.3, Nav1.4, and Nav1.7. While SCN1A, encoding Nav1.1, has been implicated in several neurological diseases, the effects of 4,9-ah-TTX on Nav1.1-mediated Na+ current have not been tested. Here, we compared the binding of 4,9-ah-TTX for human and mouse brain preparations, and the effects of 4,9-ah-TTX on human Nav1.1-, Nav1.3- and Nav1.6-mediated Na+ currents using the whole-cell patch clamp technique in heterologous cells. We show that, while 4,9-ah-TTX administration results in significant blockade of Nav1.6-mediated Na+ current in the nanomolar range, it also has significant effects on Nav1.1-mediated Na+ current. Thus, 4,9-ah-TTX is not a useful tool in identifying Nav1.6-specific effects in human brain networks.
Collapse
Affiliation(s)
- Nicholas Denomme
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - April L Lukowski
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Jacob M Hull
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Margaret B Jameson
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Molecular and Cellular Pharmacology Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 United States
| | - Alexandra A Bouza
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Alison R H Narayan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109 United States; Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Lori L Isom
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, 48109 United States; Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48109 United States; Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109 United States.
| |
Collapse
|
131
|
van Goor MK, de Jager L, Cheng Y, van der Wijst J. High-resolution structures of transient receptor potential vanilloid channels: Unveiling a functionally diverse group of ion channels. Protein Sci 2020; 29:1569-1580. [PMID: 32232875 PMCID: PMC7314393 DOI: 10.1002/pro.3861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Transient receptor potential vanilloid (TRPV) channels are part of the superfamily of TRP ion channels and play important roles in widespread physiological processes including both neuronal and non‐neuronal pathways. Various diseases such as skeletal abnormalities, chronic pain, and cancer are associated with dysfunction of a TRPV channel. In order to obtain full understanding of disease pathogenesis and create opportunities for therapeutic intervention, it is essential to unravel how these channels function at a molecular level. In the past decade, incredible progress has been made in biochemical sample preparation of large membrane proteins and structural biology techniques, including cryo‐electron microscopy. This has resulted in high resolution structures of all TRPV channels, which has provided novel insights into the molecular mechanisms of channel gating and regulation that will be summarized in this review.
Collapse
Affiliation(s)
- Mark K van Goor
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leanne de Jager
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States.,Howard Hughes Medical Institute, University of California, San Francisco, California, United States
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
132
|
Vaelli PM, Theis KR, Williams JE, O'Connell LA, Foster JA, Eisthen HL. The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. eLife 2020; 9:e53898. [PMID: 32254021 PMCID: PMC7138609 DOI: 10.7554/elife.53898] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Rough-skinned newts (Taricha granulosa) use tetrodotoxin (TTX) to block voltage-gated sodium (Nav) channels as a chemical defense against predation. Interestingly, newts exhibit extreme population-level variation in toxicity attributed to a coevolutionary arms race with TTX-resistant predatory snakes, but the source of TTX in newts is unknown. Here, we investigated whether symbiotic bacteria isolated from toxic newts could produce TTX. We characterized the skin-associated microbiota from a toxic and non-toxic population of newts and established pure cultures of isolated bacterial symbionts from toxic newts. We then screened bacterial culture media for TTX using LC-MS/MS and identified TTX-producing bacterial strains from four genera, including Aeromonas, Pseudomonas, Shewanella, and Sphingopyxis. Additionally, we sequenced the Nav channel gene family in toxic newts and found that newts expressed Nav channels with modified TTX binding sites, conferring extreme physiological resistance to TTX. This study highlights the complex interactions among adaptive physiology, animal-bacterial symbiosis, and ecological context.
Collapse
Affiliation(s)
- Patric M Vaelli
- Department of Integrative Biology, Michigan State UniversityEast LansingUnited States
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State UniversityDetroitUnited States
| | - Janet E Williams
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Department of Animal and Veterinary Science, University of IdahoMoscowUnited States
- Institute for Bioinformatics and Evolutionary Studies, University of IdahoMoscowUnited States
| | | | - James A Foster
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
- Institute for Bioinformatics and Evolutionary Studies, University of IdahoMoscowUnited States
- Department of Biological Sciences, University of IdahoMoscowUnited States
| | - Heather L Eisthen
- Department of Integrative Biology, Michigan State UniversityEast LansingUnited States
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
133
|
Affiliation(s)
- Keigo Murakami
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Tatsuya Toma
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Tohru Fukuyama
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
134
|
Misra C, Bangru S, Lin F, Lam K, Koenig SN, Lubbers ER, Hedhli J, Murphy NP, Parker DJ, Dobrucki LW, Cooper TA, Tajkhorshid E, Mohler PJ, Kalsotra A. Aberrant Expression of a Non-muscle RBFOX2 Isoform Triggers Cardiac Conduction Defects in Myotonic Dystrophy. Dev Cell 2020; 52:748-763.e6. [PMID: 32109384 PMCID: PMC7098852 DOI: 10.1016/j.devcel.2020.01.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the CTG repeat expansion in the 3'-untranslated region of DMPK gene. Heart dysfunctions occur in ∼80% of DM1 patients and are the second leading cause of DM1-related deaths. Herein, we report that upregulation of a non-muscle splice isoform of RNA-binding protein RBFOX2 in DM1 heart tissue-due to altered splicing factor and microRNA activities-induces cardiac conduction defects in DM1 individuals. Mice engineered to express the non-muscle RBFOX240 isoform in heart via tetracycline-inducible transgenesis, or CRISPR/Cas9-mediated genome editing, reproduced DM1-related cardiac conduction delay and spontaneous episodes of arrhythmia. Further, by integrating RNA binding with cardiac transcriptome datasets from DM1 patients and mice expressing the non-muscle RBFOX2 isoform, we identified RBFOX240-driven splicing defects in voltage-gated sodium and potassium channels, which alter their electrophysiological properties. Thus, our results uncover a trans-dominant role for an aberrantly expressed RBFOX240 isoform in DM1 cardiac pathogenesis.
Collapse
Affiliation(s)
- Chaitali Misra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Feikai Lin
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Kin Lam
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Sara N Koenig
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Ellen R Lubbers
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jamila Hedhli
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Nathaniel P Murphy
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Darren J Parker
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Centers for Macromolecular Modeling, Bioinformatics and Experimental Molecular Imaging at Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
135
|
Salvage SC, Rees JS, McStea A, Hirsch M, Wang L, Tynan CJ, Reed MW, Irons JR, Butler R, Thompson AJ, Martin-Fernandez ML, Huang CL, Jackson AP. Supramolecular clustering of the cardiac sodium channel Nav1.5 in HEK293F cells, with and without the auxiliary β3-subunit. FASEB J 2020; 34:3537-3553. [PMID: 31950564 PMCID: PMC7079131 DOI: 10.1096/fj.201701473rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/24/2023]
Abstract
Voltage-gated sodium channels comprise an ion-selective α-subunit and one or more associated β-subunits. The β3-subunit (encoded by the SCN3B gene) is an important physiological regulator of the heart-specific sodium channel, Nav1.5. We have previously shown that when expressed alone in HEK293F cells, the full-length β3-subunit forms trimers in the plasma membrane. We extend this result with biochemical assays and use the proximity ligation assay (PLA) to identify oligomeric β3-subunits, not just at the plasma membrane, but throughout the secretory pathway. We then investigate the corresponding clustering properties of the α-subunit and the effects upon these of the β3-subunits. The oligomeric status of the Nav1.5 α-subunit in vivo, with or without the β3-subunit, has not been previously investigated. Using super-resolution fluorescence imaging, we show that under conditions typically used in electrophysiological studies, the Nav1.5 α-subunit assembles on the plasma membrane of HEK293F cells into spatially localized clusters rather than individual and randomly dispersed molecules. Quantitative analysis indicates that the β3-subunit is not required for this clustering but β3 does significantly change the distribution of cluster sizes and nearest-neighbor distances between Nav1.5 α-subunits. However, when assayed by PLA, the β3-subunit increases the number of PLA-positive signals generated by anti-(Nav1.5 α-subunit) antibodies, mainly at the plasma membrane. Since PLA can be sensitive to the orientation of proteins within a cluster, we suggest that the β3-subunit introduces a significant change in the relative alignment of individual Nav1.5 α-subunits, but the clustering itself depends on other factors. We also show that these structural and higher-order changes induced by the β3-subunit do not alter the degree of electrophysiological gating cooperativity between Nav1.5 α-subunits. Our data provide new insights into the role of the β3-subunit and the supramolecular organization of sodium channels, in an important model cell system that is widely used to study Nav channel behavior.
Collapse
Affiliation(s)
| | | | - Alexandra McStea
- Central Laser FacilityResearch Complex at HarwellScience and Technology Facilities CouncilRutherford Appleton LaboratoryOxfordUK
| | - Michael Hirsch
- Central Laser FacilityResearch Complex at HarwellScience and Technology Facilities CouncilRutherford Appleton LaboratoryOxfordUK
| | - Lin Wang
- Central Laser FacilityResearch Complex at HarwellScience and Technology Facilities CouncilRutherford Appleton LaboratoryOxfordUK
| | - Christopher J. Tynan
- Central Laser FacilityResearch Complex at HarwellScience and Technology Facilities CouncilRutherford Appleton LaboratoryOxfordUK
| | - Matthew W. Reed
- Department of Nuclear PhysicsResearch School of Physics and EngineeringAustralian National UniversityCanberrraACTAustralia
| | | | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
| | | | - Marisa L. Martin-Fernandez
- Central Laser FacilityResearch Complex at HarwellScience and Technology Facilities CouncilRutherford Appleton LaboratoryOxfordUK
| | - Christopher L.‐H. Huang
- Deparment of BiochemistryUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
136
|
Murakami K, Toma T, Fukuyama T, Yokoshima S. Total Synthesis of Tetrodotoxin. Angew Chem Int Ed Engl 2020; 59:6253-6257. [DOI: 10.1002/anie.201916611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Keigo Murakami
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Tatsuya Toma
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Tohru Fukuyama
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical SciencesNagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
137
|
Bajaj S, Ong ST, Chandy KG. Contributions of natural products to ion channel pharmacology. Nat Prod Rep 2020; 37:703-716. [PMID: 32065187 DOI: 10.1039/c9np00056a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: Up to 2020Ion channels are a vast super-family of membrane proteins that play critical physiological roles in excitable and non-excitable cells. Their biomedical importance makes them valuable and attractive drug targets for neurological, cardiovascular, gastrointestinal and metabolic diseases, and for cancer therapy and immune modulation. Current therapeutics target only a minor subset of ion channels, leaving a large unexploited space within the ion channel field. Natural products harnessed from the almost unlimited and diverse universe of compounds within the bioenvironment have been used to modulate channels for decades. In this review we highlight the impact made by natural products on ion channel pharmacology, specifically on K+, NaV and CaV channels, and use case studies to describe the development of ion channel-modulating drugs from natural sources for the treatment of pain, heart disease and autoimmune diseases.
Collapse
Affiliation(s)
- Saumya Bajaj
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, 636921, Singapore.
| | | | | |
Collapse
|
138
|
Craig RA, Garrison CE, Nguyen PT, Yarov-Yarovoy V, Du Bois J. Veratridine: A Janus-Faced Modulator of Voltage-Gated Sodium Ion Channels. ACS Chem Neurosci 2020; 11:418-426. [PMID: 31951114 DOI: 10.1021/acschemneuro.9b00621] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Voltage-gated sodium ion channels (NaVs) are integral to both neuronal and muscular signaling and are a primary target for a number of proteinaceous and small molecule toxins. Included among these neurotoxins is veratridine (VTD), a C-nor-D homosteroidal alkaloid from the seeds of members of the Veratrum genus. VTD binds to NaV within the pore region, causing a hyperpolarizing shift in the activation threshold in addition to reducing peak current. We have characterized the activity of VTD against heterologously expressed rat NaV1.4 and have demonstrated that VTD acts on the channel as either an agonist or antagonist depending on the nature of the electrophysiological stimulation protocol. Structure-activity studies with VTD and VTD derivatives against NaV mutants show that the functional duality of VTD can be decoupled. These findings suggest that the dichotomous activity of VTD may derive from two distinct, use-dependent binding orientations of the toxin.
Collapse
Affiliation(s)
- Robert A. Craig
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Catherine E. Garrison
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Phuong T. Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, United States
| | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
139
|
Gade AR, Marx SO, Pitt GS. An interaction between the III-IV linker and CTD in NaV1.5 confers regulation of inactivation by CaM and FHF. J Gen Physiol 2020; 152:e201912434. [PMID: 31865383 PMCID: PMC7062510 DOI: 10.1085/jgp.201912434] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
Voltage gated sodium channel (VGSC) activation drives the action potential upstroke in cardiac myocytes, skeletal muscles, and neurons. After opening, VGSCs rapidly enter a non-conducting, inactivated state. Impaired inactivation causes persistent inward current and underlies cardiac arrhythmias. VGSC auxiliary proteins calmodulin (CaM) and fibroblast growth factor homologous factors (FHFs) bind to the channel's C-terminal domain (CTD) and limit pathogenic persistent currents. The structural details and mechanisms mediating these effects are not clear. Building on recently published cryo-EM structures, we show that CaM and FHF limit persistent currents in the cardiac NaV1.5 VGSC by stabilizing an interaction between the channel's CTD and III-IV linker region. Perturbation of this intramolecular interaction increases persistent current and shifts the voltage dependence of steady-state inactivation. Interestingly, the NaV1.5 residues involved in the interaction are sites mutated in the arrhythmogenic long QT3 syndrome (LQT3). Along with electrophysiological investigations of this interaction, we present structural models that suggest how CaM and FHF stabilize the interaction and thereby limit the persistent current. The critical residues at the interaction site are conserved among VGSC isoforms, and subtle substitutions provide an explanation for differences in inactivation among the isoforms.
Collapse
Affiliation(s)
- Aravind R. Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
140
|
Synthetic Approaches to Zetekitoxin AB, a Potent Voltage-Gated Sodium Channel Inhibitor. Mar Drugs 2019; 18:md18010024. [PMID: 31888062 PMCID: PMC7024329 DOI: 10.3390/md18010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are membrane proteins that are involved in the generation and propagation of action potentials in neurons. Recently, the structure of a complex made of a tetrodotoxin-sensitive (TTX-s) NaV subtype with saxitoxin (STX), a shellfish toxin, was determined. STX potently inhibits TTX-s NaV, and is used as a biological tool to investigate the function of NaVs. More than 50 analogs of STX have been isolated from nature. Among them, zetekitoxin AB (ZTX) has a distinctive chemical structure, and is the most potent inhibitor of NaVs, including tetrodotoxin-resistant (TTX-r) NaV. Despite intensive synthetic studies, total synthesis of ZTX has not yet been achieved. Here, we review recent efforts directed toward the total synthesis of ZTX, including syntheses of 11-saxitoxinethanoic acid (SEA), which is considered a useful synthetic model for ZTX, since it contains a key carbon-carbon bond at the C11 position.
Collapse
|
141
|
Li ZM, Chen LX, Li H. Voltage-gated Sodium Channels and Blockers: An Overview and Where Will They Go? Curr Med Sci 2019; 39:863-873. [PMID: 31845216 DOI: 10.1007/s11596-019-2117-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/02/2019] [Indexed: 11/27/2022]
Abstract
Voltage-gated sodium (Nav) channels are critical players in the generation and propagation of action potentials by triggering membrane depolarization. Mutations in Nav channels are associated with a variety of channelopathies, which makes them relevant targets for pharmaceutical intervention. So far, the cryoelectron microscopic structure of the human Nav1.2, Nav1.4, and Nav1.7 has been reported, which sheds light on the molecular basis of functional mechanism of Nav channels and provides a path toward structure-based drug discovery. In this review, we focus on the recent advances in the structure, molecular mechanism and modulation of Nav channels, and state updated sodium channel blockers for the treatment of pathophysiology disorders and briefly discuss where the blockers may be developed in the future.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
142
|
Convergent and parallel evolution in a voltage-gated sodium channel underlies TTX-resistance in the Greater Blue-ringed Octopus: Hapalochlaena lunulata. Toxicon 2019; 170:77-84. [DOI: 10.1016/j.toxicon.2019.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
|
143
|
Tzakoniati F, Xu H, Li T, Garcia N, Kugel C, Payandeh J, Koth CM, Tate EW. Development of Photocrosslinking Probes Based on Huwentoxin-IV to Map the Site of Interaction on Nav1.7. Cell Chem Biol 2019; 27:306-313.e4. [PMID: 31732432 PMCID: PMC7083225 DOI: 10.1016/j.chembiol.2019.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/31/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Voltage-gated sodium (Nav) channels respond to changes in the membrane potential of excitable cells through the concerted action of four voltage-sensor domains (VSDs). Subtype Nav1.7 plays an important role in the propagation of signals in pain-sensing neurons and is a target for the clinical development of novel analgesics. Certain inhibitory cystine knot (ICK) peptides produced by venomous animals potently modulate Nav1.7; however, the molecular mechanisms underlying their selective binding and activity remain elusive. This study reports on the design of a library of photoprobes based on the potent spider toxin Huwentoxin-IV and the determination of the toxin binding interface on VSD2 of Nav1.7 through a photocrosslinking and tandem mass spectrometry approach. Our Huwentoxin-IV probes selectively crosslink to extracellular loop S1-S2 and helix S3 of VSD2 in a chimeric channel system. Our results provide a strategy that will enable mapping of sites of interaction of other ICK peptides on Nav channels. Development of six potent diazirine-containing photoprobes based on Huwentoxin-IV Photoprobes specifically photolabel purified bacterial-Nav1.7 VSD2 chimeric channels Proteomic mass spectrometry identifies binding site on S1-S2 loop and S3 helix Proposed model of HwTx-IV binding reveals importance of K27 and R29
Collapse
Affiliation(s)
| | - Hui Xu
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Tianbo Li
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA 94080, USA
| | - Natalie Garcia
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Christine Kugel
- Department of Biomolecular Resources, Genentech, South San Francisco, CA 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Christopher M Koth
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
144
|
Salvage SC, Zhu W, Habib ZF, Hwang SS, Irons JR, Huang CLH, Silva JR, Jackson AP. Gating control of the cardiac sodium channel Nav1.5 by its β3-subunit involves distinct roles for a transmembrane glutamic acid and the extracellular domain. J Biol Chem 2019; 294:19752-19763. [PMID: 31659116 PMCID: PMC6926464 DOI: 10.1074/jbc.ra119.010283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Indexed: 11/06/2022] Open
Abstract
The auxiliary β3-subunit is an important functional regulator of the cardiac sodium channel Nav1.5, and some β3 mutations predispose individuals to cardiac arrhythmias. The β3-subunit uses its transmembrane α-helix and extracellular domain to bind to Nav1.5. Here, we investigated the role of an unusually located and highly conserved glutamic acid (Glu-176) within the β3 transmembrane region and its potential for functionally synergizing with the β3 extracellular domain (ECD). We substituted Glu-176 with lysine (E176K) in the WT β3-subunit and in a β3-subunit lacking the ECD. Patch-clamp experiments indicated that the E176K substitution does not affect the previously observed β3-dependent depolarizing shift of V½ of steady-state inactivation but does attenuate the accelerated recovery from inactivation conferred by the WT β3-subunit. Removal of the β3-ECD abrogated both the depolarizing shift of steady-state inactivation and the accelerated recovery, irrespective of the presence or absence of the Glu-176 residue. We found that steady-state inactivation and recovery from inactivation involve movements of the S4 helices within the DIII and DIV voltage sensors in response to membrane potential changes. Voltage-clamp fluorometry revealed that the E176K substitution alters DIII voltage sensor dynamics without affecting DIV. In contrast, removal of the ECD significantly altered the dynamics of both DIII and DIV. These results imply distinct roles for the β3-Glu-176 residue and the β3-ECD in regulating the conformational changes of the voltage sensors that determine channel inactivation and recovery from inactivation.
Collapse
Affiliation(s)
- Samantha C Salvage
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130-489
| | - Zaki F Habib
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Soyon S Hwang
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130-489
| | - Jennifer R Irons
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Christopher L H Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130-489
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
145
|
Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins (Basel) 2019; 11:toxins11100611. [PMID: 31652611 PMCID: PMC6832493 DOI: 10.3390/toxins11100611] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
This review gives an overview on the development of research on spider venoms with a focus on structure and function of venom components and techniques of analysis. Major venom component groups are small molecular mass compounds, antimicrobial (also called cytolytic, or cationic) peptides (only in some spider families), cysteine-rich (neurotoxic) peptides, and enzymes and proteins. Cysteine-rich peptides are reviewed with respect to various structural motifs, their targets (ion channels, membrane receptors), nomenclature, and molecular binding. We further describe the latest findings concerning the maturation of antimicrobial, and cysteine-rich peptides that are in most known cases expressed as propeptide-containing precursors. Today, venom research, increasingly employs transcriptomic and mass spectrometric techniques. Pros and cons of venom gland transcriptome analysis with Sanger, 454, and Illumina sequencing are discussed and an overview on so far published transcriptome studies is given. In this respect, we also discuss the only recently described cross contamination arising from multiplexing in Illumina sequencing and its possible impacts on venom studies. High throughput mass spectrometric analysis of venom proteomes (bottom-up, top-down) are reviewed.
Collapse
|
146
|
Of Molecules and Mechanisms. J Neurosci 2019; 40:81-88. [PMID: 31630114 DOI: 10.1523/jneurosci.0743-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
Without question, molecular biology drives modern neuroscience. The past 50 years has been nothing short of revolutionary as key findings have moved the field from correlation toward causation. Most obvious are the discoveries and strategies that have been used to build tools for visualizing circuits, measuring activity, and regulating behavior. Less flashy, but arguably as important are the myriad investigations uncovering the actions of single molecules, macromolecular structures, and integrated machines that serve as the basis for constructing cellular and signaling pathways identified in wide-scale gene or RNA studies and for feeding data into informational networks used in systems biology. This review follows the pathways that were opened in neuroscience by major discoveries and set the stage for the next 50 years.
Collapse
|
147
|
Zhou Z, Chai Z, Wang C. From structure to function: unveiling the structure of the Na v channel-toxin complex. Natl Sci Rev 2019; 6:859-860. [PMID: 34691943 PMCID: PMC8291475 DOI: 10.1093/nsr/nwy090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Zhuan Zhou
- Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, China
| | - Zuying Chai
- Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, China
| | - Changhe Wang
- School of Life Science and Technology and Frontier Institute of Science and Technology, Xi’an Jiaotong University, China
| |
Collapse
|
148
|
Myshkin MY, Männikkö R, Krumkacheva OA, Kulbatskii DS, Chugunov AO, Berkut AA, Paramonov AS, Shulepko MA, Fedin MV, Hanna MG, Kullmann DM, Bagryanskaya EG, Arseniev AS, Kirpichnikov MP, Lyukmanova EN, Vassilevski AA, Shenkarev ZO. Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Na v1.4 Channel. Front Pharmacol 2019; 10:953. [PMID: 31555136 PMCID: PMC6737007 DOI: 10.3389/fphar.2019.00953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/26/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains (VSDs-I/IV) are needed for voltage-dependent gating. Mutations in the S4 voltage-sensing segments of VSDs in the skeletal muscle channel NaV1.4 trigger leak (gating pore) currents and cause hypokalemic and normokalemic periodic paralyses. Previously, we have shown that the gating modifier toxin Hm-3 from the crab spider Heriaeus melloteei binds to the S3-S4 extracellular loop in VSD-I of NaV1.4 channel and inhibits gating pore currents through the channel with mutations in VSD-I. Here, we report that Hm-3 also inhibits gating pore currents through the same channel with the R675G mutation in VSD-II. To investigate the molecular basis of Hm-3 interaction with VSD-II, we produced the corresponding 554-696 fragment of NaV1.4 in a continuous exchange cell-free expression system based on the Escherichia coli S30 extract. We then performed a combined nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy study of isolated VSD-II in zwitterionic dodecylphosphocholine/lauryldimethylamine-N-oxide or dodecylphosphocholine micelles. To speed up the assignment of backbone resonances, five selectively 13C,15N-labeled VSD-II samples were produced in accordance with specially calculated combinatorial scheme. This labeling approach provides assignment for ∼50% of the backbone. Obtained NMR and electron paramagnetic resonance data revealed correct secondary structure, quasi-native VSD-II fold, and enhanced ps-ns timescale dynamics in the micelle-solubilized domain. We modeled the structure of the VSD-II/Hm-3 complex by protein-protein docking involving binding surfaces mapped by NMR. Hm-3 binds to VSDs I and II using different modes. In VSD-II, the protruding ß-hairpin of Hm-3 interacts with the S1-S2 extracellular loop, and the complex is stabilized by ionic interactions between the positively charged toxin residue K24 and the negatively charged channel residues E604 or D607. We suggest that Hm-3 binding to these charged groups inhibits voltage sensor transition to the activated state and blocks the depolarization-activated gating pore currents. Our results indicate that spider toxins represent a useful hit for periodic paralyses therapy development and may have multiple structurally different binding sites within one NaV molecule.
Collapse
Affiliation(s)
- Mikhail Yu Myshkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roope Männikkö
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | | | - Dmitrii S Kulbatskii
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anton O Chugunov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia.,International Laboratory for Supercomputer Atomistic Modelling and Multi-scale Analysis, National Research University Higher School of Economics, Moscow, Russia
| | - Antonina A Berkut
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Shulepko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, Russia
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| | - Elena G Bagryanskaya
- N.N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Alexander S Arseniev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Alexander A Vassilevski
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Zakhar O Shenkarev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| |
Collapse
|
149
|
King GF. Tying pest insects in knots: the deployment of spider-venom-derived knottins as bioinsecticides. PEST MANAGEMENT SCIENCE 2019; 75:2437-2445. [PMID: 31025461 DOI: 10.1002/ps.5452] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Spider venoms are complex chemical arsenals that contain a rich variety of insecticidal toxins. However, the major toxin class in many spider venoms is disulfide-rich peptides known as knottins. The knotted three-dimensional fold of these mini-proteins provides them with exceptional chemical and thermal stability as well as resistance to proteases. In contrast with other bioinsecticides, which are often slow-acting, spider knottins are fast-acting neurotoxins. In addition to being potently insecticidal, some knottins have exceptional taxonomic selectivity, being lethal to key agricultural pests but innocuous to vertebrates and beneficial insects such as bees. The intrinsic oral activity of these peptides, combined with the ability of aerosolized knottins to penetrate insect spiracles, has enabled them to be developed commercially as eco-friendly bioinsecticides. Moreover, it has been demonstrated that spider-knottin transgenes can be used to engineer faster-acting entomopathogens and insect-resistant crops. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
150
|
Finol-Urdaneta RK, McArthur JR, Korkosh VS, Huang S, McMaster D, Glavica R, Tikhonov DB, Zhorov BS, French RJ. Extremely Potent Block of Bacterial Voltage-Gated Sodium Channels by µ-Conotoxin PIIIA. Mar Drugs 2019; 17:md17090510. [PMID: 31470595 PMCID: PMC6780087 DOI: 10.3390/md17090510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/13/2019] [Accepted: 08/24/2019] [Indexed: 12/15/2022] Open
Abstract
µ-Conotoxin PIIIA, in the sub-picomolar, range inhibits the archetypal bacterial sodium channel NaChBac (NavBh) in a voltage- and use-dependent manner. Peptide µ-conotoxins were first recognized as potent components of the venoms of fish-hunting cone snails that selectively inhibit voltage-gated skeletal muscle sodium channels, thus preventing muscle contraction. Intriguingly, computer simulations predicted that PIIIA binds to prokaryotic channel NavAb with much higher affinity than to fish (and other vertebrates) skeletal muscle sodium channel (Nav 1.4). Here, using whole-cell voltage clamp, we demonstrate that PIIIA inhibits NavBac mediated currents even more potently than predicted. From concentration-response data, with [PIIIA] varying more than 6 orders of magnitude (10−12 to 10−5 M), we estimated an IC50 = ~5 pM, maximal block of 0.95 and a Hill coefficient of 0.81 for the inhibition of peak currents. Inhibition was stronger at depolarized holding potentials and was modulated by the frequency and duration of the stimulation pulses. An important feature of the PIIIA action was acceleration of macroscopic inactivation. Docking of PIIIA in a NaChBac (NavBh) model revealed two interconvertible binding modes. In one mode, PIIIA sterically and electrostatically blocks the permeation pathway. In a second mode, apparent stabilization of the inactivated state was achieved by PIIIA binding between P2 helices and trans-membrane S5s from adjacent channel subunits, partially occluding the outer pore. Together, our experimental and computational results suggest that, besides blocking the channel-mediated currents by directly occluding the conducting pathway, PIIIA may also change the relative populations of conducting (activated) and non-conducting (inactivated) states.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
- Department of Biochemistry, Brandeis University, Waltham, MA 0254-9110, USA.
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Vyacheslav S Korkosh
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
| | - Sun Huang
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Denis McMaster
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Glavica
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Denis B Tikhonov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
| | - Boris S Zhorov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 4K1, Canada
| | - Robert J French
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|